| /* |
| * QR Code generator library (Rust) |
| * |
| * Copyright (c) Project Nayuki. (MIT License) |
| * https://www.nayuki.io/page/qr-code-generator-library |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy of |
| * this software and associated documentation files (the "Software"), to deal in |
| * the Software without restriction, including without limitation the rights to |
| * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of |
| * the Software, and to permit persons to whom the Software is furnished to do so, |
| * subject to the following conditions: |
| * - The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * - The Software is provided "as is", without warranty of any kind, express or |
| * implied, including but not limited to the warranties of merchantability, |
| * fitness for a particular purpose and noninfringement. In no event shall the |
| * authors or copyright holders be liable for any claim, damages or other |
| * liability, whether in an action of contract, tort or otherwise, arising from, |
| * out of or in connection with the Software or the use or other dealings in the |
| * Software. |
| */ |
| |
| |
| /*---- QrCode functionality ----*/ |
| |
| // Represents an immutable square grid of black and white cells for a QR Code symbol, and |
| // provides static functions to create a QR Code from user-supplied textual or binary data. |
| // This struct covers the QR Code model 2 specification, supporting all versions (sizes) |
| // from 1 to 40, all 4 error correction levels, and only 3 character encoding modes. |
| pub struct QrCode { |
| |
| // This QR Code symbol's version number, which is always between 1 and 40 (inclusive). |
| version: Version, |
| |
| // The width and height of this QR Code symbol, measured in modules. |
| // Always equal to version × 4 + 17, in the range 21 to 177. |
| size: i32, |
| |
| // The error correction level used in this QR Code symbol. |
| errorcorrectionlevel: QrCodeEcc, |
| |
| // The mask pattern used in this QR Code symbol, in the range 0 to 7 (i.e. unsigned 3-bit integer). |
| // Note that even if a constructor was called with automatic masking requested |
| // (mask = -1), the resulting object will still have a mask value between 0 and 7. |
| mask: Mask, |
| |
| // The modules of this QR Code symbol (false = white, true = black) |
| modules: Vec<bool>, |
| |
| // Indicates function modules that are not subjected to masking |
| isfunction: Vec<bool>, |
| |
| } |
| |
| |
| impl QrCode { |
| |
| /*---- Public static factory functions ----*/ |
| |
| // Returns a QR Code symbol representing the given Unicode text string at the given error correction level. |
| // As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer Unicode |
| // code points (not UTF-8 code units) if the low error correction level is used. The smallest possible |
| // QR Code version is automatically chosen for the output. The ECC level of the result may be higher than |
| // the ecl argument if it can be done without increasing the version. Returns a wrapped QrCode if successful, |
| // or None if the data is too long to fit in any version at the given ECC level. |
| pub fn encode_text(text: &str, ecl: QrCodeEcc) -> Option<QrCode> { |
| let chrs: Vec<char> = text.chars().collect(); |
| let segs: Vec<QrSegment> = QrSegment::make_segments(&chrs); |
| QrCode::encode_segments(&segs, ecl) |
| } |
| |
| |
| // Returns a QR Code symbol representing the given binary data string at the given error correction level. |
| // This function always encodes using the binary segment mode, not any text mode. The maximum number of |
| // bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output. |
| // The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version. |
| // Returns a wrapped QrCode if successful, or None if the data is too long to fit in any version at the given ECC level. |
| pub fn encode_binary(data: &[u8], ecl: QrCodeEcc) -> Option<QrCode> { |
| let segs: Vec<QrSegment> = vec![QrSegment::make_bytes(data)]; |
| QrCode::encode_segments(&segs, ecl) |
| } |
| |
| |
| // Returns a QR Code symbol representing the given data segments at the given error correction |
| // level or higher. The smallest possible QR Code version is automatically chosen for the output. |
| // This function allows the user to create a custom sequence of segments that switches |
| // between modes (such as alphanumeric and binary) to encode text more efficiently. |
| // This function is considered to be lower level than simply encoding text or binary data. |
| // Returns a wrapped QrCode if successful, or None if the data is too long to fit in any version at the given ECC level. |
| pub fn encode_segments(segs: &[QrSegment], ecl: QrCodeEcc) -> Option<QrCode> { |
| QrCode::encode_segments_advanced(segs, ecl, QrCode_MIN_VERSION, QrCode_MAX_VERSION, None, true) |
| } |
| |
| |
| // Returns a QR Code symbol representing the given data segments with the given encoding parameters. |
| // The smallest possible QR Code version within the given range is automatically chosen for the output. |
| // This function allows the user to create a custom sequence of segments that switches |
| // between modes (such as alphanumeric and binary) to encode text more efficiently. |
| // This function is considered to be lower level than simply encoding text or binary data. |
| // Returns a wrapped QrCode if successful, or None if the data is too long to fit |
| // in any version in the given range at the given ECC level. |
| pub fn encode_segments_advanced(segs: &[QrSegment], mut ecl: QrCodeEcc, |
| minversion: Version, maxversion: Version, mask: Option<Mask>, boostecl: bool) -> Option<QrCode> { |
| assert!(minversion.value() <= maxversion.value(), "Invalid value"); |
| |
| // Find the minimal version number to use |
| let mut version = minversion; |
| let datausedbits: usize; |
| loop { |
| // Number of data bits available |
| let datacapacitybits: usize = QrCode::get_num_data_codewords(version, ecl) * 8; |
| if let Some(n) = QrSegment::get_total_bits(segs, version) { |
| if n <= datacapacitybits { |
| datausedbits = n; |
| break; // This version number is found to be suitable |
| } |
| } |
| if version.value() >= maxversion.value() { // All versions in the range could not fit the given data |
| return None; |
| } |
| version = Version::new(version.value() + 1); |
| } |
| |
| // Increase the error correction level while the data still fits in the current version number |
| for newecl in &[QrCodeEcc::Medium, QrCodeEcc::Quartile, QrCodeEcc::High] { |
| if boostecl && datausedbits <= QrCode::get_num_data_codewords(version, *newecl) * 8 { |
| ecl = *newecl; |
| } |
| } |
| |
| // Create the data bit string by concatenating all segments |
| let datacapacitybits: usize = QrCode::get_num_data_codewords(version, ecl) * 8; |
| let mut bb = BitBuffer(Vec::new()); |
| for seg in segs { |
| bb.append_bits(seg.mode.mode_bits(), 4); |
| bb.append_bits(seg.numchars as u32, seg.mode.num_char_count_bits(version)); |
| bb.0.extend_from_slice(&seg.data); |
| } |
| |
| // Add terminator and pad up to a byte if applicable |
| let numzerobits = std::cmp::min(4, datacapacitybits - bb.0.len()); |
| bb.append_bits(0, numzerobits as u8); |
| let numzerobits = bb.0.len().wrapping_neg() & 7; |
| bb.append_bits(0, numzerobits as u8); |
| |
| // Pad with alternate bytes until data capacity is reached |
| let mut padbyte: u32 = 0xEC; |
| while bb.0.len() < datacapacitybits { |
| bb.append_bits(padbyte, 8); |
| padbyte ^= 0xEC ^ 0x11; |
| } |
| assert_eq!(bb.0.len() % 8, 0, "Assertion error"); |
| |
| let mut bytes = vec![0u8; bb.0.len() / 8]; |
| for (i, bit) in bb.0.iter().enumerate() { |
| bytes[i >> 3] |= (*bit as u8) << (7 - (i & 7)); |
| } |
| |
| // Create the QR Code symbol |
| Some(QrCode::encode_codewords(version, ecl, &bytes, mask)) |
| } |
| |
| |
| /*---- Constructors ----*/ |
| |
| // Creates a new QR Code symbol with the given version number, error correction level, |
| // binary data array, and mask number. This is a cumbersome low-level constructor that |
| // should not be invoked directly by the user. To go one level up, see the encode_segments() function. |
| pub fn encode_codewords(ver: Version, ecl: QrCodeEcc, datacodewords: &[u8], mask: Option<Mask>) -> QrCode { |
| // Initialize fields |
| let size: usize = (ver.value() as usize) * 4 + 17; |
| let mut result = QrCode { |
| version: ver, |
| size: size as i32, |
| mask: Mask::new(0), // Dummy value |
| errorcorrectionlevel: ecl, |
| modules: vec![false; size * size], // Entirely white grid |
| isfunction: vec![false; size * size], |
| }; |
| |
| // Draw function patterns, draw all codewords, do masking |
| result.draw_function_patterns(); |
| let allcodewords: Vec<u8> = result.append_error_correction(datacodewords); |
| result.draw_codewords(&allcodewords); |
| result.handle_constructor_masking(mask); |
| result |
| } |
| |
| |
| // Returns this QR Code's version, in the range [1, 40]. |
| pub fn version(&self) -> Version { |
| self.version |
| } |
| |
| |
| // Returns this QR Code's size, in the range [21, 177]. |
| pub fn size(&self) -> i32 { |
| self.size |
| } |
| |
| |
| // Returns this QR Code's error correction level. |
| pub fn error_correction_level(&self) -> QrCodeEcc { |
| self.errorcorrectionlevel |
| } |
| |
| |
| // Returns this QR Code's mask, in the range [0, 7]. |
| pub fn mask(&self) -> Mask { |
| self.mask |
| } |
| |
| |
| // Returns the color of the module (pixel) at the given coordinates, which is either |
| // false for white or true for black. The top left corner has the coordinates (x=0, y=0). |
| // If the given coordinates are out of bounds, then 0 (white) is returned. |
| pub fn get_module(&self, x: i32, y: i32) -> bool { |
| 0 <= x && x < self.size && 0 <= y && y < self.size && self.module(x, y) |
| } |
| |
| |
| // Returns the color of the module at the given coordinates, which must be in bounds. |
| fn module(&self, x: i32, y: i32) -> bool { |
| self.modules[(y * self.size + x) as usize] |
| } |
| |
| |
| // Returns a mutable reference to the module's color at the given coordinates, which must be in bounds. |
| fn module_mut(&mut self, x: i32, y: i32) -> &mut bool { |
| &mut self.modules[(y * self.size + x) as usize] |
| } |
| |
| |
| // Based on the given number of border modules to add as padding, this returns a |
| // string whose contents represents an SVG XML file that depicts this QR Code symbol. |
| // Note that Unix newlines (\n) are always used, regardless of the platform. |
| pub fn to_svg_string(&self, border: i32) -> String { |
| assert!(border >= 0, "Border must be non-negative"); |
| let mut result: String = String::new(); |
| result.push_str("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n"); |
| result.push_str("<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n"); |
| let dimension = self.size.checked_add(border.checked_mul(2).unwrap()).unwrap(); |
| result.push_str(&format!( |
| "<svg xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\" viewBox=\"0 0 {0} {0}\" stroke=\"none\">\n", dimension)); |
| result.push_str("\t<rect width=\"100%\" height=\"100%\" fill=\"#FFFFFF\"/>\n"); |
| result.push_str("\t<path d=\""); |
| let mut head: bool = true; |
| for y in -border .. self.size + border { |
| for x in -border .. self.size + border { |
| if self.get_module(x, y) { |
| if head { |
| head = false; |
| } else { |
| result.push_str(" "); |
| } |
| result.push_str(&format!("M{},{}h1v1h-1z", x + border, y + border)); |
| } |
| } |
| } |
| result.push_str("\" fill=\"#000000\"/>\n"); |
| result.push_str("</svg>\n"); |
| result |
| } |
| |
| |
| /*---- Private helper methods for constructor: Drawing function modules ----*/ |
| |
| fn draw_function_patterns(&mut self) { |
| // Draw horizontal and vertical timing patterns |
| let size: i32 = self.size; |
| for i in 0 .. size { |
| self.set_function_module(6, i, i % 2 == 0); |
| self.set_function_module(i, 6, i % 2 == 0); |
| } |
| |
| // Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules) |
| self.draw_finder_pattern(3, 3); |
| self.draw_finder_pattern(size - 4, 3); |
| self.draw_finder_pattern(3, size - 4); |
| |
| // Draw numerous alignment patterns |
| let alignpatpos: Vec<i32> = QrCode::get_alignment_pattern_positions(self.version); |
| let numalign: usize = alignpatpos.len(); |
| for i in 0 .. numalign { |
| for j in 0 .. numalign { |
| if i == 0 && j == 0 || i == 0 && j == numalign - 1 || i == numalign - 1 && j == 0 { |
| continue; // Skip the three finder corners |
| } else { |
| self.draw_alignment_pattern(alignpatpos[i], alignpatpos[j]); |
| } |
| } |
| } |
| |
| // Draw configuration data |
| self.draw_format_bits(Mask::new(0)); // Dummy mask value; overwritten later in the constructor |
| self.draw_version(); |
| } |
| |
| |
| // Draws two copies of the format bits (with its own error correction code) |
| // based on the given mask and this object's error correction level field. |
| fn draw_format_bits(&mut self, mask: Mask) { |
| // Calculate error correction code and pack bits |
| let size: i32 = self.size; |
| // errcorrlvl is uint2, mask is uint3 |
| let mut data: u32 = self.errorcorrectionlevel.format_bits() << 3 | (mask.value() as u32); |
| let mut rem: u32 = data; |
| for _ in 0 .. 10 { |
| rem = (rem << 1) ^ ((rem >> 9) * 0x537); |
| } |
| data = data << 10 | rem; |
| data ^= 0x5412; // uint15 |
| assert_eq!(data >> 15, 0, "Assertion error"); |
| |
| // Draw first copy |
| for i in 0 .. 6 { |
| self.set_function_module(8, i, (data >> i) & 1 != 0); |
| } |
| self.set_function_module(8, 7, (data >> 6) & 1 != 0); |
| self.set_function_module(8, 8, (data >> 7) & 1 != 0); |
| self.set_function_module(7, 8, (data >> 8) & 1 != 0); |
| for i in 9 .. 15 { |
| self.set_function_module(14 - i, 8, (data >> i) & 1 != 0); |
| } |
| |
| // Draw second copy |
| for i in 0 .. 8 { |
| self.set_function_module(size - 1 - i, 8, (data >> i) & 1 != 0); |
| } |
| for i in 8 .. 15 { |
| self.set_function_module(8, size - 15 + i, (data >> i) & 1 != 0); |
| } |
| self.set_function_module(8, size - 8, true); |
| } |
| |
| |
| // Draws two copies of the version bits (with its own error correction code), |
| // based on this object's version field (which only has an effect for 7 <= version <= 40). |
| fn draw_version(&mut self) { |
| if self.version.value() < 7 { |
| return; |
| } |
| |
| // Calculate error correction code and pack bits |
| let mut rem: u32 = self.version.value() as u32; // version is uint6, in the range [7, 40] |
| for _ in 0 .. 12 { |
| rem = (rem << 1) ^ ((rem >> 11) * 0x1F25); |
| } |
| let data: u32 = (self.version.value() as u32) << 12 | rem; // uint18 |
| assert!(data >> 18 == 0, "Assertion error"); |
| |
| // Draw two copies |
| for i in 0 .. 18 { |
| let bit: bool = (data >> i) & 1 != 0; |
| let a: i32 = self.size - 11 + i % 3; |
| let b: i32 = i / 3; |
| self.set_function_module(a, b, bit); |
| self.set_function_module(b, a, bit); |
| } |
| } |
| |
| |
| // Draws a 9*9 finder pattern including the border separator, with the center module at (x, y). |
| fn draw_finder_pattern(&mut self, x: i32, y: i32) { |
| for i in -4 .. 5 { |
| for j in -4 .. 5 { |
| let xx: i32 = x + j; |
| let yy: i32 = y + i; |
| if 0 <= xx && xx < self.size && 0 <= yy && yy < self.size { |
| let dist: i32 = std::cmp::max(i.abs(), j.abs()); // Chebyshev/infinity norm |
| self.set_function_module(xx, yy, dist != 2 && dist != 4); |
| } |
| } |
| } |
| } |
| |
| |
| // Draws a 5*5 alignment pattern, with the center module at (x, y). |
| fn draw_alignment_pattern(&mut self, x: i32, y: i32) { |
| for i in -2 .. 3 { |
| for j in -2 .. 3 { |
| self.set_function_module(x + j, y + i, std::cmp::max(i.abs(), j.abs()) != 1); |
| } |
| } |
| } |
| |
| |
| // Sets the color of a module and marks it as a function module. |
| // Only used by the constructor. Coordinates must be in range. |
| fn set_function_module(&mut self, x: i32, y: i32, isblack: bool) { |
| *self.module_mut(x, y) = isblack; |
| self.isfunction[(y * self.size + x) as usize] = true; |
| } |
| |
| |
| /*---- Private helper methods for constructor: Codewords and masking ----*/ |
| |
| // Returns a new byte string representing the given data with the appropriate error correction |
| // codewords appended to it, based on this object's version and error correction level. |
| fn append_error_correction(&self, data: &[u8]) -> Vec<u8> { |
| assert_eq!(data.len(), QrCode::get_num_data_codewords(self.version, self.errorcorrectionlevel), "Illegal argument"); |
| |
| // Calculate parameter numbers |
| let numblocks: usize = QrCode::table_get(&NUM_ERROR_CORRECTION_BLOCKS, self.version, self.errorcorrectionlevel); |
| let blockecclen: usize = QrCode::table_get(&ECC_CODEWORDS_PER_BLOCK, self.version, self.errorcorrectionlevel); |
| let rawcodewords: usize = QrCode::get_num_raw_data_modules(self.version) / 8; |
| let numshortblocks: usize = numblocks - rawcodewords % numblocks; |
| let shortblocklen: usize = rawcodewords / numblocks; |
| |
| // Split data into blocks and append ECC to each block |
| let mut blocks = Vec::<Vec<u8>>::with_capacity(numblocks); |
| let rs = ReedSolomonGenerator::new(blockecclen); |
| let mut k: usize = 0; |
| for i in 0 .. numblocks { |
| let mut dat = Vec::<u8>::with_capacity(shortblocklen + 1); |
| dat.extend_from_slice(&data[k .. k + shortblocklen - blockecclen + ((i >= numshortblocks) as usize)]); |
| k += dat.len(); |
| let ecc: Vec<u8> = rs.get_remainder(&dat); |
| if i < numshortblocks { |
| dat.push(0); |
| } |
| dat.extend_from_slice(&ecc); |
| blocks.push(dat); |
| } |
| |
| // Interleave (not concatenate) the bytes from every block into a single sequence |
| let mut result = Vec::<u8>::with_capacity(rawcodewords); |
| for i in 0 .. shortblocklen + 1 { |
| for j in 0 .. numblocks { |
| // Skip the padding byte in short blocks |
| if i != shortblocklen - blockecclen || j >= numshortblocks { |
| result.push(blocks[j][i]); |
| } |
| } |
| } |
| result |
| } |
| |
| |
| // Draws the given sequence of 8-bit codewords (data and error correction) onto the entire |
| // data area of this QR Code symbol. Function modules need to be marked off before this is called. |
| fn draw_codewords(&mut self, data: &[u8]) { |
| assert_eq!(data.len(), QrCode::get_num_raw_data_modules(self.version) / 8, "Illegal argument"); |
| |
| let mut i: usize = 0; // Bit index into the data |
| // Do the funny zigzag scan |
| let mut right: i32 = self.size - 1; |
| while right >= 1 { // Index of right column in each column pair |
| if right == 6 { |
| right = 5; |
| } |
| for vert in 0 .. self.size { // Vertical counter |
| for j in 0 .. 2 { |
| let x: i32 = right - j; // Actual x coordinate |
| let upward: bool = (right + 1) & 2 == 0; |
| let y: i32 = if upward { self.size - 1 - vert } else { vert }; // Actual y coordinate |
| if !self.isfunction[(y * self.size + x) as usize] && i < data.len() * 8 { |
| *self.module_mut(x, y) = (data[i >> 3] >> (7 - (i & 7))) & 1 != 0; |
| i += 1; |
| } |
| // If there are any remainder bits (0 to 7), they are already |
| // set to 0/false/white when the grid of modules was initialized |
| } |
| } |
| right -= 2; |
| } |
| assert_eq!(i, data.len() * 8, "Assertion error"); |
| } |
| |
| |
| // XORs the data modules in this QR Code with the given mask pattern. Due to XOR's mathematical |
| // properties, calling applyMask(m) twice with the same value is equivalent to no change at all. |
| // This means it is possible to apply a mask, undo it, and try another mask. Note that a final |
| // well-formed QR Code symbol needs exactly one mask applied (not zero, not two, etc.). |
| fn apply_mask(&mut self, mask: Mask) { |
| let mask = mask.value(); |
| for y in 0 .. self.size { |
| for x in 0 .. self.size { |
| let invert: bool = match mask { |
| 0 => (x + y) % 2 == 0, |
| 1 => y % 2 == 0, |
| 2 => x % 3 == 0, |
| 3 => (x + y) % 3 == 0, |
| 4 => (x / 3 + y / 2) % 2 == 0, |
| 5 => x * y % 2 + x * y % 3 == 0, |
| 6 => (x * y % 2 + x * y % 3) % 2 == 0, |
| 7 => ((x + y) % 2 + x * y % 3) % 2 == 0, |
| _ => unreachable!(), |
| }; |
| *self.module_mut(x, y) ^= invert & !self.isfunction[(y * self.size + x) as usize]; |
| } |
| } |
| } |
| |
| |
| // A messy helper function for the constructors. This QR Code must be in an unmasked state when this |
| // method is called. The given argument is the requested mask, which is -1 for auto or 0 to 7 for fixed. |
| // This method applies and returns the actual mask chosen, from 0 to 7. |
| fn handle_constructor_masking(&mut self, mut mask: Option<Mask>) { |
| if mask.is_none() { // Automatically choose best mask |
| let mut minpenalty: i32 = std::i32::MAX; |
| for i in 0u8 .. 8 { |
| let newmask = Mask::new(i); |
| self.draw_format_bits(newmask); |
| self.apply_mask(newmask); |
| let penalty: i32 = self.get_penalty_score(); |
| if penalty < minpenalty { |
| mask = Some(newmask); |
| minpenalty = penalty; |
| } |
| self.apply_mask(newmask); // Undoes the mask due to XOR |
| } |
| } |
| let msk: Mask = mask.unwrap(); |
| self.draw_format_bits(msk); // Overwrite old format bits |
| self.apply_mask(msk); // Apply the final choice of mask |
| self.mask = msk; |
| } |
| |
| |
| // Calculates and returns the penalty score based on state of this QR Code's current modules. |
| // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score. |
| fn get_penalty_score(&self) -> i32 { |
| let mut result: i32 = 0; |
| let size: i32 = self.size; |
| |
| // Adjacent modules in row having same color |
| for y in 0 .. size { |
| let mut colorx: bool = false; |
| let mut runx: i32 = 0; |
| for x in 0 .. size { |
| if x == 0 || self.module(x, y) != colorx { |
| colorx = self.module(x, y); |
| runx = 1; |
| } else { |
| runx += 1; |
| if runx == 5 { |
| result += PENALTY_N1; |
| } else if runx > 5 { |
| result += 1; |
| } |
| } |
| } |
| } |
| // Adjacent modules in column having same color |
| for x in 0 .. size { |
| let mut colory: bool = false; |
| let mut runy: i32 = 0; |
| for y in 0 .. size { |
| if y == 0 || self.module(x, y) != colory { |
| colory = self.module(x, y); |
| runy = 1; |
| } else { |
| runy += 1; |
| if runy == 5 { |
| result += PENALTY_N1; |
| } else if runy > 5 { |
| result += 1; |
| } |
| } |
| } |
| } |
| |
| // 2*2 blocks of modules having same color |
| for y in 0 .. size - 1 { |
| for x in 0 .. size - 1 { |
| let color: bool = self.module(x, y); |
| if color == self.module(x + 1, y) && |
| color == self.module(x, y + 1) && |
| color == self.module(x + 1, y + 1) { |
| result += PENALTY_N2; |
| } |
| } |
| } |
| |
| // Finder-like pattern in rows |
| for y in 0 .. size { |
| let mut bits: u32 = 0; |
| for x in 0 .. size { |
| bits = ((bits << 1) & 0x7FF) | (self.module(x, y) as u32); |
| if x >= 10 && (bits == 0x05D || bits == 0x5D0) { // Needs 11 bits accumulated |
| result += PENALTY_N3; |
| } |
| } |
| } |
| // Finder-like pattern in columns |
| for x in 0 .. size { |
| let mut bits: u32 = 0; |
| for y in 0 .. size { |
| bits = ((bits << 1) & 0x7FF) | (self.module(x, y) as u32); |
| if y >= 10 && (bits == 0x05D || bits == 0x5D0) { // Needs 11 bits accumulated |
| result += PENALTY_N3; |
| } |
| } |
| } |
| |
| // Balance of black and white modules |
| let mut black: i32 = 0; |
| for color in &self.modules { |
| black += *color as i32; |
| } |
| let total: i32 = size * size; |
| // Find smallest k such that (45-5k)% <= dark/total <= (55+5k)% |
| let mut k: i32 = 0; |
| while black*20 < (9-k)*total || black*20 > (11+k)*total { |
| result += PENALTY_N4; |
| k += 1; |
| } |
| result |
| } |
| |
| |
| /*---- Private static helper functions ----*/ |
| |
| // Returns a set of positions of the alignment patterns in ascending order. These positions are |
| // used on both the x and y axes. Each value in the resulting list is in the range [0, 177). |
| // This stateless pure function could be implemented as table of 40 variable-length lists of unsigned bytes. |
| fn get_alignment_pattern_positions(ver: Version) -> Vec<i32> { |
| let ver = ver.value(); |
| if ver == 1 { |
| vec![] |
| } else { |
| let numalign: i32 = (ver as i32) / 7 + 2; |
| let step: i32 = if ver != 32 { |
| // ceil((size - 13) / (2*numAlign - 2)) * 2 |
| ((ver as i32) * 4 + numalign * 2 + 1) / (2 * numalign - 2) * 2 |
| } else { // C-C-C-Combo breaker! |
| 26 |
| }; |
| let mut result = vec![6i32]; |
| let mut pos: i32 = (ver as i32) * 4 + 10; |
| for _ in 0 .. numalign - 1 { |
| result.insert(1, pos); |
| pos -= step; |
| } |
| result |
| } |
| } |
| |
| |
| // Returns the number of data bits that can be stored in a QR Code of the given version number, after |
| // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8. |
| // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table. |
| fn get_num_raw_data_modules(ver: Version) -> usize { |
| let ver = ver.value(); |
| let mut result: usize = (16 * (ver as usize) + 128) * (ver as usize) + 64; |
| if ver >= 2 { |
| let numalign: usize = (ver as usize) / 7 + 2; |
| result -= (25 * numalign - 10) * numalign - 55; |
| if ver >= 7 { |
| result -= 18 * 2; // Subtract version information |
| } |
| } |
| result |
| } |
| |
| |
| // Returns the number of 8-bit data (i.e. not error correction) codewords contained in any |
| // QR Code of the given version number and error correction level, with remainder bits discarded. |
| // This stateless pure function could be implemented as a (40*4)-cell lookup table. |
| fn get_num_data_codewords(ver: Version, ecl: QrCodeEcc) -> usize { |
| QrCode::get_num_raw_data_modules(ver) / 8 |
| - QrCode::table_get(&ECC_CODEWORDS_PER_BLOCK, ver, ecl) |
| * QrCode::table_get(&NUM_ERROR_CORRECTION_BLOCKS, ver, ecl) |
| } |
| |
| |
| // Returns an entry from the given table based on the given values. |
| fn table_get(table: &'static [[i8; 41]; 4], ver: Version, ecl: QrCodeEcc) -> usize { |
| table[ecl.ordinal()][ver.value() as usize] as usize |
| } |
| |
| } |
| |
| |
| /*---- Public constants ----*/ |
| |
| pub const QrCode_MIN_VERSION: Version = Version( 1); |
| pub const QrCode_MAX_VERSION: Version = Version(40); |
| |
| |
| /*---- Private tables of constants ----*/ |
| |
| // For use in get_penalty_score(), when evaluating which mask is best. |
| const PENALTY_N1: i32 = 3; |
| const PENALTY_N2: i32 = 3; |
| const PENALTY_N3: i32 = 40; |
| const PENALTY_N4: i32 = 10; |
| |
| |
| static ECC_CODEWORDS_PER_BLOCK: [[i8; 41]; 4] = [ |
| // Version: (note that index 0 is for padding, and is set to an illegal value) |
| //0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level |
| [-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Low |
| [-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28], // Medium |
| [-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Quartile |
| [-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // High |
| ]; |
| |
| static NUM_ERROR_CORRECTION_BLOCKS: [[i8; 41]; 4] = [ |
| // Version: (note that index 0 is for padding, and is set to an illegal value) |
| //0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level |
| [-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25], // Low |
| [-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49], // Medium |
| [-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68], // Quartile |
| [-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81], // High |
| ]; |
| |
| |
| |
| /*---- QrCodeEcc functionality ----*/ |
| |
| // Represents the error correction level used in a QR Code symbol. Immutable. |
| #[derive(Clone, Copy)] |
| pub enum QrCodeEcc { |
| Low, |
| Medium, |
| Quartile, |
| High, |
| } |
| |
| |
| impl QrCodeEcc { |
| |
| // Returns an unsigned 2-bit integer (in the range 0 to 3). |
| fn ordinal(&self) -> usize { |
| match *self { |
| QrCodeEcc::Low => 0, |
| QrCodeEcc::Medium => 1, |
| QrCodeEcc::Quartile => 2, |
| QrCodeEcc::High => 3, |
| } |
| } |
| |
| |
| // Returns an unsigned 2-bit integer (in the range 0 to 3). |
| fn format_bits(&self) -> u32 { |
| match *self { |
| QrCodeEcc::Low => 1, |
| QrCodeEcc::Medium => 0, |
| QrCodeEcc::Quartile => 3, |
| QrCodeEcc::High => 2, |
| } |
| } |
| |
| } |
| |
| |
| |
| /*---- ReedSolomonGenerator functionality ----*/ |
| |
| // Computes the Reed-Solomon error correction codewords for a sequence of data codewords |
| // at a given degree. Objects are immutable, and the state only depends on the degree. |
| // This class exists because each data block in a QR Code shares the same the divisor polynomial. |
| struct ReedSolomonGenerator { |
| |
| // Coefficients of the divisor polynomial, stored from highest to lowest power, excluding the leading term which |
| // is always 1. For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array {255, 8, 93}. |
| coefficients: Vec<u8>, |
| |
| } |
| |
| |
| impl ReedSolomonGenerator { |
| |
| // Creates a Reed-Solomon ECC generator for the given degree. This could be implemented |
| // as a lookup table over all possible parameter values, instead of as an algorithm. |
| fn new(degree: usize) -> ReedSolomonGenerator { |
| assert!(1 <= degree && degree <= 255, "Degree out of range"); |
| // Start with the monomial x^0 |
| let mut coefs = vec![0u8; degree - 1]; |
| coefs.push(1); |
| |
| // Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}), |
| // drop the highest term, and store the rest of the coefficients in order of descending powers. |
| // Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D). |
| let mut root: u8 = 1; |
| for _ in 0 .. degree { // Unused variable i |
| // Multiply the current product by (x - r^i) |
| for j in 0 .. degree { |
| coefs[j] = ReedSolomonGenerator::multiply(coefs[j], root); |
| if j + 1 < coefs.len() { |
| coefs[j] ^= coefs[j + 1]; |
| } |
| } |
| root = ReedSolomonGenerator::multiply(root, 0x02); |
| } |
| ReedSolomonGenerator { |
| coefficients: coefs |
| } |
| } |
| |
| |
| // Computes and returns the Reed-Solomon error correction codewords for the given sequence of data codewords. |
| fn get_remainder(&self, data: &[u8]) -> Vec<u8> { |
| // Compute the remainder by performing polynomial division |
| let mut result = vec![0u8; self.coefficients.len()]; |
| for b in data { |
| let factor: u8 = b ^ result.remove(0); |
| result.push(0); |
| for (x, y) in result.iter_mut().zip(self.coefficients.iter()) { |
| *x ^= ReedSolomonGenerator::multiply(*y, factor); |
| } |
| } |
| result |
| } |
| |
| |
| // Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result |
| // are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8. |
| fn multiply(x: u8, y: u8) -> u8 { |
| // Russian peasant multiplication |
| let mut z: u8 = 0; |
| for i in (0 .. 8).rev() { |
| z = (z << 1) ^ ((z >> 7) * 0x1D); |
| z ^= ((y >> i) & 1) * x; |
| } |
| z |
| } |
| |
| } |
| |
| |
| |
| /*---- QrSegment functionality ----*/ |
| |
| // Represents a character string to be encoded in a QR Code symbol. |
| // Each segment has a mode, and a sequence of characters that is already |
| // encoded as a sequence of bits. Instances of this struct are immutable. |
| pub struct QrSegment { |
| |
| // The mode indicator for this segment. |
| mode: QrSegmentMode, |
| |
| // The length of this segment's unencoded data, measured in characters. |
| numchars: usize, |
| |
| // The bits of this segment. |
| data: Vec<bool>, |
| |
| } |
| |
| |
| impl QrSegment { |
| |
| /*---- Static factory functions ----*/ |
| |
| // Returns a segment representing the given binary data encoded in byte mode. |
| pub fn make_bytes(data: &[u8]) -> QrSegment { |
| let mut bb = BitBuffer(Vec::with_capacity(data.len() * 8)); |
| for b in data { |
| bb.append_bits(*b as u32, 8); |
| } |
| QrSegment::new(QrSegmentMode::Byte, data.len(), bb.0) |
| } |
| |
| |
| // Returns a segment representing the given string of decimal digits encoded in numeric mode. |
| // Panics if the string contains non-digit characters. |
| pub fn make_numeric(text: &[char]) -> QrSegment { |
| let mut bb = BitBuffer(Vec::with_capacity(text.len() * 3 + (text.len() + 2) / 3)); |
| let mut accumdata: u32 = 0; |
| let mut accumcount: u32 = 0; |
| for c in text { |
| assert!('0' <= *c && *c <= '9', "String contains non-numeric characters"); |
| accumdata = accumdata * 10 + ((*c as u32) - ('0' as u32)); |
| accumcount += 1; |
| if accumcount == 3 { |
| bb.append_bits(accumdata, 10); |
| accumdata = 0; |
| accumcount = 0; |
| } |
| } |
| if accumcount > 0 { // 1 or 2 digits remaining |
| bb.append_bits(accumdata, (accumcount as u8) * 3 + 1); |
| } |
| QrSegment::new(QrSegmentMode::Numeric, text.len(), bb.0) |
| } |
| |
| |
| // Returns a segment representing the given text string encoded in alphanumeric mode. |
| // The characters allowed are: 0 to 9, A to Z (uppercase only), space, dollar, percent, asterisk, |
| // plus, hyphen, period, slash, colon. Panics if the string contains non-encodable characters. |
| pub fn make_alphanumeric(text: &[char]) -> QrSegment { |
| let mut bb = BitBuffer(Vec::with_capacity(text.len() * 5 + (text.len() + 1) / 2)); |
| let mut accumdata: u32 = 0; |
| let mut accumcount: u32 = 0; |
| for c in text { |
| let i = match ALPHANUMERIC_CHARSET.iter().position(|x| *x == *c) { |
| None => panic!("String contains unencodable characters in alphanumeric mode"), |
| Some(j) => j, |
| }; |
| accumdata = accumdata * 45 + (i as u32); |
| accumcount += 1; |
| if accumcount == 2 { |
| bb.append_bits(accumdata, 11); |
| accumdata = 0; |
| accumcount = 0; |
| } |
| } |
| if accumcount > 0 { // 1 character remaining |
| bb.append_bits(accumdata, 6); |
| } |
| QrSegment::new(QrSegmentMode::Alphanumeric, text.len(), bb.0) |
| } |
| |
| |
| // Returns a new mutable list of zero or more segments to represent the given Unicode text string. |
| // The result may use various segment modes and switch modes to optimize the length of the bit stream. |
| pub fn make_segments(text: &[char]) -> Vec<QrSegment> { |
| if text.is_empty() { |
| vec![] |
| } else if QrSegment::is_numeric(text) { |
| vec![QrSegment::make_numeric(text)] |
| } else if QrSegment::is_alphanumeric(text) { |
| vec![QrSegment::make_alphanumeric(text)] |
| } else { |
| let s: String = text.iter().cloned().collect(); |
| vec![QrSegment::make_bytes(s.as_bytes())] |
| } |
| } |
| |
| |
| // Returns a segment representing an Extended Channel Interpretation |
| // (ECI) designator with the given assignment value. |
| pub fn make_eci(assignval: u32) -> QrSegment { |
| let mut bb = BitBuffer(Vec::with_capacity(24)); |
| if assignval < (1 << 7) { |
| bb.append_bits(assignval, 8); |
| } else if assignval < (1 << 14) { |
| bb.append_bits(2, 2); |
| bb.append_bits(assignval, 14); |
| } else if assignval < 1_000_000 { |
| bb.append_bits(6, 3); |
| bb.append_bits(assignval, 21); |
| } else { |
| panic!("ECI assignment value out of range"); |
| } |
| QrSegment::new(QrSegmentMode::Eci, 0, bb.0) |
| } |
| |
| |
| // Creates a new QR Code data segment with the given parameters and data. |
| pub fn new(mode: QrSegmentMode, numchars: usize, data: Vec<bool>) -> QrSegment { |
| QrSegment { |
| mode: mode, |
| numchars: numchars, |
| data: data, |
| } |
| } |
| |
| |
| /*---- Instance field getters ----*/ |
| |
| // Returns the mode indicator for this segment. |
| pub fn mode(&self) -> QrSegmentMode { |
| self.mode |
| } |
| |
| |
| // Returns the length of this segment's unencoded data, measured in characters. |
| pub fn num_chars(&self) -> usize { |
| self.numchars |
| } |
| |
| |
| // Returns a view of the bits of this segment. |
| pub fn data(&self) -> &Vec<bool> { |
| &self.data |
| } |
| |
| |
| /*---- Other static functions ----*/ |
| |
| // Package-private helper function. |
| fn get_total_bits(segs: &[QrSegment], version: Version) -> Option<usize> { |
| let mut result: usize = 0; |
| for seg in segs { |
| let ccbits = seg.mode.num_char_count_bits(version); |
| if seg.numchars >= 1 << ccbits { |
| return None; |
| } |
| match result.checked_add(4 + (ccbits as usize) + seg.data.len()) { |
| None => return None, |
| Some(val) => result = val, |
| } |
| } |
| Some(result) |
| } |
| |
| |
| // Tests whether the given string can be encoded as a segment in alphanumeric mode. |
| fn is_alphanumeric(text: &[char]) -> bool { |
| text.iter().all(|c| ALPHANUMERIC_CHARSET.contains(c)) |
| } |
| |
| |
| // Tests whether the given string can be encoded as a segment in numeric mode. |
| fn is_numeric(text: &[char]) -> bool { |
| text.iter().all(|c| '0' <= *c && *c <= '9') |
| } |
| |
| } |
| |
| |
| // The set of all legal characters in alphanumeric mode, |
| // where each character value maps to the index in the string. |
| static ALPHANUMERIC_CHARSET: [char; 45] = ['0','1','2','3','4','5','6','7','8','9', |
| 'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z', |
| ' ','$','%','*','+','-','.','/',':']; |
| |
| |
| |
| /*---- QrSegmentMode functionality ----*/ |
| |
| // The mode field of a segment. Immutable. |
| #[derive(Clone, Copy)] |
| pub enum QrSegmentMode { |
| Numeric, |
| Alphanumeric, |
| Byte, |
| Kanji, |
| Eci, |
| } |
| |
| |
| impl QrSegmentMode { |
| |
| // Returns an unsigned 4-bit integer value (range 0 to 15) |
| // representing the mode indicator bits for this mode object. |
| fn mode_bits(&self) -> u32 { |
| match *self { |
| QrSegmentMode::Numeric => 0x1, |
| QrSegmentMode::Alphanumeric => 0x2, |
| QrSegmentMode::Byte => 0x4, |
| QrSegmentMode::Kanji => 0x8, |
| QrSegmentMode::Eci => 0x7, |
| } |
| } |
| |
| |
| // Returns the bit width of the segment character count field |
| // for this mode object at the given version number. |
| pub fn num_char_count_bits(&self, ver: Version) -> u8 { |
| let array: [u8; 3] = match *self { |
| QrSegmentMode::Numeric => [10, 12, 14], |
| QrSegmentMode::Alphanumeric => [ 9, 11, 13], |
| QrSegmentMode::Byte => [ 8, 16, 16], |
| QrSegmentMode::Kanji => [ 8, 10, 12], |
| QrSegmentMode::Eci => [ 0, 0, 0], |
| }; |
| |
| let ver = ver.value(); |
| if 1 <= ver && ver <= 9 { |
| array[0] |
| } else if 10 <= ver && ver <= 26 { |
| array[1] |
| } else if 27 <= ver && ver <= 40 { |
| array[2] |
| } else { |
| panic!("Version number out of range"); |
| } |
| } |
| |
| } |
| |
| |
| |
| /*---- Bit buffer functionality ----*/ |
| |
| pub struct BitBuffer(pub Vec<bool>); |
| |
| |
| impl BitBuffer { |
| // Appends the given number of low bits of the given value |
| // to this sequence. Requires 0 <= val < 2^len. |
| pub fn append_bits(&mut self, val: u32, len: u8) { |
| assert!(len < 32 && (val >> len) == 0 || len == 32, "Value out of range"); |
| for i in (0 .. len).rev() { // Append bit by bit |
| self.0.push((val >> i) & 1 != 0); |
| } |
| } |
| } |
| |
| |
| |
| /*---- Miscellaneous values ----*/ |
| |
| #[derive(Copy, Clone)] |
| pub struct Version(u8); |
| |
| impl Version { |
| pub fn new(ver: u8) -> Self { |
| assert!(QrCode_MIN_VERSION.value() <= ver && ver <= QrCode_MAX_VERSION.value(), "Version number out of range"); |
| Version(ver) |
| } |
| |
| pub fn value(&self) -> u8 { |
| self.0 |
| } |
| } |
| |
| |
| #[derive(Copy, Clone)] |
| pub struct Mask(u8); |
| |
| impl Mask { |
| pub fn new(mask: u8) -> Self { |
| assert!(mask <= 7, "Mask value out of range"); |
| Mask(mask) |
| } |
| |
| pub fn value(&self) -> u8 { |
| self.0 |
| } |
| } |