| // |
| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // ----------------------------------------------------------------------------- |
| // File: optimization.h |
| // ----------------------------------------------------------------------------- |
| // |
| // This header file defines portable macros for performance optimization. |
| |
| #ifndef ABSL_BASE_OPTIMIZATION_H_ |
| #define ABSL_BASE_OPTIMIZATION_H_ |
| |
| #include <assert.h> |
| |
| #include "absl/base/config.h" |
| |
| // ABSL_BLOCK_TAIL_CALL_OPTIMIZATION |
| // |
| // Instructs the compiler to avoid optimizing tail-call recursion. This macro is |
| // useful when you wish to preserve the existing function order within a stack |
| // trace for logging, debugging, or profiling purposes. |
| // |
| // Example: |
| // |
| // int f() { |
| // int result = g(); |
| // ABSL_BLOCK_TAIL_CALL_OPTIMIZATION(); |
| // return result; |
| // } |
| #if defined(__pnacl__) |
| #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; } |
| #elif defined(__clang__) |
| // Clang will not tail call given inline volatile assembly. |
| #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("") |
| #elif defined(__GNUC__) |
| // GCC will not tail call given inline volatile assembly. |
| #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("") |
| #elif defined(_MSC_VER) |
| #include <intrin.h> |
| // The __nop() intrinsic blocks the optimisation. |
| #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __nop() |
| #else |
| #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; } |
| #endif |
| |
| // ABSL_CACHELINE_SIZE |
| // |
| // Explicitly defines the size of the L1 cache for purposes of alignment. |
| // Setting the cacheline size allows you to specify that certain objects be |
| // aligned on a cacheline boundary with `ABSL_CACHELINE_ALIGNED` declarations. |
| // (See below.) |
| // |
| // NOTE: this macro should be replaced with the following C++17 features, when |
| // those are generally available: |
| // |
| // * `std::hardware_constructive_interference_size` |
| // * `std::hardware_destructive_interference_size` |
| // |
| // See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html |
| // for more information. |
| #if defined(__GNUC__) |
| // Cache line alignment |
| #if defined(__i386__) || defined(__x86_64__) |
| #define ABSL_CACHELINE_SIZE 64 |
| #elif defined(__powerpc64__) |
| #define ABSL_CACHELINE_SIZE 128 |
| #elif defined(__aarch64__) |
| // We would need to read special register ctr_el0 to find out L1 dcache size. |
| // This value is a good estimate based on a real aarch64 machine. |
| #define ABSL_CACHELINE_SIZE 64 |
| #elif defined(__arm__) |
| // Cache line sizes for ARM: These values are not strictly correct since |
| // cache line sizes depend on implementations, not architectures. There |
| // are even implementations with cache line sizes configurable at boot |
| // time. |
| #if defined(__ARM_ARCH_5T__) |
| #define ABSL_CACHELINE_SIZE 32 |
| #elif defined(__ARM_ARCH_7A__) |
| #define ABSL_CACHELINE_SIZE 64 |
| #endif |
| #endif |
| #endif |
| |
| #ifndef ABSL_CACHELINE_SIZE |
| // A reasonable default guess. Note that overestimates tend to waste more |
| // space, while underestimates tend to waste more time. |
| #define ABSL_CACHELINE_SIZE 64 |
| #endif |
| |
| // ABSL_CACHELINE_ALIGNED |
| // |
| // Indicates that the declared object be cache aligned using |
| // `ABSL_CACHELINE_SIZE` (see above). Cacheline aligning objects allows you to |
| // load a set of related objects in the L1 cache for performance improvements. |
| // Cacheline aligning objects properly allows constructive memory sharing and |
| // prevents destructive (or "false") memory sharing. |
| // |
| // NOTE: callers should replace uses of this macro with `alignas()` using |
| // `std::hardware_constructive_interference_size` and/or |
| // `std::hardware_destructive_interference_size` when C++17 becomes available to |
| // them. |
| // |
| // See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html |
| // for more information. |
| // |
| // On some compilers, `ABSL_CACHELINE_ALIGNED` expands to an `__attribute__` |
| // or `__declspec` attribute. For compilers where this is not known to work, |
| // the macro expands to nothing. |
| // |
| // No further guarantees are made here. The result of applying the macro |
| // to variables and types is always implementation-defined. |
| // |
| // WARNING: It is easy to use this attribute incorrectly, even to the point |
| // of causing bugs that are difficult to diagnose, crash, etc. It does not |
| // of itself guarantee that objects are aligned to a cache line. |
| // |
| // NOTE: Some compilers are picky about the locations of annotations such as |
| // this attribute, so prefer to put it at the beginning of your declaration. |
| // For example, |
| // |
| // ABSL_CACHELINE_ALIGNED static Foo* foo = ... |
| // |
| // class ABSL_CACHELINE_ALIGNED Bar { ... |
| // |
| // Recommendations: |
| // |
| // 1) Consult compiler documentation; this comment is not kept in sync as |
| // toolchains evolve. |
| // 2) Verify your use has the intended effect. This often requires inspecting |
| // the generated machine code. |
| // 3) Prefer applying this attribute to individual variables. Avoid |
| // applying it to types. This tends to localize the effect. |
| #if defined(__clang__) || defined(__GNUC__) |
| #define ABSL_CACHELINE_ALIGNED __attribute__((aligned(ABSL_CACHELINE_SIZE))) |
| #elif defined(_MSC_VER) |
| #define ABSL_CACHELINE_ALIGNED __declspec(align(ABSL_CACHELINE_SIZE)) |
| #else |
| #define ABSL_CACHELINE_ALIGNED |
| #endif |
| |
| // ABSL_PREDICT_TRUE, ABSL_PREDICT_FALSE |
| // |
| // Enables the compiler to prioritize compilation using static analysis for |
| // likely paths within a boolean branch. |
| // |
| // Example: |
| // |
| // if (ABSL_PREDICT_TRUE(expression)) { |
| // return result; // Faster if more likely |
| // } else { |
| // return 0; |
| // } |
| // |
| // Compilers can use the information that a certain branch is not likely to be |
| // taken (for instance, a CHECK failure) to optimize for the common case in |
| // the absence of better information (ie. compiling gcc with `-fprofile-arcs`). |
| // |
| // Recommendation: Modern CPUs dynamically predict branch execution paths, |
| // typically with accuracy greater than 97%. As a result, annotating every |
| // branch in a codebase is likely counterproductive; however, annotating |
| // specific branches that are both hot and consistently mispredicted is likely |
| // to yield performance improvements. |
| #if ABSL_HAVE_BUILTIN(__builtin_expect) || \ |
| (defined(__GNUC__) && !defined(__clang__)) |
| #define ABSL_PREDICT_FALSE(x) (__builtin_expect(false || (x), false)) |
| #define ABSL_PREDICT_TRUE(x) (__builtin_expect(false || (x), true)) |
| #else |
| #define ABSL_PREDICT_FALSE(x) (x) |
| #define ABSL_PREDICT_TRUE(x) (x) |
| #endif |
| |
| // `ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL()` aborts the program in the fastest |
| // possible way, with no attempt at logging. One use is to implement hardening |
| // aborts with ABSL_OPTION_HARDENED. Since this is an internal symbol, it |
| // should not be used directly outside of Abseil. |
| #if ABSL_HAVE_BUILTIN(__builtin_trap) || \ |
| (defined(__GNUC__) && !defined(__clang__)) |
| #define ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL() __builtin_trap() |
| #else |
| #define ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL() abort() |
| #endif |
| |
| // `ABSL_INTERNAL_UNREACHABLE_IMPL()` is the platform specific directive to |
| // indicate that a statement is unreachable, and to allow the compiler to |
| // optimize accordingly. Clients should use `ABSL_UNREACHABLE()`, which is |
| // defined below. |
| #if defined(__cpp_lib_unreachable) && __cpp_lib_unreachable >= 202202L |
| #define ABSL_INTERNAL_UNREACHABLE_IMPL() std::unreachable() |
| #elif defined(__GNUC__) || ABSL_HAVE_BUILTIN(__builtin_unreachable) |
| #define ABSL_INTERNAL_UNREACHABLE_IMPL() __builtin_unreachable() |
| #elif ABSL_HAVE_BUILTIN(__builtin_assume) |
| #define ABSL_INTERNAL_UNREACHABLE_IMPL() __builtin_assume(false) |
| #elif defined(_MSC_VER) |
| #define ABSL_INTERNAL_UNREACHABLE_IMPL() __assume(false) |
| #else |
| #define ABSL_INTERNAL_UNREACHABLE_IMPL() |
| #endif |
| |
| // `ABSL_UNREACHABLE()` is an unreachable statement. A program which reaches |
| // one has undefined behavior, and the compiler may optimize accordingly. |
| #if ABSL_OPTION_HARDENED == 1 && defined(NDEBUG) |
| // Abort in hardened mode to avoid dangerous undefined behavior. |
| #define ABSL_UNREACHABLE() \ |
| do { \ |
| ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL(); \ |
| ABSL_INTERNAL_UNREACHABLE_IMPL(); \ |
| } while (false) |
| #else |
| // The assert only fires in debug mode to aid in debugging. |
| // When NDEBUG is defined, reaching ABSL_UNREACHABLE() is undefined behavior. |
| #define ABSL_UNREACHABLE() \ |
| do { \ |
| /* NOLINTNEXTLINE: misc-static-assert */ \ |
| assert(false && "ABSL_UNREACHABLE reached"); \ |
| ABSL_INTERNAL_UNREACHABLE_IMPL(); \ |
| } while (false) |
| #endif |
| |
| // ABSL_ASSUME(cond) |
| // |
| // Informs the compiler that a condition is always true and that it can assume |
| // it to be true for optimization purposes. |
| // |
| // WARNING: If the condition is false, the program can produce undefined and |
| // potentially dangerous behavior. |
| // |
| // In !NDEBUG mode, the condition is checked with an assert(). |
| // |
| // NOTE: The expression must not have side effects, as it may only be evaluated |
| // in some compilation modes and not others. Some compilers may issue a warning |
| // if the compiler cannot prove the expression has no side effects. For example, |
| // the expression should not use a function call since the compiler cannot prove |
| // that a function call does not have side effects. |
| // |
| // Example: |
| // |
| // int x = ...; |
| // ABSL_ASSUME(x >= 0); |
| // // The compiler can optimize the division to a simple right shift using the |
| // // assumption specified above. |
| // int y = x / 16; |
| // |
| #if !defined(NDEBUG) |
| #define ABSL_ASSUME(cond) assert(cond) |
| #elif ABSL_HAVE_BUILTIN(__builtin_assume) |
| #define ABSL_ASSUME(cond) __builtin_assume(cond) |
| #elif defined(_MSC_VER) |
| #define ABSL_ASSUME(cond) __assume(cond) |
| #elif defined(__cpp_lib_unreachable) && __cpp_lib_unreachable >= 202202L |
| #define ABSL_ASSUME(cond) \ |
| do { \ |
| if (!(cond)) std::unreachable(); \ |
| } while (false) |
| #elif defined(__GNUC__) || ABSL_HAVE_BUILTIN(__builtin_unreachable) |
| #define ABSL_ASSUME(cond) \ |
| do { \ |
| if (!(cond)) __builtin_unreachable(); \ |
| } while (false) |
| #else |
| #define ABSL_ASSUME(cond) \ |
| do { \ |
| static_cast<void>(false && (cond)); \ |
| } while (false) |
| #endif |
| |
| // ABSL_INTERNAL_UNIQUE_SMALL_NAME(cond) |
| // This macro forces small unique name on a static file level symbols like |
| // static local variables or static functions. This is intended to be used in |
| // macro definitions to optimize the cost of generated code. Do NOT use it on |
| // symbols exported from translation unit since it may cause a link time |
| // conflict. |
| // |
| // Example: |
| // |
| // #define MY_MACRO(txt) |
| // namespace { |
| // char VeryVeryLongVarName[] ABSL_INTERNAL_UNIQUE_SMALL_NAME() = txt; |
| // const char* VeryVeryLongFuncName() ABSL_INTERNAL_UNIQUE_SMALL_NAME(); |
| // const char* VeryVeryLongFuncName() { return txt; } |
| // } |
| // |
| |
| #if defined(__GNUC__) |
| #define ABSL_INTERNAL_UNIQUE_SMALL_NAME2(x) #x |
| #define ABSL_INTERNAL_UNIQUE_SMALL_NAME1(x) ABSL_INTERNAL_UNIQUE_SMALL_NAME2(x) |
| #define ABSL_INTERNAL_UNIQUE_SMALL_NAME() \ |
| asm(ABSL_INTERNAL_UNIQUE_SMALL_NAME1(.absl.__COUNTER__)) |
| #else |
| #define ABSL_INTERNAL_UNIQUE_SMALL_NAME() |
| #endif |
| |
| #endif // ABSL_BASE_OPTIMIZATION_H_ |