| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_ |
| #define ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_ |
| |
| #include <cassert> |
| #include <cmath> |
| #include <istream> |
| #include <limits> |
| #include <numeric> |
| #include <type_traits> |
| #include <utility> |
| #include <vector> |
| |
| #include "absl/random/bernoulli_distribution.h" |
| #include "absl/random/internal/iostream_state_saver.h" |
| #include "absl/random/uniform_int_distribution.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| |
| // absl::discrete_distribution |
| // |
| // A discrete distribution produces random integers i, where 0 <= i < n |
| // distributed according to the discrete probability function: |
| // |
| // P(i|p0,...,pn−1)=pi |
| // |
| // This class is an implementation of discrete_distribution (see |
| // [rand.dist.samp.discrete]). |
| // |
| // The algorithm used is Walker's Aliasing algorithm, described in Knuth, Vol 2. |
| // absl::discrete_distribution takes O(N) time to precompute the probabilities |
| // (where N is the number of possible outcomes in the distribution) at |
| // construction, and then takes O(1) time for each variate generation. Many |
| // other implementations also take O(N) time to construct an ordered sequence of |
| // partial sums, plus O(log N) time per variate to binary search. |
| // |
| template <typename IntType = int> |
| class discrete_distribution { |
| public: |
| using result_type = IntType; |
| |
| class param_type { |
| public: |
| using distribution_type = discrete_distribution; |
| |
| param_type() { init(); } |
| |
| template <typename InputIterator> |
| explicit param_type(InputIterator begin, InputIterator end) |
| : p_(begin, end) { |
| init(); |
| } |
| |
| explicit param_type(std::initializer_list<double> weights) : p_(weights) { |
| init(); |
| } |
| |
| template <class UnaryOperation> |
| explicit param_type(size_t nw, double xmin, double xmax, |
| UnaryOperation fw) { |
| if (nw > 0) { |
| p_.reserve(nw); |
| double delta = (xmax - xmin) / static_cast<double>(nw); |
| assert(delta > 0); |
| double t = delta * 0.5; |
| for (size_t i = 0; i < nw; ++i) { |
| p_.push_back(fw(xmin + i * delta + t)); |
| } |
| } |
| init(); |
| } |
| |
| const std::vector<double>& probabilities() const { return p_; } |
| size_t n() const { return p_.size() - 1; } |
| |
| friend bool operator==(const param_type& a, const param_type& b) { |
| return a.probabilities() == b.probabilities(); |
| } |
| |
| friend bool operator!=(const param_type& a, const param_type& b) { |
| return !(a == b); |
| } |
| |
| private: |
| friend class discrete_distribution; |
| |
| void init(); |
| |
| std::vector<double> p_; // normalized probabilities |
| std::vector<std::pair<double, size_t>> q_; // (acceptance, alternate) pairs |
| |
| static_assert(std::is_integral<result_type>::value, |
| "Class-template absl::discrete_distribution<> must be " |
| "parameterized using an integral type."); |
| }; |
| |
| discrete_distribution() : param_() {} |
| |
| explicit discrete_distribution(const param_type& p) : param_(p) {} |
| |
| template <typename InputIterator> |
| explicit discrete_distribution(InputIterator begin, InputIterator end) |
| : param_(begin, end) {} |
| |
| explicit discrete_distribution(std::initializer_list<double> weights) |
| : param_(weights) {} |
| |
| template <class UnaryOperation> |
| explicit discrete_distribution(size_t nw, double xmin, double xmax, |
| UnaryOperation fw) |
| : param_(nw, xmin, xmax, std::move(fw)) {} |
| |
| void reset() {} |
| |
| // generating functions |
| template <typename URBG> |
| result_type operator()(URBG& g) { // NOLINT(runtime/references) |
| return (*this)(g, param_); |
| } |
| |
| template <typename URBG> |
| result_type operator()(URBG& g, // NOLINT(runtime/references) |
| const param_type& p); |
| |
| const param_type& param() const { return param_; } |
| void param(const param_type& p) { param_ = p; } |
| |
| result_type(min)() const { return 0; } |
| result_type(max)() const { |
| return static_cast<result_type>(param_.n()); |
| } // inclusive |
| |
| // NOTE [rand.dist.sample.discrete] returns a std::vector<double> not a |
| // const std::vector<double>&. |
| const std::vector<double>& probabilities() const { |
| return param_.probabilities(); |
| } |
| |
| friend bool operator==(const discrete_distribution& a, |
| const discrete_distribution& b) { |
| return a.param_ == b.param_; |
| } |
| friend bool operator!=(const discrete_distribution& a, |
| const discrete_distribution& b) { |
| return a.param_ != b.param_; |
| } |
| |
| private: |
| param_type param_; |
| }; |
| |
| // -------------------------------------------------------------------------- |
| // Implementation details only below |
| // -------------------------------------------------------------------------- |
| |
| namespace random_internal { |
| |
| // Using the vector `*probabilities`, whose values are the weights or |
| // probabilities of an element being selected, constructs the proportional |
| // probabilities used by the discrete distribution. `*probabilities` will be |
| // scaled, if necessary, so that its entries sum to a value sufficiently close |
| // to 1.0. |
| std::vector<std::pair<double, size_t>> InitDiscreteDistribution( |
| std::vector<double>* probabilities); |
| |
| } // namespace random_internal |
| |
| template <typename IntType> |
| void discrete_distribution<IntType>::param_type::init() { |
| if (p_.empty()) { |
| p_.push_back(1.0); |
| q_.emplace_back(1.0, 0); |
| } else { |
| assert(n() <= (std::numeric_limits<IntType>::max)()); |
| q_ = random_internal::InitDiscreteDistribution(&p_); |
| } |
| } |
| |
| template <typename IntType> |
| template <typename URBG> |
| typename discrete_distribution<IntType>::result_type |
| discrete_distribution<IntType>::operator()( |
| URBG& g, // NOLINT(runtime/references) |
| const param_type& p) { |
| const auto idx = absl::uniform_int_distribution<result_type>(0, p.n())(g); |
| const auto& q = p.q_[idx]; |
| const bool selected = absl::bernoulli_distribution(q.first)(g); |
| return selected ? idx : static_cast<result_type>(q.second); |
| } |
| |
| template <typename CharT, typename Traits, typename IntType> |
| std::basic_ostream<CharT, Traits>& operator<<( |
| std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references) |
| const discrete_distribution<IntType>& x) { |
| auto saver = random_internal::make_ostream_state_saver(os); |
| const auto& probabilities = x.param().probabilities(); |
| os << probabilities.size(); |
| |
| os.precision(random_internal::stream_precision_helper<double>::kPrecision); |
| for (const auto& p : probabilities) { |
| os << os.fill() << p; |
| } |
| return os; |
| } |
| |
| template <typename CharT, typename Traits, typename IntType> |
| std::basic_istream<CharT, Traits>& operator>>( |
| std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references) |
| discrete_distribution<IntType>& x) { // NOLINT(runtime/references) |
| using param_type = typename discrete_distribution<IntType>::param_type; |
| auto saver = random_internal::make_istream_state_saver(is); |
| |
| size_t n; |
| std::vector<double> p; |
| |
| is >> n; |
| if (is.fail()) return is; |
| if (n > 0) { |
| p.reserve(n); |
| for (IntType i = 0; i < n && !is.fail(); ++i) { |
| auto tmp = random_internal::read_floating_point<double>(is); |
| if (is.fail()) return is; |
| p.push_back(tmp); |
| } |
| } |
| x.param(param_type(p.begin(), p.end())); |
| return is; |
| } |
| |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_ |