blob: 3b5089581bec6147dff9fd6f34c608adcdb5d6bc [file] [log] [blame]
/* libFLAC - Free Lossless Audio Codec library
* Copyright (C) 2000-2009 Josh Coalson
* Copyright (C) 2011-2022 Xiph.Org Foundation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the Xiph.org Foundation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "private/cpu.h"
#ifndef FLAC__INTEGER_ONLY_LIBRARY
#ifndef FLAC__NO_ASM
#if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && defined FLAC__HAS_X86INTRIN
#include "private/fixed.h"
#ifdef FLAC__SSE2_SUPPORTED
#include <emmintrin.h> /* SSE2 */
#include <math.h>
#include "private/macros.h"
#include "share/compat.h"
#include "FLAC/assert.h"
#ifdef FLAC__CPU_IA32
#define m128i_to_i64(dest, src) _mm_storel_epi64((__m128i*)&dest, src)
#else
#define m128i_to_i64(dest, src) dest = _mm_cvtsi128_si64(src)
#endif
#ifdef local_abs
#undef local_abs
#endif
#define local_abs(x) ((uint32_t)((x)<0? -(x) : (x)))
FLAC__SSE_TARGET("sse2")
uint32_t FLAC__fixed_compute_best_predictor_intrin_sse2(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1])
{
FLAC__uint32 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4;
FLAC__int32 i, data_len_int;
uint32_t order;
__m128i total_err0, total_err1, total_err2, total_err3, total_err4;
__m128i prev_err0, prev_err1, prev_err2, prev_err3;
__m128i tempA, tempB, bitmask;
FLAC__int32 data_scalar[4];
FLAC__int32 prev_err0_scalar[4];
FLAC__int32 prev_err1_scalar[4];
FLAC__int32 prev_err2_scalar[4];
FLAC__int32 prev_err3_scalar[4];
total_err0 = _mm_setzero_si128();
total_err1 = _mm_setzero_si128();
total_err2 = _mm_setzero_si128();
total_err3 = _mm_setzero_si128();
total_err4 = _mm_setzero_si128();
data_len_int = data_len;
for(i = 0; i < 4; i++){
prev_err0_scalar[i] = data[-1+i*(data_len_int/4)];
prev_err1_scalar[i] = data[-1+i*(data_len_int/4)] - data[-2+i*(data_len_int/4)];
prev_err2_scalar[i] = prev_err1_scalar[i] - (data[-2+i*(data_len_int/4)] - data[-3+i*(data_len_int/4)]);
prev_err3_scalar[i] = prev_err2_scalar[i] - (data[-2+i*(data_len_int/4)] - 2*data[-3+i*(data_len_int/4)] + data[-4+i*(data_len_int/4)]);
}
prev_err0 = _mm_loadu_si128((const __m128i*)prev_err0_scalar);
prev_err1 = _mm_loadu_si128((const __m128i*)prev_err1_scalar);
prev_err2 = _mm_loadu_si128((const __m128i*)prev_err2_scalar);
prev_err3 = _mm_loadu_si128((const __m128i*)prev_err3_scalar);
for(i = 0; i < data_len_int / 4; i++){
data_scalar[0] = data[i];
data_scalar[1] = data[i+data_len/4];
data_scalar[2] = data[i+2*(data_len/4)];
data_scalar[3] = data[i+3*(data_len/4)];
tempA = _mm_loadu_si128((const __m128i*)data_scalar);
/* Next three intrinsics calculate tempB as abs of tempA */
bitmask = _mm_srai_epi32(tempA, 31);
tempB = _mm_xor_si128(tempA, bitmask);
tempB = _mm_sub_epi32(tempB, bitmask);
total_err0 = _mm_add_epi32(total_err0,tempB);
tempB = _mm_sub_epi32(tempA,prev_err0);
prev_err0 = tempA;
/* Next three intrinsics calculate tempA as abs of tempB */
bitmask = _mm_srai_epi32(tempB, 31);
tempA = _mm_xor_si128(tempB, bitmask);
tempA = _mm_sub_epi32(tempA, bitmask);
total_err1 = _mm_add_epi32(total_err1,tempA);
tempA = _mm_sub_epi32(tempB,prev_err1);
prev_err1 = tempB;
/* Next three intrinsics calculate tempB as abs of tempA */
bitmask = _mm_srai_epi32(tempA, 31);
tempB = _mm_xor_si128(tempA, bitmask);
tempB = _mm_sub_epi32(tempB, bitmask);
total_err2 = _mm_add_epi32(total_err2,tempB);
tempB = _mm_sub_epi32(tempA,prev_err2);
prev_err2 = tempA;
/* Next three intrinsics calculate tempA as abs of tempB */
bitmask = _mm_srai_epi32(tempB, 31);
tempA = _mm_xor_si128(tempB, bitmask);
tempA = _mm_sub_epi32(tempA, bitmask);
total_err3 = _mm_add_epi32(total_err3,tempA);
tempA = _mm_sub_epi32(tempB,prev_err3);
prev_err3 = tempB;
/* Next three intrinsics calculate tempB as abs of tempA */
bitmask = _mm_srai_epi32(tempA, 31);
tempB = _mm_xor_si128(tempA, bitmask);
tempB = _mm_sub_epi32(tempB, bitmask);
total_err4 = _mm_add_epi32(total_err4,tempB);
}
_mm_storeu_si128((__m128i*)data_scalar,total_err0);
total_error_0 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
_mm_storeu_si128((__m128i*)data_scalar,total_err1);
total_error_1 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
_mm_storeu_si128((__m128i*)data_scalar,total_err2);
total_error_2 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
_mm_storeu_si128((__m128i*)data_scalar,total_err3);
total_error_3 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
_mm_storeu_si128((__m128i*)data_scalar,total_err4);
total_error_4 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3];
/* Now the remainder of samples needs to be processed */
i *= 4;
if(data_len % 4 > 0){
FLAC__int32 last_error_0 = data[i-1];
FLAC__int32 last_error_1 = data[i-1] - data[i-2];
FLAC__int32 last_error_2 = last_error_1 - (data[i-2] - data[i-3]);
FLAC__int32 last_error_3 = last_error_2 - (data[i-2] - 2*data[i-3] + data[i-4]);
FLAC__int32 error, save;
for(; i < data_len_int; i++) {
error = data[i] ; total_error_0 += local_abs(error); save = error;
error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error;
error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error;
error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error;
error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save;
}
}
/* prefer lower order */
if(total_error_0 <= flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4))
order = 0;
else if(total_error_1 <= flac_min(flac_min(total_error_2, total_error_3), total_error_4))
order = 1;
else if(total_error_2 <= flac_min(total_error_3, total_error_4))
order = 2;
else if(total_error_3 <= total_error_4)
order = 3;
else
order = 4;
/* Estimate the expected number of bits per residual signal sample. */
/* 'total_error*' is linearly related to the variance of the residual */
/* signal, so we use it directly to compute E(|x|) */
FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0);
residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0);
residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0);
residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0);
residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0);
return order;
}
FLAC__SSE_TARGET("sse2")
uint32_t FLAC__fixed_compute_best_predictor_wide_intrin_sse2(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1])
{
FLAC__uint64 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4;
uint32_t i, order;
__m128i total_err0, total_err1, total_err3;
{
FLAC__int32 itmp;
__m128i last_error, zero = _mm_setzero_si128();
last_error = _mm_cvtsi32_si128(data[-1]); // 0 0 0 le0
itmp = data[-2];
last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 0 le0 le1
itmp -= data[-3];
last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 le0 le1 le2
itmp -= data[-3] - data[-4];
last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // le0 le1 le2 le3
total_err0 = total_err1 = total_err3 = _mm_setzero_si128();
for(i = 0; i < data_len; i++) {
__m128i err0, err1, tmp;
err0 = _mm_cvtsi32_si128(data[i]); // 0 0 0 e0
err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(0,0,0,0)); // e0 e0 e0 e0
#if 1 /* OPT_SSE */
err1 = _mm_sub_epi32(err1, last_error);
last_error = _mm_srli_si128(last_error, 4); // 0 le0 le1 le2
err1 = _mm_sub_epi32(err1, last_error);
last_error = _mm_srli_si128(last_error, 4); // 0 0 le0 le1
err1 = _mm_sub_epi32(err1, last_error);
last_error = _mm_srli_si128(last_error, 4); // 0 0 0 le0
err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4
#else
last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 8)); // le0 le1 le2+le0 le3+le1
last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 4)); // le0 le1+le0 le2+le0+le1 le3+le1+le2+le0
err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4
#endif
tmp = _mm_slli_si128(err0, 12); // e0 0 0 0
last_error = _mm_srli_si128(err1, 4); // 0 e1 e2 e3
last_error = _mm_or_si128(last_error, tmp); // e0 e1 e2 e3
tmp = _mm_srai_epi32(err0, 31);
err0 = _mm_xor_si128(err0, tmp);
err0 = _mm_sub_epi32(err0, tmp);
tmp = _mm_srai_epi32(err1, 31);
err1 = _mm_xor_si128(err1, tmp);
err1 = _mm_sub_epi32(err1, tmp);
total_err0 = _mm_add_epi64(total_err0, err0); // 0 te0
err0 = _mm_unpacklo_epi32(err1, zero); // 0 |e3| 0 |e4|
err1 = _mm_unpackhi_epi32(err1, zero); // 0 |e1| 0 |e2|
total_err3 = _mm_add_epi64(total_err3, err0); // te3 te4
total_err1 = _mm_add_epi64(total_err1, err1); // te1 te2
}
}
m128i_to_i64(total_error_0, total_err0);
m128i_to_i64(total_error_4, total_err3);
m128i_to_i64(total_error_2, total_err1);
total_err3 = _mm_srli_si128(total_err3, 8); // 0 te3
total_err1 = _mm_srli_si128(total_err1, 8); // 0 te1
m128i_to_i64(total_error_3, total_err3);
m128i_to_i64(total_error_1, total_err1);
/* prefer lower order */
if(total_error_0 <= flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4))
order = 0;
else if(total_error_1 <= flac_min(flac_min(total_error_2, total_error_3), total_error_4))
order = 1;
else if(total_error_2 <= flac_min(total_error_3, total_error_4))
order = 2;
else if(total_error_3 <= total_error_4)
order = 3;
else
order = 4;
/* Estimate the expected number of bits per residual signal sample. */
/* 'total_error*' is linearly related to the variance of the residual */
/* signal, so we use it directly to compute E(|x|) */
FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0);
residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0);
residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0);
residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0);
residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0);
return order;
}
#endif /* FLAC__SSE2_SUPPORTED */
#endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */
#endif /* FLAC__NO_ASM */
#endif /* FLAC__INTEGER_ONLY_LIBRARY */