| /* libFLAC - Free Lossless Audio Codec library |
| * Copyright (C) 2000-2009 Josh Coalson |
| * Copyright (C) 2011-2022 Xiph.Org Foundation |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * - Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * - Neither the name of the Xiph.org Foundation nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifndef FLAC__PRIVATE__LPC_H |
| #define FLAC__PRIVATE__LPC_H |
| |
| #ifdef HAVE_CONFIG_H |
| #include <config.h> |
| #endif |
| |
| #include "private/cpu.h" |
| #include "private/float.h" |
| #include "FLAC/format.h" |
| |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| |
| /* |
| * FLAC__lpc_window_data() |
| * -------------------------------------------------------------------- |
| * Applies the given window to the data. |
| * OPT: asm implementation |
| * |
| * IN in[0,data_len-1] |
| * IN window[0,data_len-1] |
| * OUT out[0,lag-1] |
| * IN data_len |
| */ |
| void FLAC__lpc_window_data(const FLAC__int32 in[], |
| const FLAC__real window[], |
| FLAC__real out[], |
| uint32_t data_len); |
| void FLAC__lpc_window_data_wide(const FLAC__int64 in[], |
| const FLAC__real window[], |
| FLAC__real out[], |
| uint32_t data_len); |
| void FLAC__lpc_window_data_partial(const FLAC__int32 in[], |
| const FLAC__real window[], |
| FLAC__real out[], |
| uint32_t data_len, |
| uint32_t part_size, |
| uint32_t data_shift); |
| void FLAC__lpc_window_data_partial_wide(const FLAC__int64 in[], |
| const FLAC__real window[], |
| FLAC__real out[], |
| uint32_t data_len, |
| uint32_t part_size, |
| uint32_t data_shift); |
| |
| /* |
| * FLAC__lpc_compute_autocorrelation() |
| * -------------------------------------------------------------------- |
| * Compute the autocorrelation for lags between 0 and lag-1. |
| * Assumes data[] outside of [0,data_len-1] == 0. |
| * Asserts that lag > 0. |
| * |
| * IN data[0,data_len-1] |
| * IN data_len |
| * IN 0 < lag <= data_len |
| * OUT autoc[0,lag-1] |
| */ |
| void FLAC__lpc_compute_autocorrelation(const FLAC__real data[], |
| uint32_t data_len, |
| uint32_t lag, |
| double autoc[]); |
| #ifndef FLAC__NO_ASM |
| #if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN |
| #ifdef FLAC__SSE2_SUPPORTED |
| void FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_8( |
| const FLAC__real data[], |
| uint32_t data_len, |
| uint32_t lag, |
| double autoc[]); |
| void FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_10( |
| const FLAC__real data[], |
| uint32_t data_len, |
| uint32_t lag, |
| double autoc[]); |
| void FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_14( |
| const FLAC__real data[], |
| uint32_t data_len, |
| uint32_t lag, |
| double autoc[]); |
| # endif |
| # endif |
| #if defined FLAC__CPU_X86_64 && FLAC__HAS_X86INTRIN |
| #ifdef FLAC__FMA_SUPPORTED |
| void FLAC__lpc_compute_autocorrelation_intrin_fma_lag_8(const FLAC__real data[], |
| uint32_t data_len, |
| uint32_t lag, |
| double autoc[]); |
| void FLAC__lpc_compute_autocorrelation_intrin_fma_lag_12( |
| const FLAC__real data[], |
| uint32_t data_len, |
| uint32_t lag, |
| double autoc[]); |
| void FLAC__lpc_compute_autocorrelation_intrin_fma_lag_16( |
| const FLAC__real data[], |
| uint32_t data_len, |
| uint32_t lag, |
| double autoc[]); |
| # endif |
| # endif |
| #if defined(FLAC__CPU_PPC64) && defined(FLAC__USE_VSX) |
| #ifdef FLAC__HAS_TARGET_POWER9 |
| void FLAC__lpc_compute_autocorrelation_intrin_power9_vsx_lag_8( |
| const FLAC__real data[], |
| uint32_t data_len, |
| uint32_t lag, |
| double autoc[]); |
| void FLAC__lpc_compute_autocorrelation_intrin_power9_vsx_lag_10( |
| const FLAC__real data[], |
| uint32_t data_len, |
| uint32_t lag, |
| double autoc[]); |
| void FLAC__lpc_compute_autocorrelation_intrin_power9_vsx_lag_14( |
| const FLAC__real data[], |
| uint32_t data_len, |
| uint32_t lag, |
| double autoc[]); |
| #endif |
| #ifdef FLAC__HAS_TARGET_POWER8 |
| void FLAC__lpc_compute_autocorrelation_intrin_power8_vsx_lag_8( |
| const FLAC__real data[], |
| uint32_t data_len, |
| uint32_t lag, |
| double autoc[]); |
| void FLAC__lpc_compute_autocorrelation_intrin_power8_vsx_lag_10( |
| const FLAC__real data[], |
| uint32_t data_len, |
| uint32_t lag, |
| double autoc[]); |
| void FLAC__lpc_compute_autocorrelation_intrin_power8_vsx_lag_14( |
| const FLAC__real data[], |
| uint32_t data_len, |
| uint32_t lag, |
| double autoc[]); |
| #endif |
| #endif |
| #if defined FLAC__CPU_ARM64 && FLAC__HAS_NEONINTRIN && FLAC__HAS_A64NEONINTRIN |
| void FLAC__lpc_compute_autocorrelation_intrin_neon_lag_8( |
| const FLAC__real data[], |
| uint32_t data_len, |
| uint32_t lag, |
| double autoc[]); |
| void FLAC__lpc_compute_autocorrelation_intrin_neon_lag_10( |
| const FLAC__real data[], |
| uint32_t data_len, |
| uint32_t lag, |
| double autoc[]); |
| void FLAC__lpc_compute_autocorrelation_intrin_neon_lag_14( |
| const FLAC__real data[], |
| uint32_t data_len, |
| uint32_t lag, |
| double autoc[]); |
| #endif |
| #endif /* FLAC__NO_ASM */ |
| |
| /* |
| * FLAC__lpc_compute_lp_coefficients() |
| * -------------------------------------------------------------------- |
| * Computes LP coefficients for orders 1..max_order. |
| * Do not call if autoc[0] == 0.0. This means the signal is zero |
| * and there is no point in calculating a predictor. |
| * |
| * IN autoc[0,max_order] autocorrelation values |
| * IN 0 < max_order <= FLAC__MAX_LPC_ORDER max LP order to compute |
| * OUT lp_coeff[0,max_order-1][0,max_order-1] LP coefficients for each order |
| * *** IMPORTANT: |
| * *** lp_coeff[0,max_order-1][max_order,FLAC__MAX_LPC_ORDER-1] are untouched |
| * OUT error[0,max_order-1] error for each order (more |
| * specifically, the variance of |
| * the error signal times # of |
| * samples in the signal) |
| * |
| * Example: if max_order is 9, the LP coefficients for order 9 will be |
| * in lp_coeff[8][0,8], the LP coefficients for order 8 will be |
| * in lp_coeff[7][0,7], etc. |
| */ |
| void FLAC__lpc_compute_lp_coefficients( |
| const double autoc[], |
| uint32_t* max_order, |
| FLAC__real lp_coeff[][FLAC__MAX_LPC_ORDER], |
| double error[]); |
| |
| /* |
| * FLAC__lpc_quantize_coefficients() |
| * -------------------------------------------------------------------- |
| * Quantizes the LP coefficients. NOTE: precision + bits_per_sample |
| * must be less than 32 (sizeof(FLAC__int32)*8). |
| * |
| * IN lp_coeff[0,order-1] LP coefficients |
| * IN order LP order |
| * IN FLAC__MIN_QLP_COEFF_PRECISION < precision |
| * desired precision (in bits, including sign |
| * bit) of largest coefficient |
| * OUT qlp_coeff[0,order-1] quantized coefficients |
| * OUT shift # of bits to shift right to get approximated |
| * LP coefficients. NOTE: could be negative. |
| * RETURN 0 => quantization OK |
| * 1 => coefficients require too much shifting for *shift to |
| * fit in the LPC subframe header. 'shift' is unset. |
| * 2 => coefficients are all zero, which is bad. 'shift' is |
| * unset. |
| */ |
| int FLAC__lpc_quantize_coefficients(const FLAC__real lp_coeff[], |
| uint32_t order, |
| uint32_t precision, |
| FLAC__int32 qlp_coeff[], |
| int* shift); |
| |
| /* |
| * FLAC__lpc_compute_residual_from_qlp_coefficients() |
| * -------------------------------------------------------------------- |
| * Compute the residual signal obtained from sutracting the predicted |
| * signal from the original. |
| * |
| * IN data[-order,data_len-1] original signal (NOTE THE INDICES!) |
| * IN data_len length of original signal |
| * IN qlp_coeff[0,order-1] quantized LP coefficients |
| * IN order > 0 LP order |
| * IN lp_quantization quantization of LP coefficients in bits |
| * OUT residual[0,data_len-1] residual signal |
| */ |
| void FLAC__lpc_compute_residual_from_qlp_coefficients( |
| const FLAC__int32* data, |
| uint32_t data_len, |
| const FLAC__int32 qlp_coeff[], |
| uint32_t order, |
| int lp_quantization, |
| FLAC__int32 residual[]); |
| void FLAC__lpc_compute_residual_from_qlp_coefficients_wide( |
| const FLAC__int32* data, |
| uint32_t data_len, |
| const FLAC__int32 qlp_coeff[], |
| uint32_t order, |
| int lp_quantization, |
| FLAC__int32 residual[]); |
| FLAC__bool FLAC__lpc_compute_residual_from_qlp_coefficients_limit_residual( |
| const FLAC__int32* data, |
| uint32_t data_len, |
| const FLAC__int32 qlp_coeff[], |
| uint32_t order, |
| int lp_quantization, |
| FLAC__int32 residual[]); |
| FLAC__bool |
| FLAC__lpc_compute_residual_from_qlp_coefficients_limit_residual_33bit( |
| const FLAC__int64* data, |
| uint32_t data_len, |
| const FLAC__int32 qlp_coeff[], |
| uint32_t order, |
| int lp_quantization, |
| FLAC__int32 residual[]); |
| #ifndef FLAC__NO_ASM |
| #ifdef FLAC__CPU_ARM64 |
| void FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_neon( |
| const FLAC__int32* data, |
| uint32_t data_len, |
| const FLAC__int32 qlp_coeff[], |
| uint32_t order, |
| int lp_quantization, |
| FLAC__int32 residual[]); |
| void FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_neon( |
| const FLAC__int32* data, |
| uint32_t data_len, |
| const FLAC__int32 qlp_coeff[], |
| uint32_t order, |
| int lp_quantization, |
| FLAC__int32 residual[]); |
| #endif |
| |
| #if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN |
| # ifdef FLAC__SSE2_SUPPORTED |
| void FLAC__lpc_compute_residual_from_qlp_coefficients_16_intrin_sse2( |
| const FLAC__int32* data, |
| uint32_t data_len, |
| const FLAC__int32 qlp_coeff[], |
| uint32_t order, |
| int lp_quantization, |
| FLAC__int32 residual[]); |
| void FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_sse2( |
| const FLAC__int32* data, |
| uint32_t data_len, |
| const FLAC__int32 qlp_coeff[], |
| uint32_t order, |
| int lp_quantization, |
| FLAC__int32 residual[]); |
| # endif |
| # ifdef FLAC__SSE4_1_SUPPORTED |
| void FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_sse41( |
| const FLAC__int32* data, |
| uint32_t data_len, |
| const FLAC__int32 qlp_coeff[], |
| uint32_t order, |
| int lp_quantization, |
| FLAC__int32 residual[]); |
| void FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_sse41( |
| const FLAC__int32* data, |
| uint32_t data_len, |
| const FLAC__int32 qlp_coeff[], |
| uint32_t order, |
| int lp_quantization, |
| FLAC__int32 residual[]); |
| # endif |
| # ifdef FLAC__AVX2_SUPPORTED |
| void FLAC__lpc_compute_residual_from_qlp_coefficients_16_intrin_avx2( |
| const FLAC__int32* data, |
| uint32_t data_len, |
| const FLAC__int32 qlp_coeff[], |
| uint32_t order, |
| int lp_quantization, |
| FLAC__int32 residual[]); |
| void FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_avx2( |
| const FLAC__int32* data, |
| uint32_t data_len, |
| const FLAC__int32 qlp_coeff[], |
| uint32_t order, |
| int lp_quantization, |
| FLAC__int32 residual[]); |
| void FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_avx2( |
| const FLAC__int32* data, |
| uint32_t data_len, |
| const FLAC__int32 qlp_coeff[], |
| uint32_t order, |
| int lp_quantization, |
| FLAC__int32 residual[]); |
| # endif |
| # endif |
| #endif |
| |
| #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */ |
| |
| uint32_t FLAC__lpc_max_prediction_before_shift_bps( |
| uint32_t subframe_bps, |
| const FLAC__int32 qlp_coeff[], |
| uint32_t order); |
| uint32_t FLAC__lpc_max_residual_bps(uint32_t subframe_bps, |
| const FLAC__int32 qlp_coeff[], |
| uint32_t order, |
| int lp_quantization); |
| |
| /* |
| * FLAC__lpc_restore_signal() |
| * -------------------------------------------------------------------- |
| * Restore the original signal by summing the residual and the |
| * predictor. |
| * |
| * IN residual[0,data_len-1] residual signal |
| * IN data_len length of original signal |
| * IN qlp_coeff[0,order-1] quantized LP coefficients |
| * IN order > 0 LP order |
| * IN lp_quantization quantization of LP coefficients in bits |
| * *** IMPORTANT: the caller must pass in the historical samples: |
| * IN data[-order,-1] previously-reconstructed historical samples |
| * OUT data[0,data_len-1] original signal |
| */ |
| void FLAC__lpc_restore_signal(const FLAC__int32 residual[], |
| uint32_t data_len, |
| const FLAC__int32 qlp_coeff[], |
| uint32_t order, |
| int lp_quantization, |
| FLAC__int32 data[]); |
| void FLAC__lpc_restore_signal_wide(const FLAC__int32 residual[], |
| uint32_t data_len, |
| const FLAC__int32 qlp_coeff[], |
| uint32_t order, |
| int lp_quantization, |
| FLAC__int32 data[]); |
| void FLAC__lpc_restore_signal_wide_33bit(const FLAC__int32 residual[], |
| uint32_t data_len, |
| const FLAC__int32 qlp_coeff[], |
| uint32_t order, |
| int lp_quantization, |
| FLAC__int64 data[]); |
| |
| #ifndef FLAC__INTEGER_ONLY_LIBRARY |
| |
| /* |
| * FLAC__lpc_compute_expected_bits_per_residual_sample() |
| * -------------------------------------------------------------------- |
| * Compute the expected number of bits per residual signal sample |
| * based on the LP error (which is related to the residual variance). |
| * |
| * IN lpc_error >= 0.0 error returned from calculating LP coefficients |
| * IN total_samples > 0 # of samples in residual signal |
| * RETURN expected bits per sample |
| */ |
| double FLAC__lpc_compute_expected_bits_per_residual_sample( |
| double lpc_error, |
| uint32_t total_samples); |
| double FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale( |
| double lpc_error, |
| double error_scale); |
| |
| /* |
| * FLAC__lpc_compute_best_order() |
| * -------------------------------------------------------------------- |
| * Compute the best order from the array of signal errors returned |
| * during coefficient computation. |
| * |
| * IN lpc_error[0,max_order-1] >= 0.0 error returned from calculating LP coefficients |
| * IN max_order > 0 max LP order |
| * IN total_samples > 0 # of samples in residual signal |
| * IN overhead_bits_per_order # of bits overhead for each increased LP order |
| * (includes warmup sample size and quantized LP coefficient) |
| * RETURN [1,max_order] best order |
| */ |
| uint32_t FLAC__lpc_compute_best_order(const double lpc_error[], |
| uint32_t max_order, |
| uint32_t total_samples, |
| uint32_t overhead_bits_per_order); |
| |
| #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */ |
| |
| #endif |