| /* |
| * Single-precision log function. |
| * |
| * Copyright (c) 2017-2018, Arm Limited. |
| * SPDX-License-Identifier: MIT |
| */ |
| |
| #include <math.h> |
| #include <stdint.h> |
| #include "libm.h" |
| #include "logf_data.h" |
| |
| /* |
| LOGF_TABLE_BITS = 4 |
| LOGF_POLY_ORDER = 4 |
| |
| ULP error: 0.818 (nearest rounding.) |
| Relative error: 1.957 * 2^-26 (before rounding.) |
| */ |
| |
| #define T __logf_data.tab |
| #define A __logf_data.poly |
| #define Ln2 __logf_data.ln2 |
| #define N (1 << LOGF_TABLE_BITS) |
| #define OFF 0x3f330000 |
| |
| float logf(float x) |
| { |
| double_t z, r, r2, y, y0, invc, logc; |
| uint32_t ix, iz, tmp; |
| int k, i; |
| |
| ix = asuint(x); |
| /* Fix sign of zero with downward rounding when x==1. */ |
| if (WANT_ROUNDING && predict_false(ix == 0x3f800000)) |
| return 0; |
| if (predict_false(ix - 0x00800000 >= 0x7f800000 - 0x00800000)) { |
| /* x < 0x1p-126 or inf or nan. */ |
| if (ix * 2 == 0) |
| return __math_divzerof(1); |
| if (ix == 0x7f800000) /* log(inf) == inf. */ |
| return x; |
| if ((ix & 0x80000000) || ix * 2 >= 0xff000000) |
| return __math_invalidf(x); |
| /* x is subnormal, normalize it. */ |
| ix = asuint(x * 0x1p23f); |
| ix -= 23 << 23; |
| } |
| |
| /* x = 2^k z; where z is in range [OFF,2*OFF] and exact. |
| The range is split into N subintervals. |
| The ith subinterval contains z and c is near its center. */ |
| tmp = ix - OFF; |
| i = (tmp >> (23 - LOGF_TABLE_BITS)) % N; |
| k = (int32_t)tmp >> 23; /* arithmetic shift */ |
| iz = ix - (tmp & 0xff800000); |
| invc = T[i].invc; |
| logc = T[i].logc; |
| z = (double_t)asfloat(iz); |
| |
| /* log(x) = log1p(z/c-1) + log(c) + k*Ln2 */ |
| r = z * invc - 1; |
| y0 = logc + (double_t)k * Ln2; |
| |
| /* Pipelined polynomial evaluation to approximate log1p(r). */ |
| r2 = r * r; |
| y = A[1] * r + A[2]; |
| y = A[0] * r2 + y; |
| y = y * r2 + (y0 + r); |
| return eval_as_float(y); |
| } |