| /* |
| ** 2001 September 15 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file contains routines used for analyzing expressions and |
| ** for generating VDBE code that evaluates expressions in SQLite. |
| */ |
| #include "sqliteInt.h" |
| |
| /* Forward declarations */ |
| static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); |
| static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); |
| |
| /* |
| ** Return the affinity character for a single column of a table. |
| */ |
| char sqlite3TableColumnAffinity(const Table *pTab, int iCol){ |
| if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER; |
| return pTab->aCol[iCol].affinity; |
| } |
| |
| /* |
| ** Return the 'affinity' of the expression pExpr if any. |
| ** |
| ** If pExpr is a column, a reference to a column via an 'AS' alias, |
| ** or a sub-select with a column as the return value, then the |
| ** affinity of that column is returned. Otherwise, 0x00 is returned, |
| ** indicating no affinity for the expression. |
| ** |
| ** i.e. the WHERE clause expressions in the following statements all |
| ** have an affinity: |
| ** |
| ** CREATE TABLE t1(a); |
| ** SELECT * FROM t1 WHERE a; |
| ** SELECT a AS b FROM t1 WHERE b; |
| ** SELECT * FROM t1 WHERE (select a from t1); |
| */ |
| char sqlite3ExprAffinity(const Expr *pExpr){ |
| int op; |
| while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){ |
| assert( pExpr->op==TK_COLLATE |
| || pExpr->op==TK_IF_NULL_ROW |
| || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) ); |
| pExpr = pExpr->pLeft; |
| assert( pExpr!=0 ); |
| } |
| op = pExpr->op; |
| if( op==TK_REGISTER ) op = pExpr->op2; |
| if( op==TK_COLUMN || op==TK_AGG_COLUMN ){ |
| assert( ExprUseYTab(pExpr) ); |
| if( pExpr->y.pTab ){ |
| return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); |
| } |
| } |
| if( op==TK_SELECT ){ |
| assert( ExprUseXSelect(pExpr) ); |
| assert( pExpr->x.pSelect!=0 ); |
| assert( pExpr->x.pSelect->pEList!=0 ); |
| assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 ); |
| return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); |
| } |
| #ifndef SQLITE_OMIT_CAST |
| if( op==TK_CAST ){ |
| assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| return sqlite3AffinityType(pExpr->u.zToken, 0); |
| } |
| #endif |
| if( op==TK_SELECT_COLUMN ){ |
| assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) ); |
| assert( pExpr->iColumn < pExpr->iTable ); |
| assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr ); |
| return sqlite3ExprAffinity( |
| pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr |
| ); |
| } |
| if( op==TK_VECTOR ){ |
| assert( ExprUseXList(pExpr) ); |
| return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); |
| } |
| return pExpr->affExpr; |
| } |
| |
| /* |
| ** Set the collating sequence for expression pExpr to be the collating |
| ** sequence named by pToken. Return a pointer to a new Expr node that |
| ** implements the COLLATE operator. |
| ** |
| ** If a memory allocation error occurs, that fact is recorded in pParse->db |
| ** and the pExpr parameter is returned unchanged. |
| */ |
| Expr *sqlite3ExprAddCollateToken( |
| const Parse *pParse, /* Parsing context */ |
| Expr *pExpr, /* Add the "COLLATE" clause to this expression */ |
| const Token *pCollName, /* Name of collating sequence */ |
| int dequote /* True to dequote pCollName */ |
| ){ |
| if( pCollName->n>0 ){ |
| Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); |
| if( pNew ){ |
| pNew->pLeft = pExpr; |
| pNew->flags |= EP_Collate|EP_Skip; |
| pExpr = pNew; |
| } |
| } |
| return pExpr; |
| } |
| Expr *sqlite3ExprAddCollateString( |
| const Parse *pParse, /* Parsing context */ |
| Expr *pExpr, /* Add the "COLLATE" clause to this expression */ |
| const char *zC /* The collating sequence name */ |
| ){ |
| Token s; |
| assert( zC!=0 ); |
| sqlite3TokenInit(&s, (char*)zC); |
| return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); |
| } |
| |
| /* |
| ** Skip over any TK_COLLATE operators. |
| */ |
| Expr *sqlite3ExprSkipCollate(Expr *pExpr){ |
| while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ |
| assert( pExpr->op==TK_COLLATE ); |
| pExpr = pExpr->pLeft; |
| } |
| return pExpr; |
| } |
| |
| /* |
| ** Skip over any TK_COLLATE operators and/or any unlikely() |
| ** or likelihood() or likely() functions at the root of an |
| ** expression. |
| */ |
| Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ |
| while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ |
| if( ExprHasProperty(pExpr, EP_Unlikely) ){ |
| assert( ExprUseXList(pExpr) ); |
| assert( pExpr->x.pList->nExpr>0 ); |
| assert( pExpr->op==TK_FUNCTION ); |
| pExpr = pExpr->x.pList->a[0].pExpr; |
| }else{ |
| assert( pExpr->op==TK_COLLATE ); |
| pExpr = pExpr->pLeft; |
| } |
| } |
| return pExpr; |
| } |
| |
| /* |
| ** Return the collation sequence for the expression pExpr. If |
| ** there is no defined collating sequence, return NULL. |
| ** |
| ** See also: sqlite3ExprNNCollSeq() |
| ** |
| ** The sqlite3ExprNNCollSeq() works the same exact that it returns the |
| ** default collation if pExpr has no defined collation. |
| ** |
| ** The collating sequence might be determined by a COLLATE operator |
| ** or by the presence of a column with a defined collating sequence. |
| ** COLLATE operators take first precedence. Left operands take |
| ** precedence over right operands. |
| */ |
| CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){ |
| sqlite3 *db = pParse->db; |
| CollSeq *pColl = 0; |
| const Expr *p = pExpr; |
| while( p ){ |
| int op = p->op; |
| if( op==TK_REGISTER ) op = p->op2; |
| if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){ |
| assert( ExprUseYTab(p) ); |
| if( p->y.pTab!=0 ){ |
| /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally |
| ** a TK_COLUMN but was previously evaluated and cached in a register */ |
| int j = p->iColumn; |
| if( j>=0 ){ |
| const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]); |
| pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); |
| } |
| break; |
| } |
| } |
| if( op==TK_CAST || op==TK_UPLUS ){ |
| p = p->pLeft; |
| continue; |
| } |
| if( op==TK_VECTOR ){ |
| assert( ExprUseXList(p) ); |
| p = p->x.pList->a[0].pExpr; |
| continue; |
| } |
| if( op==TK_COLLATE ){ |
| assert( !ExprHasProperty(p, EP_IntValue) ); |
| pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); |
| break; |
| } |
| if( p->flags & EP_Collate ){ |
| if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ |
| p = p->pLeft; |
| }else{ |
| Expr *pNext = p->pRight; |
| /* The Expr.x union is never used at the same time as Expr.pRight */ |
| assert( ExprUseXList(p) ); |
| assert( p->x.pList==0 || p->pRight==0 ); |
| if( p->x.pList!=0 && !db->mallocFailed ){ |
| int i; |
| for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ |
| if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ |
| pNext = p->x.pList->a[i].pExpr; |
| break; |
| } |
| } |
| } |
| p = pNext; |
| } |
| }else{ |
| break; |
| } |
| } |
| if( sqlite3CheckCollSeq(pParse, pColl) ){ |
| pColl = 0; |
| } |
| return pColl; |
| } |
| |
| /* |
| ** Return the collation sequence for the expression pExpr. If |
| ** there is no defined collating sequence, return a pointer to the |
| ** defautl collation sequence. |
| ** |
| ** See also: sqlite3ExprCollSeq() |
| ** |
| ** The sqlite3ExprCollSeq() routine works the same except that it |
| ** returns NULL if there is no defined collation. |
| */ |
| CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){ |
| CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); |
| if( p==0 ) p = pParse->db->pDfltColl; |
| assert( p!=0 ); |
| return p; |
| } |
| |
| /* |
| ** Return TRUE if the two expressions have equivalent collating sequences. |
| */ |
| int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){ |
| CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); |
| CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); |
| return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; |
| } |
| |
| /* |
| ** pExpr is an operand of a comparison operator. aff2 is the |
| ** type affinity of the other operand. This routine returns the |
| ** type affinity that should be used for the comparison operator. |
| */ |
| char sqlite3CompareAffinity(const Expr *pExpr, char aff2){ |
| char aff1 = sqlite3ExprAffinity(pExpr); |
| if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ |
| /* Both sides of the comparison are columns. If one has numeric |
| ** affinity, use that. Otherwise use no affinity. |
| */ |
| if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ |
| return SQLITE_AFF_NUMERIC; |
| }else{ |
| return SQLITE_AFF_BLOB; |
| } |
| }else{ |
| /* One side is a column, the other is not. Use the columns affinity. */ |
| assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); |
| return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; |
| } |
| } |
| |
| /* |
| ** pExpr is a comparison operator. Return the type affinity that should |
| ** be applied to both operands prior to doing the comparison. |
| */ |
| static char comparisonAffinity(const Expr *pExpr){ |
| char aff; |
| assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || |
| pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || |
| pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); |
| assert( pExpr->pLeft ); |
| aff = sqlite3ExprAffinity(pExpr->pLeft); |
| if( pExpr->pRight ){ |
| aff = sqlite3CompareAffinity(pExpr->pRight, aff); |
| }else if( ExprUseXSelect(pExpr) ){ |
| aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); |
| }else if( aff==0 ){ |
| aff = SQLITE_AFF_BLOB; |
| } |
| return aff; |
| } |
| |
| /* |
| ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. |
| ** idx_affinity is the affinity of an indexed column. Return true |
| ** if the index with affinity idx_affinity may be used to implement |
| ** the comparison in pExpr. |
| */ |
| int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){ |
| char aff = comparisonAffinity(pExpr); |
| if( aff<SQLITE_AFF_TEXT ){ |
| return 1; |
| } |
| if( aff==SQLITE_AFF_TEXT ){ |
| return idx_affinity==SQLITE_AFF_TEXT; |
| } |
| return sqlite3IsNumericAffinity(idx_affinity); |
| } |
| |
| /* |
| ** Return the P5 value that should be used for a binary comparison |
| ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. |
| */ |
| static u8 binaryCompareP5( |
| const Expr *pExpr1, /* Left operand */ |
| const Expr *pExpr2, /* Right operand */ |
| int jumpIfNull /* Extra flags added to P5 */ |
| ){ |
| u8 aff = (char)sqlite3ExprAffinity(pExpr2); |
| aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; |
| return aff; |
| } |
| |
| /* |
| ** Return a pointer to the collation sequence that should be used by |
| ** a binary comparison operator comparing pLeft and pRight. |
| ** |
| ** If the left hand expression has a collating sequence type, then it is |
| ** used. Otherwise the collation sequence for the right hand expression |
| ** is used, or the default (BINARY) if neither expression has a collating |
| ** type. |
| ** |
| ** Argument pRight (but not pLeft) may be a null pointer. In this case, |
| ** it is not considered. |
| */ |
| CollSeq *sqlite3BinaryCompareCollSeq( |
| Parse *pParse, |
| const Expr *pLeft, |
| const Expr *pRight |
| ){ |
| CollSeq *pColl; |
| assert( pLeft ); |
| if( pLeft->flags & EP_Collate ){ |
| pColl = sqlite3ExprCollSeq(pParse, pLeft); |
| }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ |
| pColl = sqlite3ExprCollSeq(pParse, pRight); |
| }else{ |
| pColl = sqlite3ExprCollSeq(pParse, pLeft); |
| if( !pColl ){ |
| pColl = sqlite3ExprCollSeq(pParse, pRight); |
| } |
| } |
| return pColl; |
| } |
| |
| /* Expresssion p is a comparison operator. Return a collation sequence |
| ** appropriate for the comparison operator. |
| ** |
| ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). |
| ** However, if the OP_Commuted flag is set, then the order of the operands |
| ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the |
| ** correct collating sequence is found. |
| */ |
| CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){ |
| if( ExprHasProperty(p, EP_Commuted) ){ |
| return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); |
| }else{ |
| return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); |
| } |
| } |
| |
| /* |
| ** Generate code for a comparison operator. |
| */ |
| static int codeCompare( |
| Parse *pParse, /* The parsing (and code generating) context */ |
| Expr *pLeft, /* The left operand */ |
| Expr *pRight, /* The right operand */ |
| int opcode, /* The comparison opcode */ |
| int in1, int in2, /* Register holding operands */ |
| int dest, /* Jump here if true. */ |
| int jumpIfNull, /* If true, jump if either operand is NULL */ |
| int isCommuted /* The comparison has been commuted */ |
| ){ |
| int p5; |
| int addr; |
| CollSeq *p4; |
| |
| if( pParse->nErr ) return 0; |
| if( isCommuted ){ |
| p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); |
| }else{ |
| p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); |
| } |
| p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); |
| addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, |
| (void*)p4, P4_COLLSEQ); |
| sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); |
| return addr; |
| } |
| |
| /* |
| ** Return true if expression pExpr is a vector, or false otherwise. |
| ** |
| ** A vector is defined as any expression that results in two or more |
| ** columns of result. Every TK_VECTOR node is an vector because the |
| ** parser will not generate a TK_VECTOR with fewer than two entries. |
| ** But a TK_SELECT might be either a vector or a scalar. It is only |
| ** considered a vector if it has two or more result columns. |
| */ |
| int sqlite3ExprIsVector(const Expr *pExpr){ |
| return sqlite3ExprVectorSize(pExpr)>1; |
| } |
| |
| /* |
| ** If the expression passed as the only argument is of type TK_VECTOR |
| ** return the number of expressions in the vector. Or, if the expression |
| ** is a sub-select, return the number of columns in the sub-select. For |
| ** any other type of expression, return 1. |
| */ |
| int sqlite3ExprVectorSize(const Expr *pExpr){ |
| u8 op = pExpr->op; |
| if( op==TK_REGISTER ) op = pExpr->op2; |
| if( op==TK_VECTOR ){ |
| assert( ExprUseXList(pExpr) ); |
| return pExpr->x.pList->nExpr; |
| }else if( op==TK_SELECT ){ |
| assert( ExprUseXSelect(pExpr) ); |
| return pExpr->x.pSelect->pEList->nExpr; |
| }else{ |
| return 1; |
| } |
| } |
| |
| /* |
| ** Return a pointer to a subexpression of pVector that is the i-th |
| ** column of the vector (numbered starting with 0). The caller must |
| ** ensure that i is within range. |
| ** |
| ** If pVector is really a scalar (and "scalar" here includes subqueries |
| ** that return a single column!) then return pVector unmodified. |
| ** |
| ** pVector retains ownership of the returned subexpression. |
| ** |
| ** If the vector is a (SELECT ...) then the expression returned is |
| ** just the expression for the i-th term of the result set, and may |
| ** not be ready for evaluation because the table cursor has not yet |
| ** been positioned. |
| */ |
| Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ |
| assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR ); |
| if( sqlite3ExprIsVector(pVector) ){ |
| assert( pVector->op2==0 || pVector->op==TK_REGISTER ); |
| if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ |
| assert( ExprUseXSelect(pVector) ); |
| return pVector->x.pSelect->pEList->a[i].pExpr; |
| }else{ |
| assert( ExprUseXList(pVector) ); |
| return pVector->x.pList->a[i].pExpr; |
| } |
| } |
| return pVector; |
| } |
| |
| /* |
| ** Compute and return a new Expr object which when passed to |
| ** sqlite3ExprCode() will generate all necessary code to compute |
| ** the iField-th column of the vector expression pVector. |
| ** |
| ** It is ok for pVector to be a scalar (as long as iField==0). |
| ** In that case, this routine works like sqlite3ExprDup(). |
| ** |
| ** The caller owns the returned Expr object and is responsible for |
| ** ensuring that the returned value eventually gets freed. |
| ** |
| ** The caller retains ownership of pVector. If pVector is a TK_SELECT, |
| ** then the returned object will reference pVector and so pVector must remain |
| ** valid for the life of the returned object. If pVector is a TK_VECTOR |
| ** or a scalar expression, then it can be deleted as soon as this routine |
| ** returns. |
| ** |
| ** A trick to cause a TK_SELECT pVector to be deleted together with |
| ** the returned Expr object is to attach the pVector to the pRight field |
| ** of the returned TK_SELECT_COLUMN Expr object. |
| */ |
| Expr *sqlite3ExprForVectorField( |
| Parse *pParse, /* Parsing context */ |
| Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ |
| int iField, /* Which column of the vector to return */ |
| int nField /* Total number of columns in the vector */ |
| ){ |
| Expr *pRet; |
| if( pVector->op==TK_SELECT ){ |
| assert( ExprUseXSelect(pVector) ); |
| /* The TK_SELECT_COLUMN Expr node: |
| ** |
| ** pLeft: pVector containing TK_SELECT. Not deleted. |
| ** pRight: not used. But recursively deleted. |
| ** iColumn: Index of a column in pVector |
| ** iTable: 0 or the number of columns on the LHS of an assignment |
| ** pLeft->iTable: First in an array of register holding result, or 0 |
| ** if the result is not yet computed. |
| ** |
| ** sqlite3ExprDelete() specifically skips the recursive delete of |
| ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector |
| ** can be attached to pRight to cause this node to take ownership of |
| ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes |
| ** with the same pLeft pointer to the pVector, but only one of them |
| ** will own the pVector. |
| */ |
| pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); |
| if( pRet ){ |
| pRet->iTable = nField; |
| pRet->iColumn = iField; |
| pRet->pLeft = pVector; |
| } |
| }else{ |
| if( pVector->op==TK_VECTOR ){ |
| Expr **ppVector; |
| assert( ExprUseXList(pVector) ); |
| ppVector = &pVector->x.pList->a[iField].pExpr; |
| pVector = *ppVector; |
| if( IN_RENAME_OBJECT ){ |
| /* This must be a vector UPDATE inside a trigger */ |
| *ppVector = 0; |
| return pVector; |
| } |
| } |
| pRet = sqlite3ExprDup(pParse->db, pVector, 0); |
| } |
| return pRet; |
| } |
| |
| /* |
| ** If expression pExpr is of type TK_SELECT, generate code to evaluate |
| ** it. Return the register in which the result is stored (or, if the |
| ** sub-select returns more than one column, the first in an array |
| ** of registers in which the result is stored). |
| ** |
| ** If pExpr is not a TK_SELECT expression, return 0. |
| */ |
| static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ |
| int reg = 0; |
| #ifndef SQLITE_OMIT_SUBQUERY |
| if( pExpr->op==TK_SELECT ){ |
| reg = sqlite3CodeSubselect(pParse, pExpr); |
| } |
| #endif |
| return reg; |
| } |
| |
| /* |
| ** Argument pVector points to a vector expression - either a TK_VECTOR |
| ** or TK_SELECT that returns more than one column. This function returns |
| ** the register number of a register that contains the value of |
| ** element iField of the vector. |
| ** |
| ** If pVector is a TK_SELECT expression, then code for it must have |
| ** already been generated using the exprCodeSubselect() routine. In this |
| ** case parameter regSelect should be the first in an array of registers |
| ** containing the results of the sub-select. |
| ** |
| ** If pVector is of type TK_VECTOR, then code for the requested field |
| ** is generated. In this case (*pRegFree) may be set to the number of |
| ** a temporary register to be freed by the caller before returning. |
| ** |
| ** Before returning, output parameter (*ppExpr) is set to point to the |
| ** Expr object corresponding to element iElem of the vector. |
| */ |
| static int exprVectorRegister( |
| Parse *pParse, /* Parse context */ |
| Expr *pVector, /* Vector to extract element from */ |
| int iField, /* Field to extract from pVector */ |
| int regSelect, /* First in array of registers */ |
| Expr **ppExpr, /* OUT: Expression element */ |
| int *pRegFree /* OUT: Temp register to free */ |
| ){ |
| u8 op = pVector->op; |
| assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR ); |
| if( op==TK_REGISTER ){ |
| *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); |
| return pVector->iTable+iField; |
| } |
| if( op==TK_SELECT ){ |
| assert( ExprUseXSelect(pVector) ); |
| *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; |
| return regSelect+iField; |
| } |
| if( op==TK_VECTOR ){ |
| assert( ExprUseXList(pVector) ); |
| *ppExpr = pVector->x.pList->a[iField].pExpr; |
| return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); |
| } |
| return 0; |
| } |
| |
| /* |
| ** Expression pExpr is a comparison between two vector values. Compute |
| ** the result of the comparison (1, 0, or NULL) and write that |
| ** result into register dest. |
| ** |
| ** The caller must satisfy the following preconditions: |
| ** |
| ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ |
| ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ |
| ** otherwise: op==pExpr->op and p5==0 |
| */ |
| static void codeVectorCompare( |
| Parse *pParse, /* Code generator context */ |
| Expr *pExpr, /* The comparison operation */ |
| int dest, /* Write results into this register */ |
| u8 op, /* Comparison operator */ |
| u8 p5 /* SQLITE_NULLEQ or zero */ |
| ){ |
| Vdbe *v = pParse->pVdbe; |
| Expr *pLeft = pExpr->pLeft; |
| Expr *pRight = pExpr->pRight; |
| int nLeft = sqlite3ExprVectorSize(pLeft); |
| int i; |
| int regLeft = 0; |
| int regRight = 0; |
| u8 opx = op; |
| int addrCmp = 0; |
| int addrDone = sqlite3VdbeMakeLabel(pParse); |
| int isCommuted = ExprHasProperty(pExpr,EP_Commuted); |
| |
| assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); |
| if( pParse->nErr ) return; |
| if( nLeft!=sqlite3ExprVectorSize(pRight) ){ |
| sqlite3ErrorMsg(pParse, "row value misused"); |
| return; |
| } |
| assert( pExpr->op==TK_EQ || pExpr->op==TK_NE |
| || pExpr->op==TK_IS || pExpr->op==TK_ISNOT |
| || pExpr->op==TK_LT || pExpr->op==TK_GT |
| || pExpr->op==TK_LE || pExpr->op==TK_GE |
| ); |
| assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) |
| || (pExpr->op==TK_ISNOT && op==TK_NE) ); |
| assert( p5==0 || pExpr->op!=op ); |
| assert( p5==SQLITE_NULLEQ || pExpr->op==op ); |
| |
| if( op==TK_LE ) opx = TK_LT; |
| if( op==TK_GE ) opx = TK_GT; |
| if( op==TK_NE ) opx = TK_EQ; |
| |
| regLeft = exprCodeSubselect(pParse, pLeft); |
| regRight = exprCodeSubselect(pParse, pRight); |
| |
| sqlite3VdbeAddOp2(v, OP_Integer, 1, dest); |
| for(i=0; 1 /*Loop exits by "break"*/; i++){ |
| int regFree1 = 0, regFree2 = 0; |
| Expr *pL = 0, *pR = 0; |
| int r1, r2; |
| assert( i>=0 && i<nLeft ); |
| if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp); |
| r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); |
| r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); |
| addrCmp = sqlite3VdbeCurrentAddr(v); |
| codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted); |
| testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); |
| testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); |
| testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); |
| testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); |
| testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); |
| testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); |
| sqlite3ReleaseTempReg(pParse, regFree1); |
| sqlite3ReleaseTempReg(pParse, regFree2); |
| if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){ |
| addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq); |
| testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT); |
| testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT); |
| } |
| if( p5==SQLITE_NULLEQ ){ |
| sqlite3VdbeAddOp2(v, OP_Integer, 0, dest); |
| }else{ |
| sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2); |
| } |
| if( i==nLeft-1 ){ |
| break; |
| } |
| if( opx==TK_EQ ){ |
| sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v); |
| }else{ |
| assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); |
| sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone); |
| if( i==nLeft-2 ) opx = op; |
| } |
| } |
| sqlite3VdbeJumpHere(v, addrCmp); |
| sqlite3VdbeResolveLabel(v, addrDone); |
| if( op==TK_NE ){ |
| sqlite3VdbeAddOp2(v, OP_Not, dest, dest); |
| } |
| } |
| |
| #if SQLITE_MAX_EXPR_DEPTH>0 |
| /* |
| ** Check that argument nHeight is less than or equal to the maximum |
| ** expression depth allowed. If it is not, leave an error message in |
| ** pParse. |
| */ |
| int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ |
| int rc = SQLITE_OK; |
| int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; |
| if( nHeight>mxHeight ){ |
| sqlite3ErrorMsg(pParse, |
| "Expression tree is too large (maximum depth %d)", mxHeight |
| ); |
| rc = SQLITE_ERROR; |
| } |
| return rc; |
| } |
| |
| /* The following three functions, heightOfExpr(), heightOfExprList() |
| ** and heightOfSelect(), are used to determine the maximum height |
| ** of any expression tree referenced by the structure passed as the |
| ** first argument. |
| ** |
| ** If this maximum height is greater than the current value pointed |
| ** to by pnHeight, the second parameter, then set *pnHeight to that |
| ** value. |
| */ |
| static void heightOfExpr(const Expr *p, int *pnHeight){ |
| if( p ){ |
| if( p->nHeight>*pnHeight ){ |
| *pnHeight = p->nHeight; |
| } |
| } |
| } |
| static void heightOfExprList(const ExprList *p, int *pnHeight){ |
| if( p ){ |
| int i; |
| for(i=0; i<p->nExpr; i++){ |
| heightOfExpr(p->a[i].pExpr, pnHeight); |
| } |
| } |
| } |
| static void heightOfSelect(const Select *pSelect, int *pnHeight){ |
| const Select *p; |
| for(p=pSelect; p; p=p->pPrior){ |
| heightOfExpr(p->pWhere, pnHeight); |
| heightOfExpr(p->pHaving, pnHeight); |
| heightOfExpr(p->pLimit, pnHeight); |
| heightOfExprList(p->pEList, pnHeight); |
| heightOfExprList(p->pGroupBy, pnHeight); |
| heightOfExprList(p->pOrderBy, pnHeight); |
| } |
| } |
| |
| /* |
| ** Set the Expr.nHeight variable in the structure passed as an |
| ** argument. An expression with no children, Expr.pList or |
| ** Expr.pSelect member has a height of 1. Any other expression |
| ** has a height equal to the maximum height of any other |
| ** referenced Expr plus one. |
| ** |
| ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, |
| ** if appropriate. |
| */ |
| static void exprSetHeight(Expr *p){ |
| int nHeight = p->pLeft ? p->pLeft->nHeight : 0; |
| if( p->pRight && p->pRight->nHeight>nHeight ) nHeight = p->pRight->nHeight; |
| if( ExprUseXSelect(p) ){ |
| heightOfSelect(p->x.pSelect, &nHeight); |
| }else if( p->x.pList ){ |
| heightOfExprList(p->x.pList, &nHeight); |
| p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); |
| } |
| p->nHeight = nHeight + 1; |
| } |
| |
| /* |
| ** Set the Expr.nHeight variable using the exprSetHeight() function. If |
| ** the height is greater than the maximum allowed expression depth, |
| ** leave an error in pParse. |
| ** |
| ** Also propagate all EP_Propagate flags from the Expr.x.pList into |
| ** Expr.flags. |
| */ |
| void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ |
| if( pParse->nErr ) return; |
| exprSetHeight(p); |
| sqlite3ExprCheckHeight(pParse, p->nHeight); |
| } |
| |
| /* |
| ** Return the maximum height of any expression tree referenced |
| ** by the select statement passed as an argument. |
| */ |
| int sqlite3SelectExprHeight(const Select *p){ |
| int nHeight = 0; |
| heightOfSelect(p, &nHeight); |
| return nHeight; |
| } |
| #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ |
| /* |
| ** Propagate all EP_Propagate flags from the Expr.x.pList into |
| ** Expr.flags. |
| */ |
| void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ |
| if( pParse->nErr ) return; |
| if( p && ExprUseXList(p) && p->x.pList ){ |
| p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); |
| } |
| } |
| #define exprSetHeight(y) |
| #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ |
| |
| /* |
| ** This routine is the core allocator for Expr nodes. |
| ** |
| ** Construct a new expression node and return a pointer to it. Memory |
| ** for this node and for the pToken argument is a single allocation |
| ** obtained from sqlite3DbMalloc(). The calling function |
| ** is responsible for making sure the node eventually gets freed. |
| ** |
| ** If dequote is true, then the token (if it exists) is dequoted. |
| ** If dequote is false, no dequoting is performed. The deQuote |
| ** parameter is ignored if pToken is NULL or if the token does not |
| ** appear to be quoted. If the quotes were of the form "..." (double-quotes) |
| ** then the EP_DblQuoted flag is set on the expression node. |
| ** |
| ** Special case: If op==TK_INTEGER and pToken points to a string that |
| ** can be translated into a 32-bit integer, then the token is not |
| ** stored in u.zToken. Instead, the integer values is written |
| ** into u.iValue and the EP_IntValue flag is set. No extra storage |
| ** is allocated to hold the integer text and the dequote flag is ignored. |
| */ |
| Expr *sqlite3ExprAlloc( |
| sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ |
| int op, /* Expression opcode */ |
| const Token *pToken, /* Token argument. Might be NULL */ |
| int dequote /* True to dequote */ |
| ){ |
| Expr *pNew; |
| int nExtra = 0; |
| int iValue = 0; |
| |
| assert( db!=0 ); |
| if( pToken ){ |
| if( op!=TK_INTEGER || pToken->z==0 |
| || sqlite3GetInt32(pToken->z, &iValue)==0 ){ |
| nExtra = pToken->n+1; |
| assert( iValue>=0 ); |
| } |
| } |
| pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); |
| if( pNew ){ |
| memset(pNew, 0, sizeof(Expr)); |
| pNew->op = (u8)op; |
| pNew->iAgg = -1; |
| if( pToken ){ |
| if( nExtra==0 ){ |
| pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); |
| pNew->u.iValue = iValue; |
| }else{ |
| pNew->u.zToken = (char*)&pNew[1]; |
| assert( pToken->z!=0 || pToken->n==0 ); |
| if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); |
| pNew->u.zToken[pToken->n] = 0; |
| if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ |
| sqlite3DequoteExpr(pNew); |
| } |
| } |
| } |
| #if SQLITE_MAX_EXPR_DEPTH>0 |
| pNew->nHeight = 1; |
| #endif |
| } |
| return pNew; |
| } |
| |
| /* |
| ** Allocate a new expression node from a zero-terminated token that has |
| ** already been dequoted. |
| */ |
| Expr *sqlite3Expr( |
| sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ |
| int op, /* Expression opcode */ |
| const char *zToken /* Token argument. Might be NULL */ |
| ){ |
| Token x; |
| x.z = zToken; |
| x.n = sqlite3Strlen30(zToken); |
| return sqlite3ExprAlloc(db, op, &x, 0); |
| } |
| |
| /* |
| ** Attach subtrees pLeft and pRight to the Expr node pRoot. |
| ** |
| ** If pRoot==NULL that means that a memory allocation error has occurred. |
| ** In that case, delete the subtrees pLeft and pRight. |
| */ |
| void sqlite3ExprAttachSubtrees( |
| sqlite3 *db, |
| Expr *pRoot, |
| Expr *pLeft, |
| Expr *pRight |
| ){ |
| if( pRoot==0 ){ |
| assert( db->mallocFailed ); |
| sqlite3ExprDelete(db, pLeft); |
| sqlite3ExprDelete(db, pRight); |
| }else{ |
| if( pRight ){ |
| pRoot->pRight = pRight; |
| pRoot->flags |= EP_Propagate & pRight->flags; |
| } |
| if( pLeft ){ |
| pRoot->pLeft = pLeft; |
| pRoot->flags |= EP_Propagate & pLeft->flags; |
| } |
| exprSetHeight(pRoot); |
| } |
| } |
| |
| /* |
| ** Allocate an Expr node which joins as many as two subtrees. |
| ** |
| ** One or both of the subtrees can be NULL. Return a pointer to the new |
| ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, |
| ** free the subtrees and return NULL. |
| */ |
| Expr *sqlite3PExpr( |
| Parse *pParse, /* Parsing context */ |
| int op, /* Expression opcode */ |
| Expr *pLeft, /* Left operand */ |
| Expr *pRight /* Right operand */ |
| ){ |
| Expr *p; |
| p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); |
| if( p ){ |
| memset(p, 0, sizeof(Expr)); |
| p->op = op & 0xff; |
| p->iAgg = -1; |
| sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); |
| sqlite3ExprCheckHeight(pParse, p->nHeight); |
| }else{ |
| sqlite3ExprDelete(pParse->db, pLeft); |
| sqlite3ExprDelete(pParse->db, pRight); |
| } |
| return p; |
| } |
| |
| /* |
| ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due |
| ** do a memory allocation failure) then delete the pSelect object. |
| */ |
| void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ |
| if( pExpr ){ |
| pExpr->x.pSelect = pSelect; |
| ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); |
| sqlite3ExprSetHeightAndFlags(pParse, pExpr); |
| }else{ |
| assert( pParse->db->mallocFailed ); |
| sqlite3SelectDelete(pParse->db, pSelect); |
| } |
| } |
| |
| /* |
| ** Expression list pEList is a list of vector values. This function |
| ** converts the contents of pEList to a VALUES(...) Select statement |
| ** returning 1 row for each element of the list. For example, the |
| ** expression list: |
| ** |
| ** ( (1,2), (3,4) (5,6) ) |
| ** |
| ** is translated to the equivalent of: |
| ** |
| ** VALUES(1,2), (3,4), (5,6) |
| ** |
| ** Each of the vector values in pEList must contain exactly nElem terms. |
| ** If a list element that is not a vector or does not contain nElem terms, |
| ** an error message is left in pParse. |
| ** |
| ** This is used as part of processing IN(...) expressions with a list |
| ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))". |
| */ |
| Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){ |
| int ii; |
| Select *pRet = 0; |
| assert( nElem>1 ); |
| for(ii=0; ii<pEList->nExpr; ii++){ |
| Select *pSel; |
| Expr *pExpr = pEList->a[ii].pExpr; |
| int nExprElem; |
| if( pExpr->op==TK_VECTOR ){ |
| assert( ExprUseXList(pExpr) ); |
| nExprElem = pExpr->x.pList->nExpr; |
| }else{ |
| nExprElem = 1; |
| } |
| if( nExprElem!=nElem ){ |
| sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d", |
| nExprElem, nExprElem>1?"s":"", nElem |
| ); |
| break; |
| } |
| assert( ExprUseXList(pExpr) ); |
| pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0); |
| pExpr->x.pList = 0; |
| if( pSel ){ |
| if( pRet ){ |
| pSel->op = TK_ALL; |
| pSel->pPrior = pRet; |
| } |
| pRet = pSel; |
| } |
| } |
| |
| if( pRet && pRet->pPrior ){ |
| pRet->selFlags |= SF_MultiValue; |
| } |
| sqlite3ExprListDelete(pParse->db, pEList); |
| return pRet; |
| } |
| |
| /* |
| ** Join two expressions using an AND operator. If either expression is |
| ** NULL, then just return the other expression. |
| ** |
| ** If one side or the other of the AND is known to be false, then instead |
| ** of returning an AND expression, just return a constant expression with |
| ** a value of false. |
| */ |
| Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ |
| sqlite3 *db = pParse->db; |
| if( pLeft==0 ){ |
| return pRight; |
| }else if( pRight==0 ){ |
| return pLeft; |
| }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) |
| && !IN_RENAME_OBJECT |
| ){ |
| sqlite3ExprDeferredDelete(pParse, pLeft); |
| sqlite3ExprDeferredDelete(pParse, pRight); |
| return sqlite3Expr(db, TK_INTEGER, "0"); |
| }else{ |
| return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); |
| } |
| } |
| |
| /* |
| ** Construct a new expression node for a function with multiple |
| ** arguments. |
| */ |
| Expr *sqlite3ExprFunction( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pList, /* Argument list */ |
| const Token *pToken, /* Name of the function */ |
| int eDistinct /* SF_Distinct or SF_ALL or 0 */ |
| ){ |
| Expr *pNew; |
| sqlite3 *db = pParse->db; |
| assert( pToken ); |
| pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); |
| if( pNew==0 ){ |
| sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ |
| return 0; |
| } |
| assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) ); |
| pNew->w.iOfst = (int)(pToken->z - pParse->zTail); |
| if( pList |
| && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] |
| && !pParse->nested |
| ){ |
| sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); |
| } |
| pNew->x.pList = pList; |
| ExprSetProperty(pNew, EP_HasFunc); |
| assert( ExprUseXList(pNew) ); |
| sqlite3ExprSetHeightAndFlags(pParse, pNew); |
| if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); |
| return pNew; |
| } |
| |
| /* |
| ** Check to see if a function is usable according to current access |
| ** rules: |
| ** |
| ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL |
| ** |
| ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from |
| ** top-level SQL |
| ** |
| ** If the function is not usable, create an error. |
| */ |
| void sqlite3ExprFunctionUsable( |
| Parse *pParse, /* Parsing and code generating context */ |
| const Expr *pExpr, /* The function invocation */ |
| const FuncDef *pDef /* The function being invoked */ |
| ){ |
| assert( !IN_RENAME_OBJECT ); |
| assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); |
| if( ExprHasProperty(pExpr, EP_FromDDL) ){ |
| if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 |
| || (pParse->db->flags & SQLITE_TrustedSchema)==0 |
| ){ |
| /* Functions prohibited in triggers and views if: |
| ** (1) tagged with SQLITE_DIRECTONLY |
| ** (2) not tagged with SQLITE_INNOCUOUS (which means it |
| ** is tagged with SQLITE_FUNC_UNSAFE) and |
| ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning |
| ** that the schema is possibly tainted). |
| */ |
| sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr); |
| } |
| } |
| } |
| |
| /* |
| ** Assign a variable number to an expression that encodes a wildcard |
| ** in the original SQL statement. |
| ** |
| ** Wildcards consisting of a single "?" are assigned the next sequential |
| ** variable number. |
| ** |
| ** Wildcards of the form "?nnn" are assigned the number "nnn". We make |
| ** sure "nnn" is not too big to avoid a denial of service attack when |
| ** the SQL statement comes from an external source. |
| ** |
| ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number |
| ** as the previous instance of the same wildcard. Or if this is the first |
| ** instance of the wildcard, the next sequential variable number is |
| ** assigned. |
| */ |
| void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ |
| sqlite3 *db = pParse->db; |
| const char *z; |
| ynVar x; |
| |
| if( pExpr==0 ) return; |
| assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); |
| z = pExpr->u.zToken; |
| assert( z!=0 ); |
| assert( z[0]!=0 ); |
| assert( n==(u32)sqlite3Strlen30(z) ); |
| if( z[1]==0 ){ |
| /* Wildcard of the form "?". Assign the next variable number */ |
| assert( z[0]=='?' ); |
| x = (ynVar)(++pParse->nVar); |
| }else{ |
| int doAdd = 0; |
| if( z[0]=='?' ){ |
| /* Wildcard of the form "?nnn". Convert "nnn" to an integer and |
| ** use it as the variable number */ |
| i64 i; |
| int bOk; |
| if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ |
| i = z[1]-'0'; /* The common case of ?N for a single digit N */ |
| bOk = 1; |
| }else{ |
| bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); |
| } |
| testcase( i==0 ); |
| testcase( i==1 ); |
| testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); |
| testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); |
| if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ |
| sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", |
| db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); |
| sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); |
| return; |
| } |
| x = (ynVar)i; |
| if( x>pParse->nVar ){ |
| pParse->nVar = (int)x; |
| doAdd = 1; |
| }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ |
| doAdd = 1; |
| } |
| }else{ |
| /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable |
| ** number as the prior appearance of the same name, or if the name |
| ** has never appeared before, reuse the same variable number |
| */ |
| x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); |
| if( x==0 ){ |
| x = (ynVar)(++pParse->nVar); |
| doAdd = 1; |
| } |
| } |
| if( doAdd ){ |
| pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); |
| } |
| } |
| pExpr->iColumn = x; |
| if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ |
| sqlite3ErrorMsg(pParse, "too many SQL variables"); |
| sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr); |
| } |
| } |
| |
| /* |
| ** Recursively delete an expression tree. |
| */ |
| static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ |
| assert( p!=0 ); |
| assert( !ExprUseUValue(p) || p->u.iValue>=0 ); |
| assert( !ExprUseYWin(p) || !ExprUseYSub(p) ); |
| assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed ); |
| assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) ); |
| #ifdef SQLITE_DEBUG |
| if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ |
| assert( p->pLeft==0 ); |
| assert( p->pRight==0 ); |
| assert( !ExprUseXSelect(p) || p->x.pSelect==0 ); |
| assert( !ExprUseXList(p) || p->x.pList==0 ); |
| } |
| #endif |
| if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ |
| /* The Expr.x union is never used at the same time as Expr.pRight */ |
| assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 ); |
| if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); |
| if( p->pRight ){ |
| assert( !ExprHasProperty(p, EP_WinFunc) ); |
| sqlite3ExprDeleteNN(db, p->pRight); |
| }else if( ExprUseXSelect(p) ){ |
| assert( !ExprHasProperty(p, EP_WinFunc) ); |
| sqlite3SelectDelete(db, p->x.pSelect); |
| }else{ |
| sqlite3ExprListDelete(db, p->x.pList); |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| if( ExprHasProperty(p, EP_WinFunc) ){ |
| sqlite3WindowDelete(db, p->y.pWin); |
| } |
| #endif |
| } |
| } |
| if( ExprHasProperty(p, EP_MemToken) ){ |
| assert( !ExprHasProperty(p, EP_IntValue) ); |
| sqlite3DbFree(db, p->u.zToken); |
| } |
| if( !ExprHasProperty(p, EP_Static) ){ |
| sqlite3DbFreeNN(db, p); |
| } |
| } |
| void sqlite3ExprDelete(sqlite3 *db, Expr *p){ |
| if( p ) sqlite3ExprDeleteNN(db, p); |
| } |
| |
| /* |
| ** Clear both elements of an OnOrUsing object |
| */ |
| void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){ |
| if( p==0 ){ |
| /* Nothing to clear */ |
| }else if( p->pOn ){ |
| sqlite3ExprDeleteNN(db, p->pOn); |
| }else if( p->pUsing ){ |
| sqlite3IdListDelete(db, p->pUsing); |
| } |
| } |
| |
| /* |
| ** Arrange to cause pExpr to be deleted when the pParse is deleted. |
| ** This is similar to sqlite3ExprDelete() except that the delete is |
| ** deferred untilthe pParse is deleted. |
| ** |
| ** The pExpr might be deleted immediately on an OOM error. |
| ** |
| ** The deferred delete is (currently) implemented by adding the |
| ** pExpr to the pParse->pConstExpr list with a register number of 0. |
| */ |
| void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){ |
| pParse->pConstExpr = |
| sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr); |
| } |
| |
| /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the |
| ** expression. |
| */ |
| void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ |
| if( p ){ |
| if( IN_RENAME_OBJECT ){ |
| sqlite3RenameExprUnmap(pParse, p); |
| } |
| sqlite3ExprDeleteNN(pParse->db, p); |
| } |
| } |
| |
| /* |
| ** Return the number of bytes allocated for the expression structure |
| ** passed as the first argument. This is always one of EXPR_FULLSIZE, |
| ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. |
| */ |
| static int exprStructSize(const Expr *p){ |
| if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; |
| if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; |
| return EXPR_FULLSIZE; |
| } |
| |
| /* |
| ** The dupedExpr*Size() routines each return the number of bytes required |
| ** to store a copy of an expression or expression tree. They differ in |
| ** how much of the tree is measured. |
| ** |
| ** dupedExprStructSize() Size of only the Expr structure |
| ** dupedExprNodeSize() Size of Expr + space for token |
| ** dupedExprSize() Expr + token + subtree components |
| ** |
| *************************************************************************** |
| ** |
| ** The dupedExprStructSize() function returns two values OR-ed together: |
| ** (1) the space required for a copy of the Expr structure only and |
| ** (2) the EP_xxx flags that indicate what the structure size should be. |
| ** The return values is always one of: |
| ** |
| ** EXPR_FULLSIZE |
| ** EXPR_REDUCEDSIZE | EP_Reduced |
| ** EXPR_TOKENONLYSIZE | EP_TokenOnly |
| ** |
| ** The size of the structure can be found by masking the return value |
| ** of this routine with 0xfff. The flags can be found by masking the |
| ** return value with EP_Reduced|EP_TokenOnly. |
| ** |
| ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size |
| ** (unreduced) Expr objects as they or originally constructed by the parser. |
| ** During expression analysis, extra information is computed and moved into |
| ** later parts of the Expr object and that extra information might get chopped |
| ** off if the expression is reduced. Note also that it does not work to |
| ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal |
| ** to reduce a pristine expression tree from the parser. The implementation |
| ** of dupedExprStructSize() contain multiple assert() statements that attempt |
| ** to enforce this constraint. |
| */ |
| static int dupedExprStructSize(const Expr *p, int flags){ |
| int nSize; |
| assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ |
| assert( EXPR_FULLSIZE<=0xfff ); |
| assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); |
| if( 0==flags || p->op==TK_SELECT_COLUMN |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| || ExprHasProperty(p, EP_WinFunc) |
| #endif |
| ){ |
| nSize = EXPR_FULLSIZE; |
| }else{ |
| assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); |
| assert( !ExprHasProperty(p, EP_OuterON) ); |
| assert( !ExprHasProperty(p, EP_MemToken) ); |
| assert( !ExprHasVVAProperty(p, EP_NoReduce) ); |
| if( p->pLeft || p->x.pList ){ |
| nSize = EXPR_REDUCEDSIZE | EP_Reduced; |
| }else{ |
| assert( p->pRight==0 ); |
| nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; |
| } |
| } |
| return nSize; |
| } |
| |
| /* |
| ** This function returns the space in bytes required to store the copy |
| ** of the Expr structure and a copy of the Expr.u.zToken string (if that |
| ** string is defined.) |
| */ |
| static int dupedExprNodeSize(const Expr *p, int flags){ |
| int nByte = dupedExprStructSize(p, flags) & 0xfff; |
| if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ |
| nByte += sqlite3Strlen30NN(p->u.zToken)+1; |
| } |
| return ROUND8(nByte); |
| } |
| |
| /* |
| ** Return the number of bytes required to create a duplicate of the |
| ** expression passed as the first argument. The second argument is a |
| ** mask containing EXPRDUP_XXX flags. |
| ** |
| ** The value returned includes space to create a copy of the Expr struct |
| ** itself and the buffer referred to by Expr.u.zToken, if any. |
| ** |
| ** If the EXPRDUP_REDUCE flag is set, then the return value includes |
| ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft |
| ** and Expr.pRight variables (but not for any structures pointed to or |
| ** descended from the Expr.x.pList or Expr.x.pSelect variables). |
| */ |
| static int dupedExprSize(const Expr *p, int flags){ |
| int nByte = 0; |
| if( p ){ |
| nByte = dupedExprNodeSize(p, flags); |
| if( flags&EXPRDUP_REDUCE ){ |
| nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); |
| } |
| } |
| return nByte; |
| } |
| |
| /* |
| ** This function is similar to sqlite3ExprDup(), except that if pzBuffer |
| ** is not NULL then *pzBuffer is assumed to point to a buffer large enough |
| ** to store the copy of expression p, the copies of p->u.zToken |
| ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, |
| ** if any. Before returning, *pzBuffer is set to the first byte past the |
| ** portion of the buffer copied into by this function. |
| */ |
| static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){ |
| Expr *pNew; /* Value to return */ |
| u8 *zAlloc; /* Memory space from which to build Expr object */ |
| u32 staticFlag; /* EP_Static if space not obtained from malloc */ |
| |
| assert( db!=0 ); |
| assert( p ); |
| assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); |
| assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); |
| |
| /* Figure out where to write the new Expr structure. */ |
| if( pzBuffer ){ |
| zAlloc = *pzBuffer; |
| staticFlag = EP_Static; |
| assert( zAlloc!=0 ); |
| }else{ |
| zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); |
| staticFlag = 0; |
| } |
| pNew = (Expr *)zAlloc; |
| |
| if( pNew ){ |
| /* Set nNewSize to the size allocated for the structure pointed to |
| ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or |
| ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed |
| ** by the copy of the p->u.zToken string (if any). |
| */ |
| const unsigned nStructSize = dupedExprStructSize(p, dupFlags); |
| const int nNewSize = nStructSize & 0xfff; |
| int nToken; |
| if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ |
| nToken = sqlite3Strlen30(p->u.zToken) + 1; |
| }else{ |
| nToken = 0; |
| } |
| if( dupFlags ){ |
| assert( ExprHasProperty(p, EP_Reduced)==0 ); |
| memcpy(zAlloc, p, nNewSize); |
| }else{ |
| u32 nSize = (u32)exprStructSize(p); |
| memcpy(zAlloc, p, nSize); |
| if( nSize<EXPR_FULLSIZE ){ |
| memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); |
| } |
| } |
| |
| /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ |
| pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); |
| pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); |
| pNew->flags |= staticFlag; |
| ExprClearVVAProperties(pNew); |
| if( dupFlags ){ |
| ExprSetVVAProperty(pNew, EP_Immutable); |
| } |
| |
| /* Copy the p->u.zToken string, if any. */ |
| if( nToken ){ |
| char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; |
| memcpy(zToken, p->u.zToken, nToken); |
| } |
| |
| if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ |
| /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ |
| if( ExprUseXSelect(p) ){ |
| pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); |
| }else{ |
| pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); |
| } |
| } |
| |
| /* Fill in pNew->pLeft and pNew->pRight. */ |
| if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ |
| zAlloc += dupedExprNodeSize(p, dupFlags); |
| if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ |
| pNew->pLeft = p->pLeft ? |
| exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; |
| pNew->pRight = p->pRight ? |
| exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; |
| } |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| if( ExprHasProperty(p, EP_WinFunc) ){ |
| pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); |
| assert( ExprHasProperty(pNew, EP_WinFunc) ); |
| } |
| #endif /* SQLITE_OMIT_WINDOWFUNC */ |
| if( pzBuffer ){ |
| *pzBuffer = zAlloc; |
| } |
| }else{ |
| if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ |
| if( pNew->op==TK_SELECT_COLUMN ){ |
| pNew->pLeft = p->pLeft; |
| assert( p->pRight==0 || p->pRight==p->pLeft |
| || ExprHasProperty(p->pLeft, EP_Subquery) ); |
| }else{ |
| pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); |
| } |
| pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); |
| } |
| } |
| } |
| return pNew; |
| } |
| |
| /* |
| ** Create and return a deep copy of the object passed as the second |
| ** argument. If an OOM condition is encountered, NULL is returned |
| ** and the db->mallocFailed flag set. |
| */ |
| #ifndef SQLITE_OMIT_CTE |
| With *sqlite3WithDup(sqlite3 *db, With *p){ |
| With *pRet = 0; |
| if( p ){ |
| sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); |
| pRet = sqlite3DbMallocZero(db, nByte); |
| if( pRet ){ |
| int i; |
| pRet->nCte = p->nCte; |
| for(i=0; i<p->nCte; i++){ |
| pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); |
| pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); |
| pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); |
| pRet->a[i].eM10d = p->a[i].eM10d; |
| } |
| } |
| } |
| return pRet; |
| } |
| #else |
| # define sqlite3WithDup(x,y) 0 |
| #endif |
| |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| /* |
| ** The gatherSelectWindows() procedure and its helper routine |
| ** gatherSelectWindowsCallback() are used to scan all the expressions |
| ** an a newly duplicated SELECT statement and gather all of the Window |
| ** objects found there, assembling them onto the linked list at Select->pWin. |
| */ |
| static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ |
| if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ |
| Select *pSelect = pWalker->u.pSelect; |
| Window *pWin = pExpr->y.pWin; |
| assert( pWin ); |
| assert( IsWindowFunc(pExpr) ); |
| assert( pWin->ppThis==0 ); |
| sqlite3WindowLink(pSelect, pWin); |
| } |
| return WRC_Continue; |
| } |
| static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ |
| return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; |
| } |
| static void gatherSelectWindows(Select *p){ |
| Walker w; |
| w.xExprCallback = gatherSelectWindowsCallback; |
| w.xSelectCallback = gatherSelectWindowsSelectCallback; |
| w.xSelectCallback2 = 0; |
| w.pParse = 0; |
| w.u.pSelect = p; |
| sqlite3WalkSelect(&w, p); |
| } |
| #endif |
| |
| |
| /* |
| ** The following group of routines make deep copies of expressions, |
| ** expression lists, ID lists, and select statements. The copies can |
| ** be deleted (by being passed to their respective ...Delete() routines) |
| ** without effecting the originals. |
| ** |
| ** The expression list, ID, and source lists return by sqlite3ExprListDup(), |
| ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded |
| ** by subsequent calls to sqlite*ListAppend() routines. |
| ** |
| ** Any tables that the SrcList might point to are not duplicated. |
| ** |
| ** The flags parameter contains a combination of the EXPRDUP_XXX flags. |
| ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a |
| ** truncated version of the usual Expr structure that will be stored as |
| ** part of the in-memory representation of the database schema. |
| */ |
| Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){ |
| assert( flags==0 || flags==EXPRDUP_REDUCE ); |
| return p ? exprDup(db, p, flags, 0) : 0; |
| } |
| ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){ |
| ExprList *pNew; |
| struct ExprList_item *pItem; |
| const struct ExprList_item *pOldItem; |
| int i; |
| Expr *pPriorSelectColOld = 0; |
| Expr *pPriorSelectColNew = 0; |
| assert( db!=0 ); |
| if( p==0 ) return 0; |
| pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); |
| if( pNew==0 ) return 0; |
| pNew->nExpr = p->nExpr; |
| pNew->nAlloc = p->nAlloc; |
| pItem = pNew->a; |
| pOldItem = p->a; |
| for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ |
| Expr *pOldExpr = pOldItem->pExpr; |
| Expr *pNewExpr; |
| pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); |
| if( pOldExpr |
| && pOldExpr->op==TK_SELECT_COLUMN |
| && (pNewExpr = pItem->pExpr)!=0 |
| ){ |
| if( pNewExpr->pRight ){ |
| pPriorSelectColOld = pOldExpr->pRight; |
| pPriorSelectColNew = pNewExpr->pRight; |
| pNewExpr->pLeft = pNewExpr->pRight; |
| }else{ |
| if( pOldExpr->pLeft!=pPriorSelectColOld ){ |
| pPriorSelectColOld = pOldExpr->pLeft; |
| pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags); |
| pNewExpr->pRight = pPriorSelectColNew; |
| } |
| pNewExpr->pLeft = pPriorSelectColNew; |
| } |
| } |
| pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); |
| pItem->fg = pOldItem->fg; |
| pItem->fg.done = 0; |
| pItem->u = pOldItem->u; |
| } |
| return pNew; |
| } |
| |
| /* |
| ** If cursors, triggers, views and subqueries are all omitted from |
| ** the build, then none of the following routines, except for |
| ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes |
| ** called with a NULL argument. |
| */ |
| #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ |
| || !defined(SQLITE_OMIT_SUBQUERY) |
| SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){ |
| SrcList *pNew; |
| int i; |
| int nByte; |
| assert( db!=0 ); |
| if( p==0 ) return 0; |
| nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); |
| pNew = sqlite3DbMallocRawNN(db, nByte ); |
| if( pNew==0 ) return 0; |
| pNew->nSrc = pNew->nAlloc = p->nSrc; |
| for(i=0; i<p->nSrc; i++){ |
| SrcItem *pNewItem = &pNew->a[i]; |
| const SrcItem *pOldItem = &p->a[i]; |
| Table *pTab; |
| pNewItem->pSchema = pOldItem->pSchema; |
| pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); |
| pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
| pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); |
| pNewItem->fg = pOldItem->fg; |
| pNewItem->iCursor = pOldItem->iCursor; |
| pNewItem->addrFillSub = pOldItem->addrFillSub; |
| pNewItem->regReturn = pOldItem->regReturn; |
| if( pNewItem->fg.isIndexedBy ){ |
| pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); |
| } |
| pNewItem->u2 = pOldItem->u2; |
| if( pNewItem->fg.isCte ){ |
| pNewItem->u2.pCteUse->nUse++; |
| } |
| if( pNewItem->fg.isTabFunc ){ |
| pNewItem->u1.pFuncArg = |
| sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); |
| } |
| pTab = pNewItem->pTab = pOldItem->pTab; |
| if( pTab ){ |
| pTab->nTabRef++; |
| } |
| pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); |
| if( pOldItem->fg.isUsing ){ |
| assert( pNewItem->fg.isUsing ); |
| pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing); |
| }else{ |
| pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags); |
| } |
| pNewItem->colUsed = pOldItem->colUsed; |
| } |
| return pNew; |
| } |
| IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){ |
| IdList *pNew; |
| int i; |
| assert( db!=0 ); |
| if( p==0 ) return 0; |
| assert( p->eU4!=EU4_EXPR ); |
| pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) ); |
| if( pNew==0 ) return 0; |
| pNew->nId = p->nId; |
| pNew->eU4 = p->eU4; |
| for(i=0; i<p->nId; i++){ |
| struct IdList_item *pNewItem = &pNew->a[i]; |
| const struct IdList_item *pOldItem = &p->a[i]; |
| pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
| pNewItem->u4 = pOldItem->u4; |
| } |
| return pNew; |
| } |
| Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){ |
| Select *pRet = 0; |
| Select *pNext = 0; |
| Select **pp = &pRet; |
| const Select *p; |
| |
| assert( db!=0 ); |
| for(p=pDup; p; p=p->pPrior){ |
| Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); |
| if( pNew==0 ) break; |
| pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); |
| pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); |
| pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); |
| pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); |
| pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); |
| pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); |
| pNew->op = p->op; |
| pNew->pNext = pNext; |
| pNew->pPrior = 0; |
| pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); |
| pNew->iLimit = 0; |
| pNew->iOffset = 0; |
| pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; |
| pNew->addrOpenEphm[0] = -1; |
| pNew->addrOpenEphm[1] = -1; |
| pNew->nSelectRow = p->nSelectRow; |
| pNew->pWith = sqlite3WithDup(db, p->pWith); |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| pNew->pWin = 0; |
| pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); |
| if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); |
| #endif |
| pNew->selId = p->selId; |
| if( db->mallocFailed ){ |
| /* Any prior OOM might have left the Select object incomplete. |
| ** Delete the whole thing rather than allow an incomplete Select |
| ** to be used by the code generator. */ |
| pNew->pNext = 0; |
| sqlite3SelectDelete(db, pNew); |
| break; |
| } |
| *pp = pNew; |
| pp = &pNew->pPrior; |
| pNext = pNew; |
| } |
| |
| return pRet; |
| } |
| #else |
| Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){ |
| assert( p==0 ); |
| return 0; |
| } |
| #endif |
| |
| |
| /* |
| ** Add a new element to the end of an expression list. If pList is |
| ** initially NULL, then create a new expression list. |
| ** |
| ** The pList argument must be either NULL or a pointer to an ExprList |
| ** obtained from a prior call to sqlite3ExprListAppend(). This routine |
| ** may not be used with an ExprList obtained from sqlite3ExprListDup(). |
| ** Reason: This routine assumes that the number of slots in pList->a[] |
| ** is a power of two. That is true for sqlite3ExprListAppend() returns |
| ** but is not necessarily true from the return value of sqlite3ExprListDup(). |
| ** |
| ** If a memory allocation error occurs, the entire list is freed and |
| ** NULL is returned. If non-NULL is returned, then it is guaranteed |
| ** that the new entry was successfully appended. |
| */ |
| static const struct ExprList_item zeroItem = {0}; |
| SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew( |
| sqlite3 *db, /* Database handle. Used for memory allocation */ |
| Expr *pExpr /* Expression to be appended. Might be NULL */ |
| ){ |
| struct ExprList_item *pItem; |
| ExprList *pList; |
| |
| pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 ); |
| if( pList==0 ){ |
| sqlite3ExprDelete(db, pExpr); |
| return 0; |
| } |
| pList->nAlloc = 4; |
| pList->nExpr = 1; |
| pItem = &pList->a[0]; |
| *pItem = zeroItem; |
| pItem->pExpr = pExpr; |
| return pList; |
| } |
| SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow( |
| sqlite3 *db, /* Database handle. Used for memory allocation */ |
| ExprList *pList, /* List to which to append. Might be NULL */ |
| Expr *pExpr /* Expression to be appended. Might be NULL */ |
| ){ |
| struct ExprList_item *pItem; |
| ExprList *pNew; |
| pList->nAlloc *= 2; |
| pNew = sqlite3DbRealloc(db, pList, |
| sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0])); |
| if( pNew==0 ){ |
| sqlite3ExprListDelete(db, pList); |
| sqlite3ExprDelete(db, pExpr); |
| return 0; |
| }else{ |
| pList = pNew; |
| } |
| pItem = &pList->a[pList->nExpr++]; |
| *pItem = zeroItem; |
| pItem->pExpr = pExpr; |
| return pList; |
| } |
| ExprList *sqlite3ExprListAppend( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pList, /* List to which to append. Might be NULL */ |
| Expr *pExpr /* Expression to be appended. Might be NULL */ |
| ){ |
| struct ExprList_item *pItem; |
| if( pList==0 ){ |
| return sqlite3ExprListAppendNew(pParse->db,pExpr); |
| } |
| if( pList->nAlloc<pList->nExpr+1 ){ |
| return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr); |
| } |
| pItem = &pList->a[pList->nExpr++]; |
| *pItem = zeroItem; |
| pItem->pExpr = pExpr; |
| return pList; |
| } |
| |
| /* |
| ** pColumns and pExpr form a vector assignment which is part of the SET |
| ** clause of an UPDATE statement. Like this: |
| ** |
| ** (a,b,c) = (expr1,expr2,expr3) |
| ** Or: (a,b,c) = (SELECT x,y,z FROM ....) |
| ** |
| ** For each term of the vector assignment, append new entries to the |
| ** expression list pList. In the case of a subquery on the RHS, append |
| ** TK_SELECT_COLUMN expressions. |
| */ |
| ExprList *sqlite3ExprListAppendVector( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pList, /* List to which to append. Might be NULL */ |
| IdList *pColumns, /* List of names of LHS of the assignment */ |
| Expr *pExpr /* Vector expression to be appended. Might be NULL */ |
| ){ |
| sqlite3 *db = pParse->db; |
| int n; |
| int i; |
| int iFirst = pList ? pList->nExpr : 0; |
| /* pColumns can only be NULL due to an OOM but an OOM will cause an |
| ** exit prior to this routine being invoked */ |
| if( NEVER(pColumns==0) ) goto vector_append_error; |
| if( pExpr==0 ) goto vector_append_error; |
| |
| /* If the RHS is a vector, then we can immediately check to see that |
| ** the size of the RHS and LHS match. But if the RHS is a SELECT, |
| ** wildcards ("*") in the result set of the SELECT must be expanded before |
| ** we can do the size check, so defer the size check until code generation. |
| */ |
| if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ |
| sqlite3ErrorMsg(pParse, "%d columns assigned %d values", |
| pColumns->nId, n); |
| goto vector_append_error; |
| } |
| |
| for(i=0; i<pColumns->nId; i++){ |
| Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId); |
| assert( pSubExpr!=0 || db->mallocFailed ); |
| if( pSubExpr==0 ) continue; |
| pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); |
| if( pList ){ |
| assert( pList->nExpr==iFirst+i+1 ); |
| pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; |
| pColumns->a[i].zName = 0; |
| } |
| } |
| |
| if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ |
| Expr *pFirst = pList->a[iFirst].pExpr; |
| assert( pFirst!=0 ); |
| assert( pFirst->op==TK_SELECT_COLUMN ); |
| |
| /* Store the SELECT statement in pRight so it will be deleted when |
| ** sqlite3ExprListDelete() is called */ |
| pFirst->pRight = pExpr; |
| pExpr = 0; |
| |
| /* Remember the size of the LHS in iTable so that we can check that |
| ** the RHS and LHS sizes match during code generation. */ |
| pFirst->iTable = pColumns->nId; |
| } |
| |
| vector_append_error: |
| sqlite3ExprUnmapAndDelete(pParse, pExpr); |
| sqlite3IdListDelete(db, pColumns); |
| return pList; |
| } |
| |
| /* |
| ** Set the sort order for the last element on the given ExprList. |
| */ |
| void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ |
| struct ExprList_item *pItem; |
| if( p==0 ) return; |
| assert( p->nExpr>0 ); |
| |
| assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); |
| assert( iSortOrder==SQLITE_SO_UNDEFINED |
| || iSortOrder==SQLITE_SO_ASC |
| || iSortOrder==SQLITE_SO_DESC |
| ); |
| assert( eNulls==SQLITE_SO_UNDEFINED |
| || eNulls==SQLITE_SO_ASC |
| || eNulls==SQLITE_SO_DESC |
| ); |
| |
| pItem = &p->a[p->nExpr-1]; |
| assert( pItem->fg.bNulls==0 ); |
| if( iSortOrder==SQLITE_SO_UNDEFINED ){ |
| iSortOrder = SQLITE_SO_ASC; |
| } |
| pItem->fg.sortFlags = (u8)iSortOrder; |
| |
| if( eNulls!=SQLITE_SO_UNDEFINED ){ |
| pItem->fg.bNulls = 1; |
| if( iSortOrder!=eNulls ){ |
| pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL; |
| } |
| } |
| } |
| |
| /* |
| ** Set the ExprList.a[].zEName element of the most recently added item |
| ** on the expression list. |
| ** |
| ** pList might be NULL following an OOM error. But pName should never be |
| ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag |
| ** is set. |
| */ |
| void sqlite3ExprListSetName( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pList, /* List to which to add the span. */ |
| const Token *pName, /* Name to be added */ |
| int dequote /* True to cause the name to be dequoted */ |
| ){ |
| assert( pList!=0 || pParse->db->mallocFailed!=0 ); |
| assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 ); |
| if( pList ){ |
| struct ExprList_item *pItem; |
| assert( pList->nExpr>0 ); |
| pItem = &pList->a[pList->nExpr-1]; |
| assert( pItem->zEName==0 ); |
| assert( pItem->fg.eEName==ENAME_NAME ); |
| pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); |
| if( dequote ){ |
| /* If dequote==0, then pName->z does not point to part of a DDL |
| ** statement handled by the parser. And so no token need be added |
| ** to the token-map. */ |
| sqlite3Dequote(pItem->zEName); |
| if( IN_RENAME_OBJECT ){ |
| sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName); |
| } |
| } |
| } |
| } |
| |
| /* |
| ** Set the ExprList.a[].zSpan element of the most recently added item |
| ** on the expression list. |
| ** |
| ** pList might be NULL following an OOM error. But pSpan should never be |
| ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag |
| ** is set. |
| */ |
| void sqlite3ExprListSetSpan( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pList, /* List to which to add the span. */ |
| const char *zStart, /* Start of the span */ |
| const char *zEnd /* End of the span */ |
| ){ |
| sqlite3 *db = pParse->db; |
| assert( pList!=0 || db->mallocFailed!=0 ); |
| if( pList ){ |
| struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; |
| assert( pList->nExpr>0 ); |
| if( pItem->zEName==0 ){ |
| pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); |
| pItem->fg.eEName = ENAME_SPAN; |
| } |
| } |
| } |
| |
| /* |
| ** If the expression list pEList contains more than iLimit elements, |
| ** leave an error message in pParse. |
| */ |
| void sqlite3ExprListCheckLength( |
| Parse *pParse, |
| ExprList *pEList, |
| const char *zObject |
| ){ |
| int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; |
| testcase( pEList && pEList->nExpr==mx ); |
| testcase( pEList && pEList->nExpr==mx+1 ); |
| if( pEList && pEList->nExpr>mx ){ |
| sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); |
| } |
| } |
| |
| /* |
| ** Delete an entire expression list. |
| */ |
| static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ |
| int i = pList->nExpr; |
| struct ExprList_item *pItem = pList->a; |
| assert( pList->nExpr>0 ); |
| do{ |
| sqlite3ExprDelete(db, pItem->pExpr); |
| sqlite3DbFree(db, pItem->zEName); |
| pItem++; |
| }while( --i>0 ); |
| sqlite3DbFreeNN(db, pList); |
| } |
| void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ |
| if( pList ) exprListDeleteNN(db, pList); |
| } |
| |
| /* |
| ** Return the bitwise-OR of all Expr.flags fields in the given |
| ** ExprList. |
| */ |
| u32 sqlite3ExprListFlags(const ExprList *pList){ |
| int i; |
| u32 m = 0; |
| assert( pList!=0 ); |
| for(i=0; i<pList->nExpr; i++){ |
| Expr *pExpr = pList->a[i].pExpr; |
| assert( pExpr!=0 ); |
| m |= pExpr->flags; |
| } |
| return m; |
| } |
| |
| /* |
| ** This is a SELECT-node callback for the expression walker that |
| ** always "fails". By "fail" in this case, we mean set |
| ** pWalker->eCode to zero and abort. |
| ** |
| ** This callback is used by multiple expression walkers. |
| */ |
| int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ |
| UNUSED_PARAMETER(NotUsed); |
| pWalker->eCode = 0; |
| return WRC_Abort; |
| } |
| |
| /* |
| ** Check the input string to see if it is "true" or "false" (in any case). |
| ** |
| ** If the string is.... Return |
| ** "true" EP_IsTrue |
| ** "false" EP_IsFalse |
| ** anything else 0 |
| */ |
| u32 sqlite3IsTrueOrFalse(const char *zIn){ |
| if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; |
| if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; |
| return 0; |
| } |
| |
| |
| /* |
| ** If the input expression is an ID with the name "true" or "false" |
| ** then convert it into an TK_TRUEFALSE term. Return non-zero if |
| ** the conversion happened, and zero if the expression is unaltered. |
| */ |
| int sqlite3ExprIdToTrueFalse(Expr *pExpr){ |
| u32 v; |
| assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); |
| if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue) |
| && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 |
| ){ |
| pExpr->op = TK_TRUEFALSE; |
| ExprSetProperty(pExpr, v); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE |
| ** and 0 if it is FALSE. |
| */ |
| int sqlite3ExprTruthValue(const Expr *pExpr){ |
| pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); |
| assert( pExpr->op==TK_TRUEFALSE ); |
| assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 |
| || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); |
| return pExpr->u.zToken[4]==0; |
| } |
| |
| /* |
| ** If pExpr is an AND or OR expression, try to simplify it by eliminating |
| ** terms that are always true or false. Return the simplified expression. |
| ** Or return the original expression if no simplification is possible. |
| ** |
| ** Examples: |
| ** |
| ** (x<10) AND true => (x<10) |
| ** (x<10) AND false => false |
| ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) |
| ** (x<10) AND (y=22 OR true) => (x<10) |
| ** (y=22) OR true => true |
| */ |
| Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ |
| assert( pExpr!=0 ); |
| if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ |
| Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); |
| Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); |
| if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ |
| pExpr = pExpr->op==TK_AND ? pRight : pLeft; |
| }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ |
| pExpr = pExpr->op==TK_AND ? pLeft : pRight; |
| } |
| } |
| return pExpr; |
| } |
| |
| |
| /* |
| ** These routines are Walker callbacks used to check expressions to |
| ** see if they are "constant" for some definition of constant. The |
| ** Walker.eCode value determines the type of "constant" we are looking |
| ** for. |
| ** |
| ** These callback routines are used to implement the following: |
| ** |
| ** sqlite3ExprIsConstant() pWalker->eCode==1 |
| ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 |
| ** sqlite3ExprIsTableConstant() pWalker->eCode==3 |
| ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 |
| ** |
| ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression |
| ** is found to not be a constant. |
| ** |
| ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT |
| ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 |
| ** when parsing an existing schema out of the sqlite_schema table and 4 |
| ** when processing a new CREATE TABLE statement. A bound parameter raises |
| ** an error for new statements, but is silently converted |
| ** to NULL for existing schemas. This allows sqlite_schema tables that |
| ** contain a bound parameter because they were generated by older versions |
| ** of SQLite to be parsed by newer versions of SQLite without raising a |
| ** malformed schema error. |
| */ |
| static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ |
| |
| /* If pWalker->eCode is 2 then any term of the expression that comes from |
| ** the ON or USING clauses of an outer join disqualifies the expression |
| ** from being considered constant. */ |
| if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){ |
| pWalker->eCode = 0; |
| return WRC_Abort; |
| } |
| |
| switch( pExpr->op ){ |
| /* Consider functions to be constant if all their arguments are constant |
| ** and either pWalker->eCode==4 or 5 or the function has the |
| ** SQLITE_FUNC_CONST flag. */ |
| case TK_FUNCTION: |
| if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) |
| && !ExprHasProperty(pExpr, EP_WinFunc) |
| ){ |
| if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); |
| return WRC_Continue; |
| }else{ |
| pWalker->eCode = 0; |
| return WRC_Abort; |
| } |
| case TK_ID: |
| /* Convert "true" or "false" in a DEFAULT clause into the |
| ** appropriate TK_TRUEFALSE operator */ |
| if( sqlite3ExprIdToTrueFalse(pExpr) ){ |
| return WRC_Prune; |
| } |
| /* no break */ deliberate_fall_through |
| case TK_COLUMN: |
| case TK_AGG_FUNCTION: |
| case TK_AGG_COLUMN: |
| testcase( pExpr->op==TK_ID ); |
| testcase( pExpr->op==TK_COLUMN ); |
| testcase( pExpr->op==TK_AGG_FUNCTION ); |
| testcase( pExpr->op==TK_AGG_COLUMN ); |
| if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ |
| return WRC_Continue; |
| } |
| if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ |
| return WRC_Continue; |
| } |
| /* no break */ deliberate_fall_through |
| case TK_IF_NULL_ROW: |
| case TK_REGISTER: |
| case TK_DOT: |
| testcase( pExpr->op==TK_REGISTER ); |
| testcase( pExpr->op==TK_IF_NULL_ROW ); |
| testcase( pExpr->op==TK_DOT ); |
| pWalker->eCode = 0; |
| return WRC_Abort; |
| case TK_VARIABLE: |
| if( pWalker->eCode==5 ){ |
| /* Silently convert bound parameters that appear inside of CREATE |
| ** statements into a NULL when parsing the CREATE statement text out |
| ** of the sqlite_schema table */ |
| pExpr->op = TK_NULL; |
| }else if( pWalker->eCode==4 ){ |
| /* A bound parameter in a CREATE statement that originates from |
| ** sqlite3_prepare() causes an error */ |
| pWalker->eCode = 0; |
| return WRC_Abort; |
| } |
| /* no break */ deliberate_fall_through |
| default: |
| testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ |
| testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ |
| return WRC_Continue; |
| } |
| } |
| static int exprIsConst(Expr *p, int initFlag, int iCur){ |
| Walker w; |
| w.eCode = initFlag; |
| w.xExprCallback = exprNodeIsConstant; |
| w.xSelectCallback = sqlite3SelectWalkFail; |
| #ifdef SQLITE_DEBUG |
| w.xSelectCallback2 = sqlite3SelectWalkAssert2; |
| #endif |
| w.u.iCur = iCur; |
| sqlite3WalkExpr(&w, p); |
| return w.eCode; |
| } |
| |
| /* |
| ** Walk an expression tree. Return non-zero if the expression is constant |
| ** and 0 if it involves variables or function calls. |
| ** |
| ** For the purposes of this function, a double-quoted string (ex: "abc") |
| ** is considered a variable but a single-quoted string (ex: 'abc') is |
| ** a constant. |
| */ |
| int sqlite3ExprIsConstant(Expr *p){ |
| return exprIsConst(p, 1, 0); |
| } |
| |
| /* |
| ** Walk an expression tree. Return non-zero if |
| ** |
| ** (1) the expression is constant, and |
| ** (2) the expression does originate in the ON or USING clause |
| ** of a LEFT JOIN, and |
| ** (3) the expression does not contain any EP_FixedCol TK_COLUMN |
| ** operands created by the constant propagation optimization. |
| ** |
| ** When this routine returns true, it indicates that the expression |
| ** can be added to the pParse->pConstExpr list and evaluated once when |
| ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce(). |
| */ |
| int sqlite3ExprIsConstantNotJoin(Expr *p){ |
| return exprIsConst(p, 2, 0); |
| } |
| |
| /* |
| ** Walk an expression tree. Return non-zero if the expression is constant |
| ** for any single row of the table with cursor iCur. In other words, the |
| ** expression must not refer to any non-deterministic function nor any |
| ** table other than iCur. |
| */ |
| int sqlite3ExprIsTableConstant(Expr *p, int iCur){ |
| return exprIsConst(p, 3, iCur); |
| } |
| |
| /* |
| ** Check pExpr to see if it is an invariant constraint on data source pSrc. |
| ** This is an optimization. False negatives will perhaps cause slower |
| ** queries, but false positives will yield incorrect answers. So when in |
| ** doubt, return 0. |
| ** |
| ** To be an invariant constraint, the following must be true: |
| ** |
| ** (1) pExpr cannot refer to any table other than pSrc->iCursor. |
| ** |
| ** (2) pExpr cannot use subqueries or non-deterministic functions. |
| ** |
| ** (3) pSrc cannot be part of the left operand for a RIGHT JOIN. |
| ** (Is there some way to relax this constraint?) |
| ** |
| ** (4) If pSrc is the right operand of a LEFT JOIN, then... |
| ** (4a) pExpr must come from an ON clause.. |
| (4b) and specifically the ON clause associated with the LEFT JOIN. |
| ** |
| ** (5) If pSrc is not the right operand of a LEFT JOIN or the left |
| ** operand of a RIGHT JOIN, then pExpr must be from the WHERE |
| ** clause, not an ON clause. |
| */ |
| int sqlite3ExprIsTableConstraint(Expr *pExpr, const SrcItem *pSrc){ |
| if( pSrc->fg.jointype & JT_LTORJ ){ |
| return 0; /* rule (3) */ |
| } |
| if( pSrc->fg.jointype & JT_LEFT ){ |
| if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (4a) */ |
| if( pExpr->w.iJoin!=pSrc->iCursor ) return 0; /* rule (4b) */ |
| }else{ |
| if( ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (5) */ |
| } |
| return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */ |
| } |
| |
| |
| /* |
| ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). |
| */ |
| static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ |
| ExprList *pGroupBy = pWalker->u.pGroupBy; |
| int i; |
| |
| /* Check if pExpr is identical to any GROUP BY term. If so, consider |
| ** it constant. */ |
| for(i=0; i<pGroupBy->nExpr; i++){ |
| Expr *p = pGroupBy->a[i].pExpr; |
| if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ |
| CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); |
| if( sqlite3IsBinary(pColl) ){ |
| return WRC_Prune; |
| } |
| } |
| } |
| |
| /* Check if pExpr is a sub-select. If so, consider it variable. */ |
| if( ExprUseXSelect(pExpr) ){ |
| pWalker->eCode = 0; |
| return WRC_Abort; |
| } |
| |
| return exprNodeIsConstant(pWalker, pExpr); |
| } |
| |
| /* |
| ** Walk the expression tree passed as the first argument. Return non-zero |
| ** if the expression consists entirely of constants or copies of terms |
| ** in pGroupBy that sort with the BINARY collation sequence. |
| ** |
| ** This routine is used to determine if a term of the HAVING clause can |
| ** be promoted into the WHERE clause. In order for such a promotion to work, |
| ** the value of the HAVING clause term must be the same for all members of |
| ** a "group". The requirement that the GROUP BY term must be BINARY |
| ** assumes that no other collating sequence will have a finer-grained |
| ** grouping than binary. In other words (A=B COLLATE binary) implies |
| ** A=B in every other collating sequence. The requirement that the |
| ** GROUP BY be BINARY is stricter than necessary. It would also work |
| ** to promote HAVING clauses that use the same alternative collating |
| ** sequence as the GROUP BY term, but that is much harder to check, |
| ** alternative collating sequences are uncommon, and this is only an |
| ** optimization, so we take the easy way out and simply require the |
| ** GROUP BY to use the BINARY collating sequence. |
| */ |
| int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ |
| Walker w; |
| w.eCode = 1; |
| w.xExprCallback = exprNodeIsConstantOrGroupBy; |
| w.xSelectCallback = 0; |
| w.u.pGroupBy = pGroupBy; |
| w.pParse = pParse; |
| sqlite3WalkExpr(&w, p); |
| return w.eCode; |
| } |
| |
| /* |
| ** Walk an expression tree for the DEFAULT field of a column definition |
| ** in a CREATE TABLE statement. Return non-zero if the expression is |
| ** acceptable for use as a DEFAULT. That is to say, return non-zero if |
| ** the expression is constant or a function call with constant arguments. |
| ** Return and 0 if there are any variables. |
| ** |
| ** isInit is true when parsing from sqlite_schema. isInit is false when |
| ** processing a new CREATE TABLE statement. When isInit is true, parameters |
| ** (such as ? or $abc) in the expression are converted into NULL. When |
| ** isInit is false, parameters raise an error. Parameters should not be |
| ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite |
| ** allowed it, so we need to support it when reading sqlite_schema for |
| ** backwards compatibility. |
| ** |
| ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. |
| ** |
| ** For the purposes of this function, a double-quoted string (ex: "abc") |
| ** is considered a variable but a single-quoted string (ex: 'abc') is |
| ** a constant. |
| */ |
| int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ |
| assert( isInit==0 || isInit==1 ); |
| return exprIsConst(p, 4+isInit, 0); |
| } |
| |
| #ifdef SQLITE_ENABLE_CURSOR_HINTS |
| /* |
| ** Walk an expression tree. Return 1 if the expression contains a |
| ** subquery of some kind. Return 0 if there are no subqueries. |
| */ |
| int sqlite3ExprContainsSubquery(Expr *p){ |
| Walker w; |
| w.eCode = 1; |
| w.xExprCallback = sqlite3ExprWalkNoop; |
| w.xSelectCallback = sqlite3SelectWalkFail; |
| #ifdef SQLITE_DEBUG |
| w.xSelectCallback2 = sqlite3SelectWalkAssert2; |
| #endif |
| sqlite3WalkExpr(&w, p); |
| return w.eCode==0; |
| } |
| #endif |
| |
| /* |
| ** If the expression p codes a constant integer that is small enough |
| ** to fit in a 32-bit integer, return 1 and put the value of the integer |
| ** in *pValue. If the expression is not an integer or if it is too big |
| ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. |
| */ |
| int sqlite3ExprIsInteger(const Expr *p, int *pValue){ |
| int rc = 0; |
| if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ |
| |
| /* If an expression is an integer literal that fits in a signed 32-bit |
| ** integer, then the EP_IntValue flag will have already been set */ |
| assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 |
| || sqlite3GetInt32(p->u.zToken, &rc)==0 ); |
| |
| if( p->flags & EP_IntValue ){ |
| *pValue = p->u.iValue; |
| return 1; |
| } |
| switch( p->op ){ |
| case TK_UPLUS: { |
| rc = sqlite3ExprIsInteger(p->pLeft, pValue); |
| break; |
| } |
| case TK_UMINUS: { |
| int v = 0; |
| if( sqlite3ExprIsInteger(p->pLeft, &v) ){ |
| assert( ((unsigned int)v)!=0x80000000 ); |
| *pValue = -v; |
| rc = 1; |
| } |
| break; |
| } |
| default: break; |
| } |
| return rc; |
| } |
| |
| /* |
| ** Return FALSE if there is no chance that the expression can be NULL. |
| ** |
| ** If the expression might be NULL or if the expression is too complex |
| ** to tell return TRUE. |
| ** |
| ** This routine is used as an optimization, to skip OP_IsNull opcodes |
| ** when we know that a value cannot be NULL. Hence, a false positive |
| ** (returning TRUE when in fact the expression can never be NULL) might |
| ** be a small performance hit but is otherwise harmless. On the other |
| ** hand, a false negative (returning FALSE when the result could be NULL) |
| ** will likely result in an incorrect answer. So when in doubt, return |
| ** TRUE. |
| */ |
| int sqlite3ExprCanBeNull(const Expr *p){ |
| u8 op; |
| assert( p!=0 ); |
| while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ |
| p = p->pLeft; |
| assert( p!=0 ); |
| } |
| op = p->op; |
| if( op==TK_REGISTER ) op = p->op2; |
| switch( op ){ |
| case TK_INTEGER: |
| case TK_STRING: |
| case TK_FLOAT: |
| case TK_BLOB: |
| return 0; |
| case TK_COLUMN: |
| assert( ExprUseYTab(p) ); |
| return ExprHasProperty(p, EP_CanBeNull) || |
| p->y.pTab==0 || /* Reference to column of index on expression */ |
| (p->iColumn>=0 |
| && p->y.pTab->aCol!=0 /* Possible due to prior error */ |
| && p->y.pTab->aCol[p->iColumn].notNull==0); |
| default: |
| return 1; |
| } |
| } |
| |
| /* |
| ** Return TRUE if the given expression is a constant which would be |
| ** unchanged by OP_Affinity with the affinity given in the second |
| ** argument. |
| ** |
| ** This routine is used to determine if the OP_Affinity operation |
| ** can be omitted. When in doubt return FALSE. A false negative |
| ** is harmless. A false positive, however, can result in the wrong |
| ** answer. |
| */ |
| int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ |
| u8 op; |
| int unaryMinus = 0; |
| if( aff==SQLITE_AFF_BLOB ) return 1; |
| while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ |
| if( p->op==TK_UMINUS ) unaryMinus = 1; |
| p = p->pLeft; |
| } |
| op = p->op; |
| if( op==TK_REGISTER ) op = p->op2; |
| switch( op ){ |
| case TK_INTEGER: { |
| return aff>=SQLITE_AFF_NUMERIC; |
| } |
| case TK_FLOAT: { |
| return aff>=SQLITE_AFF_NUMERIC; |
| } |
| case TK_STRING: { |
| return !unaryMinus && aff==SQLITE_AFF_TEXT; |
| } |
| case TK_BLOB: { |
| return !unaryMinus; |
| } |
| case TK_COLUMN: { |
| assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ |
| return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; |
| } |
| default: { |
| return 0; |
| } |
| } |
| } |
| |
| /* |
| ** Return TRUE if the given string is a row-id column name. |
| */ |
| int sqlite3IsRowid(const char *z){ |
| if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; |
| if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; |
| if( sqlite3StrICmp(z, "OID")==0 ) return 1; |
| return 0; |
| } |
| |
| /* |
| ** pX is the RHS of an IN operator. If pX is a SELECT statement |
| ** that can be simplified to a direct table access, then return |
| ** a pointer to the SELECT statement. If pX is not a SELECT statement, |
| ** or if the SELECT statement needs to be manifested into a transient |
| ** table, then return NULL. |
| */ |
| #ifndef SQLITE_OMIT_SUBQUERY |
| static Select *isCandidateForInOpt(const Expr *pX){ |
| Select *p; |
| SrcList *pSrc; |
| ExprList *pEList; |
| Table *pTab; |
| int i; |
| if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */ |
| if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ |
| p = pX->x.pSelect; |
| if( p->pPrior ) return 0; /* Not a compound SELECT */ |
| if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ |
| testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); |
| testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); |
| return 0; /* No DISTINCT keyword and no aggregate functions */ |
| } |
| assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ |
| if( p->pLimit ) return 0; /* Has no LIMIT clause */ |
| if( p->pWhere ) return 0; /* Has no WHERE clause */ |
| pSrc = p->pSrc; |
| assert( pSrc!=0 ); |
| if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ |
| if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ |
| pTab = pSrc->a[0].pTab; |
| assert( pTab!=0 ); |
| assert( !IsView(pTab) ); /* FROM clause is not a view */ |
| if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ |
| pEList = p->pEList; |
| assert( pEList!=0 ); |
| /* All SELECT results must be columns. */ |
| for(i=0; i<pEList->nExpr; i++){ |
| Expr *pRes = pEList->a[i].pExpr; |
| if( pRes->op!=TK_COLUMN ) return 0; |
| assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ |
| } |
| return p; |
| } |
| #endif /* SQLITE_OMIT_SUBQUERY */ |
| |
| #ifndef SQLITE_OMIT_SUBQUERY |
| /* |
| ** Generate code that checks the left-most column of index table iCur to see if |
| ** it contains any NULL entries. Cause the register at regHasNull to be set |
| ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull |
| ** to be set to NULL if iCur contains one or more NULL values. |
| */ |
| static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ |
| int addr1; |
| sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); |
| addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); |
| sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); |
| sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); |
| VdbeComment((v, "first_entry_in(%d)", iCur)); |
| sqlite3VdbeJumpHere(v, addr1); |
| } |
| #endif |
| |
| |
| #ifndef SQLITE_OMIT_SUBQUERY |
| /* |
| ** The argument is an IN operator with a list (not a subquery) on the |
| ** right-hand side. Return TRUE if that list is constant. |
| */ |
| static int sqlite3InRhsIsConstant(Expr *pIn){ |
| Expr *pLHS; |
| int res; |
| assert( !ExprHasProperty(pIn, EP_xIsSelect) ); |
| pLHS = pIn->pLeft; |
| pIn->pLeft = 0; |
| res = sqlite3ExprIsConstant(pIn); |
| pIn->pLeft = pLHS; |
| return res; |
| } |
| #endif |
| |
| /* |
| ** This function is used by the implementation of the IN (...) operator. |
| ** The pX parameter is the expression on the RHS of the IN operator, which |
| ** might be either a list of expressions or a subquery. |
| ** |
| ** The job of this routine is to find or create a b-tree object that can |
| ** be used either to test for membership in the RHS set or to iterate through |
| ** all members of the RHS set, skipping duplicates. |
| ** |
| ** A cursor is opened on the b-tree object that is the RHS of the IN operator |
| ** and the *piTab parameter is set to the index of that cursor. |
| ** |
| ** The returned value of this function indicates the b-tree type, as follows: |
| ** |
| ** IN_INDEX_ROWID - The cursor was opened on a database table. |
| ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. |
| ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. |
| ** IN_INDEX_EPH - The cursor was opened on a specially created and |
| ** populated epheremal table. |
| ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be |
| ** implemented as a sequence of comparisons. |
| ** |
| ** An existing b-tree might be used if the RHS expression pX is a simple |
| ** subquery such as: |
| ** |
| ** SELECT <column1>, <column2>... FROM <table> |
| ** |
| ** If the RHS of the IN operator is a list or a more complex subquery, then |
| ** an ephemeral table might need to be generated from the RHS and then |
| ** pX->iTable made to point to the ephemeral table instead of an |
| ** existing table. In this case, the creation and initialization of the |
| ** ephmeral table might be put inside of a subroutine, the EP_Subrtn flag |
| ** will be set on pX and the pX->y.sub fields will be set to show where |
| ** the subroutine is coded. |
| ** |
| ** The inFlags parameter must contain, at a minimum, one of the bits |
| ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains |
| ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast |
| ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will |
| ** be used to loop over all values of the RHS of the IN operator. |
| ** |
| ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate |
| ** through the set members) then the b-tree must not contain duplicates. |
| ** An epheremal table will be created unless the selected columns are guaranteed |
| ** to be unique - either because it is an INTEGER PRIMARY KEY or due to |
| ** a UNIQUE constraint or index. |
| ** |
| ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used |
| ** for fast set membership tests) then an epheremal table must |
| ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an |
| ** index can be found with the specified <columns> as its left-most. |
| ** |
| ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and |
| ** if the RHS of the IN operator is a list (not a subquery) then this |
| ** routine might decide that creating an ephemeral b-tree for membership |
| ** testing is too expensive and return IN_INDEX_NOOP. In that case, the |
| ** calling routine should implement the IN operator using a sequence |
| ** of Eq or Ne comparison operations. |
| ** |
| ** When the b-tree is being used for membership tests, the calling function |
| ** might need to know whether or not the RHS side of the IN operator |
| ** contains a NULL. If prRhsHasNull is not a NULL pointer and |
| ** if there is any chance that the (...) might contain a NULL value at |
| ** runtime, then a register is allocated and the register number written |
| ** to *prRhsHasNull. If there is no chance that the (...) contains a |
| ** NULL value, then *prRhsHasNull is left unchanged. |
| ** |
| ** If a register is allocated and its location stored in *prRhsHasNull, then |
| ** the value in that register will be NULL if the b-tree contains one or more |
| ** NULL values, and it will be some non-NULL value if the b-tree contains no |
| ** NULL values. |
| ** |
| ** If the aiMap parameter is not NULL, it must point to an array containing |
| ** one element for each column returned by the SELECT statement on the RHS |
| ** of the IN(...) operator. The i'th entry of the array is populated with the |
| ** offset of the index column that matches the i'th column returned by the |
| ** SELECT. For example, if the expression and selected index are: |
| ** |
| ** (?,?,?) IN (SELECT a, b, c FROM t1) |
| ** CREATE INDEX i1 ON t1(b, c, a); |
| ** |
| ** then aiMap[] is populated with {2, 0, 1}. |
| */ |
| #ifndef SQLITE_OMIT_SUBQUERY |
| int sqlite3FindInIndex( |
| Parse *pParse, /* Parsing context */ |
| Expr *pX, /* The IN expression */ |
| u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ |
| int *prRhsHasNull, /* Register holding NULL status. See notes */ |
| int *aiMap, /* Mapping from Index fields to RHS fields */ |
| int *piTab /* OUT: index to use */ |
| ){ |
| Select *p; /* SELECT to the right of IN operator */ |
| int eType = 0; /* Type of RHS table. IN_INDEX_* */ |
| int iTab; /* Cursor of the RHS table */ |
| int mustBeUnique; /* True if RHS must be unique */ |
| Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ |
| |
| assert( pX->op==TK_IN ); |
| mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; |
| iTab = pParse->nTab++; |
| |
| /* If the RHS of this IN(...) operator is a SELECT, and if it matters |
| ** whether or not the SELECT result contains NULL values, check whether |
| ** or not NULL is actually possible (it may not be, for example, due |
| ** to NOT NULL constraints in the schema). If no NULL values are possible, |
| ** set prRhsHasNull to 0 before continuing. */ |
| if( prRhsHasNull && ExprUseXSelect(pX) ){ |
| int i; |
| ExprList *pEList = pX->x.pSelect->pEList; |
| for(i=0; i<pEList->nExpr; i++){ |
| if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; |
| } |
| if( i==pEList->nExpr ){ |
| prRhsHasNull = 0; |
| } |
| } |
| |
| /* Check to see if an existing table or index can be used to |
| ** satisfy the query. This is preferable to generating a new |
| ** ephemeral table. */ |
| if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ |
| sqlite3 *db = pParse->db; /* Database connection */ |
| Table *pTab; /* Table <table>. */ |
| int iDb; /* Database idx for pTab */ |
| ExprList *pEList = p->pEList; |
| int nExpr = pEList->nExpr; |
| |
| assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ |
| assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ |
| assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ |
| pTab = p->pSrc->a[0].pTab; |
| |
| /* Code an OP_Transaction and OP_TableLock for <table>. */ |
| iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| assert( iDb>=0 && iDb<SQLITE_MAX_DB ); |
| sqlite3CodeVerifySchema(pParse, iDb); |
| sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
| |
| assert(v); /* sqlite3GetVdbe() has always been previously called */ |
| if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ |
| /* The "x IN (SELECT rowid FROM table)" case */ |
| int iAddr = sqlite3VdbeAddOp0(v, OP_Once); |
| VdbeCoverage(v); |
| |
| sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); |
| eType = IN_INDEX_ROWID; |
| ExplainQueryPlan((pParse, 0, |
| "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); |
| sqlite3VdbeJumpHere(v, iAddr); |
| }else{ |
| Index *pIdx; /* Iterator variable */ |
| int affinity_ok = 1; |
| int i; |
| |
| /* Check that the affinity that will be used to perform each |
| ** comparison is the same as the affinity of each column in table |
| ** on the RHS of the IN operator. If it not, it is not possible to |
| ** use any index of the RHS table. */ |
| for(i=0; i<nExpr && affinity_ok; i++){ |
| Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); |
| int iCol = pEList->a[i].pExpr->iColumn; |
| char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ |
| char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); |
| testcase( cmpaff==SQLITE_AFF_BLOB ); |
| testcase( cmpaff==SQLITE_AFF_TEXT ); |
| switch( cmpaff ){ |
| case SQLITE_AFF_BLOB: |
| break; |
| case SQLITE_AFF_TEXT: |
| /* sqlite3CompareAffinity() only returns TEXT if one side or the |
| ** other has no affinity and the other side is TEXT. Hence, |
| ** the only way for cmpaff to be TEXT is for idxaff to be TEXT |
| ** and for the term on the LHS of the IN to have no affinity. */ |
| assert( idxaff==SQLITE_AFF_TEXT ); |
| break; |
| default: |
| affinity_ok = sqlite3IsNumericAffinity(idxaff); |
| } |
| } |
| |
| if( affinity_ok ){ |
| /* Search for an existing index that will work for this IN operator */ |
| for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ |
| Bitmask colUsed; /* Columns of the index used */ |
| Bitmask mCol; /* Mask for the current column */ |
| if( pIdx->nColumn<nExpr ) continue; |
| if( pIdx->pPartIdxWhere!=0 ) continue; |
| /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute |
| ** BITMASK(nExpr) without overflowing */ |
| testcase( pIdx->nColumn==BMS-2 ); |
| testcase( pIdx->nColumn==BMS-1 ); |
| if( pIdx->nColumn>=BMS-1 ) continue; |
| if( mustBeUnique ){ |
| if( pIdx->nKeyCol>nExpr |
| ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) |
| ){ |
| continue; /* This index is not unique over the IN RHS columns */ |
| } |
| } |
| |
| colUsed = 0; /* Columns of index used so far */ |
| for(i=0; i<nExpr; i++){ |
| Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); |
| Expr *pRhs = pEList->a[i].pExpr; |
| CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); |
| int j; |
| |
| assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); |
| for(j=0; j<nExpr; j++){ |
| if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; |
| assert( pIdx->azColl[j] ); |
| if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ |
| continue; |
| } |
| break; |
| } |
| if( j==nExpr ) break; |
| mCol = MASKBIT(j); |
| if( mCol & colUsed ) break; /* Each column used only once */ |
| colUsed |= mCol; |
| if( aiMap ) aiMap[i] = j; |
| } |
| |
| assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); |
| if( colUsed==(MASKBIT(nExpr)-1) ){ |
| /* If we reach this point, that means the index pIdx is usable */ |
| int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); |
| ExplainQueryPlan((pParse, 0, |
| "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); |
| sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); |
| sqlite3VdbeSetP4KeyInfo(pParse, pIdx); |
| VdbeComment((v, "%s", pIdx->zName)); |
| assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); |
| eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; |
| |
| if( prRhsHasNull ){ |
| #ifdef SQLITE_ENABLE_COLUMN_USED_MASK |
| i64 mask = (1<<nExpr)-1; |
| sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, |
| iTab, 0, 0, (u8*)&mask, P4_INT64); |
| #endif |
| *prRhsHasNull = ++pParse->nMem; |
| if( nExpr==1 ){ |
| sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); |
| } |
| } |
| sqlite3VdbeJumpHere(v, iAddr); |
| } |
| } /* End loop over indexes */ |
| } /* End if( affinity_ok ) */ |
| } /* End if not an rowid index */ |
| } /* End attempt to optimize using an index */ |
| |
| /* If no preexisting index is available for the IN clause |
| ** and IN_INDEX_NOOP is an allowed reply |
| ** and the RHS of the IN operator is a list, not a subquery |
| ** and the RHS is not constant or has two or fewer terms, |
| ** then it is not worth creating an ephemeral table to evaluate |
| ** the IN operator so return IN_INDEX_NOOP. |
| */ |
| if( eType==0 |
| && (inFlags & IN_INDEX_NOOP_OK) |
| && ExprUseXList(pX) |
| && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) |
| ){ |
| pParse->nTab--; /* Back out the allocation of the unused cursor */ |
| iTab = -1; /* Cursor is not allocated */ |
| eType = IN_INDEX_NOOP; |
| } |
| |
| if( eType==0 ){ |
| /* Could not find an existing table or index to use as the RHS b-tree. |
| ** We will have to generate an ephemeral table to do the job. |
| */ |
| u32 savedNQueryLoop = pParse->nQueryLoop; |
| int rMayHaveNull = 0; |
| eType = IN_INDEX_EPH; |
| if( inFlags & IN_INDEX_LOOP ){ |
| pParse->nQueryLoop = 0; |
| }else if( prRhsHasNull ){ |
| *prRhsHasNull = rMayHaveNull = ++pParse->nMem; |
| } |
| assert( pX->op==TK_IN ); |
| sqlite3CodeRhsOfIN(pParse, pX, iTab); |
| if( rMayHaveNull ){ |
| sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); |
| } |
| pParse->nQueryLoop = savedNQueryLoop; |
| } |
| |
| if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ |
| int i, n; |
| n = sqlite3ExprVectorSize(pX->pLeft); |
| for(i=0; i<n; i++) aiMap[i] = i; |
| } |
| *piTab = iTab; |
| return eType; |
| } |
| #endif |
| |
| #ifndef SQLITE_OMIT_SUBQUERY |
| /* |
| ** Argument pExpr is an (?, ?...) IN(...) expression. This |
| ** function allocates and returns a nul-terminated string containing |
| ** the affinities to be used for each column of the comparison. |
| ** |
| ** It is the responsibility of the caller to ensure that the returned |
| ** string is eventually freed using sqlite3DbFree(). |
| */ |
| static char *exprINAffinity(Parse *pParse, const Expr *pExpr){ |
| Expr *pLeft = pExpr->pLeft; |
| int nVal = sqlite3ExprVectorSize(pLeft); |
| Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0; |
| char *zRet; |
| |
| assert( pExpr->op==TK_IN ); |
| zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); |
| if( zRet ){ |
| int i; |
| for(i=0; i<nVal; i++){ |
| Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); |
| char a = sqlite3ExprAffinity(pA); |
| if( pSelect ){ |
| zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); |
| }else{ |
| zRet[i] = a; |
| } |
| } |
| zRet[nVal] = '\0'; |
| } |
| return zRet; |
| } |
| #endif |
| |
| #ifndef SQLITE_OMIT_SUBQUERY |
| /* |
| ** Load the Parse object passed as the first argument with an error |
| ** message of the form: |
| ** |
| ** "sub-select returns N columns - expected M" |
| */ |
| void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ |
| if( pParse->nErr==0 ){ |
| const char *zFmt = "sub-select returns %d columns - expected %d"; |
| sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); |
| } |
| } |
| #endif |
| |
| /* |
| ** Expression pExpr is a vector that has been used in a context where |
| ** it is not permitted. If pExpr is a sub-select vector, this routine |
| ** loads the Parse object with a message of the form: |
| ** |
| ** "sub-select returns N columns - expected 1" |
| ** |
| ** Or, if it is a regular scalar vector: |
| ** |
| ** "row value misused" |
| */ |
| void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ |
| #ifndef SQLITE_OMIT_SUBQUERY |
| if( ExprUseXSelect(pExpr) ){ |
| sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); |
| }else |
| #endif |
| { |
| sqlite3ErrorMsg(pParse, "row value misused"); |
| } |
| } |
| |
| #ifndef SQLITE_OMIT_SUBQUERY |
| /* |
| ** Generate code that will construct an ephemeral table containing all terms |
| ** in the RHS of an IN operator. The IN operator can be in either of two |
| ** forms: |
| ** |
| ** x IN (4,5,11) -- IN operator with list on right-hand side |
| ** x IN (SELECT a FROM b) -- IN operator with subquery on the right |
| ** |
| ** The pExpr parameter is the IN operator. The cursor number for the |
| ** constructed ephermeral table is returned. The first time the ephemeral |
| ** table is computed, the cursor number is also stored in pExpr->iTable, |
| ** however the cursor number returned might not be the same, as it might |
| ** have been duplicated using OP_OpenDup. |
| ** |
| ** If the LHS expression ("x" in the examples) is a column value, or |
| ** the SELECT statement returns a column value, then the affinity of that |
| ** column is used to build the index keys. If both 'x' and the |
| ** SELECT... statement are columns, then numeric affinity is used |
| ** if either column has NUMERIC or INTEGER affinity. If neither |
| ** 'x' nor the SELECT... statement are columns, then numeric affinity |
| ** is used. |
| */ |
| void sqlite3CodeRhsOfIN( |
| Parse *pParse, /* Parsing context */ |
| Expr *pExpr, /* The IN operator */ |
| int iTab /* Use this cursor number */ |
| ){ |
| int addrOnce = 0; /* Address of the OP_Once instruction at top */ |
| int addr; /* Address of OP_OpenEphemeral instruction */ |
| Expr *pLeft; /* the LHS of the IN operator */ |
| KeyInfo *pKeyInfo = 0; /* Key information */ |
| int nVal; /* Size of vector pLeft */ |
| Vdbe *v; /* The prepared statement under construction */ |
| |
| v = pParse->pVdbe; |
| assert( v!=0 ); |
| |
| /* The evaluation of the IN must be repeated every time it |
| ** is encountered if any of the following is true: |
| ** |
| ** * The right-hand side is a correlated subquery |
| ** * The right-hand side is an expression list containing variables |
| ** * We are inside a trigger |
| ** |
| ** If all of the above are false, then we can compute the RHS just once |
| ** and reuse it many names. |
| */ |
| if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ |
| /* Reuse of the RHS is allowed */ |
| /* If this routine has already been coded, but the previous code |
| ** might not have been invoked yet, so invoke it now as a subroutine. |
| */ |
| if( ExprHasProperty(pExpr, EP_Subrtn) ){ |
| addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); |
| if( ExprUseXSelect(pExpr) ){ |
| ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", |
| pExpr->x.pSelect->selId)); |
| } |
| assert( ExprUseYSub(pExpr) ); |
| sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, |
| pExpr->y.sub.iAddr); |
| assert( iTab!=pExpr->iTable ); |
| sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); |
| sqlite3VdbeJumpHere(v, addrOnce); |
| return; |
| } |
| |
| /* Begin coding the subroutine */ |
| assert( !ExprUseYWin(pExpr) ); |
| ExprSetProperty(pExpr, EP_Subrtn); |
| assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); |
| pExpr->y.sub.regReturn = ++pParse->nMem; |
| pExpr->y.sub.iAddr = |
| sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; |
| |
| addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); |
| } |
| |
| /* Check to see if this is a vector IN operator */ |
| pLeft = pExpr->pLeft; |
| nVal = sqlite3ExprVectorSize(pLeft); |
| |
| /* Construct the ephemeral table that will contain the content of |
| ** RHS of the IN operator. |
| */ |
| pExpr->iTable = iTab; |
| addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); |
| #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
| if( ExprUseXSelect(pExpr) ){ |
| VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); |
| }else{ |
| VdbeComment((v, "RHS of IN operator")); |
| } |
| #endif |
| pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); |
| |
| if( ExprUseXSelect(pExpr) ){ |
| /* Case 1: expr IN (SELECT ...) |
| ** |
| ** Generate code to write the results of the select into the temporary |
| ** table allocated and opened above. |
| */ |
| Select *pSelect = pExpr->x.pSelect; |
| ExprList *pEList = pSelect->pEList; |
| |
| ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", |
| addrOnce?"":"CORRELATED ", pSelect->selId |
| )); |
| /* If the LHS and RHS of the IN operator do not match, that |
| ** error will have been caught long before we reach this point. */ |
| if( ALWAYS(pEList->nExpr==nVal) ){ |
| Select *pCopy; |
| SelectDest dest; |
| int i; |
| int rc; |
| sqlite3SelectDestInit(&dest, SRT_Set, iTab); |
| dest.zAffSdst = exprINAffinity(pParse, pExpr); |
| pSelect->iLimit = 0; |
| testcase( pSelect->selFlags & SF_Distinct ); |
| testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ |
| pCopy = sqlite3SelectDup(pParse->db, pSelect, 0); |
| rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest); |
| sqlite3SelectDelete(pParse->db, pCopy); |
| sqlite3DbFree(pParse->db, dest.zAffSdst); |
| if( rc ){ |
| sqlite3KeyInfoUnref(pKeyInfo); |
| return; |
| } |
| assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ |
| assert( pEList!=0 ); |
| assert( pEList->nExpr>0 ); |
| assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); |
| for(i=0; i<nVal; i++){ |
| Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); |
| pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( |
| pParse, p, pEList->a[i].pExpr |
| ); |
| } |
| } |
| }else if( ALWAYS(pExpr->x.pList!=0) ){ |
| /* Case 2: expr IN (exprlist) |
| ** |
| ** For each expression, build an index key from the evaluation and |
| ** store it in the temporary table. If <expr> is a column, then use |
| ** that columns affinity when building index keys. If <expr> is not |
| ** a column, use numeric affinity. |
| */ |
| char affinity; /* Affinity of the LHS of the IN */ |
| int i; |
| ExprList *pList = pExpr->x.pList; |
| struct ExprList_item *pItem; |
| int r1, r2; |
| affinity = sqlite3ExprAffinity(pLeft); |
| if( affinity<=SQLITE_AFF_NONE ){ |
| affinity = SQLITE_AFF_BLOB; |
| }else if( affinity==SQLITE_AFF_REAL ){ |
| affinity = SQLITE_AFF_NUMERIC; |
| } |
| if( pKeyInfo ){ |
| assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); |
| pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
| } |
| |
| /* Loop through each expression in <exprlist>. */ |
| r1 = sqlite3GetTempReg(pParse); |
| r2 = sqlite3GetTempReg(pParse); |
| for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ |
| Expr *pE2 = pItem->pExpr; |
| |
| /* If the expression is not constant then we will need to |
| ** disable the test that was generated above that makes sure |
| ** this code only executes once. Because for a non-constant |
| ** expression we need to rerun this code each time. |
| */ |
| if( addrOnce && !sqlite3ExprIsConstant(pE2) ){ |
| sqlite3VdbeChangeToNoop(v, addrOnce-1); |
| sqlite3VdbeChangeToNoop(v, addrOnce); |
| ExprClearProperty(pExpr, EP_Subrtn); |
| addrOnce = 0; |
| } |
| |
| /* Evaluate the expression and insert it into the temp table */ |
| sqlite3ExprCode(pParse, pE2, r1); |
| sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); |
| sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1); |
| } |
| sqlite3ReleaseTempReg(pParse, r1); |
| sqlite3ReleaseTempReg(pParse, r2); |
| } |
| if( pKeyInfo ){ |
| sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); |
| } |
| if( addrOnce ){ |
| sqlite3VdbeJumpHere(v, addrOnce); |
| /* Subroutine return */ |
| assert( ExprUseYSub(pExpr) ); |
| assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn |
| || pParse->nErr ); |
| sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, |
| pExpr->y.sub.iAddr, 1); |
| VdbeCoverage(v); |
| sqlite3ClearTempRegCache(pParse); |
| } |
| } |
| #endif /* SQLITE_OMIT_SUBQUERY */ |
| |
| /* |
| ** Generate code for scalar subqueries used as a subquery expression |
| ** or EXISTS operator: |
| ** |
| ** (SELECT a FROM b) -- subquery |
| ** EXISTS (SELECT a FROM b) -- EXISTS subquery |
| ** |
| ** The pExpr parameter is the SELECT or EXISTS operator to be coded. |
| ** |
| ** Return the register that holds the result. For a multi-column SELECT, |
| ** the result is stored in a contiguous array of registers and the |
| ** return value is the register of the left-most result column. |
| ** Return 0 if an error occurs. |
| */ |
| #ifndef SQLITE_OMIT_SUBQUERY |
| int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ |
| int addrOnce = 0; /* Address of OP_Once at top of subroutine */ |
| int rReg = 0; /* Register storing resulting */ |
| Select *pSel; /* SELECT statement to encode */ |
| SelectDest dest; /* How to deal with SELECT result */ |
| int nReg; /* Registers to allocate */ |
| Expr *pLimit; /* New limit expression */ |
| |
| Vdbe *v = pParse->pVdbe; |
| assert( v!=0 ); |
| if( pParse->nErr ) return 0; |
| testcase( pExpr->op==TK_EXISTS ); |
| testcase( pExpr->op==TK_SELECT ); |
| assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); |
| assert( ExprUseXSelect(pExpr) ); |
| pSel = pExpr->x.pSelect; |
| |
| /* If this routine has already been coded, then invoke it as a |
| ** subroutine. */ |
| if( ExprHasProperty(pExpr, EP_Subrtn) ){ |
| ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId)); |
| assert( ExprUseYSub(pExpr) ); |
| sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, |
| pExpr->y.sub.iAddr); |
| return pExpr->iTable; |
| } |
| |
| /* Begin coding the subroutine */ |
| assert( !ExprUseYWin(pExpr) ); |
| assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) ); |
| ExprSetProperty(pExpr, EP_Subrtn); |
| pExpr->y.sub.regReturn = ++pParse->nMem; |
| pExpr->y.sub.iAddr = |
| sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1; |
| |
| /* The evaluation of the EXISTS/SELECT must be repeated every time it |
| ** is encountered if any of the following is true: |
| ** |
| ** * The right-hand side is a correlated subquery |
| ** * The right-hand side is an expression list containing variables |
| ** * We are inside a trigger |
| ** |
| ** If all of the above are false, then we can run this code just once |
| ** save the results, and reuse the same result on subsequent invocations. |
| */ |
| if( !ExprHasProperty(pExpr, EP_VarSelect) ){ |
| addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); |
| } |
| |
| /* For a SELECT, generate code to put the values for all columns of |
| ** the first row into an array of registers and return the index of |
| ** the first register. |
| ** |
| ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists) |
| ** into a register and return that register number. |
| ** |
| ** In both cases, the query is augmented with "LIMIT 1". Any |
| ** preexisting limit is discarded in place of the new LIMIT 1. |
| */ |
| ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d", |
| addrOnce?"":"CORRELATED ", pSel->selId)); |
| nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1; |
| sqlite3SelectDestInit(&dest, 0, pParse->nMem+1); |
| pParse->nMem += nReg; |
| if( pExpr->op==TK_SELECT ){ |
| dest.eDest = SRT_Mem; |
| dest.iSdst = dest.iSDParm; |
| dest.nSdst = nReg; |
| sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1); |
| VdbeComment((v, "Init subquery result")); |
| }else{ |
| dest.eDest = SRT_Exists; |
| sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); |
| VdbeComment((v, "Init EXISTS result")); |
| } |
| if( pSel->pLimit ){ |
| /* The subquery already has a limit. If the pre-existing limit is X |
| ** then make the new limit X<>0 so that the new limit is either 1 or 0 */ |
| sqlite3 *db = pParse->db; |
| pLimit = sqlite3Expr(db, TK_INTEGER, "0"); |
| if( pLimit ){ |
| pLimit->affExpr = SQLITE_AFF_NUMERIC; |
| pLimit = sqlite3PExpr(pParse, TK_NE, |
| sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit); |
| } |
| sqlite3ExprDelete(db, pSel->pLimit->pLeft); |
| pSel->pLimit->pLeft = pLimit; |
| }else{ |
| /* If there is no pre-existing limit add a limit of 1 */ |
| pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1"); |
| pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0); |
| } |
| pSel->iLimit = 0; |
| if( sqlite3Select(pParse, pSel, &dest) ){ |
| pExpr->op2 = pExpr->op; |
| pExpr->op = TK_ERROR; |
| return 0; |
| } |
| pExpr->iTable = rReg = dest.iSDParm; |
| ExprSetVVAProperty(pExpr, EP_NoReduce); |
| if( addrOnce ){ |
| sqlite3VdbeJumpHere(v, addrOnce); |
| } |
| |
| /* Subroutine return */ |
| assert( ExprUseYSub(pExpr) ); |
| assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn |
| || pParse->nErr ); |
| sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn, |
| pExpr->y.sub.iAddr, 1); |
| VdbeCoverage(v); |
| sqlite3ClearTempRegCache(pParse); |
| return rReg; |
| } |
| #endif /* SQLITE_OMIT_SUBQUERY */ |
| |
| #ifndef SQLITE_OMIT_SUBQUERY |
| /* |
| ** Expr pIn is an IN(...) expression. This function checks that the |
| ** sub-select on the RHS of the IN() operator has the same number of |
| ** columns as the vector on the LHS. Or, if the RHS of the IN() is not |
| ** a sub-query, that the LHS is a vector of size 1. |
| */ |
| int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){ |
| int nVector = sqlite3ExprVectorSize(pIn->pLeft); |
| if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){ |
| if( nVector!=pIn->x.pSelect->pEList->nExpr ){ |
| sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector); |
| return 1; |
| } |
| }else if( nVector!=1 ){ |
| sqlite3VectorErrorMsg(pParse, pIn->pLeft); |
| return 1; |
| } |
| return 0; |
| } |
| #endif |
| |
| #ifndef SQLITE_OMIT_SUBQUERY |
| /* |
| ** Generate code for an IN expression. |
| ** |
| ** x IN (SELECT ...) |
| ** x IN (value, value, ...) |
| ** |
| ** The left-hand side (LHS) is a scalar or vector expression. The |
| ** right-hand side (RHS) is an array of zero or more scalar values, or a |
| ** subquery. If the RHS is a subquery, the number of result columns must |
| ** match the number of columns in the vector on the LHS. If the RHS is |
| ** a list of values, the LHS must be a scalar. |
| ** |
| ** The IN operator is true if the LHS value is contained within the RHS. |
| ** The result is false if the LHS is definitely not in the RHS. The |
| ** result is NULL if the presence of the LHS in the RHS cannot be |
| ** determined due to NULLs. |
| ** |
| ** This routine generates code that jumps to destIfFalse if the LHS is not |
| ** contained within the RHS. If due to NULLs we cannot determine if the LHS |
| ** is contained in the RHS then jump to destIfNull. If the LHS is contained |
| ** within the RHS then fall through. |
| ** |
| ** See the separate in-operator.md documentation file in the canonical |
| ** SQLite source tree for additional information. |
| */ |
| static void sqlite3ExprCodeIN( |
| Parse *pParse, /* Parsing and code generating context */ |
| Expr *pExpr, /* The IN expression */ |
| int destIfFalse, /* Jump here if LHS is not contained in the RHS */ |
| int destIfNull /* Jump here if the results are unknown due to NULLs */ |
| ){ |
| int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ |
| int eType; /* Type of the RHS */ |
| int rLhs; /* Register(s) holding the LHS values */ |
| int rLhsOrig; /* LHS values prior to reordering by aiMap[] */ |
| Vdbe *v; /* Statement under construction */ |
| int *aiMap = 0; /* Map from vector field to index column */ |
| char *zAff = 0; /* Affinity string for comparisons */ |
| int nVector; /* Size of vectors for this IN operator */ |
| int iDummy; /* Dummy parameter to exprCodeVector() */ |
| Expr *pLeft; /* The LHS of the IN operator */ |
| int i; /* loop counter */ |
| int destStep2; /* Where to jump when NULLs seen in step 2 */ |
| int destStep6 = 0; /* Start of code for Step 6 */ |
| int addrTruthOp; /* Address of opcode that determines the IN is true */ |
| int destNotNull; /* Jump here if a comparison is not true in step 6 */ |
| int addrTop; /* Top of the step-6 loop */ |
| int iTab = 0; /* Index to use */ |
| u8 okConstFactor = pParse->okConstFactor; |
| |
| assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); |
| pLeft = pExpr->pLeft; |
| if( sqlite3ExprCheckIN(pParse, pExpr) ) return; |
| zAff = exprINAffinity(pParse, pExpr); |
| nVector = sqlite3ExprVectorSize(pExpr->pLeft); |
| aiMap = (int*)sqlite3DbMallocZero( |
| pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1 |
| ); |
| if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error; |
| |
| /* Attempt to compute the RHS. After this step, if anything other than |
| ** IN_INDEX_NOOP is returned, the table opened with cursor iTab |
| ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned, |
| ** the RHS has not yet been coded. */ |
| v = pParse->pVdbe; |
| assert( v!=0 ); /* OOM detected prior to this routine */ |
| VdbeNoopComment((v, "begin IN expr")); |
| eType = sqlite3FindInIndex(pParse, pExpr, |
| IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, |
| destIfFalse==destIfNull ? 0 : &rRhsHasNull, |
| aiMap, &iTab); |
| |
| assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH |
| || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC |
| ); |
| #ifdef SQLITE_DEBUG |
| /* Confirm that aiMap[] contains nVector integer values between 0 and |
| ** nVector-1. */ |
| for(i=0; i<nVector; i++){ |
| int j, cnt; |
| for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++; |
| assert( cnt==1 ); |
| } |
| #endif |
| |
| /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a |
| ** vector, then it is stored in an array of nVector registers starting |
| ** at r1. |
| ** |
| ** sqlite3FindInIndex() might have reordered the fields of the LHS vector |
| ** so that the fields are in the same order as an existing index. The |
| ** aiMap[] array contains a mapping from the original LHS field order to |
| ** the field order that matches the RHS index. |
| ** |
| ** Avoid factoring the LHS of the IN(...) expression out of the loop, |
| ** even if it is constant, as OP_Affinity may be used on the register |
| ** by code generated below. */ |
| assert( pParse->okConstFactor==okConstFactor ); |
| pParse->okConstFactor = 0; |
| rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy); |
| pParse->okConstFactor = okConstFactor; |
| for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */ |
| if( i==nVector ){ |
| /* LHS fields are not reordered */ |
| rLhs = rLhsOrig; |
| }else{ |
| /* Need to reorder the LHS fields according to aiMap */ |
| rLhs = sqlite3GetTempRange(pParse, nVector); |
| for(i=0; i<nVector; i++){ |
| sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0); |
| } |
| } |
| |
| /* If sqlite3FindInIndex() did not find or create an index that is |
| ** suitable for evaluating the IN operator, then evaluate using a |
| ** sequence of comparisons. |
| ** |
| ** This is step (1) in the in-operator.md optimized algorithm. |
| */ |
| if( eType==IN_INDEX_NOOP ){ |
| ExprList *pList; |
| CollSeq *pColl; |
| int labelOk = sqlite3VdbeMakeLabel(pParse); |
| int r2, regToFree; |
| int regCkNull = 0; |
| int ii; |
| assert( ExprUseXList(pExpr) ); |
| pList = pExpr->x.pList; |
| pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
| if( destIfNull!=destIfFalse ){ |
| regCkNull = sqlite3GetTempReg(pParse); |
| sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull); |
| } |
| for(ii=0; ii<pList->nExpr; ii++){ |
| r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); |
| if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ |
| sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); |
| } |
| sqlite3ReleaseTempReg(pParse, regToFree); |
| if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ |
| int op = rLhs!=r2 ? OP_Eq : OP_NotNull; |
| sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2, |
| (void*)pColl, P4_COLLSEQ); |
| VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq); |
| VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq); |
| VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull); |
| VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull); |
| sqlite3VdbeChangeP5(v, zAff[0]); |
| }else{ |
| int op = rLhs!=r2 ? OP_Ne : OP_IsNull; |
| assert( destIfNull==destIfFalse ); |
| sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2, |
| (void*)pColl, P4_COLLSEQ); |
| VdbeCoverageIf(v, op==OP_Ne); |
| VdbeCoverageIf(v, op==OP_IsNull); |
| sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL); |
| } |
| } |
| if( regCkNull ){ |
| sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); |
| sqlite3VdbeGoto(v, destIfFalse); |
| } |
| sqlite3VdbeResolveLabel(v, labelOk); |
| sqlite3ReleaseTempReg(pParse, regCkNull); |
| goto sqlite3ExprCodeIN_finished; |
| } |
| |
| /* Step 2: Check to see if the LHS contains any NULL columns. If the |
| ** LHS does contain NULLs then the result must be either FALSE or NULL. |
| ** We will then skip the binary search of the RHS. |
| */ |
| if( destIfNull==destIfFalse ){ |
| destStep2 = destIfFalse; |
| }else{ |
| destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse); |
| } |
| for(i=0; i<nVector; i++){ |
| Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i); |
| if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error; |
| if( sqlite3ExprCanBeNull(p) ){ |
| sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2); |
| VdbeCoverage(v); |
| } |
| } |
| |
| /* Step 3. The LHS is now known to be non-NULL. Do the binary search |
| ** of the RHS using the LHS as a probe. If found, the result is |
| ** true. |
| */ |
| if( eType==IN_INDEX_ROWID ){ |
| /* In this case, the RHS is the ROWID of table b-tree and so we also |
| ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4 |
| ** into a single opcode. */ |
| sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs); |
| VdbeCoverage(v); |
| addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */ |
| }else{ |
| sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector); |
| if( destIfFalse==destIfNull ){ |
| /* Combine Step 3 and Step 5 into a single opcode */ |
| sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse, |
| rLhs, nVector); VdbeCoverage(v); |
| goto sqlite3ExprCodeIN_finished; |
| } |
| /* Ordinary Step 3, for the case where FALSE and NULL are distinct */ |
| addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0, |
| rLhs, nVector); VdbeCoverage(v); |
| } |
| |
| /* Step 4. If the RHS is known to be non-NULL and we did not find |
| ** an match on the search above, then the result must be FALSE. |
| */ |
| if( rRhsHasNull && nVector==1 ){ |
| sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse); |
| VdbeCoverage(v); |
| } |
| |
| /* Step 5. If we do not care about the difference between NULL and |
| ** FALSE, then just return false. |
| */ |
| if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse); |
| |
| /* Step 6: Loop through rows of the RHS. Compare each row to the LHS. |
| ** If any comparison is NULL, then the result is NULL. If all |
| ** comparisons are FALSE then the final result is FALSE. |
| ** |
| ** For a scalar LHS, it is sufficient to check just the first row |
| ** of the RHS. |
| */ |
| if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6); |
| addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse); |
| VdbeCoverage(v); |
| if( nVector>1 ){ |
| destNotNull = sqlite3VdbeMakeLabel(pParse); |
| }else{ |
| /* For nVector==1, combine steps 6 and 7 by immediately returning |
| ** FALSE if the first comparison is not NULL */ |
| destNotNull = destIfFalse; |
| } |
| for(i=0; i<nVector; i++){ |
| Expr *p; |
| CollSeq *pColl; |
| int r3 = sqlite3GetTempReg(pParse); |
| p = sqlite3VectorFieldSubexpr(pLeft, i); |
| pColl = sqlite3ExprCollSeq(pParse, p); |
| sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3); |
| sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3, |
| (void*)pColl, P4_COLLSEQ); |
| VdbeCoverage(v); |
| sqlite3ReleaseTempReg(pParse, r3); |
| } |
| sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); |
| if( nVector>1 ){ |
| sqlite3VdbeResolveLabel(v, destNotNull); |
| sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1); |
| VdbeCoverage(v); |
| |
| /* Step 7: If we reach this point, we know that the result must |
| ** be false. */ |
| sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); |
| } |
| |
| /* Jumps here in order to return true. */ |
| sqlite3VdbeJumpHere(v, addrTruthOp); |
| |
| sqlite3ExprCodeIN_finished: |
| if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs); |
| VdbeComment((v, "end IN expr")); |
| sqlite3ExprCodeIN_oom_error: |
| sqlite3DbFree(pParse->db, aiMap); |
| sqlite3DbFree(pParse->db, zAff); |
| } |
| #endif /* SQLITE_OMIT_SUBQUERY */ |
| |
| #ifndef SQLITE_OMIT_FLOATING_POINT |
| /* |
| ** Generate an instruction that will put the floating point |
| ** value described by z[0..n-1] into register iMem. |
| ** |
| ** The z[] string will probably not be zero-terminated. But the |
| ** z[n] character is guaranteed to be something that does not look |
| ** like the continuation of the number. |
| */ |
| static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ |
| if( ALWAYS(z!=0) ){ |
| double value; |
| sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); |
| assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ |
| if( negateFlag ) value = -value; |
| sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); |
| } |
| } |
| #endif |
| |
| |
| /* |
| ** Generate an instruction that will put the integer describe by |
| ** text z[0..n-1] into register iMem. |
| ** |
| ** Expr.u.zToken is always UTF8 and zero-terminated. |
| */ |
| static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ |
| Vdbe *v = pParse->pVdbe; |
| if( pExpr->flags & EP_IntValue ){ |
| int i = pExpr->u.iValue; |
| assert( i>=0 ); |
| if( negFlag ) i = -i; |
| sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); |
| }else{ |
| int c; |
| i64 value; |
| const char *z = pExpr->u.zToken; |
| assert( z!=0 ); |
| c = sqlite3DecOrHexToI64(z, &value); |
| if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){ |
| #ifdef SQLITE_OMIT_FLOATING_POINT |
| sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr); |
| #else |
| #ifndef SQLITE_OMIT_HEX_INTEGER |
| if( sqlite3_strnicmp(z,"0x",2)==0 ){ |
| sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T", |
| negFlag?"-":"",pExpr); |
| }else |
| #endif |
| { |
| codeReal(v, z, negFlag, iMem); |
| } |
| #endif |
| }else{ |
| if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; } |
| sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); |
| } |
| } |
| } |
| |
| |
| /* Generate code that will load into register regOut a value that is |
| ** appropriate for the iIdxCol-th column of index pIdx. |
| */ |
| void sqlite3ExprCodeLoadIndexColumn( |
| Parse *pParse, /* The parsing context */ |
| Index *pIdx, /* The index whose column is to be loaded */ |
| int iTabCur, /* Cursor pointing to a table row */ |
| int iIdxCol, /* The column of the index to be loaded */ |
| int regOut /* Store the index column value in this register */ |
| ){ |
| i16 iTabCol = pIdx->aiColumn[iIdxCol]; |
| if( iTabCol==XN_EXPR ){ |
| assert( pIdx->aColExpr ); |
| assert( pIdx->aColExpr->nExpr>iIdxCol ); |
| pParse->iSelfTab = iTabCur + 1; |
| sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); |
| pParse->iSelfTab = 0; |
| }else{ |
| sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, |
| iTabCol, regOut); |
| } |
| } |
| |
| #ifndef SQLITE_OMIT_GENERATED_COLUMNS |
| /* |
| ** Generate code that will compute the value of generated column pCol |
| ** and store the result in register regOut |
| */ |
| void sqlite3ExprCodeGeneratedColumn( |
| Parse *pParse, /* Parsing context */ |
| Table *pTab, /* Table containing the generated column */ |
| Column *pCol, /* The generated column */ |
| int regOut /* Put the result in this register */ |
| ){ |
| int iAddr; |
| Vdbe *v = pParse->pVdbe; |
| assert( v!=0 ); |
| assert( pParse->iSelfTab!=0 ); |
| if( pParse->iSelfTab>0 ){ |
| iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut); |
| }else{ |
| iAddr = 0; |
| } |
| sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut); |
| if( pCol->affinity>=SQLITE_AFF_TEXT ){ |
| sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1); |
| } |
| if( iAddr ) sqlite3VdbeJumpHere(v, iAddr); |
| } |
| #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ |
| |
| /* |
| ** Generate code to extract the value of the iCol-th column of a table. |
| */ |
| void sqlite3ExprCodeGetColumnOfTable( |
| Vdbe *v, /* Parsing context */ |
| Table *pTab, /* The table containing the value */ |
| int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ |
| int iCol, /* Index of the column to extract */ |
| int regOut /* Extract the value into this register */ |
| ){ |
| Column *pCol; |
| assert( v!=0 ); |
| if( pTab==0 ){ |
| sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut); |
| return; |
| } |
| if( iCol<0 || iCol==pTab->iPKey ){ |
| sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); |
| VdbeComment((v, "%s.rowid", pTab->zName)); |
| }else{ |
| int op; |
| int x; |
| if( IsVirtual(pTab) ){ |
| op = OP_VColumn; |
| x = iCol; |
| #ifndef SQLITE_OMIT_GENERATED_COLUMNS |
| }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){ |
| Parse *pParse = sqlite3VdbeParser(v); |
| if( pCol->colFlags & COLFLAG_BUSY ){ |
| sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", |
| pCol->zCnName); |
| }else{ |
| int savedSelfTab = pParse->iSelfTab; |
| pCol->colFlags |= COLFLAG_BUSY; |
| pParse->iSelfTab = iTabCur+1; |
| sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut); |
| pParse->iSelfTab = savedSelfTab; |
| pCol->colFlags &= ~COLFLAG_BUSY; |
| } |
| return; |
| #endif |
| }else if( !HasRowid(pTab) ){ |
| testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) ); |
| x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol); |
| op = OP_Column; |
| }else{ |
| x = sqlite3TableColumnToStorage(pTab,iCol); |
| testcase( x!=iCol ); |
| op = OP_Column; |
| } |
| sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); |
| sqlite3ColumnDefault(v, pTab, iCol, regOut); |
| } |
| } |
| |
| /* |
| ** Generate code that will extract the iColumn-th column from |
| ** table pTab and store the column value in register iReg. |
| ** |
| ** There must be an open cursor to pTab in iTable when this routine |
| ** is called. If iColumn<0 then code is generated that extracts the rowid. |
| */ |
| int sqlite3ExprCodeGetColumn( |
| Parse *pParse, /* Parsing and code generating context */ |
| Table *pTab, /* Description of the table we are reading from */ |
| int iColumn, /* Index of the table column */ |
| int iTable, /* The cursor pointing to the table */ |
| int iReg, /* Store results here */ |
| u8 p5 /* P5 value for OP_Column + FLAGS */ |
| ){ |
| assert( pParse->pVdbe!=0 ); |
| sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg); |
| if( p5 ){ |
| VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1); |
| if( pOp->opcode==OP_Column ) pOp->p5 = p5; |
| } |
| return iReg; |
| } |
| |
| /* |
| ** Generate code to move content from registers iFrom...iFrom+nReg-1 |
| ** over to iTo..iTo+nReg-1. |
| */ |
| void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ |
| sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); |
| } |
| |
| /* |
| ** Convert a scalar expression node to a TK_REGISTER referencing |
| ** register iReg. The caller must ensure that iReg already contains |
| ** the correct value for the expression. |
| */ |
| static void exprToRegister(Expr *pExpr, int iReg){ |
| Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr); |
| if( NEVER(p==0) ) return; |
| p->op2 = p->op; |
| p->op = TK_REGISTER; |
| p->iTable = iReg; |
| ExprClearProperty(p, EP_Skip); |
| } |
| |
| /* |
| ** Evaluate an expression (either a vector or a scalar expression) and store |
| ** the result in continguous temporary registers. Return the index of |
| ** the first register used to store the result. |
| ** |
| ** If the returned result register is a temporary scalar, then also write |
| ** that register number into *piFreeable. If the returned result register |
| ** is not a temporary or if the expression is a vector set *piFreeable |
| ** to 0. |
| */ |
| static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){ |
| int iResult; |
| int nResult = sqlite3ExprVectorSize(p); |
| if( nResult==1 ){ |
| iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable); |
| }else{ |
| *piFreeable = 0; |
| if( p->op==TK_SELECT ){ |
| #if SQLITE_OMIT_SUBQUERY |
| iResult = 0; |
| #else |
| iResult = sqlite3CodeSubselect(pParse, p); |
| #endif |
| }else{ |
| int i; |
| iResult = pParse->nMem+1; |
| pParse->nMem += nResult; |
| assert( ExprUseXList(p) ); |
| for(i=0; i<nResult; i++){ |
| sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult); |
| } |
| } |
| } |
| return iResult; |
| } |
| |
| /* |
| ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5) |
| ** so that a subsequent copy will not be merged into this one. |
| */ |
| static void setDoNotMergeFlagOnCopy(Vdbe *v){ |
| if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){ |
| sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */ |
| } |
| } |
| |
| /* |
| ** Generate code to implement special SQL functions that are implemented |
| ** in-line rather than by using the usual callbacks. |
| */ |
| static int exprCodeInlineFunction( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pFarg, /* List of function arguments */ |
| int iFuncId, /* Function ID. One of the INTFUNC_... values */ |
| int target /* Store function result in this register */ |
| ){ |
| int nFarg; |
| Vdbe *v = pParse->pVdbe; |
| assert( v!=0 ); |
| assert( pFarg!=0 ); |
| nFarg = pFarg->nExpr; |
| assert( nFarg>0 ); /* All in-line functions have at least one argument */ |
| switch( iFuncId ){ |
| case INLINEFUNC_coalesce: { |
| /* Attempt a direct implementation of the built-in COALESCE() and |
| ** IFNULL() functions. This avoids unnecessary evaluation of |
| ** arguments past the first non-NULL argument. |
| */ |
| int endCoalesce = sqlite3VdbeMakeLabel(pParse); |
| int i; |
| assert( nFarg>=2 ); |
| sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); |
| for(i=1; i<nFarg; i++){ |
| sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); |
| VdbeCoverage(v); |
| sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); |
| } |
| setDoNotMergeFlagOnCopy(v); |
| sqlite3VdbeResolveLabel(v, endCoalesce); |
| break; |
| } |
| case INLINEFUNC_iif: { |
| Expr caseExpr; |
| memset(&caseExpr, 0, sizeof(caseExpr)); |
| caseExpr.op = TK_CASE; |
| caseExpr.x.pList = pFarg; |
| return sqlite3ExprCodeTarget(pParse, &caseExpr, target); |
| } |
| #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC |
| case INLINEFUNC_sqlite_offset: { |
| Expr *pArg = pFarg->a[0].pExpr; |
| if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){ |
| sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target); |
| }else{ |
| sqlite3VdbeAddOp2(v, OP_Null, 0, target); |
| } |
| break; |
| } |
| #endif |
| default: { |
| /* The UNLIKELY() function is a no-op. The result is the value |
| ** of the first argument. |
| */ |
| assert( nFarg==1 || nFarg==2 ); |
| target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); |
| break; |
| } |
| |
| /*********************************************************************** |
| ** Test-only SQL functions that are only usable if enabled |
| ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS |
| */ |
| #if !defined(SQLITE_UNTESTABLE) |
| case INLINEFUNC_expr_compare: { |
| /* Compare two expressions using sqlite3ExprCompare() */ |
| assert( nFarg==2 ); |
| sqlite3VdbeAddOp2(v, OP_Integer, |
| sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), |
| target); |
| break; |
| } |
| |
| case INLINEFUNC_expr_implies_expr: { |
| /* Compare two expressions using sqlite3ExprImpliesExpr() */ |
| assert( nFarg==2 ); |
| sqlite3VdbeAddOp2(v, OP_Integer, |
| sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1), |
| target); |
| break; |
| } |
| |
| case INLINEFUNC_implies_nonnull_row: { |
| /* REsult of sqlite3ExprImpliesNonNullRow() */ |
| Expr *pA1; |
| assert( nFarg==2 ); |
| pA1 = pFarg->a[1].pExpr; |
| if( pA1->op==TK_COLUMN ){ |
| sqlite3VdbeAddOp2(v, OP_Integer, |
| sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable), |
| target); |
| }else{ |
| sqlite3VdbeAddOp2(v, OP_Null, 0, target); |
| } |
| break; |
| } |
| |
| case INLINEFUNC_affinity: { |
| /* The AFFINITY() function evaluates to a string that describes |
| ** the type affinity of the argument. This is used for testing of |
| ** the SQLite type logic. |
| */ |
| const char *azAff[] = { "blob", "text", "numeric", "integer", "real" }; |
| char aff; |
| assert( nFarg==1 ); |
| aff = sqlite3ExprAffinity(pFarg->a[0].pExpr); |
| sqlite3VdbeLoadString(v, target, |
| (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]); |
| break; |
| } |
| #endif /* !defined(SQLITE_UNTESTABLE) */ |
| } |
| return target; |
| } |
| |
| |
| /* |
| ** Generate code into the current Vdbe to evaluate the given |
| ** expression. Attempt to store the results in register "target". |
| ** Return the register where results are stored. |
| ** |
| ** With this routine, there is no guarantee that results will |
| ** be stored in target. The result might be stored in some other |
| ** register if it is convenient to do so. The calling function |
| ** must check the return code and move the results to the desired |
| ** register. |
| */ |
| int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ |
| Vdbe *v = pParse->pVdbe; /* The VM under construction */ |
| int op; /* The opcode being coded */ |
| int inReg = target; /* Results stored in register inReg */ |
| int regFree1 = 0; /* If non-zero free this temporary register */ |
| int regFree2 = 0; /* If non-zero free this temporary register */ |
| int r1, r2; /* Various register numbers */ |
| Expr tempX; /* Temporary expression node */ |
| int p5 = 0; |
| |
| assert( target>0 && target<=pParse->nMem ); |
| assert( v!=0 ); |
| |
| expr_code_doover: |
| if( pExpr==0 ){ |
| op = TK_NULL; |
| }else{ |
| assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); |
| op = pExpr->op; |
| } |
| switch( op ){ |
| case TK_AGG_COLUMN: { |
| AggInfo *pAggInfo = pExpr->pAggInfo; |
| struct AggInfo_col *pCol; |
| assert( pAggInfo!=0 ); |
| assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn ); |
| pCol = &pAggInfo->aCol[pExpr->iAgg]; |
| if( !pAggInfo->directMode ){ |
| assert( pCol->iMem>0 ); |
| return pCol->iMem; |
| }else if( pAggInfo->useSortingIdx ){ |
| Table *pTab = pCol->pTab; |
| sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, |
| pCol->iSorterColumn, target); |
| if( pCol->iColumn<0 ){ |
| VdbeComment((v,"%s.rowid",pTab->zName)); |
| }else{ |
| VdbeComment((v,"%s.%s", |
| pTab->zName, pTab->aCol[pCol->iColumn].zCnName)); |
| if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){ |
| sqlite3VdbeAddOp1(v, OP_RealAffinity, target); |
| } |
| } |
| return target; |
| } |
| /* Otherwise, fall thru into the TK_COLUMN case */ |
| /* no break */ deliberate_fall_through |
| } |
| case TK_COLUMN: { |
| int iTab = pExpr->iTable; |
| int iReg; |
| if( ExprHasProperty(pExpr, EP_FixedCol) ){ |
| /* This COLUMN expression is really a constant due to WHERE clause |
| ** constraints, and that constant is coded by the pExpr->pLeft |
| ** expresssion. However, make sure the constant has the correct |
| ** datatype by applying the Affinity of the table column to the |
| ** constant. |
| */ |
| int aff; |
| iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); |
| assert( ExprUseYTab(pExpr) ); |
| if( pExpr->y.pTab ){ |
| aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); |
| }else{ |
| aff = pExpr->affExpr; |
| } |
| if( aff>SQLITE_AFF_BLOB ){ |
| static const char zAff[] = "B\000C\000D\000E"; |
| assert( SQLITE_AFF_BLOB=='A' ); |
| assert( SQLITE_AFF_TEXT=='B' ); |
| sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0, |
| &zAff[(aff-'B')*2], P4_STATIC); |
| } |
| return iReg; |
| } |
| if( iTab<0 ){ |
| if( pParse->iSelfTab<0 ){ |
| /* Other columns in the same row for CHECK constraints or |
| ** generated columns or for inserting into partial index. |
| ** The row is unpacked into registers beginning at |
| ** 0-(pParse->iSelfTab). The rowid (if any) is in a register |
| ** immediately prior to the first column. |
| */ |
| Column *pCol; |
| Table *pTab; |
| int iSrc; |
| int iCol = pExpr->iColumn; |
| assert( ExprUseYTab(pExpr) ); |
| pTab = pExpr->y.pTab; |
| assert( pTab!=0 ); |
| assert( iCol>=XN_ROWID ); |
| assert( iCol<pTab->nCol ); |
| if( iCol<0 ){ |
| return -1-pParse->iSelfTab; |
| } |
| pCol = pTab->aCol + iCol; |
| testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) ); |
| iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab; |
| #ifndef SQLITE_OMIT_GENERATED_COLUMNS |
| if( pCol->colFlags & COLFLAG_GENERATED ){ |
| if( pCol->colFlags & COLFLAG_BUSY ){ |
| sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", |
| pCol->zCnName); |
| return 0; |
| } |
| pCol->colFlags |= COLFLAG_BUSY; |
| if( pCol->colFlags & COLFLAG_NOTAVAIL ){ |
| sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc); |
| } |
| pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL); |
| return iSrc; |
| }else |
| #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ |
| if( pCol->affinity==SQLITE_AFF_REAL ){ |
| sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target); |
| sqlite3VdbeAddOp1(v, OP_RealAffinity, target); |
| return target; |
| }else{ |
| return iSrc; |
| } |
| }else{ |
| /* Coding an expression that is part of an index where column names |
| ** in the index refer to the table to which the index belongs */ |
| iTab = pParse->iSelfTab - 1; |
| } |
| } |
| assert( ExprUseYTab(pExpr) ); |
| iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, |
| pExpr->iColumn, iTab, target, |
| pExpr->op2); |
| if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){ |
| sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); |
| } |
| return iReg; |
| } |
| case TK_INTEGER: { |
| codeInteger(pParse, pExpr, 0, target); |
| return target; |
| } |
| case TK_TRUEFALSE: { |
| sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target); |
| return target; |
| } |
| #ifndef SQLITE_OMIT_FLOATING_POINT |
| case TK_FLOAT: { |
| assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| codeReal(v, pExpr->u.zToken, 0, target); |
| return target; |
| } |
| #endif |
| case TK_STRING: { |
| assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| sqlite3VdbeLoadString(v, target, pExpr->u.zToken); |
| return target; |
| } |
| default: { |
| /* Make NULL the default case so that if a bug causes an illegal |
| ** Expr node to be passed into this function, it will be handled |
| ** sanely and not crash. But keep the assert() to bring the problem |
| ** to the attention of the developers. */ |
| assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed ); |
| sqlite3VdbeAddOp2(v, OP_Null, 0, target); |
| return target; |
| } |
| #ifndef SQLITE_OMIT_BLOB_LITERAL |
| case TK_BLOB: { |
| int n; |
| const char *z; |
| char *zBlob; |
| assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); |
| assert( pExpr->u.zToken[1]=='\'' ); |
| z = &pExpr->u.zToken[2]; |
| n = sqlite3Strlen30(z) - 1; |
| assert( z[n]=='\'' ); |
| zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); |
| sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); |
| return target; |
| } |
| #endif |
| case TK_VARIABLE: { |
| assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| assert( pExpr->u.zToken!=0 ); |
| assert( pExpr->u.zToken[0]!=0 ); |
| sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); |
| if( pExpr->u.zToken[1]!=0 ){ |
| const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn); |
| assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) ); |
| pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */ |
| sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC); |
| } |
| return target; |
| } |
| case TK_REGISTER: { |
| return pExpr->iTable; |
| } |
| #ifndef SQLITE_OMIT_CAST |
| case TK_CAST: { |
| /* Expressions of the form: CAST(pLeft AS token) */ |
| inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); |
| if( inReg!=target ){ |
| sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); |
| inReg = target; |
| } |
| assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| sqlite3VdbeAddOp2(v, OP_Cast, target, |
| sqlite3AffinityType(pExpr->u.zToken, 0)); |
| return inReg; |
| } |
| #endif /* SQLITE_OMIT_CAST */ |
| case TK_IS: |
| case TK_ISNOT: |
| op = (op==TK_IS) ? TK_EQ : TK_NE; |
| p5 = SQLITE_NULLEQ; |
| /* fall-through */ |
| case TK_LT: |
| case TK_LE: |
| case TK_GT: |
| case TK_GE: |
| case TK_NE: |
| case TK_EQ: { |
| Expr *pLeft = pExpr->pLeft; |
| if( sqlite3ExprIsVector(pLeft) ){ |
| codeVectorCompare(pParse, pExpr, target, op, p5); |
| }else{ |
| r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); |
| r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
| sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg); |
| codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2, |
| sqlite3VdbeCurrentAddr(v)+2, p5, |
| ExprHasProperty(pExpr,EP_Commuted)); |
| assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); |
| assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); |
| assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); |
| assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); |
| assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); |
| assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); |
| if( p5==SQLITE_NULLEQ ){ |
| sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg); |
| }else{ |
| sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2); |
| } |
| testcase( regFree1==0 ); |
| testcase( regFree2==0 ); |
| } |
| break; |
| } |
| case TK_AND: |
| case TK_OR: |
| case TK_PLUS: |
| case TK_STAR: |
| case TK_MINUS: |
| case TK_REM: |
| case TK_BITAND: |
| case TK_BITOR: |
| case TK_SLASH: |
| case TK_LSHIFT: |
| case TK_RSHIFT: |
| case TK_CONCAT: { |
| assert( TK_AND==OP_And ); testcase( op==TK_AND ); |
| assert( TK_OR==OP_Or ); testcase( op==TK_OR ); |
| assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); |
| assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); |
| assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); |
| assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); |
| assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); |
| assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); |
| assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); |
| assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); |
| assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); |
| r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
| r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
| sqlite3VdbeAddOp3(v, op, r2, r1, target); |
| testcase( regFree1==0 ); |
| testcase( regFree2==0 ); |
| break; |
| } |
| case TK_UMINUS: { |
| Expr *pLeft = pExpr->pLeft; |
| assert( pLeft ); |
| if( pLeft->op==TK_INTEGER ){ |
| codeInteger(pParse, pLeft, 1, target); |
| return target; |
| #ifndef SQLITE_OMIT_FLOATING_POINT |
| }else if( pLeft->op==TK_FLOAT ){ |
| assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| codeReal(v, pLeft->u.zToken, 1, target); |
| return target; |
| #endif |
| }else{ |
| tempX.op = TK_INTEGER; |
| tempX.flags = EP_IntValue|EP_TokenOnly; |
| tempX.u.iValue = 0; |
| ExprClearVVAProperties(&tempX); |
| r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); |
| r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); |
| sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); |
| testcase( regFree2==0 ); |
| } |
| break; |
| } |
| case TK_BITNOT: |
| case TK_NOT: { |
| assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); |
| assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); |
| r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
| testcase( regFree1==0 ); |
| sqlite3VdbeAddOp2(v, op, r1, inReg); |
| break; |
| } |
| case TK_TRUTH: { |
| int isTrue; /* IS TRUE or IS NOT TRUE */ |
| int bNormal; /* IS TRUE or IS FALSE */ |
| r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
| testcase( regFree1==0 ); |
| isTrue = sqlite3ExprTruthValue(pExpr->pRight); |
| bNormal = pExpr->op2==TK_IS; |
| testcase( isTrue && bNormal); |
| testcase( !isTrue && bNormal); |
| sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal); |
| break; |
| } |
| case TK_ISNULL: |
| case TK_NOTNULL: { |
| int addr; |
| assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); |
| assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); |
| sqlite3VdbeAddOp2(v, OP_Integer, 1, target); |
| r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
| testcase( regFree1==0 ); |
| addr = sqlite3VdbeAddOp1(v, op, r1); |
| VdbeCoverageIf(v, op==TK_ISNULL); |
| VdbeCoverageIf(v, op==TK_NOTNULL); |
| sqlite3VdbeAddOp2(v, OP_Integer, 0, target); |
| sqlite3VdbeJumpHere(v, addr); |
| break; |
| } |
| case TK_AGG_FUNCTION: { |
| AggInfo *pInfo = pExpr->pAggInfo; |
| if( pInfo==0 |
| || NEVER(pExpr->iAgg<0) |
| || NEVER(pExpr->iAgg>=pInfo->nFunc) |
| ){ |
| assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr); |
| }else{ |
| return pInfo->aFunc[pExpr->iAgg].iMem; |
| } |
| break; |
| } |
| case TK_FUNCTION: { |
| ExprList *pFarg; /* List of function arguments */ |
| int nFarg; /* Number of function arguments */ |
| FuncDef *pDef; /* The function definition object */ |
| const char *zId; /* The function name */ |
| u32 constMask = 0; /* Mask of function arguments that are constant */ |
| int i; /* Loop counter */ |
| sqlite3 *db = pParse->db; /* The database connection */ |
| u8 enc = ENC(db); /* The text encoding used by this database */ |
| CollSeq *pColl = 0; /* A collating sequence */ |
| |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| if( ExprHasProperty(pExpr, EP_WinFunc) ){ |
| return pExpr->y.pWin->regResult; |
| } |
| #endif |
| |
| if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ |
| /* SQL functions can be expensive. So try to avoid running them |
| ** multiple times if we know they always give the same result */ |
| return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); |
| } |
| assert( !ExprHasProperty(pExpr, EP_TokenOnly) ); |
| assert( ExprUseXList(pExpr) ); |
| pFarg = pExpr->x.pList; |
| nFarg = pFarg ? pFarg->nExpr : 0; |
| assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| zId = pExpr->u.zToken; |
| pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0); |
| #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION |
| if( pDef==0 && pParse->explain ){ |
| pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0); |
| } |
| #endif |
| if( pDef==0 || pDef->xFinalize!=0 ){ |
| sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr); |
| break; |
| } |
| if( pDef->funcFlags & SQLITE_FUNC_INLINE ){ |
| assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 ); |
| assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 ); |
| return exprCodeInlineFunction(pParse, pFarg, |
| SQLITE_PTR_TO_INT(pDef->pUserData), target); |
| }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){ |
| sqlite3ExprFunctionUsable(pParse, pExpr, pDef); |
| } |
| |
| for(i=0; i<nFarg; i++){ |
| if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ |
| testcase( i==31 ); |
| constMask |= MASKBIT32(i); |
| } |
| if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ |
| pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); |
| } |
| } |
| if( pFarg ){ |
| if( constMask ){ |
| r1 = pParse->nMem+1; |
| pParse->nMem += nFarg; |
| }else{ |
| r1 = sqlite3GetTempRange(pParse, nFarg); |
| } |
| |
| /* For length() and typeof() functions with a column argument, |
| ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG |
| ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data |
| ** loading. |
| */ |
| if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ |
| u8 exprOp; |
| assert( nFarg==1 ); |
| assert( pFarg->a[0].pExpr!=0 ); |
| exprOp = pFarg->a[0].pExpr->op; |
| if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ |
| assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); |
| assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); |
| testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); |
| pFarg->a[0].pExpr->op2 = |
| pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); |
| } |
| } |
| |
| sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, |
| SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); |
| }else{ |
| r1 = 0; |
| } |
| #ifndef SQLITE_OMIT_VIRTUALTABLE |
| /* Possibly overload the function if the first argument is |
| ** a virtual table column. |
| ** |
| ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the |
| ** second argument, not the first, as the argument to test to |
| ** see if it is a column in a virtual table. This is done because |
| ** the left operand of infix functions (the operand we want to |
| ** control overloading) ends up as the second argument to the |
| ** function. The expression "A glob B" is equivalent to |
| ** "glob(B,A). We want to use the A in "A glob B" to test |
| ** for function overloading. But we use the B term in "glob(B,A)". |
| */ |
| if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){ |
| pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); |
| }else if( nFarg>0 ){ |
| pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); |
| } |
| #endif |
| if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ |
| if( !pColl ) pColl = db->pDfltColl; |
| sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); |
| } |
| sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg, |
| pDef, pExpr->op2); |
| if( nFarg ){ |
| if( constMask==0 ){ |
| sqlite3ReleaseTempRange(pParse, r1, nFarg); |
| }else{ |
| sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1); |
| } |
| } |
| return target; |
| } |
| #ifndef SQLITE_OMIT_SUBQUERY |
| case TK_EXISTS: |
| case TK_SELECT: { |
| int nCol; |
| testcase( op==TK_EXISTS ); |
| testcase( op==TK_SELECT ); |
| if( pParse->db->mallocFailed ){ |
| return 0; |
| }else if( op==TK_SELECT |
| && ALWAYS( ExprUseXSelect(pExpr) ) |
| && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 |
| ){ |
| sqlite3SubselectError(pParse, nCol, 1); |
| }else{ |
| return sqlite3CodeSubselect(pParse, pExpr); |
| } |
| break; |
| } |
| case TK_SELECT_COLUMN: { |
| int n; |
| Expr *pLeft = pExpr->pLeft; |
| if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){ |
| pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft); |
| pLeft->op2 = pParse->withinRJSubrtn; |
| } |
| assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR ); |
| n = sqlite3ExprVectorSize(pLeft); |
| if( pExpr->iTable!=n ){ |
| sqlite3ErrorMsg(pParse, "%d columns assigned %d values", |
| pExpr->iTable, n); |
| } |
| return pLeft->iTable + pExpr->iColumn; |
| } |
| case TK_IN: { |
| int destIfFalse = sqlite3VdbeMakeLabel(pParse); |
| int destIfNull = sqlite3VdbeMakeLabel(pParse); |
| sqlite3VdbeAddOp2(v, OP_Null, 0, target); |
| sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); |
| sqlite3VdbeAddOp2(v, OP_Integer, 1, target); |
| sqlite3VdbeResolveLabel(v, destIfFalse); |
| sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); |
| sqlite3VdbeResolveLabel(v, destIfNull); |
| return target; |
| } |
| #endif /* SQLITE_OMIT_SUBQUERY */ |
| |
| |
| /* |
| ** x BETWEEN y AND z |
| ** |
| ** This is equivalent to |
| ** |
| ** x>=y AND x<=z |
| ** |
| ** X is stored in pExpr->pLeft. |
| ** Y is stored in pExpr->pList->a[0].pExpr. |
| ** Z is stored in pExpr->pList->a[1].pExpr. |
| */ |
| case TK_BETWEEN: { |
| exprCodeBetween(pParse, pExpr, target, 0, 0); |
| return target; |
| } |
| case TK_COLLATE: { |
| if( !ExprHasProperty(pExpr, EP_Collate) |
| && ALWAYS(pExpr->pLeft) |
| && pExpr->pLeft->op==TK_FUNCTION |
| ){ |
| inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); |
| if( inReg!=target ){ |
| sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); |
| inReg = target; |
| } |
| sqlite3VdbeAddOp1(v, OP_ClrSubtype, inReg); |
| return inReg; |
| }else{ |
| pExpr = pExpr->pLeft; |
| goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */ |
| } |
| } |
| case TK_SPAN: |
| case TK_UPLUS: { |
| pExpr = pExpr->pLeft; |
| goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */ |
| } |
| |
| case TK_TRIGGER: { |
| /* If the opcode is TK_TRIGGER, then the expression is a reference |
| ** to a column in the new.* or old.* pseudo-tables available to |
| ** trigger programs. In this case Expr.iTable is set to 1 for the |
| ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn |
| ** is set to the column of the pseudo-table to read, or to -1 to |
| ** read the rowid field. |
| ** |
| ** The expression is implemented using an OP_Param opcode. The p1 |
| ** parameter is set to 0 for an old.rowid reference, or to (i+1) |
| ** to reference another column of the old.* pseudo-table, where |
| ** i is the index of the column. For a new.rowid reference, p1 is |
| ** set to (n+1), where n is the number of columns in each pseudo-table. |
| ** For a reference to any other column in the new.* pseudo-table, p1 |
| ** is set to (n+2+i), where n and i are as defined previously. For |
| ** example, if the table on which triggers are being fired is |
| ** declared as: |
| ** |
| ** CREATE TABLE t1(a, b); |
| ** |
| ** Then p1 is interpreted as follows: |
| ** |
| ** p1==0 -> old.rowid p1==3 -> new.rowid |
| ** p1==1 -> old.a p1==4 -> new.a |
| ** p1==2 -> old.b p1==5 -> new.b |
| */ |
| Table *pTab; |
| int iCol; |
| int p1; |
| |
| assert( ExprUseYTab(pExpr) ); |
| pTab = pExpr->y.pTab; |
| iCol = pExpr->iColumn; |
| p1 = pExpr->iTable * (pTab->nCol+1) + 1 |
| + sqlite3TableColumnToStorage(pTab, iCol); |
| |
| assert( pExpr->iTable==0 || pExpr->iTable==1 ); |
| assert( iCol>=-1 && iCol<pTab->nCol ); |
| assert( pTab->iPKey<0 || iCol!=pTab->iPKey ); |
| assert( p1>=0 && p1<(pTab->nCol*2+2) ); |
| |
| sqlite3VdbeAddOp2(v, OP_Param, p1, target); |
| VdbeComment((v, "r[%d]=%s.%s", target, |
| (pExpr->iTable ? "new" : "old"), |
| (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName) |
| )); |
| |
| #ifndef SQLITE_OMIT_FLOATING_POINT |
| /* If the column has REAL affinity, it may currently be stored as an |
| ** integer. Use OP_RealAffinity to make sure it is really real. |
| ** |
| ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to |
| ** floating point when extracting it from the record. */ |
| if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){ |
| sqlite3VdbeAddOp1(v, OP_RealAffinity, target); |
| } |
| #endif |
| break; |
| } |
| |
| case TK_VECTOR: { |
| sqlite3ErrorMsg(pParse, "row value misused"); |
| break; |
| } |
| |
| /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions |
| ** that derive from the right-hand table of a LEFT JOIN. The |
| ** Expr.iTable value is the table number for the right-hand table. |
| ** The expression is only evaluated if that table is not currently |
| ** on a LEFT JOIN NULL row. |
| */ |
| case TK_IF_NULL_ROW: { |
| int addrINR; |
| u8 okConstFactor = pParse->okConstFactor; |
| addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable); |
| /* Temporarily disable factoring of constant expressions, since |
| ** even though expressions may appear to be constant, they are not |
| ** really constant because they originate from the right-hand side |
| ** of a LEFT JOIN. */ |
| pParse->okConstFactor = 0; |
| inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); |
| pParse->okConstFactor = okConstFactor; |
| sqlite3VdbeJumpHere(v, addrINR); |
| sqlite3VdbeChangeP3(v, addrINR, inReg); |
| break; |
| } |
| |
| /* |
| ** Form A: |
| ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END |
| ** |
| ** Form B: |
| ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END |
| ** |
| ** Form A is can be transformed into the equivalent form B as follows: |
| ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... |
| ** WHEN x=eN THEN rN ELSE y END |
| ** |
| ** X (if it exists) is in pExpr->pLeft. |
| ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is |
| ** odd. The Y is also optional. If the number of elements in x.pList |
| ** is even, then Y is omitted and the "otherwise" result is NULL. |
| ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. |
| ** |
| ** The result of the expression is the Ri for the first matching Ei, |
| ** or if there is no matching Ei, the ELSE term Y, or if there is |
| ** no ELSE term, NULL. |
| */ |
| case TK_CASE: { |
| int endLabel; /* GOTO label for end of CASE stmt */ |
| int nextCase; /* GOTO label for next WHEN clause */ |
| int nExpr; /* 2x number of WHEN terms */ |
| int i; /* Loop counter */ |
| ExprList *pEList; /* List of WHEN terms */ |
| struct ExprList_item *aListelem; /* Array of WHEN terms */ |
| Expr opCompare; /* The X==Ei expression */ |
| Expr *pX; /* The X expression */ |
| Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ |
| Expr *pDel = 0; |
| sqlite3 *db = pParse->db; |
| |
| assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 ); |
| assert(pExpr->x.pList->nExpr > 0); |
| pEList = pExpr->x.pList; |
| aListelem = pEList->a; |
| nExpr = pEList->nExpr; |
| endLabel = sqlite3VdbeMakeLabel(pParse); |
| if( (pX = pExpr->pLeft)!=0 ){ |
| pDel = sqlite3ExprDup(db, pX, 0); |
| if( db->mallocFailed ){ |
| sqlite3ExprDelete(db, pDel); |
| break; |
| } |
| testcase( pX->op==TK_COLUMN ); |
| exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); |
| testcase( regFree1==0 ); |
| memset(&opCompare, 0, sizeof(opCompare)); |
| opCompare.op = TK_EQ; |
| opCompare.pLeft = pDel; |
| pTest = &opCompare; |
| /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: |
| ** The value in regFree1 might get SCopy-ed into the file result. |
| ** So make sure that the regFree1 register is not reused for other |
| ** purposes and possibly overwritten. */ |
| regFree1 = 0; |
| } |
| for(i=0; i<nExpr-1; i=i+2){ |
| if( pX ){ |
| assert( pTest!=0 ); |
| opCompare.pRight = aListelem[i].pExpr; |
| }else{ |
| pTest = aListelem[i].pExpr; |
| } |
| nextCase = sqlite3VdbeMakeLabel(pParse); |
| testcase( pTest->op==TK_COLUMN ); |
| sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); |
| testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); |
| sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); |
| sqlite3VdbeGoto(v, endLabel); |
| sqlite3VdbeResolveLabel(v, nextCase); |
| } |
| if( (nExpr&1)!=0 ){ |
| sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); |
| }else{ |
| sqlite3VdbeAddOp2(v, OP_Null, 0, target); |
| } |
| sqlite3ExprDelete(db, pDel); |
| setDoNotMergeFlagOnCopy(v); |
| sqlite3VdbeResolveLabel(v, endLabel); |
| break; |
| } |
| #ifndef SQLITE_OMIT_TRIGGER |
| case TK_RAISE: { |
| assert( pExpr->affExpr==OE_Rollback |
| || pExpr->affExpr==OE_Abort |
| || pExpr->affExpr==OE_Fail |
| || pExpr->affExpr==OE_Ignore |
| ); |
| if( !pParse->pTriggerTab && !pParse->nested ){ |
| sqlite3ErrorMsg(pParse, |
| "RAISE() may only be used within a trigger-program"); |
| return 0; |
| } |
| if( pExpr->affExpr==OE_Abort ){ |
| sqlite3MayAbort(pParse); |
| } |
| assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| if( pExpr->affExpr==OE_Ignore ){ |
| sqlite3VdbeAddOp4( |
| v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); |
| VdbeCoverage(v); |
| }else{ |
| sqlite3HaltConstraint(pParse, |
| pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR, |
| pExpr->affExpr, pExpr->u.zToken, 0, 0); |
| } |
| |
| break; |
| } |
| #endif |
| } |
| sqlite3ReleaseTempReg(pParse, regFree1); |
| sqlite3ReleaseTempReg(pParse, regFree2); |
| return inReg; |
| } |
| |
| /* |
| ** Generate code that will evaluate expression pExpr just one time |
| ** per prepared statement execution. |
| ** |
| ** If the expression uses functions (that might throw an exception) then |
| ** guard them with an OP_Once opcode to ensure that the code is only executed |
| ** once. If no functions are involved, then factor the code out and put it at |
| ** the end of the prepared statement in the initialization section. |
| ** |
| ** If regDest>=0 then the result is always stored in that register and the |
| ** result is not reusable. If regDest<0 then this routine is free to |
| ** store the value whereever it wants. The register where the expression |
| ** is stored is returned. When regDest<0, two identical expressions might |
| ** code to the same register, if they do not contain function calls and hence |
| ** are factored out into the initialization section at the end of the |
| ** prepared statement. |
| */ |
| int sqlite3ExprCodeRunJustOnce( |
| Parse *pParse, /* Parsing context */ |
| Expr *pExpr, /* The expression to code when the VDBE initializes */ |
| int regDest /* Store the value in this register */ |
| ){ |
| ExprList *p; |
| assert( ConstFactorOk(pParse) ); |
| p = pParse->pConstExpr; |
| if( regDest<0 && p ){ |
| struct ExprList_item *pItem; |
| int i; |
| for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ |
| if( pItem->fg.reusable |
| && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 |
| ){ |
| return pItem->u.iConstExprReg; |
| } |
| } |
| } |
| pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); |
| if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){ |
| Vdbe *v = pParse->pVdbe; |
| int addr; |
| assert( v ); |
| addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); |
| pParse->okConstFactor = 0; |
| if( !pParse->db->mallocFailed ){ |
| if( regDest<0 ) regDest = ++pParse->nMem; |
| sqlite3ExprCode(pParse, pExpr, regDest); |
| } |
| pParse->okConstFactor = 1; |
| sqlite3ExprDelete(pParse->db, pExpr); |
| sqlite3VdbeJumpHere(v, addr); |
| }else{ |
| p = sqlite3ExprListAppend(pParse, p, pExpr); |
| if( p ){ |
| struct ExprList_item *pItem = &p->a[p->nExpr-1]; |
| pItem->fg.reusable = regDest<0; |
| if( regDest<0 ) regDest = ++pParse->nMem; |
| pItem->u.iConstExprReg = regDest; |
| } |
| pParse->pConstExpr = p; |
| } |
| return regDest; |
| } |
| |
| /* |
| ** Generate code to evaluate an expression and store the results |
| ** into a register. Return the register number where the results |
| ** are stored. |
| ** |
| ** If the register is a temporary register that can be deallocated, |
| ** then write its number into *pReg. If the result register is not |
| ** a temporary, then set *pReg to zero. |
| ** |
| ** If pExpr is a constant, then this routine might generate this |
| ** code to fill the register in the initialization section of the |
| ** VDBE program, in order to factor it out of the evaluation loop. |
| */ |
| int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ |
| int r2; |
| pExpr = sqlite3ExprSkipCollateAndLikely(pExpr); |
| if( ConstFactorOk(pParse) |
| && ALWAYS(pExpr!=0) |
| && pExpr->op!=TK_REGISTER |
| && sqlite3ExprIsConstantNotJoin(pExpr) |
| ){ |
| *pReg = 0; |
| r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1); |
| }else{ |
| int r1 = sqlite3GetTempReg(pParse); |
| r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); |
| if( r2==r1 ){ |
| *pReg = r1; |
| }else{ |
| sqlite3ReleaseTempReg(pParse, r1); |
| *pReg = 0; |
| } |
| } |
| return r2; |
| } |
| |
| /* |
| ** Generate code that will evaluate expression pExpr and store the |
| ** results in register target. The results are guaranteed to appear |
| ** in register target. |
| */ |
| void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ |
| int inReg; |
| |
| assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) ); |
| assert( target>0 && target<=pParse->nMem ); |
| assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); |
| if( pParse->pVdbe==0 ) return; |
| inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); |
| if( inReg!=target ){ |
| u8 op; |
| if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){ |
| op = OP_Copy; |
| }else{ |
| op = OP_SCopy; |
| } |
| sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target); |
| } |
| } |
| |
| /* |
| ** Make a transient copy of expression pExpr and then code it using |
| ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() |
| ** except that the input expression is guaranteed to be unchanged. |
| */ |
| void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ |
| sqlite3 *db = pParse->db; |
| pExpr = sqlite3ExprDup(db, pExpr, 0); |
| if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); |
| sqlite3ExprDelete(db, pExpr); |
| } |
| |
| /* |
| ** Generate code that will evaluate expression pExpr and store the |
| ** results in register target. The results are guaranteed to appear |
| ** in register target. If the expression is constant, then this routine |
| ** might choose to code the expression at initialization time. |
| */ |
| void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ |
| if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){ |
| sqlite3ExprCodeRunJustOnce(pParse, pExpr, target); |
| }else{ |
| sqlite3ExprCodeCopy(pParse, pExpr, target); |
| } |
| } |
| |
| /* |
| ** Generate code that pushes the value of every element of the given |
| ** expression list into a sequence of registers beginning at target. |
| ** |
| ** Return the number of elements evaluated. The number returned will |
| ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF |
| ** is defined. |
| ** |
| ** The SQLITE_ECEL_DUP flag prevents the arguments from being |
| ** filled using OP_SCopy. OP_Copy must be used instead. |
| ** |
| ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be |
| ** factored out into initialization code. |
| ** |
| ** The SQLITE_ECEL_REF flag means that expressions in the list with |
| ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored |
| ** in registers at srcReg, and so the value can be copied from there. |
| ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0 |
| ** are simply omitted rather than being copied from srcReg. |
| */ |
| int sqlite3ExprCodeExprList( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pList, /* The expression list to be coded */ |
| int target, /* Where to write results */ |
| int srcReg, /* Source registers if SQLITE_ECEL_REF */ |
| u8 flags /* SQLITE_ECEL_* flags */ |
| ){ |
| struct ExprList_item *pItem; |
| int i, j, n; |
| u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; |
| Vdbe *v = pParse->pVdbe; |
| assert( pList!=0 ); |
| assert( target>0 ); |
| assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ |
| n = pList->nExpr; |
| if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; |
| for(pItem=pList->a, i=0; i<n; i++, pItem++){ |
| Expr *pExpr = pItem->pExpr; |
| #ifdef SQLITE_ENABLE_SORTER_REFERENCES |
| if( pItem->fg.bSorterRef ){ |
| i--; |
| n--; |
| }else |
| #endif |
| if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){ |
| if( flags & SQLITE_ECEL_OMITREF ){ |
| i--; |
| n--; |
| }else{ |
| sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); |
| } |
| }else if( (flags & SQLITE_ECEL_FACTOR)!=0 |
| && sqlite3ExprIsConstantNotJoin(pExpr) |
| ){ |
| sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i); |
| }else{ |
| int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); |
| if( inReg!=target+i ){ |
| VdbeOp *pOp; |
| if( copyOp==OP_Copy |
| && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy |
| && pOp->p1+pOp->p3+1==inReg |
| && pOp->p2+pOp->p3+1==target+i |
| && pOp->p5==0 /* The do-not-merge flag must be clear */ |
| ){ |
| pOp->p3++; |
| }else{ |
| sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); |
| } |
| } |
| } |
| } |
| return n; |
| } |
| |
| /* |
| ** Generate code for a BETWEEN operator. |
| ** |
| ** x BETWEEN y AND z |
| ** |
| ** The above is equivalent to |
| ** |
| ** x>=y AND x<=z |
| ** |
| ** Code it as such, taking care to do the common subexpression |
| ** elimination of x. |
| ** |
| ** The xJumpIf parameter determines details: |
| ** |
| ** NULL: Store the boolean result in reg[dest] |
| ** sqlite3ExprIfTrue: Jump to dest if true |
| ** sqlite3ExprIfFalse: Jump to dest if false |
| ** |
| ** The jumpIfNull parameter is ignored if xJumpIf is NULL. |
| */ |
| static void exprCodeBetween( |
| Parse *pParse, /* Parsing and code generating context */ |
| Expr *pExpr, /* The BETWEEN expression */ |
| int dest, /* Jump destination or storage location */ |
| void (*xJump)(Parse*,Expr*,int,int), /* Action to take */ |
| int jumpIfNull /* Take the jump if the BETWEEN is NULL */ |
| ){ |
| Expr exprAnd; /* The AND operator in x>=y AND x<=z */ |
| Expr compLeft; /* The x>=y term */ |
| Expr compRight; /* The x<=z term */ |
| int regFree1 = 0; /* Temporary use register */ |
| Expr *pDel = 0; |
| sqlite3 *db = pParse->db; |
| |
| memset(&compLeft, 0, sizeof(Expr)); |
| memset(&compRight, 0, sizeof(Expr)); |
| memset(&exprAnd, 0, sizeof(Expr)); |
| |
| assert( ExprUseXList(pExpr) ); |
| pDel = sqlite3ExprDup(db, pExpr->pLeft, 0); |
| if( db->mallocFailed==0 ){ |
| exprAnd.op = TK_AND; |
| exprAnd.pLeft = &compLeft; |
| exprAnd.pRight = &compRight; |
| compLeft.op = TK_GE; |
| compLeft.pLeft = pDel; |
| compLeft.pRight = pExpr->x.pList->a[0].pExpr; |
| compRight.op = TK_LE; |
| compRight.pLeft = pDel; |
| compRight.pRight = pExpr->x.pList->a[1].pExpr; |
| exprToRegister(pDel, exprCodeVector(pParse, pDel, ®Free1)); |
| if( xJump ){ |
| xJump(pParse, &exprAnd, dest, jumpIfNull); |
| }else{ |
| /* Mark the expression is being from the ON or USING clause of a join |
| ** so that the sqlite3ExprCodeTarget() routine will not attempt to move |
| ** it into the Parse.pConstExpr list. We should use a new bit for this, |
| ** for clarity, but we are out of bits in the Expr.flags field so we |
| ** have to reuse the EP_OuterON bit. Bummer. */ |
| pDel->flags |= EP_OuterON; |
| sqlite3ExprCodeTarget(pParse, &exprAnd, dest); |
| } |
| sqlite3ReleaseTempReg(pParse, regFree1); |
| } |
| sqlite3ExprDelete(db, pDel); |
| |
| /* Ensure adequate test coverage */ |
| testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 ); |
| testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 ); |
| testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 ); |
| testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 ); |
| testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 ); |
| testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 ); |
| testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 ); |
| testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 ); |
| testcase( xJump==0 ); |
| } |
| |
| /* |
| ** Generate code for a boolean expression such that a jump is made |
| ** to the label "dest" if the expression is true but execution |
| ** continues straight thru if the expression is false. |
| ** |
| ** If the expression evaluates to NULL (neither true nor false), then |
| ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. |
| ** |
| ** This code depends on the fact that certain token values (ex: TK_EQ) |
| ** are the same as opcode values (ex: OP_Eq) that implement the corresponding |
| ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in |
| ** the make process cause these values to align. Assert()s in the code |
| ** below verify that the numbers are aligned correctly. |
| */ |
| void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
| Vdbe *v = pParse->pVdbe; |
| int op = 0; |
| int regFree1 = 0; |
| int regFree2 = 0; |
| int r1, r2; |
| |
| assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); |
| if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ |
| if( NEVER(pExpr==0) ) return; /* No way this can happen */ |
| assert( !ExprHasVVAProperty(pExpr, EP_Immutable) ); |
| op = pExpr->op; |
| switch( op ){ |
| case TK_AND: |
| case TK_OR: { |
| Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); |
| if( pAlt!=pExpr ){ |
| sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull); |
| }else if( op==TK_AND ){ |
| int d2 = sqlite3VdbeMakeLabel(pParse); |
| testcase( jumpIfNull==0 ); |
| sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2, |
| jumpIfNull^SQLITE_JUMPIFNULL); |
| sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
| sqlite3VdbeResolveLabel(v, d2); |
| }else{ |
| testcase( jumpIfNull==0 ); |
| sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
| sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
| } |
| break; |
| } |
| case TK_NOT: { |
| testcase( jumpIfNull==0 ); |
| sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
| break; |
| } |
| case TK_TRUTH: { |
| int isNot; /* IS NOT TRUE or IS NOT FALSE */ |
| int isTrue; /* IS TRUE or IS NOT TRUE */ |
| testcase( jumpIfNull==0 ); |
| isNot = pExpr->op2==TK_ISNOT; |
| isTrue = sqlite3ExprTruthValue(pExpr->pRight); |
| testcase( isTrue && isNot ); |
| testcase( !isTrue && isNot ); |
| if( isTrue ^ isNot ){ |
| sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, |
| isNot ? SQLITE_JUMPIFNULL : 0); |
| }else{ |
| sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, |
| isNot ? SQLITE_JUMPIFNULL : 0); |
| } |
| break; |
| } |
| case TK_IS: |
| case TK_ISNOT: |
| testcase( op==TK_IS ); |
| testcase( op==TK_ISNOT ); |
| op = (op==TK_IS) ? TK_EQ : TK_NE; |
| jumpIfNull = SQLITE_NULLEQ; |
| /* no break */ deliberate_fall_through |
| case TK_LT: |
| case TK_LE: |
| case TK_GT: |
| case TK_GE: |
| case TK_NE: |
| case TK_EQ: { |
| if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; |
| testcase( jumpIfNull==0 ); |
| r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
| r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
| codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, |
| r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted)); |
| assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); |
| assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); |
| assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); |
| assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); |
| assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); |
| VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); |
| VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); |
| assert(TK_NE==OP_Ne); testcase(op==OP_Ne); |
| VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); |
| VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); |
| testcase( regFree1==0 ); |
| testcase( regFree2==0 ); |
| break; |
| } |
| case TK_ISNULL: |
| case TK_NOTNULL: { |
| assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); |
| assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); |
| r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
| sqlite3VdbeAddOp2(v, op, r1, dest); |
| VdbeCoverageIf(v, op==TK_ISNULL); |
| VdbeCoverageIf(v, op==TK_NOTNULL); |
| testcase( regFree1==0 ); |
| break; |
| } |
| case TK_BETWEEN: { |
| testcase( jumpIfNull==0 ); |
| exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull); |
| break; |
| } |
| #ifndef SQLITE_OMIT_SUBQUERY |
| case TK_IN: { |
| int destIfFalse = sqlite3VdbeMakeLabel(pParse); |
| int destIfNull = jumpIfNull ? dest : destIfFalse; |
| sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); |
| sqlite3VdbeGoto(v, dest); |
| sqlite3VdbeResolveLabel(v, destIfFalse); |
| break; |
| } |
| #endif |
| default: { |
| default_expr: |
| if( ExprAlwaysTrue(pExpr) ){ |
| sqlite3VdbeGoto(v, dest); |
| }else if( ExprAlwaysFalse(pExpr) ){ |
| /* No-op */ |
| }else{ |
| r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); |
| sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); |
| VdbeCoverage(v); |
| testcase( regFree1==0 ); |
| testcase( jumpIfNull==0 ); |
| } |
| break; |
| } |
| } |
| sqlite3ReleaseTempReg(pParse, regFree1); |
| sqlite3ReleaseTempReg(pParse, regFree2); |
| } |
| |
| /* |
| ** Generate code for a boolean expression such that a jump is made |
| ** to the label "dest" if the expression is false but execution |
| ** continues straight thru if the expression is true. |
| ** |
| ** If the expression evaluates to NULL (neither true nor false) then |
| ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull |
| ** is 0. |
| */ |
| void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
| Vdbe *v = pParse->pVdbe; |
| int op = 0; |
| int regFree1 = 0; |
| int regFree2 = 0; |
| int r1, r2; |
| |
| assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); |
| if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ |
| if( pExpr==0 ) return; |
| assert( !ExprHasVVAProperty(pExpr,EP_Immutable) ); |
| |
| /* The value of pExpr->op and op are related as follows: |
| ** |
| ** pExpr->op op |
| ** --------- ---------- |
| ** TK_ISNULL OP_NotNull |
| ** TK_NOTNULL OP_IsNull |
| ** TK_NE OP_Eq |
| ** TK_EQ OP_Ne |
| ** TK_GT OP_Le |
| ** TK_LE OP_Gt |
| ** TK_GE OP_Lt |
| ** TK_LT OP_Ge |
| ** |
| ** For other values of pExpr->op, op is undefined and unused. |
| ** The value of TK_ and OP_ constants are arranged such that we |
| ** can compute the mapping above using the following expression. |
| ** Assert()s verify that the computation is correct. |
| */ |
| op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); |
| |
| /* Verify correct alignment of TK_ and OP_ constants |
| */ |
| assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); |
| assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); |
| assert( pExpr->op!=TK_NE || op==OP_Eq ); |
| assert( pExpr->op!=TK_EQ || op==OP_Ne ); |
| assert( pExpr->op!=TK_LT || op==OP_Ge ); |
| assert( pExpr->op!=TK_LE || op==OP_Gt ); |
| assert( pExpr->op!=TK_GT || op==OP_Le ); |
| assert( pExpr->op!=TK_GE || op==OP_Lt ); |
| |
| switch( pExpr->op ){ |
| case TK_AND: |
| case TK_OR: { |
| Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr); |
| if( pAlt!=pExpr ){ |
| sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull); |
| }else if( pExpr->op==TK_AND ){ |
| testcase( jumpIfNull==0 ); |
| sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
| sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
| }else{ |
| int d2 = sqlite3VdbeMakeLabel(pParse); |
| testcase( jumpIfNull==0 ); |
| sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, |
| jumpIfNull^SQLITE_JUMPIFNULL); |
| sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
| sqlite3VdbeResolveLabel(v, d2); |
| } |
| break; |
| } |
| case TK_NOT: { |
| testcase( jumpIfNull==0 ); |
| sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
| break; |
| } |
| case TK_TRUTH: { |
| int isNot; /* IS NOT TRUE or IS NOT FALSE */ |
| int isTrue; /* IS TRUE or IS NOT TRUE */ |
| testcase( jumpIfNull==0 ); |
| isNot = pExpr->op2==TK_ISNOT; |
| isTrue = sqlite3ExprTruthValue(pExpr->pRight); |
| testcase( isTrue && isNot ); |
| testcase( !isTrue && isNot ); |
| if( isTrue ^ isNot ){ |
| /* IS TRUE and IS NOT FALSE */ |
| sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, |
| isNot ? 0 : SQLITE_JUMPIFNULL); |
| |
| }else{ |
| /* IS FALSE and IS NOT TRUE */ |
| sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, |
| isNot ? 0 : SQLITE_JUMPIFNULL); |
| } |
| break; |
| } |
| case TK_IS: |
| case TK_ISNOT: |
| testcase( pExpr->op==TK_IS ); |
| testcase( pExpr->op==TK_ISNOT ); |
| op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; |
| jumpIfNull = SQLITE_NULLEQ; |
| /* no break */ deliberate_fall_through |
| case TK_LT: |
| case TK_LE: |
| case TK_GT: |
| case TK_GE: |
| case TK_NE: |
| case TK_EQ: { |
| if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr; |
| testcase( jumpIfNull==0 ); |
| r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
| r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
| codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, |
| r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted)); |
| assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); |
| assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); |
| assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); |
| assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); |
| assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); |
| VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ); |
| VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ); |
| assert(TK_NE==OP_Ne); testcase(op==OP_Ne); |
| VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ); |
| VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ); |
| testcase( regFree1==0 ); |
| testcase( regFree2==0 ); |
| break; |
| } |
| case TK_ISNULL: |
| case TK_NOTNULL: { |
| r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
| sqlite3VdbeAddOp2(v, op, r1, dest); |
| testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); |
| testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); |
| testcase( regFree1==0 ); |
| break; |
| } |
| case TK_BETWEEN: { |
| testcase( jumpIfNull==0 ); |
| exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull); |
| break; |
| } |
| #ifndef SQLITE_OMIT_SUBQUERY |
| case TK_IN: { |
| if( jumpIfNull ){ |
| sqlite3ExprCodeIN(pParse, pExpr, dest, dest); |
| }else{ |
| int destIfNull = sqlite3VdbeMakeLabel(pParse); |
| sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); |
| sqlite3VdbeResolveLabel(v, destIfNull); |
| } |
| break; |
| } |
| #endif |
| default: { |
| default_expr: |
| if( ExprAlwaysFalse(pExpr) ){ |
| sqlite3VdbeGoto(v, dest); |
| }else if( ExprAlwaysTrue(pExpr) ){ |
| /* no-op */ |
| }else{ |
| r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); |
| sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); |
| VdbeCoverage(v); |
| testcase( regFree1==0 ); |
| testcase( jumpIfNull==0 ); |
| } |
| break; |
| } |
| } |
| sqlite3ReleaseTempReg(pParse, regFree1); |
| sqlite3ReleaseTempReg(pParse, regFree2); |
| } |
| |
| /* |
| ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before |
| ** code generation, and that copy is deleted after code generation. This |
| ** ensures that the original pExpr is unchanged. |
| */ |
| void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ |
| sqlite3 *db = pParse->db; |
| Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); |
| if( db->mallocFailed==0 ){ |
| sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); |
| } |
| sqlite3ExprDelete(db, pCopy); |
| } |
| |
| /* |
| ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any |
| ** type of expression. |
| ** |
| ** If pExpr is a simple SQL value - an integer, real, string, blob |
| ** or NULL value - then the VDBE currently being prepared is configured |
| ** to re-prepare each time a new value is bound to variable pVar. |
| ** |
| ** Additionally, if pExpr is a simple SQL value and the value is the |
| ** same as that currently bound to variable pVar, non-zero is returned. |
| ** Otherwise, if the values are not the same or if pExpr is not a simple |
| ** SQL value, zero is returned. |
| */ |
| static int exprCompareVariable( |
| const Parse *pParse, |
| const Expr *pVar, |
| const Expr *pExpr |
| ){ |
| int res = 0; |
| int iVar; |
| sqlite3_value *pL, *pR = 0; |
| |
| sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR); |
| if( pR ){ |
| iVar = pVar->iColumn; |
| sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); |
| pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB); |
| if( pL ){ |
| if( sqlite3_value_type(pL)==SQLITE_TEXT ){ |
| sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */ |
| } |
| res = 0==sqlite3MemCompare(pL, pR, 0); |
| } |
| sqlite3ValueFree(pR); |
| sqlite3ValueFree(pL); |
| } |
| |
| return res; |
| } |
| |
| /* |
| ** Do a deep comparison of two expression trees. Return 0 if the two |
| ** expressions are completely identical. Return 1 if they differ only |
| ** by a COLLATE operator at the top level. Return 2 if there are differences |
| ** other than the top-level COLLATE operator. |
| ** |
| ** If any subelement of pB has Expr.iTable==(-1) then it is allowed |
| ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. |
| ** |
| ** The pA side might be using TK_REGISTER. If that is the case and pB is |
| ** not using TK_REGISTER but is otherwise equivalent, then still return 0. |
| ** |
| ** Sometimes this routine will return 2 even if the two expressions |
| ** really are equivalent. If we cannot prove that the expressions are |
| ** identical, we return 2 just to be safe. So if this routine |
| ** returns 2, then you do not really know for certain if the two |
| ** expressions are the same. But if you get a 0 or 1 return, then you |
| ** can be sure the expressions are the same. In the places where |
| ** this routine is used, it does not hurt to get an extra 2 - that |
| ** just might result in some slightly slower code. But returning |
| ** an incorrect 0 or 1 could lead to a malfunction. |
| ** |
| ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in |
| ** pParse->pReprepare can be matched against literals in pB. The |
| ** pParse->pVdbe->expmask bitmask is updated for each variable referenced. |
| ** If pParse is NULL (the normal case) then any TK_VARIABLE term in |
| ** Argument pParse should normally be NULL. If it is not NULL and pA or |
| ** pB causes a return value of 2. |
| */ |
| int sqlite3ExprCompare( |
| const Parse *pParse, |
| const Expr *pA, |
| const Expr *pB, |
| int iTab |
| ){ |
| u32 combinedFlags; |
| if( pA==0 || pB==0 ){ |
| return pB==pA ? 0 : 2; |
| } |
| if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){ |
| return 0; |
| } |
| combinedFlags = pA->flags | pB->flags; |
| if( combinedFlags & EP_IntValue ){ |
| if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ |
| return 0; |
| } |
| return 2; |
| } |
| if( pA->op!=pB->op || pA->op==TK_RAISE ){ |
| if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){ |
| return 1; |
| } |
| if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){ |
| return 1; |
| } |
| return 2; |
| } |
| assert( !ExprHasProperty(pA, EP_IntValue) ); |
| assert( !ExprHasProperty(pB, EP_IntValue) ); |
| if( pA->u.zToken ){ |
| if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){ |
| if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| assert( pA->op==pB->op ); |
| if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){ |
| return 2; |
| } |
| if( ExprHasProperty(pA,EP_WinFunc) ){ |
| if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){ |
| return 2; |
| } |
| } |
| #endif |
| }else if( pA->op==TK_NULL ){ |
| return 0; |
| }else if( pA->op==TK_COLLATE ){ |
| if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; |
| }else |
| if( pB->u.zToken!=0 |
| && pA->op!=TK_COLUMN |
| && pA->op!=TK_AGG_COLUMN |
| && strcmp(pA->u.zToken,pB->u.zToken)!=0 |
| ){ |
| return 2; |
| } |
| } |
| if( (pA->flags & (EP_Distinct|EP_Commuted)) |
| != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2; |
| if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ |
| if( combinedFlags & EP_xIsSelect ) return 2; |
| if( (combinedFlags & EP_FixedCol)==0 |
| && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; |
| if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; |
| if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; |
| if( pA->op!=TK_STRING |
| && pA->op!=TK_TRUEFALSE |
| && ALWAYS((combinedFlags & EP_Reduced)==0) |
| ){ |
| if( pA->iColumn!=pB->iColumn ) return 2; |
| if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2; |
| if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){ |
| return 2; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| ** Compare two ExprList objects. Return 0 if they are identical, 1 |
| ** if they are certainly different, or 2 if it is not possible to |
| ** determine if they are identical or not. |
| ** |
| ** If any subelement of pB has Expr.iTable==(-1) then it is allowed |
| ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. |
| ** |
| ** This routine might return non-zero for equivalent ExprLists. The |
| ** only consequence will be disabled optimizations. But this routine |
| ** must never return 0 if the two ExprList objects are different, or |
| ** a malfunction will result. |
| ** |
| ** Two NULL pointers are considered to be the same. But a NULL pointer |
| ** always differs from a non-NULL pointer. |
| */ |
| int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){ |
| int i; |
| if( pA==0 && pB==0 ) return 0; |
| if( pA==0 || pB==0 ) return 1; |
| if( pA->nExpr!=pB->nExpr ) return 1; |
| for(i=0; i<pA->nExpr; i++){ |
| int res; |
| Expr *pExprA = pA->a[i].pExpr; |
| Expr *pExprB = pB->a[i].pExpr; |
| if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1; |
| if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res; |
| } |
| return 0; |
| } |
| |
| /* |
| ** Like sqlite3ExprCompare() except COLLATE operators at the top-level |
| ** are ignored. |
| */ |
| int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){ |
| return sqlite3ExprCompare(0, |
| sqlite3ExprSkipCollateAndLikely(pA), |
| sqlite3ExprSkipCollateAndLikely(pB), |
| iTab); |
| } |
| |
| /* |
| ** Return non-zero if Expr p can only be true if pNN is not NULL. |
| ** |
| ** Or if seenNot is true, return non-zero if Expr p can only be |
| ** non-NULL if pNN is not NULL |
| */ |
| static int exprImpliesNotNull( |
| const Parse *pParse,/* Parsing context */ |
| const Expr *p, /* The expression to be checked */ |
| const Expr *pNN, /* The expression that is NOT NULL */ |
| int iTab, /* Table being evaluated */ |
| int seenNot /* Return true only if p can be any non-NULL value */ |
| ){ |
| assert( p ); |
| assert( pNN ); |
| if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){ |
| return pNN->op!=TK_NULL; |
| } |
| switch( p->op ){ |
| case TK_IN: { |
| if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0; |
| assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) ); |
| return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); |
| } |
| case TK_BETWEEN: { |
| ExprList *pList; |
| assert( ExprUseXList(p) ); |
| pList = p->x.pList; |
| assert( pList!=0 ); |
| assert( pList->nExpr==2 ); |
| if( seenNot ) return 0; |
| if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1) |
| || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1) |
| ){ |
| return 1; |
| } |
| return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); |
| } |
| case TK_EQ: |
| case TK_NE: |
| case TK_LT: |
| case TK_LE: |
| case TK_GT: |
| case TK_GE: |
| case TK_PLUS: |
| case TK_MINUS: |
| case TK_BITOR: |
| case TK_LSHIFT: |
| case TK_RSHIFT: |
| case TK_CONCAT: |
| seenNot = 1; |
| /* no break */ deliberate_fall_through |
| case TK_STAR: |
| case TK_REM: |
| case TK_BITAND: |
| case TK_SLASH: { |
| if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1; |
| /* no break */ deliberate_fall_through |
| } |
| case TK_SPAN: |
| case TK_COLLATE: |
| case TK_UPLUS: |
| case TK_UMINUS: { |
| return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot); |
| } |
| case TK_TRUTH: { |
| if( seenNot ) return 0; |
| if( p->op2!=TK_IS ) return 0; |
| return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); |
| } |
| case TK_BITNOT: |
| case TK_NOT: { |
| return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1); |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| ** Return true if we can prove the pE2 will always be true if pE1 is |
| ** true. Return false if we cannot complete the proof or if pE2 might |
| ** be false. Examples: |
| ** |
| ** pE1: x==5 pE2: x==5 Result: true |
| ** pE1: x>0 pE2: x==5 Result: false |
| ** pE1: x=21 pE2: x=21 OR y=43 Result: true |
| ** pE1: x!=123 pE2: x IS NOT NULL Result: true |
| ** pE1: x!=?1 pE2: x IS NOT NULL Result: true |
| ** pE1: x IS NULL pE2: x IS NOT NULL Result: false |
| ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false |
| ** |
| ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has |
| ** Expr.iTable<0 then assume a table number given by iTab. |
| ** |
| ** If pParse is not NULL, then the values of bound variables in pE1 are |
| ** compared against literal values in pE2 and pParse->pVdbe->expmask is |
| ** modified to record which bound variables are referenced. If pParse |
| ** is NULL, then false will be returned if pE1 contains any bound variables. |
| ** |
| ** When in doubt, return false. Returning true might give a performance |
| ** improvement. Returning false might cause a performance reduction, but |
| ** it will always give the correct answer and is hence always safe. |
| */ |
| int sqlite3ExprImpliesExpr( |
| const Parse *pParse, |
| const Expr *pE1, |
| const Expr *pE2, |
| int iTab |
| ){ |
| if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){ |
| return 1; |
| } |
| if( pE2->op==TK_OR |
| && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab) |
| || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) ) |
| ){ |
| return 1; |
| } |
| if( pE2->op==TK_NOTNULL |
| && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0) |
| ){ |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow(). |
| ** If the expression node requires that the table at pWalker->iCur |
| ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. |
| ** |
| ** This routine controls an optimization. False positives (setting |
| ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives |
| ** (never setting pWalker->eCode) is a harmless missed optimization. |
| */ |
| static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ |
| testcase( pExpr->op==TK_AGG_COLUMN ); |
| testcase( pExpr->op==TK_AGG_FUNCTION ); |
| if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune; |
| switch( pExpr->op ){ |
| case TK_ISNOT: |
| case TK_ISNULL: |
| case TK_NOTNULL: |
| case TK_IS: |
| case TK_OR: |
| case TK_VECTOR: |
| case TK_CASE: |
| case TK_IN: |
| case TK_FUNCTION: |
| case TK_TRUTH: |
| testcase( pExpr->op==TK_ISNOT ); |
| testcase( pExpr->op==TK_ISNULL ); |
| testcase( pExpr->op==TK_NOTNULL ); |
| testcase( pExpr->op==TK_IS ); |
| testcase( pExpr->op==TK_OR ); |
| testcase( pExpr->op==TK_VECTOR ); |
| testcase( pExpr->op==TK_CASE ); |
| testcase( pExpr->op==TK_IN ); |
| testcase( pExpr->op==TK_FUNCTION ); |
| testcase( pExpr->op==TK_TRUTH ); |
| return WRC_Prune; |
| case TK_COLUMN: |
| if( pWalker->u.iCur==pExpr->iTable ){ |
| pWalker->eCode = 1; |
| return WRC_Abort; |
| } |
| return WRC_Prune; |
| |
| case TK_AND: |
| if( pWalker->eCode==0 ){ |
| sqlite3WalkExpr(pWalker, pExpr->pLeft); |
| if( pWalker->eCode ){ |
| pWalker->eCode = 0; |
| sqlite3WalkExpr(pWalker, pExpr->pRight); |
| } |
| } |
| return WRC_Prune; |
| |
| case TK_BETWEEN: |
| if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){ |
| assert( pWalker->eCode ); |
| return WRC_Abort; |
| } |
| return WRC_Prune; |
| |
| /* Virtual tables are allowed to use constraints like x=NULL. So |
| ** a term of the form x=y does not prove that y is not null if x |
| ** is the column of a virtual table */ |
| case TK_EQ: |
| case TK_NE: |
| case TK_LT: |
| case TK_LE: |
| case TK_GT: |
| case TK_GE: { |
| Expr *pLeft = pExpr->pLeft; |
| Expr *pRight = pExpr->pRight; |
| testcase( pExpr->op==TK_EQ ); |
| testcase( pExpr->op==TK_NE ); |
| testcase( pExpr->op==TK_LT ); |
| testcase( pExpr->op==TK_LE ); |
| testcase( pExpr->op==TK_GT ); |
| testcase( pExpr->op==TK_GE ); |
| /* The y.pTab=0 assignment in wherecode.c always happens after the |
| ** impliesNotNullRow() test */ |
| assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) ); |
| assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) ); |
| if( (pLeft->op==TK_COLUMN |
| && pLeft->y.pTab!=0 |
| && IsVirtual(pLeft->y.pTab)) |
| || (pRight->op==TK_COLUMN |
| && pRight->y.pTab!=0 |
| && IsVirtual(pRight->y.pTab)) |
| ){ |
| return WRC_Prune; |
| } |
| /* no break */ deliberate_fall_through |
| } |
| default: |
| return WRC_Continue; |
| } |
| } |
| |
| /* |
| ** Return true (non-zero) if expression p can only be true if at least |
| ** one column of table iTab is non-null. In other words, return true |
| ** if expression p will always be NULL or false if every column of iTab |
| ** is NULL. |
| ** |
| ** False negatives are acceptable. In other words, it is ok to return |
| ** zero even if expression p will never be true of every column of iTab |
| ** is NULL. A false negative is merely a missed optimization opportunity. |
| ** |
| ** False positives are not allowed, however. A false positive may result |
| ** in an incorrect answer. |
| ** |
| ** Terms of p that are marked with EP_OuterON (and hence that come from |
| ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis. |
| ** |
| ** This routine is used to check if a LEFT JOIN can be converted into |
| ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE |
| ** clause requires that some column of the right table of the LEFT JOIN |
| ** be non-NULL, then the LEFT JOIN can be safely converted into an |
| ** ordinary join. |
| */ |
| int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){ |
| Walker w; |
| p = sqlite3ExprSkipCollateAndLikely(p); |
| if( p==0 ) return 0; |
| if( p->op==TK_NOTNULL ){ |
| p = p->pLeft; |
| }else{ |
| while( p->op==TK_AND ){ |
| if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1; |
| p = p->pRight; |
| } |
| } |
| w.xExprCallback = impliesNotNullRow; |
| w.xSelectCallback = 0; |
| w.xSelectCallback2 = 0; |
| w.eCode = 0; |
| w.u.iCur = iTab; |
| sqlite3WalkExpr(&w, p); |
| return w.eCode; |
| } |
| |
| /* |
| ** An instance of the following structure is used by the tree walker |
| ** to determine if an expression can be evaluated by reference to the |
| ** index only, without having to do a search for the corresponding |
| ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur |
| ** is the cursor for the table. |
| */ |
| struct IdxCover { |
| Index *pIdx; /* The index to be tested for coverage */ |
| int iCur; /* Cursor number for the table corresponding to the index */ |
| }; |
| |
| /* |
| ** Check to see if there are references to columns in table |
| ** pWalker->u.pIdxCover->iCur can be satisfied using the index |
| ** pWalker->u.pIdxCover->pIdx. |
| */ |
| static int exprIdxCover(Walker *pWalker, Expr *pExpr){ |
| if( pExpr->op==TK_COLUMN |
| && pExpr->iTable==pWalker->u.pIdxCover->iCur |
| && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0 |
| ){ |
| pWalker->eCode = 1; |
| return WRC_Abort; |
| } |
| return WRC_Continue; |
| } |
| |
| /* |
| ** Determine if an index pIdx on table with cursor iCur contains will |
| ** the expression pExpr. Return true if the index does cover the |
| ** expression and false if the pExpr expression references table columns |
| ** that are not found in the index pIdx. |
| ** |
| ** An index covering an expression means that the expression can be |
| ** evaluated using only the index and without having to lookup the |
| ** corresponding table entry. |
| */ |
| int sqlite3ExprCoveredByIndex( |
| Expr *pExpr, /* The index to be tested */ |
| int iCur, /* The cursor number for the corresponding table */ |
| Index *pIdx /* The index that might be used for coverage */ |
| ){ |
| Walker w; |
| struct IdxCover xcov; |
| memset(&w, 0, sizeof(w)); |
| xcov.iCur = iCur; |
| xcov.pIdx = pIdx; |
| w.xExprCallback = exprIdxCover; |
| w.u.pIdxCover = &xcov; |
| sqlite3WalkExpr(&w, pExpr); |
| return !w.eCode; |
| } |
| |
| |
| /* Structure used to pass information throught the Walker in order to |
| ** implement sqlite3ReferencesSrcList(). |
| */ |
| struct RefSrcList { |
| sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */ |
| SrcList *pRef; /* Looking for references to these tables */ |
| i64 nExclude; /* Number of tables to exclude from the search */ |
| int *aiExclude; /* Cursor IDs for tables to exclude from the search */ |
| }; |
| |
| /* |
| ** Walker SELECT callbacks for sqlite3ReferencesSrcList(). |
| ** |
| ** When entering a new subquery on the pExpr argument, add all FROM clause |
| ** entries for that subquery to the exclude list. |
| ** |
| ** When leaving the subquery, remove those entries from the exclude list. |
| */ |
| static int selectRefEnter(Walker *pWalker, Select *pSelect){ |
| struct RefSrcList *p = pWalker->u.pRefSrcList; |
| SrcList *pSrc = pSelect->pSrc; |
| i64 i, j; |
| int *piNew; |
| if( pSrc->nSrc==0 ) return WRC_Continue; |
| j = p->nExclude; |
| p->nExclude += pSrc->nSrc; |
| piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int)); |
| if( piNew==0 ){ |
| p->nExclude = 0; |
| return WRC_Abort; |
| }else{ |
| p->aiExclude = piNew; |
| } |
| for(i=0; i<pSrc->nSrc; i++, j++){ |
| p->aiExclude[j] = pSrc->a[i].iCursor; |
| } |
| return WRC_Continue; |
| } |
| static void selectRefLeave(Walker *pWalker, Select *pSelect){ |
| struct RefSrcList *p = pWalker->u.pRefSrcList; |
| SrcList *pSrc = pSelect->pSrc; |
| if( p->nExclude ){ |
| assert( p->nExclude>=pSrc->nSrc ); |
| p->nExclude -= pSrc->nSrc; |
| } |
| } |
| |
| /* This is the Walker EXPR callback for sqlite3ReferencesSrcList(). |
| ** |
| ** Set the 0x01 bit of pWalker->eCode if there is a reference to any |
| ** of the tables shown in RefSrcList.pRef. |
| ** |
| ** Set the 0x02 bit of pWalker->eCode if there is a reference to a |
| ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude. |
| */ |
| static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){ |
| if( pExpr->op==TK_COLUMN |
| || pExpr->op==TK_AGG_COLUMN |
| ){ |
| int i; |
| struct RefSrcList *p = pWalker->u.pRefSrcList; |
| SrcList *pSrc = p->pRef; |
| int nSrc = pSrc ? pSrc->nSrc : 0; |
| for(i=0; i<nSrc; i++){ |
| if( pExpr->iTable==pSrc->a[i].iCursor ){ |
| pWalker->eCode |= 1; |
| return WRC_Continue; |
| } |
| } |
| for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){} |
| if( i>=p->nExclude ){ |
| pWalker->eCode |= 2; |
| } |
| } |
| return WRC_Continue; |
| } |
| |
| /* |
| ** Check to see if pExpr references any tables in pSrcList. |
| ** Possible return values: |
| ** |
| ** 1 pExpr does references a table in pSrcList. |
| ** |
| ** 0 pExpr references some table that is not defined in either |
| ** pSrcList or in subqueries of pExpr itself. |
| ** |
| ** -1 pExpr only references no tables at all, or it only |
| ** references tables defined in subqueries of pExpr itself. |
| ** |
| ** As currently used, pExpr is always an aggregate function call. That |
| ** fact is exploited for efficiency. |
| */ |
| int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){ |
| Walker w; |
| struct RefSrcList x; |
| memset(&w, 0, sizeof(w)); |
| memset(&x, 0, sizeof(x)); |
| w.xExprCallback = exprRefToSrcList; |
| w.xSelectCallback = selectRefEnter; |
| w.xSelectCallback2 = selectRefLeave; |
| w.u.pRefSrcList = &x; |
| x.db = pParse->db; |
| x.pRef = pSrcList; |
| assert( pExpr->op==TK_AGG_FUNCTION ); |
| assert( ExprUseXList(pExpr) ); |
| sqlite3WalkExprList(&w, pExpr->x.pList); |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| if( ExprHasProperty(pExpr, EP_WinFunc) ){ |
| sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter); |
| } |
| #endif |
| sqlite3DbFree(pParse->db, x.aiExclude); |
| if( w.eCode & 0x01 ){ |
| return 1; |
| }else if( w.eCode ){ |
| return 0; |
| }else{ |
| return -1; |
| } |
| } |
| |
| /* |
| ** This is a Walker expression node callback. |
| ** |
| ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo |
| ** object that is referenced does not refer directly to the Expr. If |
| ** it does, make a copy. This is done because the pExpr argument is |
| ** subject to change. |
| ** |
| ** The copy is stored on pParse->pConstExpr with a register number of 0. |
| ** This will cause the expression to be deleted automatically when the |
| ** Parse object is destroyed, but the zero register number means that it |
| ** will not generate any code in the preamble. |
| */ |
| static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){ |
| if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced)) |
| && pExpr->pAggInfo!=0 |
| ){ |
| AggInfo *pAggInfo = pExpr->pAggInfo; |
| int iAgg = pExpr->iAgg; |
| Parse *pParse = pWalker->pParse; |
| sqlite3 *db = pParse->db; |
| assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION ); |
| if( pExpr->op==TK_AGG_COLUMN ){ |
| assert( iAgg>=0 && iAgg<pAggInfo->nColumn ); |
| if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){ |
| pExpr = sqlite3ExprDup(db, pExpr, 0); |
| if( pExpr ){ |
| pAggInfo->aCol[iAgg].pCExpr = pExpr; |
| sqlite3ExprDeferredDelete(pParse, pExpr); |
| } |
| } |
| }else{ |
| assert( iAgg>=0 && iAgg<pAggInfo->nFunc ); |
| if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){ |
| pExpr = sqlite3ExprDup(db, pExpr, 0); |
| if( pExpr ){ |
| pAggInfo->aFunc[iAgg].pFExpr = pExpr; |
| sqlite3ExprDeferredDelete(pParse, pExpr); |
| } |
| } |
| } |
| } |
| return WRC_Continue; |
| } |
| |
| /* |
| ** Initialize a Walker object so that will persist AggInfo entries referenced |
| ** by the tree that is walked. |
| */ |
| void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){ |
| memset(pWalker, 0, sizeof(*pWalker)); |
| pWalker->pParse = pParse; |
| pWalker->xExprCallback = agginfoPersistExprCb; |
| pWalker->xSelectCallback = sqlite3SelectWalkNoop; |
| } |
| |
| /* |
| ** Add a new element to the pAggInfo->aCol[] array. Return the index of |
| ** the new element. Return a negative number if malloc fails. |
| */ |
| static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ |
| int i; |
| pInfo->aCol = sqlite3ArrayAllocate( |
| db, |
| pInfo->aCol, |
| sizeof(pInfo->aCol[0]), |
| &pInfo->nColumn, |
| &i |
| ); |
| return i; |
| } |
| |
| /* |
| ** Add a new element to the pAggInfo->aFunc[] array. Return the index of |
| ** the new element. Return a negative number if malloc fails. |
| */ |
| static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ |
| int i; |
| pInfo->aFunc = sqlite3ArrayAllocate( |
| db, |
| pInfo->aFunc, |
| sizeof(pInfo->aFunc[0]), |
| &pInfo->nFunc, |
| &i |
| ); |
| return i; |
| } |
| |
| /* |
| ** This is the xExprCallback for a tree walker. It is used to |
| ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates |
| ** for additional information. |
| */ |
| static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ |
| int i; |
| NameContext *pNC = pWalker->u.pNC; |
| Parse *pParse = pNC->pParse; |
| SrcList *pSrcList = pNC->pSrcList; |
| AggInfo *pAggInfo = pNC->uNC.pAggInfo; |
| |
| assert( pNC->ncFlags & NC_UAggInfo ); |
| switch( pExpr->op ){ |
| case TK_AGG_COLUMN: |
| case TK_COLUMN: { |
| testcase( pExpr->op==TK_AGG_COLUMN ); |
| testcase( pExpr->op==TK_COLUMN ); |
| /* Check to see if the column is in one of the tables in the FROM |
| ** clause of the aggregate query */ |
| if( ALWAYS(pSrcList!=0) ){ |
| SrcItem *pItem = pSrcList->a; |
| for(i=0; i<pSrcList->nSrc; i++, pItem++){ |
| struct AggInfo_col *pCol; |
| assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); |
| if( pExpr->iTable==pItem->iCursor ){ |
| /* If we reach this point, it means that pExpr refers to a table |
| ** that is in the FROM clause of the aggregate query. |
| ** |
| ** Make an entry for the column in pAggInfo->aCol[] if there |
| ** is not an entry there already. |
| */ |
| int k; |
| pCol = pAggInfo->aCol; |
| for(k=0; k<pAggInfo->nColumn; k++, pCol++){ |
| if( pCol->iTable==pExpr->iTable && |
| pCol->iColumn==pExpr->iColumn ){ |
| break; |
| } |
| } |
| if( (k>=pAggInfo->nColumn) |
| && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 |
| ){ |
| pCol = &pAggInfo->aCol[k]; |
| assert( ExprUseYTab(pExpr) ); |
| pCol->pTab = pExpr->y.pTab; |
| pCol->iTable = pExpr->iTable; |
| pCol->iColumn = pExpr->iColumn; |
| pCol->iMem = ++pParse->nMem; |
| pCol->iSorterColumn = -1; |
| pCol->pCExpr = pExpr; |
| if( pAggInfo->pGroupBy ){ |
| int j, n; |
| ExprList *pGB = pAggInfo->pGroupBy; |
| struct ExprList_item *pTerm = pGB->a; |
| n = pGB->nExpr; |
| for(j=0; j<n; j++, pTerm++){ |
| Expr *pE = pTerm->pExpr; |
| if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && |
| pE->iColumn==pExpr->iColumn ){ |
| pCol->iSorterColumn = j; |
| break; |
| } |
| } |
| } |
| if( pCol->iSorterColumn<0 ){ |
| pCol->iSorterColumn = pAggInfo->nSortingColumn++; |
| } |
| } |
| /* There is now an entry for pExpr in pAggInfo->aCol[] (either |
| ** because it was there before or because we just created it). |
| ** Convert the pExpr to be a TK_AGG_COLUMN referring to that |
| ** pAggInfo->aCol[] entry. |
| */ |
| ExprSetVVAProperty(pExpr, EP_NoReduce); |
| pExpr->pAggInfo = pAggInfo; |
| pExpr->op = TK_AGG_COLUMN; |
| pExpr->iAgg = (i16)k; |
| break; |
| } /* endif pExpr->iTable==pItem->iCursor */ |
| } /* end loop over pSrcList */ |
| } |
| return WRC_Prune; |
| } |
| case TK_AGG_FUNCTION: { |
| if( (pNC->ncFlags & NC_InAggFunc)==0 |
| && pWalker->walkerDepth==pExpr->op2 |
| ){ |
| /* Check to see if pExpr is a duplicate of another aggregate |
| ** function that is already in the pAggInfo structure |
| */ |
| struct AggInfo_func *pItem = pAggInfo->aFunc; |
| for(i=0; i<pAggInfo->nFunc; i++, pItem++){ |
| if( pItem->pFExpr==pExpr ) break; |
| if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){ |
| break; |
| } |
| } |
| if( i>=pAggInfo->nFunc ){ |
| /* pExpr is original. Make a new entry in pAggInfo->aFunc[] |
| */ |
| u8 enc = ENC(pParse->db); |
| i = addAggInfoFunc(pParse->db, pAggInfo); |
| if( i>=0 ){ |
| assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
| pItem = &pAggInfo->aFunc[i]; |
| pItem->pFExpr = pExpr; |
| pItem->iMem = ++pParse->nMem; |
| assert( ExprUseUToken(pExpr) ); |
| pItem->pFunc = sqlite3FindFunction(pParse->db, |
| pExpr->u.zToken, |
| pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); |
| if( pExpr->flags & EP_Distinct ){ |
| pItem->iDistinct = pParse->nTab++; |
| }else{ |
| pItem->iDistinct = -1; |
| } |
| } |
| } |
| /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry |
| */ |
| assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); |
| ExprSetVVAProperty(pExpr, EP_NoReduce); |
| pExpr->iAgg = (i16)i; |
| pExpr->pAggInfo = pAggInfo; |
| return WRC_Prune; |
| }else{ |
| return WRC_Continue; |
| } |
| } |
| } |
| return WRC_Continue; |
| } |
| |
| /* |
| ** Analyze the pExpr expression looking for aggregate functions and |
| ** for variables that need to be added to AggInfo object that pNC->pAggInfo |
| ** points to. Additional entries are made on the AggInfo object as |
| ** necessary. |
| ** |
| ** This routine should only be called after the expression has been |
| ** analyzed by sqlite3ResolveExprNames(). |
| */ |
| void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ |
| Walker w; |
| w.xExprCallback = analyzeAggregate; |
| w.xSelectCallback = sqlite3WalkerDepthIncrease; |
| w.xSelectCallback2 = sqlite3WalkerDepthDecrease; |
| w.walkerDepth = 0; |
| w.u.pNC = pNC; |
| w.pParse = 0; |
| assert( pNC->pSrcList!=0 ); |
| sqlite3WalkExpr(&w, pExpr); |
| } |
| |
| /* |
| ** Call sqlite3ExprAnalyzeAggregates() for every expression in an |
| ** expression list. Return the number of errors. |
| ** |
| ** If an error is found, the analysis is cut short. |
| */ |
| void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ |
| struct ExprList_item *pItem; |
| int i; |
| if( pList ){ |
| for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ |
| sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); |
| } |
| } |
| } |
| |
| /* |
| ** Allocate a single new register for use to hold some intermediate result. |
| */ |
| int sqlite3GetTempReg(Parse *pParse){ |
| if( pParse->nTempReg==0 ){ |
| return ++pParse->nMem; |
| } |
| return pParse->aTempReg[--pParse->nTempReg]; |
| } |
| |
| /* |
| ** Deallocate a register, making available for reuse for some other |
| ** purpose. |
| */ |
| void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ |
| if( iReg ){ |
| sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0); |
| if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ |
| pParse->aTempReg[pParse->nTempReg++] = iReg; |
| } |
| } |
| } |
| |
| /* |
| ** Allocate or deallocate a block of nReg consecutive registers. |
| */ |
| int sqlite3GetTempRange(Parse *pParse, int nReg){ |
| int i, n; |
| if( nReg==1 ) return sqlite3GetTempReg(pParse); |
| i = pParse->iRangeReg; |
| n = pParse->nRangeReg; |
| if( nReg<=n ){ |
| pParse->iRangeReg += nReg; |
| pParse->nRangeReg -= nReg; |
| }else{ |
| i = pParse->nMem+1; |
| pParse->nMem += nReg; |
| } |
| return i; |
| } |
| void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ |
| if( nReg==1 ){ |
| sqlite3ReleaseTempReg(pParse, iReg); |
| return; |
| } |
| sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0); |
| if( nReg>pParse->nRangeReg ){ |
| pParse->nRangeReg = nReg; |
| pParse->iRangeReg = iReg; |
| } |
| } |
| |
| /* |
| ** Mark all temporary registers as being unavailable for reuse. |
| ** |
| ** Always invoke this procedure after coding a subroutine or co-routine |
| ** that might be invoked from other parts of the code, to ensure that |
| ** the sub/co-routine does not use registers in common with the code that |
| ** invokes the sub/co-routine. |
| */ |
| void sqlite3ClearTempRegCache(Parse *pParse){ |
| pParse->nTempReg = 0; |
| pParse->nRangeReg = 0; |
| } |
| |
| /* |
| ** Validate that no temporary register falls within the range of |
| ** iFirst..iLast, inclusive. This routine is only call from within assert() |
| ** statements. |
| */ |
| #ifdef SQLITE_DEBUG |
| int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){ |
| int i; |
| if( pParse->nRangeReg>0 |
| && pParse->iRangeReg+pParse->nRangeReg > iFirst |
| && pParse->iRangeReg <= iLast |
| ){ |
| return 0; |
| } |
| for(i=0; i<pParse->nTempReg; i++){ |
| if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){ |
| return 0; |
| } |
| } |
| return 1; |
| } |
| #endif /* SQLITE_DEBUG */ |