| // Protocol Buffers - Google's data interchange format |
| // Copyright 2008 Google Inc. All rights reserved. |
| // https://developers.google.com/protocol-buffers/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // Author: kenton@google.com (Kenton Varda) |
| // Based on original Protocol Buffers design by |
| // Sanjay Ghemawat, Jeff Dean, and others. |
| // |
| // Defines Message, the abstract interface implemented by non-lite |
| // protocol message objects. Although it's possible to implement this |
| // interface manually, most users will use the protocol compiler to |
| // generate implementations. |
| // |
| // Example usage: |
| // |
| // Say you have a message defined as: |
| // |
| // message Foo { |
| // optional string text = 1; |
| // repeated int32 numbers = 2; |
| // } |
| // |
| // Then, if you used the protocol compiler to generate a class from the above |
| // definition, you could use it like so: |
| // |
| // std::string data; // Will store a serialized version of the message. |
| // |
| // { |
| // // Create a message and serialize it. |
| // Foo foo; |
| // foo.set_text("Hello World!"); |
| // foo.add_numbers(1); |
| // foo.add_numbers(5); |
| // foo.add_numbers(42); |
| // |
| // foo.SerializeToString(&data); |
| // } |
| // |
| // { |
| // // Parse the serialized message and check that it contains the |
| // // correct data. |
| // Foo foo; |
| // foo.ParseFromString(data); |
| // |
| // assert(foo.text() == "Hello World!"); |
| // assert(foo.numbers_size() == 3); |
| // assert(foo.numbers(0) == 1); |
| // assert(foo.numbers(1) == 5); |
| // assert(foo.numbers(2) == 42); |
| // } |
| // |
| // { |
| // // Same as the last block, but do it dynamically via the Message |
| // // reflection interface. |
| // Message* foo = new Foo; |
| // const Descriptor* descriptor = foo->GetDescriptor(); |
| // |
| // // Get the descriptors for the fields we're interested in and verify |
| // // their types. |
| // const FieldDescriptor* text_field = descriptor->FindFieldByName("text"); |
| // assert(text_field != nullptr); |
| // assert(text_field->type() == FieldDescriptor::TYPE_STRING); |
| // assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL); |
| // const FieldDescriptor* numbers_field = descriptor-> |
| // FindFieldByName("numbers"); |
| // assert(numbers_field != nullptr); |
| // assert(numbers_field->type() == FieldDescriptor::TYPE_INT32); |
| // assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED); |
| // |
| // // Parse the message. |
| // foo->ParseFromString(data); |
| // |
| // // Use the reflection interface to examine the contents. |
| // const Reflection* reflection = foo->GetReflection(); |
| // assert(reflection->GetString(*foo, text_field) == "Hello World!"); |
| // assert(reflection->FieldSize(*foo, numbers_field) == 3); |
| // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1); |
| // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5); |
| // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42); |
| // |
| // delete foo; |
| // } |
| |
| #ifndef GOOGLE_PROTOBUF_MESSAGE_H__ |
| #define GOOGLE_PROTOBUF_MESSAGE_H__ |
| |
| #include <iosfwd> |
| #include <string> |
| #include <type_traits> |
| #include <vector> |
| |
| #include <google/protobuf/stubs/casts.h> |
| #include <google/protobuf/stubs/common.h> |
| #include <google/protobuf/arena.h> |
| #include <google/protobuf/descriptor.h> |
| #include <google/protobuf/generated_message_reflection.h> |
| #include <google/protobuf/message_lite.h> |
| #include <google/protobuf/port.h> |
| |
| |
| #define GOOGLE_PROTOBUF_HAS_ONEOF |
| #define GOOGLE_PROTOBUF_HAS_ARENAS |
| |
| #include <google/protobuf/port_def.inc> |
| |
| #ifdef SWIG |
| #error "You cannot SWIG proto headers" |
| #endif |
| |
| namespace google { |
| namespace protobuf { |
| |
| // Defined in this file. |
| class Message; |
| class Reflection; |
| class MessageFactory; |
| |
| // Defined in other files. |
| class AssignDescriptorsHelper; |
| class DynamicMessageFactory; |
| class MapKey; |
| class MapValueRef; |
| class MapIterator; |
| class MapReflectionTester; |
| |
| namespace internal { |
| struct DescriptorTable; |
| class MapFieldBase; |
| } |
| class UnknownFieldSet; // unknown_field_set.h |
| namespace io { |
| class ZeroCopyInputStream; // zero_copy_stream.h |
| class ZeroCopyOutputStream; // zero_copy_stream.h |
| class CodedInputStream; // coded_stream.h |
| class CodedOutputStream; // coded_stream.h |
| } // namespace io |
| namespace python { |
| class MapReflectionFriend; // scalar_map_container.h |
| } |
| namespace expr { |
| class CelMapReflectionFriend; // field_backed_map_impl.cc |
| } |
| |
| namespace internal { |
| class MapFieldPrinterHelper; // text_format.cc |
| } |
| |
| |
| namespace internal { |
| class ReflectionAccessor; // message.cc |
| class ReflectionOps; // reflection_ops.h |
| class MapKeySorter; // wire_format.cc |
| class WireFormat; // wire_format.h |
| class MapFieldReflectionTest; // map_test.cc |
| } // namespace internal |
| |
| template <typename T> |
| class RepeatedField; // repeated_field.h |
| |
| template <typename T> |
| class RepeatedPtrField; // repeated_field.h |
| |
| // A container to hold message metadata. |
| struct Metadata { |
| const Descriptor* descriptor; |
| const Reflection* reflection; |
| }; |
| |
| // Abstract interface for protocol messages. |
| // |
| // See also MessageLite, which contains most every-day operations. Message |
| // adds descriptors and reflection on top of that. |
| // |
| // The methods of this class that are virtual but not pure-virtual have |
| // default implementations based on reflection. Message classes which are |
| // optimized for speed will want to override these with faster implementations, |
| // but classes optimized for code size may be happy with keeping them. See |
| // the optimize_for option in descriptor.proto. |
| class PROTOBUF_EXPORT Message : public MessageLite { |
| public: |
| inline Message() {} |
| ~Message() override {} |
| |
| // Basic Operations ------------------------------------------------ |
| |
| // Construct a new instance of the same type. Ownership is passed to the |
| // caller. (This is also defined in MessageLite, but is defined again here |
| // for return-type covariance.) |
| Message* New() const override = 0; |
| |
| // Construct a new instance on the arena. Ownership is passed to the caller |
| // if arena is a nullptr. Default implementation allows for API compatibility |
| // during the Arena transition. |
| Message* New(Arena* arena) const override { |
| Message* message = New(); |
| if (arena != nullptr) { |
| arena->Own(message); |
| } |
| return message; |
| } |
| |
| // Make this message into a copy of the given message. The given message |
| // must have the same descriptor, but need not necessarily be the same class. |
| // By default this is just implemented as "Clear(); MergeFrom(from);". |
| virtual void CopyFrom(const Message& from); |
| |
| // Merge the fields from the given message into this message. Singular |
| // fields will be overwritten, if specified in from, except for embedded |
| // messages which will be merged. Repeated fields will be concatenated. |
| // The given message must be of the same type as this message (i.e. the |
| // exact same class). |
| virtual void MergeFrom(const Message& from); |
| |
| // Verifies that IsInitialized() returns true. GOOGLE_CHECK-fails otherwise, with |
| // a nice error message. |
| void CheckInitialized() const; |
| |
| // Slowly build a list of all required fields that are not set. |
| // This is much, much slower than IsInitialized() as it is implemented |
| // purely via reflection. Generally, you should not call this unless you |
| // have already determined that an error exists by calling IsInitialized(). |
| void FindInitializationErrors(std::vector<std::string>* errors) const; |
| |
| // Like FindInitializationErrors, but joins all the strings, delimited by |
| // commas, and returns them. |
| std::string InitializationErrorString() const override; |
| |
| // Clears all unknown fields from this message and all embedded messages. |
| // Normally, if unknown tag numbers are encountered when parsing a message, |
| // the tag and value are stored in the message's UnknownFieldSet and |
| // then written back out when the message is serialized. This allows servers |
| // which simply route messages to other servers to pass through messages |
| // that have new field definitions which they don't yet know about. However, |
| // this behavior can have security implications. To avoid it, call this |
| // method after parsing. |
| // |
| // See Reflection::GetUnknownFields() for more on unknown fields. |
| virtual void DiscardUnknownFields(); |
| |
| // Computes (an estimate of) the total number of bytes currently used for |
| // storing the message in memory. The default implementation calls the |
| // Reflection object's SpaceUsed() method. |
| // |
| // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented |
| // using reflection (rather than the generated code implementation for |
| // ByteSize()). Like ByteSize(), its CPU time is linear in the number of |
| // fields defined for the proto. |
| virtual size_t SpaceUsedLong() const; |
| |
| PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead") |
| int SpaceUsed() const { return internal::ToIntSize(SpaceUsedLong()); } |
| |
| // Debugging & Testing---------------------------------------------- |
| |
| // Generates a human readable form of this message, useful for debugging |
| // and other purposes. |
| std::string DebugString() const; |
| // Like DebugString(), but with less whitespace. |
| std::string ShortDebugString() const; |
| // Like DebugString(), but do not escape UTF-8 byte sequences. |
| std::string Utf8DebugString() const; |
| // Convenience function useful in GDB. Prints DebugString() to stdout. |
| void PrintDebugString() const; |
| |
| // Reflection-based methods ---------------------------------------- |
| // These methods are pure-virtual in MessageLite, but Message provides |
| // reflection-based default implementations. |
| |
| std::string GetTypeName() const override; |
| void Clear() override; |
| bool IsInitialized() const override; |
| void CheckTypeAndMergeFrom(const MessageLite& other) override; |
| #if GOOGLE_PROTOBUF_ENABLE_EXPERIMENTAL_PARSER |
| // Reflective parser |
| const char* _InternalParse(const char* ptr, |
| internal::ParseContext* ctx) override; |
| #else |
| bool MergePartialFromCodedStream(io::CodedInputStream* input) override; |
| #endif |
| size_t ByteSizeLong() const override; |
| void SerializeWithCachedSizes(io::CodedOutputStream* output) const override; |
| |
| private: |
| // This is called only by the default implementation of ByteSize(), to |
| // update the cached size. If you override ByteSize(), you do not need |
| // to override this. If you do not override ByteSize(), you MUST override |
| // this; the default implementation will crash. |
| // |
| // The method is private because subclasses should never call it; only |
| // override it. Yes, C++ lets you do that. Crazy, huh? |
| virtual void SetCachedSize(int size) const; |
| |
| public: |
| // Introspection --------------------------------------------------- |
| |
| |
| // Get a non-owning pointer to a Descriptor for this message's type. This |
| // describes what fields the message contains, the types of those fields, etc. |
| // This object remains property of the Message. |
| const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; } |
| |
| // Get a non-owning pointer to the Reflection interface for this Message, |
| // which can be used to read and modify the fields of the Message dynamically |
| // (in other words, without knowing the message type at compile time). This |
| // object remains property of the Message. |
| // |
| // This method remains virtual in case a subclass does not implement |
| // reflection and wants to override the default behavior. |
| const Reflection* GetReflection() const { return GetMetadata().reflection; } |
| |
| protected: |
| // Get a struct containing the metadata for the Message. Most subclasses only |
| // need to implement this method, rather than the GetDescriptor() and |
| // GetReflection() wrappers. |
| virtual Metadata GetMetadata() const = 0; |
| |
| |
| private: |
| GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message); |
| }; |
| |
| namespace internal { |
| // Forward-declare interfaces used to implement RepeatedFieldRef. |
| // These are protobuf internals that users shouldn't care about. |
| class RepeatedFieldAccessor; |
| } // namespace internal |
| |
| // Forward-declare RepeatedFieldRef templates. The second type parameter is |
| // used for SFINAE tricks. Users should ignore it. |
| template <typename T, typename Enable = void> |
| class RepeatedFieldRef; |
| |
| template <typename T, typename Enable = void> |
| class MutableRepeatedFieldRef; |
| |
| // This interface contains methods that can be used to dynamically access |
| // and modify the fields of a protocol message. Their semantics are |
| // similar to the accessors the protocol compiler generates. |
| // |
| // To get the Reflection for a given Message, call Message::GetReflection(). |
| // |
| // This interface is separate from Message only for efficiency reasons; |
| // the vast majority of implementations of Message will share the same |
| // implementation of Reflection (GeneratedMessageReflection, |
| // defined in generated_message.h), and all Messages of a particular class |
| // should share the same Reflection object (though you should not rely on |
| // the latter fact). |
| // |
| // There are several ways that these methods can be used incorrectly. For |
| // example, any of the following conditions will lead to undefined |
| // results (probably assertion failures): |
| // - The FieldDescriptor is not a field of this message type. |
| // - The method called is not appropriate for the field's type. For |
| // each field type in FieldDescriptor::TYPE_*, there is only one |
| // Get*() method, one Set*() method, and one Add*() method that is |
| // valid for that type. It should be obvious which (except maybe |
| // for TYPE_BYTES, which are represented using strings in C++). |
| // - A Get*() or Set*() method for singular fields is called on a repeated |
| // field. |
| // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated |
| // field. |
| // - The Message object passed to any method is not of the right type for |
| // this Reflection object (i.e. message.GetReflection() != reflection). |
| // |
| // You might wonder why there is not any abstract representation for a field |
| // of arbitrary type. E.g., why isn't there just a "GetField()" method that |
| // returns "const Field&", where "Field" is some class with accessors like |
| // "GetInt32Value()". The problem is that someone would have to deal with |
| // allocating these Field objects. For generated message classes, having to |
| // allocate space for an additional object to wrap every field would at least |
| // double the message's memory footprint, probably worse. Allocating the |
| // objects on-demand, on the other hand, would be expensive and prone to |
| // memory leaks. So, instead we ended up with this flat interface. |
| class PROTOBUF_EXPORT Reflection final { |
| public: |
| // Get the UnknownFieldSet for the message. This contains fields which |
| // were seen when the Message was parsed but were not recognized according |
| // to the Message's definition. |
| const UnknownFieldSet& GetUnknownFields(const Message& message) const; |
| // Get a mutable pointer to the UnknownFieldSet for the message. This |
| // contains fields which were seen when the Message was parsed but were not |
| // recognized according to the Message's definition. |
| UnknownFieldSet* MutableUnknownFields(Message* message) const; |
| |
| // Estimate the amount of memory used by the message object. |
| size_t SpaceUsedLong(const Message& message) const; |
| |
| PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead") |
| int SpaceUsed(const Message& message) const { |
| return internal::ToIntSize(SpaceUsedLong(message)); |
| } |
| |
| // Check if the given non-repeated field is set. |
| bool HasField(const Message& message, const FieldDescriptor* field) const; |
| |
| // Get the number of elements of a repeated field. |
| int FieldSize(const Message& message, const FieldDescriptor* field) const; |
| |
| // Clear the value of a field, so that HasField() returns false or |
| // FieldSize() returns zero. |
| void ClearField(Message* message, const FieldDescriptor* field) const; |
| |
| // Check if the oneof is set. Returns true if any field in oneof |
| // is set, false otherwise. |
| bool HasOneof(const Message& message, |
| const OneofDescriptor* oneof_descriptor) const; |
| |
| void ClearOneof(Message* message, |
| const OneofDescriptor* oneof_descriptor) const; |
| |
| // Returns the field descriptor if the oneof is set. nullptr otherwise. |
| const FieldDescriptor* GetOneofFieldDescriptor( |
| const Message& message, const OneofDescriptor* oneof_descriptor) const; |
| |
| // Removes the last element of a repeated field. |
| // We don't provide a way to remove any element other than the last |
| // because it invites inefficient use, such as O(n^2) filtering loops |
| // that should have been O(n). If you want to remove an element other |
| // than the last, the best way to do it is to re-arrange the elements |
| // (using Swap()) so that the one you want removed is at the end, then |
| // call RemoveLast(). |
| void RemoveLast(Message* message, const FieldDescriptor* field) const; |
| // Removes the last element of a repeated message field, and returns the |
| // pointer to the caller. Caller takes ownership of the returned pointer. |
| Message* ReleaseLast(Message* message, const FieldDescriptor* field) const; |
| |
| // Swap the complete contents of two messages. |
| void Swap(Message* message1, Message* message2) const; |
| |
| // Swap fields listed in fields vector of two messages. |
| void SwapFields(Message* message1, Message* message2, |
| const std::vector<const FieldDescriptor*>& fields) const; |
| |
| // Swap two elements of a repeated field. |
| void SwapElements(Message* message, const FieldDescriptor* field, int index1, |
| int index2) const; |
| |
| // List all fields of the message which are currently set, except for unknown |
| // fields, but including extension known to the parser (i.e. compiled in). |
| // Singular fields will only be listed if HasField(field) would return true |
| // and repeated fields will only be listed if FieldSize(field) would return |
| // non-zero. Fields (both normal fields and extension fields) will be listed |
| // ordered by field number. |
| // Use Reflection::GetUnknownFields() or message.unknown_fields() to also get |
| // access to fields/extensions unknown to the parser. |
| void ListFields(const Message& message, |
| std::vector<const FieldDescriptor*>* output) const; |
| |
| // Singular field getters ------------------------------------------ |
| // These get the value of a non-repeated field. They return the default |
| // value for fields that aren't set. |
| |
| int32 GetInt32(const Message& message, const FieldDescriptor* field) const; |
| int64 GetInt64(const Message& message, const FieldDescriptor* field) const; |
| uint32 GetUInt32(const Message& message, const FieldDescriptor* field) const; |
| uint64 GetUInt64(const Message& message, const FieldDescriptor* field) const; |
| float GetFloat(const Message& message, const FieldDescriptor* field) const; |
| double GetDouble(const Message& message, const FieldDescriptor* field) const; |
| bool GetBool(const Message& message, const FieldDescriptor* field) const; |
| std::string GetString(const Message& message, |
| const FieldDescriptor* field) const; |
| const EnumValueDescriptor* GetEnum(const Message& message, |
| const FieldDescriptor* field) const; |
| |
| // GetEnumValue() returns an enum field's value as an integer rather than |
| // an EnumValueDescriptor*. If the integer value does not correspond to a |
| // known value descriptor, a new value descriptor is created. (Such a value |
| // will only be present when the new unknown-enum-value semantics are enabled |
| // for a message.) |
| int GetEnumValue(const Message& message, const FieldDescriptor* field) const; |
| |
| // See MutableMessage() for the meaning of the "factory" parameter. |
| const Message& GetMessage(const Message& message, |
| const FieldDescriptor* field, |
| MessageFactory* factory = nullptr) const; |
| |
| // Get a string value without copying, if possible. |
| // |
| // GetString() necessarily returns a copy of the string. This can be |
| // inefficient when the std::string is already stored in a std::string object |
| // in the underlying message. GetStringReference() will return a reference to |
| // the underlying std::string in this case. Otherwise, it will copy the |
| // string into *scratch and return that. |
| // |
| // Note: It is perfectly reasonable and useful to write code like: |
| // str = reflection->GetStringReference(message, field, &str); |
| // This line would ensure that only one copy of the string is made |
| // regardless of the field's underlying representation. When initializing |
| // a newly-constructed string, though, it's just as fast and more |
| // readable to use code like: |
| // std::string str = reflection->GetString(message, field); |
| const std::string& GetStringReference(const Message& message, |
| const FieldDescriptor* field, |
| std::string* scratch) const; |
| |
| |
| // Singular field mutators ----------------------------------------- |
| // These mutate the value of a non-repeated field. |
| |
| void SetInt32(Message* message, const FieldDescriptor* field, |
| int32 value) const; |
| void SetInt64(Message* message, const FieldDescriptor* field, |
| int64 value) const; |
| void SetUInt32(Message* message, const FieldDescriptor* field, |
| uint32 value) const; |
| void SetUInt64(Message* message, const FieldDescriptor* field, |
| uint64 value) const; |
| void SetFloat(Message* message, const FieldDescriptor* field, |
| float value) const; |
| void SetDouble(Message* message, const FieldDescriptor* field, |
| double value) const; |
| void SetBool(Message* message, const FieldDescriptor* field, |
| bool value) const; |
| void SetString(Message* message, const FieldDescriptor* field, |
| const std::string& value) const; |
| void SetEnum(Message* message, const FieldDescriptor* field, |
| const EnumValueDescriptor* value) const; |
| // Set an enum field's value with an integer rather than EnumValueDescriptor. |
| // For proto3 this is just setting the enum field to the value specified, for |
| // proto2 it's more complicated. If value is a known enum value the field is |
| // set as usual. If the value is unknown then it is added to the unknown field |
| // set. Note this matches the behavior of parsing unknown enum values. |
| // If multiple calls with unknown values happen than they are all added to the |
| // unknown field set in order of the calls. |
| void SetEnumValue(Message* message, const FieldDescriptor* field, |
| int value) const; |
| |
| // Get a mutable pointer to a field with a message type. If a MessageFactory |
| // is provided, it will be used to construct instances of the sub-message; |
| // otherwise, the default factory is used. If the field is an extension that |
| // does not live in the same pool as the containing message's descriptor (e.g. |
| // it lives in an overlay pool), then a MessageFactory must be provided. |
| // If you have no idea what that meant, then you probably don't need to worry |
| // about it (don't provide a MessageFactory). WARNING: If the |
| // FieldDescriptor is for a compiled-in extension, then |
| // factory->GetPrototype(field->message_type()) MUST return an instance of |
| // the compiled-in class for this type, NOT DynamicMessage. |
| Message* MutableMessage(Message* message, const FieldDescriptor* field, |
| MessageFactory* factory = nullptr) const; |
| // Replaces the message specified by 'field' with the already-allocated object |
| // sub_message, passing ownership to the message. If the field contained a |
| // message, that message is deleted. If sub_message is nullptr, the field is |
| // cleared. |
| void SetAllocatedMessage(Message* message, Message* sub_message, |
| const FieldDescriptor* field) const; |
| // Releases the message specified by 'field' and returns the pointer, |
| // ReleaseMessage() will return the message the message object if it exists. |
| // Otherwise, it may or may not return nullptr. In any case, if the return |
| // value is non-null, the caller takes ownership of the pointer. |
| // If the field existed (HasField() is true), then the returned pointer will |
| // be the same as the pointer returned by MutableMessage(). |
| // This function has the same effect as ClearField(). |
| Message* ReleaseMessage(Message* message, const FieldDescriptor* field, |
| MessageFactory* factory = nullptr) const; |
| |
| |
| // Repeated field getters ------------------------------------------ |
| // These get the value of one element of a repeated field. |
| |
| int32 GetRepeatedInt32(const Message& message, const FieldDescriptor* field, |
| int index) const; |
| int64 GetRepeatedInt64(const Message& message, const FieldDescriptor* field, |
| int index) const; |
| uint32 GetRepeatedUInt32(const Message& message, const FieldDescriptor* field, |
| int index) const; |
| uint64 GetRepeatedUInt64(const Message& message, const FieldDescriptor* field, |
| int index) const; |
| float GetRepeatedFloat(const Message& message, const FieldDescriptor* field, |
| int index) const; |
| double GetRepeatedDouble(const Message& message, const FieldDescriptor* field, |
| int index) const; |
| bool GetRepeatedBool(const Message& message, const FieldDescriptor* field, |
| int index) const; |
| std::string GetRepeatedString(const Message& message, |
| const FieldDescriptor* field, int index) const; |
| const EnumValueDescriptor* GetRepeatedEnum(const Message& message, |
| const FieldDescriptor* field, |
| int index) const; |
| // GetRepeatedEnumValue() returns an enum field's value as an integer rather |
| // than an EnumValueDescriptor*. If the integer value does not correspond to a |
| // known value descriptor, a new value descriptor is created. (Such a value |
| // will only be present when the new unknown-enum-value semantics are enabled |
| // for a message.) |
| int GetRepeatedEnumValue(const Message& message, const FieldDescriptor* field, |
| int index) const; |
| const Message& GetRepeatedMessage(const Message& message, |
| const FieldDescriptor* field, |
| int index) const; |
| |
| // See GetStringReference(), above. |
| const std::string& GetRepeatedStringReference(const Message& message, |
| const FieldDescriptor* field, |
| int index, |
| std::string* scratch) const; |
| |
| |
| // Repeated field mutators ----------------------------------------- |
| // These mutate the value of one element of a repeated field. |
| |
| void SetRepeatedInt32(Message* message, const FieldDescriptor* field, |
| int index, int32 value) const; |
| void SetRepeatedInt64(Message* message, const FieldDescriptor* field, |
| int index, int64 value) const; |
| void SetRepeatedUInt32(Message* message, const FieldDescriptor* field, |
| int index, uint32 value) const; |
| void SetRepeatedUInt64(Message* message, const FieldDescriptor* field, |
| int index, uint64 value) const; |
| void SetRepeatedFloat(Message* message, const FieldDescriptor* field, |
| int index, float value) const; |
| void SetRepeatedDouble(Message* message, const FieldDescriptor* field, |
| int index, double value) const; |
| void SetRepeatedBool(Message* message, const FieldDescriptor* field, |
| int index, bool value) const; |
| void SetRepeatedString(Message* message, const FieldDescriptor* field, |
| int index, const std::string& value) const; |
| void SetRepeatedEnum(Message* message, const FieldDescriptor* field, |
| int index, const EnumValueDescriptor* value) const; |
| // Set an enum field's value with an integer rather than EnumValueDescriptor. |
| // For proto3 this is just setting the enum field to the value specified, for |
| // proto2 it's more complicated. If value is a known enum value the field is |
| // set as usual. If the value is unknown then it is added to the unknown field |
| // set. Note this matches the behavior of parsing unknown enum values. |
| // If multiple calls with unknown values happen than they are all added to the |
| // unknown field set in order of the calls. |
| void SetRepeatedEnumValue(Message* message, const FieldDescriptor* field, |
| int index, int value) const; |
| // Get a mutable pointer to an element of a repeated field with a message |
| // type. |
| Message* MutableRepeatedMessage(Message* message, |
| const FieldDescriptor* field, |
| int index) const; |
| |
| |
| // Repeated field adders ------------------------------------------- |
| // These add an element to a repeated field. |
| |
| void AddInt32(Message* message, const FieldDescriptor* field, |
| int32 value) const; |
| void AddInt64(Message* message, const FieldDescriptor* field, |
| int64 value) const; |
| void AddUInt32(Message* message, const FieldDescriptor* field, |
| uint32 value) const; |
| void AddUInt64(Message* message, const FieldDescriptor* field, |
| uint64 value) const; |
| void AddFloat(Message* message, const FieldDescriptor* field, |
| float value) const; |
| void AddDouble(Message* message, const FieldDescriptor* field, |
| double value) const; |
| void AddBool(Message* message, const FieldDescriptor* field, |
| bool value) const; |
| void AddString(Message* message, const FieldDescriptor* field, |
| const std::string& value) const; |
| void AddEnum(Message* message, const FieldDescriptor* field, |
| const EnumValueDescriptor* value) const; |
| // Add an integer value to a repeated enum field rather than |
| // EnumValueDescriptor. For proto3 this is just setting the enum field to the |
| // value specified, for proto2 it's more complicated. If value is a known enum |
| // value the field is set as usual. If the value is unknown then it is added |
| // to the unknown field set. Note this matches the behavior of parsing unknown |
| // enum values. If multiple calls with unknown values happen than they are all |
| // added to the unknown field set in order of the calls. |
| void AddEnumValue(Message* message, const FieldDescriptor* field, |
| int value) const; |
| // See MutableMessage() for comments on the "factory" parameter. |
| Message* AddMessage(Message* message, const FieldDescriptor* field, |
| MessageFactory* factory = nullptr) const; |
| |
| // Appends an already-allocated object 'new_entry' to the repeated field |
| // specified by 'field' passing ownership to the message. |
| void AddAllocatedMessage(Message* message, const FieldDescriptor* field, |
| Message* new_entry) const; |
| |
| |
| // Get a RepeatedFieldRef object that can be used to read the underlying |
| // repeated field. The type parameter T must be set according to the |
| // field's cpp type. The following table shows the mapping from cpp type |
| // to acceptable T. |
| // |
| // field->cpp_type() T |
| // CPPTYPE_INT32 int32 |
| // CPPTYPE_UINT32 uint32 |
| // CPPTYPE_INT64 int64 |
| // CPPTYPE_UINT64 uint64 |
| // CPPTYPE_DOUBLE double |
| // CPPTYPE_FLOAT float |
| // CPPTYPE_BOOL bool |
| // CPPTYPE_ENUM generated enum type or int32 |
| // CPPTYPE_STRING std::string |
| // CPPTYPE_MESSAGE generated message type or google::protobuf::Message |
| // |
| // A RepeatedFieldRef object can be copied and the resulted object will point |
| // to the same repeated field in the same message. The object can be used as |
| // long as the message is not destroyed. |
| // |
| // Note that to use this method users need to include the header file |
| // "net/proto2/public/reflection.h" (which defines the RepeatedFieldRef |
| // class templates). |
| template <typename T> |
| RepeatedFieldRef<T> GetRepeatedFieldRef(const Message& message, |
| const FieldDescriptor* field) const; |
| |
| // Like GetRepeatedFieldRef() but return an object that can also be used |
| // manipulate the underlying repeated field. |
| template <typename T> |
| MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef( |
| Message* message, const FieldDescriptor* field) const; |
| |
| // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field |
| // access. The following repeated field accesors will be removed in the |
| // future. |
| // |
| // Repeated field accessors ------------------------------------------------- |
| // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular |
| // access to the data in a RepeatedField. The methods below provide aggregate |
| // access by exposing the RepeatedField object itself with the Message. |
| // Applying these templates to inappropriate types will lead to an undefined |
| // reference at link time (e.g. GetRepeatedField<***double>), or possibly a |
| // template matching error at compile time (e.g. GetRepeatedPtrField<File>). |
| // |
| // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd); |
| |
| // DEPRECATED. Please use GetRepeatedFieldRef(). |
| // |
| // for T = Cord and all protobuf scalar types except enums. |
| template <typename T> |
| PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead") |
| const RepeatedField<T>& GetRepeatedField(const Message&, |
| const FieldDescriptor*) const; |
| |
| // DEPRECATED. Please use GetMutableRepeatedFieldRef(). |
| // |
| // for T = Cord and all protobuf scalar types except enums. |
| template <typename T> |
| PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead") |
| RepeatedField<T>* MutableRepeatedField(Message*, |
| const FieldDescriptor*) const; |
| |
| // DEPRECATED. Please use GetRepeatedFieldRef(). |
| // |
| // for T = std::string, google::protobuf::internal::StringPieceField |
| // google::protobuf::Message & descendants. |
| template <typename T> |
| PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead") |
| const RepeatedPtrField<T>& GetRepeatedPtrField(const Message&, |
| const FieldDescriptor*) const; |
| |
| // DEPRECATED. Please use GetMutableRepeatedFieldRef(). |
| // |
| // for T = std::string, google::protobuf::internal::StringPieceField |
| // google::protobuf::Message & descendants. |
| template <typename T> |
| PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead") |
| RepeatedPtrField<T>* MutableRepeatedPtrField(Message*, |
| const FieldDescriptor*) const; |
| |
| // Extensions ---------------------------------------------------------------- |
| |
| // Try to find an extension of this message type by fully-qualified field |
| // name. Returns nullptr if no extension is known for this name or number. |
| PROTOBUF_DEPRECATED_MSG( |
| "Please use DescriptorPool::FindExtensionByPrintableName instead") |
| const FieldDescriptor* FindKnownExtensionByName( |
| const std::string& name) const; |
| |
| // Try to find an extension of this message type by field number. |
| // Returns nullptr if no extension is known for this name or number. |
| PROTOBUF_DEPRECATED_MSG( |
| "Please use DescriptorPool::FindExtensionByNumber instead") |
| const FieldDescriptor* FindKnownExtensionByNumber(int number) const; |
| |
| // Feature Flags ------------------------------------------------------------- |
| |
| // Does this message support storing arbitrary integer values in enum fields? |
| // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions |
| // take arbitrary integer values, and the legacy GetEnum() getter will |
| // dynamically create an EnumValueDescriptor for any integer value without |
| // one. If |false|, setting an unknown enum value via the integer-based |
| // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails). |
| // |
| // Generic code that uses reflection to handle messages with enum fields |
| // should check this flag before using the integer-based setter, and either |
| // downgrade to a compatible value or use the UnknownFieldSet if not. For |
| // example: |
| // |
| // int new_value = GetValueFromApplicationLogic(); |
| // if (reflection->SupportsUnknownEnumValues()) { |
| // reflection->SetEnumValue(message, field, new_value); |
| // } else { |
| // if (field_descriptor->enum_type()-> |
| // FindValueByNumber(new_value) != nullptr) { |
| // reflection->SetEnumValue(message, field, new_value); |
| // } else if (emit_unknown_enum_values) { |
| // reflection->MutableUnknownFields(message)->AddVarint( |
| // field->number(), new_value); |
| // } else { |
| // // convert value to a compatible/default value. |
| // new_value = CompatibleDowngrade(new_value); |
| // reflection->SetEnumValue(message, field, new_value); |
| // } |
| // } |
| bool SupportsUnknownEnumValues() const; |
| |
| // Returns the MessageFactory associated with this message. This can be |
| // useful for determining if a message is a generated message or not, for |
| // example: |
| // if (message->GetReflection()->GetMessageFactory() == |
| // google::protobuf::MessageFactory::generated_factory()) { |
| // // This is a generated message. |
| // } |
| // It can also be used to create more messages of this type, though |
| // Message::New() is an easier way to accomplish this. |
| MessageFactory* GetMessageFactory() const; |
| |
| private: |
| // Obtain a pointer to a Repeated Field Structure and do some type checking: |
| // on field->cpp_type(), |
| // on field->field_option().ctype() (if ctype >= 0) |
| // of field->message_type() (if message_type != nullptr). |
| // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer). |
| void* MutableRawRepeatedField(Message* message, const FieldDescriptor* field, |
| FieldDescriptor::CppType, int ctype, |
| const Descriptor* message_type) const; |
| |
| const void* GetRawRepeatedField(const Message& message, |
| const FieldDescriptor* field, |
| FieldDescriptor::CppType cpptype, int ctype, |
| const Descriptor* message_type) const; |
| |
| // The following methods are used to implement (Mutable)RepeatedFieldRef. |
| // A Ref object will store a raw pointer to the repeated field data (obtained |
| // from RepeatedFieldData()) and a pointer to a Accessor (obtained from |
| // RepeatedFieldAccessor) which will be used to access the raw data. |
| |
| // Returns a raw pointer to the repeated field |
| // |
| // "cpp_type" and "message_type" are deduced from the type parameter T passed |
| // to Get(Mutable)RepeatedFieldRef. If T is a generated message type, |
| // "message_type" should be set to its descriptor. Otherwise "message_type" |
| // should be set to nullptr. Implementations of this method should check |
| // whether "cpp_type"/"message_type" is consistent with the actual type of the |
| // field. We use 1 routine rather than 2 (const vs mutable) because it is |
| // protected and it doesn't change the message. |
| void* RepeatedFieldData(Message* message, const FieldDescriptor* field, |
| FieldDescriptor::CppType cpp_type, |
| const Descriptor* message_type) const; |
| |
| // The returned pointer should point to a singleton instance which implements |
| // the RepeatedFieldAccessor interface. |
| const internal::RepeatedFieldAccessor* RepeatedFieldAccessor( |
| const FieldDescriptor* field) const; |
| |
| const Descriptor* const descriptor_; |
| const internal::ReflectionSchema schema_; |
| const DescriptorPool* const descriptor_pool_; |
| MessageFactory* const message_factory_; |
| |
| // Last non weak field index. This is an optimization when most weak fields |
| // are at the end of the containing message. If a message proto doesn't |
| // contain weak fields, then this field equals descriptor_->field_count(). |
| int last_non_weak_field_index_; |
| |
| template <typename T, typename Enable> |
| friend class RepeatedFieldRef; |
| template <typename T, typename Enable> |
| friend class MutableRepeatedFieldRef; |
| friend class ::PROTOBUF_NAMESPACE_ID::MessageLayoutInspector; |
| friend class ::PROTOBUF_NAMESPACE_ID::AssignDescriptorsHelper; |
| friend class DynamicMessageFactory; |
| friend class python::MapReflectionFriend; |
| #define GOOGLE_PROTOBUF_HAS_CEL_MAP_REFLECTION_FRIEND |
| friend class expr::CelMapReflectionFriend; |
| friend class internal::MapFieldReflectionTest; |
| friend class internal::MapKeySorter; |
| friend class internal::WireFormat; |
| friend class internal::ReflectionOps; |
| // Needed for implementing text format for map. |
| friend class internal::MapFieldPrinterHelper; |
| friend class internal::ReflectionAccessor; |
| |
| Reflection(const Descriptor* descriptor, |
| const internal::ReflectionSchema& schema, |
| const DescriptorPool* pool, MessageFactory* factory); |
| |
| // Special version for specialized implementations of string. We can't |
| // call MutableRawRepeatedField directly here because we don't have access to |
| // FieldOptions::* which are defined in descriptor.pb.h. Including that |
| // file here is not possible because it would cause a circular include cycle. |
| // We use 1 routine rather than 2 (const vs mutable) because it is private |
| // and mutable a repeated string field doesn't change the message. |
| void* MutableRawRepeatedString(Message* message, const FieldDescriptor* field, |
| bool is_string) const; |
| |
| friend class MapReflectionTester; |
| // Returns true if key is in map. Returns false if key is not in map field. |
| bool ContainsMapKey(const Message& message, const FieldDescriptor* field, |
| const MapKey& key) const; |
| |
| // If key is in map field: Saves the value pointer to val and returns |
| // false. If key in not in map field: Insert the key into map, saves |
| // value pointer to val and retuns true. |
| bool InsertOrLookupMapValue(Message* message, const FieldDescriptor* field, |
| const MapKey& key, MapValueRef* val) const; |
| |
| // Delete and returns true if key is in the map field. Returns false |
| // otherwise. |
| bool DeleteMapValue(Message* message, const FieldDescriptor* field, |
| const MapKey& key) const; |
| |
| // Returns a MapIterator referring to the first element in the map field. |
| // If the map field is empty, this function returns the same as |
| // reflection::MapEnd. Mutation to the field may invalidate the iterator. |
| MapIterator MapBegin(Message* message, const FieldDescriptor* field) const; |
| |
| // Returns a MapIterator referring to the theoretical element that would |
| // follow the last element in the map field. It does not point to any |
| // real element. Mutation to the field may invalidate the iterator. |
| MapIterator MapEnd(Message* message, const FieldDescriptor* field) const; |
| |
| // Get the number of <key, value> pair of a map field. The result may be |
| // different from FieldSize which can have duplicate keys. |
| int MapSize(const Message& message, const FieldDescriptor* field) const; |
| |
| // Help method for MapIterator. |
| friend class MapIterator; |
| internal::MapFieldBase* MutableMapData(Message* message, |
| const FieldDescriptor* field) const; |
| |
| const internal::MapFieldBase* GetMapData(const Message& message, |
| const FieldDescriptor* field) const; |
| |
| template <class T> |
| const T& GetRawNonOneof(const Message& message, |
| const FieldDescriptor* field) const; |
| template <class T> |
| T* MutableRawNonOneof(Message* message, const FieldDescriptor* field) const; |
| |
| template <typename Type> |
| const Type& GetRaw(const Message& message, |
| const FieldDescriptor* field) const; |
| template <typename Type> |
| inline Type* MutableRaw(Message* message, const FieldDescriptor* field) const; |
| template <typename Type> |
| inline const Type& DefaultRaw(const FieldDescriptor* field) const; |
| |
| inline const uint32* GetHasBits(const Message& message) const; |
| inline uint32* MutableHasBits(Message* message) const; |
| inline uint32 GetOneofCase(const Message& message, |
| const OneofDescriptor* oneof_descriptor) const; |
| inline uint32* MutableOneofCase( |
| Message* message, const OneofDescriptor* oneof_descriptor) const; |
| inline const internal::ExtensionSet& GetExtensionSet( |
| const Message& message) const; |
| inline internal::ExtensionSet* MutableExtensionSet(Message* message) const; |
| inline Arena* GetArena(Message* message) const; |
| |
| inline const internal::InternalMetadataWithArena& |
| GetInternalMetadataWithArena(const Message& message) const; |
| |
| internal::InternalMetadataWithArena* MutableInternalMetadataWithArena( |
| Message* message) const; |
| |
| inline bool IsInlined(const FieldDescriptor* field) const; |
| |
| inline bool HasBit(const Message& message, |
| const FieldDescriptor* field) const; |
| inline void SetBit(Message* message, const FieldDescriptor* field) const; |
| inline void ClearBit(Message* message, const FieldDescriptor* field) const; |
| inline void SwapBit(Message* message1, Message* message2, |
| const FieldDescriptor* field) const; |
| |
| // This function only swaps the field. Should swap corresponding has_bit |
| // before or after using this function. |
| void SwapField(Message* message1, Message* message2, |
| const FieldDescriptor* field) const; |
| |
| void SwapOneofField(Message* message1, Message* message2, |
| const OneofDescriptor* oneof_descriptor) const; |
| |
| inline bool HasOneofField(const Message& message, |
| const FieldDescriptor* field) const; |
| inline void SetOneofCase(Message* message, |
| const FieldDescriptor* field) const; |
| inline void ClearOneofField(Message* message, |
| const FieldDescriptor* field) const; |
| |
| template <typename Type> |
| inline const Type& GetField(const Message& message, |
| const FieldDescriptor* field) const; |
| template <typename Type> |
| inline void SetField(Message* message, const FieldDescriptor* field, |
| const Type& value) const; |
| template <typename Type> |
| inline Type* MutableField(Message* message, |
| const FieldDescriptor* field) const; |
| template <typename Type> |
| inline const Type& GetRepeatedField(const Message& message, |
| const FieldDescriptor* field, |
| int index) const; |
| template <typename Type> |
| inline const Type& GetRepeatedPtrField(const Message& message, |
| const FieldDescriptor* field, |
| int index) const; |
| template <typename Type> |
| inline void SetRepeatedField(Message* message, const FieldDescriptor* field, |
| int index, Type value) const; |
| template <typename Type> |
| inline Type* MutableRepeatedField(Message* message, |
| const FieldDescriptor* field, |
| int index) const; |
| template <typename Type> |
| inline void AddField(Message* message, const FieldDescriptor* field, |
| const Type& value) const; |
| template <typename Type> |
| inline Type* AddField(Message* message, const FieldDescriptor* field) const; |
| |
| int GetExtensionNumberOrDie(const Descriptor* type) const; |
| |
| // Internal versions of EnumValue API perform no checking. Called after checks |
| // by public methods. |
| void SetEnumValueInternal(Message* message, const FieldDescriptor* field, |
| int value) const; |
| void SetRepeatedEnumValueInternal(Message* message, |
| const FieldDescriptor* field, int index, |
| int value) const; |
| void AddEnumValueInternal(Message* message, const FieldDescriptor* field, |
| int value) const; |
| |
| Message* UnsafeArenaReleaseMessage(Message* message, |
| const FieldDescriptor* field, |
| MessageFactory* factory = nullptr) const; |
| |
| void UnsafeArenaSetAllocatedMessage(Message* message, Message* sub_message, |
| const FieldDescriptor* field) const; |
| |
| friend inline // inline so nobody can call this function. |
| void |
| RegisterAllTypesInternal(const Metadata* file_level_metadata, int size); |
| |
| GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection); |
| }; |
| |
| // Abstract interface for a factory for message objects. |
| class PROTOBUF_EXPORT MessageFactory { |
| public: |
| inline MessageFactory() {} |
| virtual ~MessageFactory(); |
| |
| // Given a Descriptor, gets or constructs the default (prototype) Message |
| // of that type. You can then call that message's New() method to construct |
| // a mutable message of that type. |
| // |
| // Calling this method twice with the same Descriptor returns the same |
| // object. The returned object remains property of the factory. Also, any |
| // objects created by calling the prototype's New() method share some data |
| // with the prototype, so these must be destroyed before the MessageFactory |
| // is destroyed. |
| // |
| // The given descriptor must outlive the returned message, and hence must |
| // outlive the MessageFactory. |
| // |
| // Some implementations do not support all types. GetPrototype() will |
| // return nullptr if the descriptor passed in is not supported. |
| // |
| // This method may or may not be thread-safe depending on the implementation. |
| // Each implementation should document its own degree thread-safety. |
| virtual const Message* GetPrototype(const Descriptor* type) = 0; |
| |
| // Gets a MessageFactory which supports all generated, compiled-in messages. |
| // In other words, for any compiled-in type FooMessage, the following is true: |
| // MessageFactory::generated_factory()->GetPrototype( |
| // FooMessage::descriptor()) == FooMessage::default_instance() |
| // This factory supports all types which are found in |
| // DescriptorPool::generated_pool(). If given a descriptor from any other |
| // pool, GetPrototype() will return nullptr. (You can also check if a |
| // descriptor is for a generated message by checking if |
| // descriptor->file()->pool() == DescriptorPool::generated_pool().) |
| // |
| // This factory is 100% thread-safe; calling GetPrototype() does not modify |
| // any shared data. |
| // |
| // This factory is a singleton. The caller must not delete the object. |
| static MessageFactory* generated_factory(); |
| |
| // For internal use only: Registers a .proto file at static initialization |
| // time, to be placed in generated_factory. The first time GetPrototype() |
| // is called with a descriptor from this file, |register_messages| will be |
| // called, with the file name as the parameter. It must call |
| // InternalRegisterGeneratedMessage() (below) to register each message type |
| // in the file. This strange mechanism is necessary because descriptors are |
| // built lazily, so we can't register types by their descriptor until we |
| // know that the descriptor exists. |filename| must be a permanent string. |
| static void InternalRegisterGeneratedFile( |
| const google::protobuf::internal::DescriptorTable* table); |
| |
| // For internal use only: Registers a message type. Called only by the |
| // functions which are registered with InternalRegisterGeneratedFile(), |
| // above. |
| static void InternalRegisterGeneratedMessage(const Descriptor* descriptor, |
| const Message* prototype); |
| |
| |
| private: |
| GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory); |
| }; |
| |
| #define DECLARE_GET_REPEATED_FIELD(TYPE) \ |
| template <> \ |
| PROTOBUF_EXPORT const RepeatedField<TYPE>& \ |
| Reflection::GetRepeatedField<TYPE>(const Message& message, \ |
| const FieldDescriptor* field) const; \ |
| \ |
| template <> \ |
| PROTOBUF_EXPORT RepeatedField<TYPE>* Reflection::MutableRepeatedField<TYPE>( \ |
| Message * message, const FieldDescriptor* field) const; |
| |
| DECLARE_GET_REPEATED_FIELD(int32) |
| DECLARE_GET_REPEATED_FIELD(int64) |
| DECLARE_GET_REPEATED_FIELD(uint32) |
| DECLARE_GET_REPEATED_FIELD(uint64) |
| DECLARE_GET_REPEATED_FIELD(float) |
| DECLARE_GET_REPEATED_FIELD(double) |
| DECLARE_GET_REPEATED_FIELD(bool) |
| |
| #undef DECLARE_GET_REPEATED_FIELD |
| |
| // Tries to downcast this message to a generated message type. Returns nullptr |
| // if this class is not an instance of T. This works even if RTTI is disabled. |
| // |
| // This also has the effect of creating a strong reference to T that will |
| // prevent the linker from stripping it out at link time. This can be important |
| // if you are using a DynamicMessageFactory that delegates to the generated |
| // factory. |
| template <typename T> |
| const T* DynamicCastToGenerated(const Message* from) { |
| // Compile-time assert that T is a generated type that has a |
| // default_instance() accessor, but avoid actually calling it. |
| const T& (*get_default_instance)() = &T::default_instance; |
| (void)get_default_instance; |
| |
| // Compile-time assert that T is a subclass of google::protobuf::Message. |
| const Message* unused = static_cast<T*>(nullptr); |
| (void)unused; |
| |
| #ifdef GOOGLE_PROTOBUF_NO_RTTI |
| bool ok = T::default_instance().GetReflection() == from->GetReflection(); |
| return ok ? down_cast<const T*>(from) : nullptr; |
| #else |
| return dynamic_cast<const T*>(from); |
| #endif |
| } |
| |
| template <typename T> |
| T* DynamicCastToGenerated(Message* from) { |
| const Message* message_const = from; |
| return const_cast<T*>(DynamicCastToGenerated<T>(message_const)); |
| } |
| |
| // Call this function to ensure that this message's reflection is linked into |
| // the binary: |
| // |
| // google::protobuf::LinkMessageReflection<FooMessage>(); |
| // |
| // This will ensure that the following lookup will succeed: |
| // |
| // DescriptorPool::generated_pool()->FindMessageTypeByName("FooMessage"); |
| // |
| // As a side-effect, it will also guarantee that anything else from the same |
| // .proto file will also be available for lookup in the generated pool. |
| // |
| // This function does not actually register the message, so it does not need |
| // to be called before the lookup. However it does need to occur in a function |
| // that cannot be stripped from the binary (ie. it must be reachable from main). |
| // |
| // Best practice is to call this function as close as possible to where the |
| // reflection is actually needed. This function is very cheap to call, so you |
| // should not need to worry about its runtime overhead except in the tightest |
| // of loops (on x86-64 it compiles into two "mov" instructions). |
| template <typename T> |
| void LinkMessageReflection() { |
| typedef const T& GetDefaultInstanceFunction(); |
| GetDefaultInstanceFunction* volatile unused = &T::default_instance; |
| (void)&unused; // Use address to avoid an extra load of volatile variable. |
| } |
| |
| // ============================================================================= |
| // Implementation details for {Get,Mutable}RawRepeatedPtrField. We provide |
| // specializations for <std::string>, <StringPieceField> and <Message> and |
| // handle everything else with the default template which will match any type |
| // having a method with signature "static const google::protobuf::Descriptor* |
| // descriptor()". Such a type presumably is a descendant of google::protobuf::Message. |
| |
| template <> |
| inline const RepeatedPtrField<std::string>& |
| Reflection::GetRepeatedPtrField<std::string>( |
| const Message& message, const FieldDescriptor* field) const { |
| return *static_cast<RepeatedPtrField<std::string>*>( |
| MutableRawRepeatedString(const_cast<Message*>(&message), field, true)); |
| } |
| |
| template <> |
| inline RepeatedPtrField<std::string>* |
| Reflection::MutableRepeatedPtrField<std::string>( |
| Message* message, const FieldDescriptor* field) const { |
| return static_cast<RepeatedPtrField<std::string>*>( |
| MutableRawRepeatedString(message, field, true)); |
| } |
| |
| |
| // ----- |
| |
| template <> |
| inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrField( |
| const Message& message, const FieldDescriptor* field) const { |
| return *static_cast<const RepeatedPtrField<Message>*>(GetRawRepeatedField( |
| message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr)); |
| } |
| |
| template <> |
| inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrField( |
| Message* message, const FieldDescriptor* field) const { |
| return static_cast<RepeatedPtrField<Message>*>(MutableRawRepeatedField( |
| message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr)); |
| } |
| |
| template <typename PB> |
| inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrField( |
| const Message& message, const FieldDescriptor* field) const { |
| return *static_cast<const RepeatedPtrField<PB>*>( |
| GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, |
| PB::default_instance().GetDescriptor())); |
| } |
| |
| template <typename PB> |
| inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrField( |
| Message* message, const FieldDescriptor* field) const { |
| return static_cast<RepeatedPtrField<PB>*>( |
| MutableRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, |
| -1, PB::default_instance().GetDescriptor())); |
| } |
| } // namespace protobuf |
| } // namespace google |
| |
| #include <google/protobuf/port_undef.inc> |
| |
| #endif // GOOGLE_PROTOBUF_MESSAGE_H__ |