| // Copyright 2014 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "ui/gfx/geometry/cubic_bezier.h" |
| |
| #include <cmath> |
| #include <memory> |
| |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| namespace gfx { |
| namespace { |
| |
| TEST(CubicBezierTest, Basic) { |
| CubicBezier function(0.25, 0.0, 0.75, 1.0); |
| |
| double epsilon = 0.00015; |
| |
| EXPECT_NEAR(function.Solve(0), 0, epsilon); |
| EXPECT_NEAR(function.Solve(0.05), 0.01136, epsilon); |
| EXPECT_NEAR(function.Solve(0.1), 0.03978, epsilon); |
| EXPECT_NEAR(function.Solve(0.15), 0.079780, epsilon); |
| EXPECT_NEAR(function.Solve(0.2), 0.12803, epsilon); |
| EXPECT_NEAR(function.Solve(0.25), 0.18235, epsilon); |
| EXPECT_NEAR(function.Solve(0.3), 0.24115, epsilon); |
| EXPECT_NEAR(function.Solve(0.35), 0.30323, epsilon); |
| EXPECT_NEAR(function.Solve(0.4), 0.36761, epsilon); |
| EXPECT_NEAR(function.Solve(0.45), 0.43345, epsilon); |
| EXPECT_NEAR(function.Solve(0.5), 0.5, epsilon); |
| EXPECT_NEAR(function.Solve(0.6), 0.63238, epsilon); |
| EXPECT_NEAR(function.Solve(0.65), 0.69676, epsilon); |
| EXPECT_NEAR(function.Solve(0.7), 0.75884, epsilon); |
| EXPECT_NEAR(function.Solve(0.75), 0.81764, epsilon); |
| EXPECT_NEAR(function.Solve(0.8), 0.87196, epsilon); |
| EXPECT_NEAR(function.Solve(0.85), 0.92021, epsilon); |
| EXPECT_NEAR(function.Solve(0.9), 0.96021, epsilon); |
| EXPECT_NEAR(function.Solve(0.95), 0.98863, epsilon); |
| EXPECT_NEAR(function.Solve(1), 1, epsilon); |
| |
| CubicBezier basic_use(0.5, 1.0, 0.5, 1.0); |
| EXPECT_EQ(0.875, basic_use.Solve(0.5)); |
| |
| CubicBezier overshoot(0.5, 2.0, 0.5, 2.0); |
| EXPECT_EQ(1.625, overshoot.Solve(0.5)); |
| |
| CubicBezier undershoot(0.5, -1.0, 0.5, -1.0); |
| EXPECT_EQ(-0.625, undershoot.Solve(0.5)); |
| } |
| |
| // Tests that solving the bezier works with knots with y not in (0, 1). |
| TEST(CubicBezierTest, UnclampedYValues) { |
| CubicBezier function(0.5, -1.0, 0.5, 2.0); |
| |
| double epsilon = 0.00015; |
| |
| EXPECT_NEAR(function.Solve(0.0), 0.0, epsilon); |
| EXPECT_NEAR(function.Solve(0.05), -0.08954, epsilon); |
| EXPECT_NEAR(function.Solve(0.1), -0.15613, epsilon); |
| EXPECT_NEAR(function.Solve(0.15), -0.19641, epsilon); |
| EXPECT_NEAR(function.Solve(0.2), -0.20651, epsilon); |
| EXPECT_NEAR(function.Solve(0.25), -0.18232, epsilon); |
| EXPECT_NEAR(function.Solve(0.3), -0.11992, epsilon); |
| EXPECT_NEAR(function.Solve(0.35), -0.01672, epsilon); |
| EXPECT_NEAR(function.Solve(0.4), 0.12660, epsilon); |
| EXPECT_NEAR(function.Solve(0.45), 0.30349, epsilon); |
| EXPECT_NEAR(function.Solve(0.5), 0.50000, epsilon); |
| EXPECT_NEAR(function.Solve(0.55), 0.69651, epsilon); |
| EXPECT_NEAR(function.Solve(0.6), 0.87340, epsilon); |
| EXPECT_NEAR(function.Solve(0.65), 1.01672, epsilon); |
| EXPECT_NEAR(function.Solve(0.7), 1.11992, epsilon); |
| EXPECT_NEAR(function.Solve(0.75), 1.18232, epsilon); |
| EXPECT_NEAR(function.Solve(0.8), 1.20651, epsilon); |
| EXPECT_NEAR(function.Solve(0.85), 1.19641, epsilon); |
| EXPECT_NEAR(function.Solve(0.9), 1.15613, epsilon); |
| EXPECT_NEAR(function.Solve(0.95), 1.08954, epsilon); |
| EXPECT_NEAR(function.Solve(1.0), 1.0, epsilon); |
| } |
| |
| static void TestBezierFiniteRange(CubicBezier& function) { |
| for (double i = 0; i <= 1.01; i += 0.05) { |
| EXPECT_TRUE(std::isfinite(function.Solve(i))); |
| EXPECT_TRUE(std::isfinite(function.Slope(i))); |
| EXPECT_TRUE(std::isfinite(function.GetX2())); |
| EXPECT_TRUE(std::isfinite(function.GetY2())); |
| EXPECT_TRUE(std::isfinite(function.SampleCurveX(i))); |
| EXPECT_TRUE(std::isfinite(function.SampleCurveY(i))); |
| EXPECT_TRUE(std::isfinite(function.SampleCurveDerivativeX(i))); |
| EXPECT_TRUE(std::isfinite(function.SampleCurveDerivativeY(i))); |
| } |
| } |
| |
| // Tests that solving the bezier works with huge value infinity evaluation |
| TEST(CubicBezierTest, ClampInfinityEvaluation) { |
| auto test_cases = { |
| CubicBezier(0.5, std::numeric_limits<double>::max(), 0.5, |
| std::numeric_limits<double>::max()), |
| CubicBezier(0.5, std::numeric_limits<double>::lowest(), 0.5, |
| std::numeric_limits<double>::max()), |
| CubicBezier(0.5, std::numeric_limits<double>::max(), 0.5, |
| std::numeric_limits<double>::lowest()), |
| CubicBezier(0.5, std::numeric_limits<double>::lowest(), 0.5, |
| std::numeric_limits<double>::lowest()), |
| |
| CubicBezier(0, std::numeric_limits<double>::max(), 0, |
| std::numeric_limits<double>::max()), |
| CubicBezier(0, std::numeric_limits<double>::lowest(), 0, |
| std::numeric_limits<double>::max()), |
| CubicBezier(0, std::numeric_limits<double>::max(), 0, |
| std::numeric_limits<double>::lowest()), |
| CubicBezier(0, std::numeric_limits<double>::lowest(), 0, |
| std::numeric_limits<double>::lowest()), |
| |
| CubicBezier(1, std::numeric_limits<double>::max(), 1, |
| std::numeric_limits<double>::max()), |
| CubicBezier(1, std::numeric_limits<double>::lowest(), 1, |
| std::numeric_limits<double>::max()), |
| CubicBezier(1, std::numeric_limits<double>::max(), 1, |
| std::numeric_limits<double>::lowest()), |
| CubicBezier(1, std::numeric_limits<double>::lowest(), 1, |
| std::numeric_limits<double>::lowest()), |
| |
| CubicBezier(0, 0, 0, std::numeric_limits<double>::max()), |
| CubicBezier(0, std::numeric_limits<double>::lowest(), 0, 0), |
| CubicBezier(1, 0, 0, std::numeric_limits<double>::lowest()), |
| CubicBezier(0, std::numeric_limits<double>::lowest(), 1, 1), |
| |
| }; |
| |
| for (auto tc : test_cases) { |
| TestBezierFiniteRange(tc); |
| } |
| } |
| |
| TEST(CubicBezierTest, Range) { |
| double epsilon = 0.00015; |
| |
| // Derivative is a constant. |
| std::unique_ptr<CubicBezier> function = |
| std::make_unique<CubicBezier>(0.25, (1.0 / 3.0), 0.75, (2.0 / 3.0)); |
| EXPECT_EQ(0, function->range_min()); |
| EXPECT_EQ(1, function->range_max()); |
| |
| // Derivative is linear. |
| function = std::make_unique<CubicBezier>(0.25, -0.5, 0.75, (-1.0 / 6.0)); |
| EXPECT_NEAR(function->range_min(), -0.225, epsilon); |
| EXPECT_EQ(1, function->range_max()); |
| |
| // Derivative has no real roots. |
| function = std::make_unique<CubicBezier>(0.25, 0.25, 0.75, 0.5); |
| EXPECT_EQ(0, function->range_min()); |
| EXPECT_EQ(1, function->range_max()); |
| |
| // Derivative has exactly one real root. |
| function = std::make_unique<CubicBezier>(0.0, 1.0, 1.0, 0.0); |
| EXPECT_EQ(0, function->range_min()); |
| EXPECT_EQ(1, function->range_max()); |
| |
| // Derivative has one root < 0 and one root > 1. |
| function = std::make_unique<CubicBezier>(0.25, 0.1, 0.75, 0.9); |
| EXPECT_EQ(0, function->range_min()); |
| EXPECT_EQ(1, function->range_max()); |
| |
| // Derivative has two roots in [0,1]. |
| function = std::make_unique<CubicBezier>(0.25, 2.5, 0.75, 0.5); |
| EXPECT_EQ(0, function->range_min()); |
| EXPECT_NEAR(function->range_max(), 1.28818, epsilon); |
| function = std::make_unique<CubicBezier>(0.25, 0.5, 0.75, -1.5); |
| EXPECT_NEAR(function->range_min(), -0.28818, epsilon); |
| EXPECT_EQ(1, function->range_max()); |
| |
| // Derivative has one root < 0 and one root in [0,1]. |
| function = std::make_unique<CubicBezier>(0.25, 0.1, 0.75, 1.5); |
| EXPECT_EQ(0, function->range_min()); |
| EXPECT_NEAR(function->range_max(), 1.10755, epsilon); |
| |
| // Derivative has one root in [0,1] and one root > 1. |
| function = std::make_unique<CubicBezier>(0.25, -0.5, 0.75, 0.9); |
| EXPECT_NEAR(function->range_min(), -0.10755, epsilon); |
| EXPECT_EQ(1, function->range_max()); |
| |
| // Derivative has two roots < 0. |
| function = std::make_unique<CubicBezier>(0.25, 0.3, 0.75, 0.633); |
| EXPECT_EQ(0, function->range_min()); |
| EXPECT_EQ(1, function->range_max()); |
| |
| // Derivative has two roots > 1. |
| function = std::make_unique<CubicBezier>(0.25, 0.367, 0.75, 0.7); |
| EXPECT_EQ(0.f, function->range_min()); |
| EXPECT_EQ(1.f, function->range_max()); |
| } |
| |
| TEST(CubicBezierTest, Slope) { |
| CubicBezier function(0.25, 0.0, 0.75, 1.0); |
| |
| double epsilon = 0.00015; |
| |
| EXPECT_NEAR(function.Slope(-0.1), 0, epsilon); |
| EXPECT_NEAR(function.Slope(0), 0, epsilon); |
| EXPECT_NEAR(function.Slope(0.05), 0.42170, epsilon); |
| EXPECT_NEAR(function.Slope(0.1), 0.69778, epsilon); |
| EXPECT_NEAR(function.Slope(0.15), 0.89121, epsilon); |
| EXPECT_NEAR(function.Slope(0.2), 1.03184, epsilon); |
| EXPECT_NEAR(function.Slope(0.25), 1.13576, epsilon); |
| EXPECT_NEAR(function.Slope(0.3), 1.21239, epsilon); |
| EXPECT_NEAR(function.Slope(0.35), 1.26751, epsilon); |
| EXPECT_NEAR(function.Slope(0.4), 1.30474, epsilon); |
| EXPECT_NEAR(function.Slope(0.45), 1.32628, epsilon); |
| EXPECT_NEAR(function.Slope(0.5), 1.33333, epsilon); |
| EXPECT_NEAR(function.Slope(0.55), 1.32628, epsilon); |
| EXPECT_NEAR(function.Slope(0.6), 1.30474, epsilon); |
| EXPECT_NEAR(function.Slope(0.65), 1.26751, epsilon); |
| EXPECT_NEAR(function.Slope(0.7), 1.21239, epsilon); |
| EXPECT_NEAR(function.Slope(0.75), 1.13576, epsilon); |
| EXPECT_NEAR(function.Slope(0.8), 1.03184, epsilon); |
| EXPECT_NEAR(function.Slope(0.85), 0.89121, epsilon); |
| EXPECT_NEAR(function.Slope(0.9), 0.69778, epsilon); |
| EXPECT_NEAR(function.Slope(0.95), 0.42170, epsilon); |
| EXPECT_NEAR(function.Slope(1), 0, epsilon); |
| EXPECT_NEAR(function.Slope(1.1), 0, epsilon); |
| } |
| |
| TEST(CubicBezierTest, InputOutOfRange) { |
| CubicBezier simple(0.5, 1.0, 0.5, 1.0); |
| EXPECT_EQ(-2.0, simple.Solve(-1.0)); |
| EXPECT_EQ(1.0, simple.Solve(2.0)); |
| |
| CubicBezier at_edge_of_range(0.5, 1.0, 0.5, 1.0); |
| EXPECT_EQ(0.0, at_edge_of_range.Solve(0.0)); |
| EXPECT_EQ(1.0, at_edge_of_range.Solve(1.0)); |
| |
| CubicBezier large_epsilon(0.5, 1.0, 0.5, 1.0); |
| EXPECT_EQ(-2.0, large_epsilon.SolveWithEpsilon(-1.0, 1.0)); |
| EXPECT_EQ(1.0, large_epsilon.SolveWithEpsilon(2.0, 1.0)); |
| |
| CubicBezier coincident_endpoints(0.0, 0.0, 1.0, 1.0); |
| EXPECT_EQ(-1.0, coincident_endpoints.Solve(-1.0)); |
| EXPECT_EQ(2.0, coincident_endpoints.Solve(2.0)); |
| |
| CubicBezier vertical_gradient(0.0, 1.0, 1.0, 0.0); |
| EXPECT_EQ(0.0, vertical_gradient.Solve(-1.0)); |
| EXPECT_EQ(1.0, vertical_gradient.Solve(2.0)); |
| |
| CubicBezier vertical_trailing_gradient(0.5, 0.0, 1.0, 0.5); |
| EXPECT_EQ(0.0, vertical_trailing_gradient.Solve(-1.0)); |
| EXPECT_EQ(1.0, vertical_trailing_gradient.Solve(2.0)); |
| |
| CubicBezier distinct_endpoints(0.1, 0.2, 0.8, 0.8); |
| EXPECT_EQ(-2.0, distinct_endpoints.Solve(-1.0)); |
| EXPECT_EQ(2.0, distinct_endpoints.Solve(2.0)); |
| |
| CubicBezier coincident_leading_endpoint(0.0, 0.0, 0.5, 1.0); |
| EXPECT_EQ(-2.0, coincident_leading_endpoint.Solve(-1.0)); |
| EXPECT_EQ(1.0, coincident_leading_endpoint.Solve(2.0)); |
| |
| CubicBezier coincident_trailing_endpoint(1.0, 0.5, 1.0, 1.0); |
| EXPECT_EQ(-0.5, coincident_trailing_endpoint.Solve(-1.0)); |
| EXPECT_EQ(1.0, coincident_trailing_endpoint.Solve(2.0)); |
| |
| // Two special cases with three coincident points. Both are equivalent to |
| // linear. |
| CubicBezier all_zeros(0.0, 0.0, 0.0, 0.0); |
| EXPECT_EQ(-1.0, all_zeros.Solve(-1.0)); |
| EXPECT_EQ(2.0, all_zeros.Solve(2.0)); |
| |
| CubicBezier all_ones(1.0, 1.0, 1.0, 1.0); |
| EXPECT_EQ(-1.0, all_ones.Solve(-1.0)); |
| EXPECT_EQ(2.0, all_ones.Solve(2.0)); |
| } |
| |
| TEST(CubicBezierTest, GetPoints) { |
| double epsilon = 0.00015; |
| |
| CubicBezier cubic1(0.1, 0.2, 0.8, 0.9); |
| EXPECT_NEAR(0.1, cubic1.GetX1(), epsilon); |
| EXPECT_NEAR(0.2, cubic1.GetY1(), epsilon); |
| EXPECT_NEAR(0.8, cubic1.GetX2(), epsilon); |
| EXPECT_NEAR(0.9, cubic1.GetY2(), epsilon); |
| |
| CubicBezier cubic_zero(0, 0, 0, 0); |
| EXPECT_NEAR(0, cubic_zero.GetX1(), epsilon); |
| EXPECT_NEAR(0, cubic_zero.GetY1(), epsilon); |
| EXPECT_NEAR(0, cubic_zero.GetX2(), epsilon); |
| EXPECT_NEAR(0, cubic_zero.GetY2(), epsilon); |
| |
| CubicBezier cubic_one(1, 1, 1, 1); |
| EXPECT_NEAR(1, cubic_one.GetX1(), epsilon); |
| EXPECT_NEAR(1, cubic_one.GetY1(), epsilon); |
| EXPECT_NEAR(1, cubic_one.GetX2(), epsilon); |
| EXPECT_NEAR(1, cubic_one.GetY2(), epsilon); |
| |
| CubicBezier cubic_oor(-0.5, -1.5, 1.5, -1.6); |
| EXPECT_NEAR(-0.5, cubic_oor.GetX1(), epsilon); |
| EXPECT_NEAR(-1.5, cubic_oor.GetY1(), epsilon); |
| EXPECT_NEAR(1.5, cubic_oor.GetX2(), epsilon); |
| EXPECT_NEAR(-1.6, cubic_oor.GetY2(), epsilon); |
| } |
| |
| void validateSolver(const CubicBezier& cubic_bezier) { |
| const double epsilon = 1e-7; |
| const double precision = 1e-5; |
| for (double t = 0; t <= 1; t += 0.05) { |
| double x = cubic_bezier.SampleCurveX(t); |
| double root = cubic_bezier.SolveCurveX(x, epsilon); |
| EXPECT_NEAR(t, root, precision); |
| } |
| } |
| |
| TEST(CubicBezierTest, CommonEasingFunctions) { |
| validateSolver(CubicBezier(0.25, 0.1, 0.25, 1)); // ease |
| validateSolver(CubicBezier(0.42, 0, 1, 1)); // ease-in |
| validateSolver(CubicBezier(0, 0, 0.58, 1)); // ease-out |
| validateSolver(CubicBezier(0.42, 0, 0.58, 1)); // ease-in-out |
| } |
| |
| TEST(CubicBezierTest, LinearEquivalentBeziers) { |
| validateSolver(CubicBezier(0.0, 0.0, 0.0, 0.0)); |
| validateSolver(CubicBezier(1.0, 1.0, 1.0, 1.0)); |
| } |
| |
| TEST(CubicBezierTest, ControlPointsOutsideUnitSquare) { |
| validateSolver(CubicBezier(0.3, 1.5, 0.8, 1.5)); |
| validateSolver(CubicBezier(0.4, -0.8, 0.7, 1.7)); |
| validateSolver(CubicBezier(0.7, -2.0, 1.0, -1.5)); |
| validateSolver(CubicBezier(0, 4, 1, -3)); |
| } |
| |
| } // namespace |
| } // namespace gfx |