| // Copyright 2012 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "ui/gfx/geometry/quad_f.h" |
| |
| #include <limits> |
| |
| #include "base/strings/stringprintf.h" |
| #include "ui/gfx/geometry/triangle_f.h" |
| |
| namespace gfx { |
| |
| namespace { |
| |
| PointF RightMostCornerToVector(const RectF& rect, const Vector2dF& vector) { |
| // Return the corner of the rectangle that if it is to the left of the vector |
| // would mean all of the rectangle is to the left of the vector. |
| // The vector here represents the side between two points in a clockwise |
| // convex polygon. |
| // |
| // Q XXX |
| // QQQ XXX If the lower left corner of X is left of the vector that goes |
| // QQQ from the top corner of Q to the right corner of Q, then all of X |
| // Q is left of the vector, and intersection impossible. |
| // |
| PointF point; |
| if (vector.x() >= 0) |
| point.set_y(rect.bottom()); |
| else |
| point.set_y(rect.y()); |
| if (vector.y() >= 0) |
| point.set_x(rect.x()); |
| else |
| point.set_x(rect.right()); |
| return point; |
| } |
| |
| // Tests whether the line is contained by or intersected with the circle. |
| bool LineIntersectsCircle(const PointF& center, |
| float radius, |
| const PointF& p0, |
| const PointF& p1) { |
| float x0 = p0.x() - center.x(), y0 = p0.y() - center.y(); |
| float x1 = p1.x() - center.x(), y1 = p1.y() - center.y(); |
| float radius2 = radius * radius; |
| if ((x0 * x0 + y0 * y0) <= radius2 || (x1 * x1 + y1 * y1) <= radius2) |
| return true; |
| if (p0 == p1) |
| return false; |
| |
| float a = y0 - y1; |
| float b = x1 - x0; |
| float c = x0 * y1 - x1 * y0; |
| float distance2 = c * c / (a * a + b * b); |
| // If distance between the center point and the line > the radius, |
| // the line doesn't cross (or is contained by) the ellipse. |
| if (distance2 > radius2) |
| return false; |
| |
| // The nearest point on the line is between p0 and p1? |
| float x = -a * c / (a * a + b * b); |
| float y = -b * c / (a * a + b * b); |
| |
| return (((x0 <= x && x <= x1) || (x0 >= x && x >= x1)) && |
| ((y0 <= y && y <= y1) || (y1 <= y && y <= y0))); |
| } |
| |
| } // anonymous namespace |
| |
| void QuadF::operator=(const RectF& rect) { |
| p1_ = PointF(rect.x(), rect.y()); |
| p2_ = PointF(rect.right(), rect.y()); |
| p3_ = PointF(rect.right(), rect.bottom()); |
| p4_ = PointF(rect.x(), rect.bottom()); |
| } |
| |
| std::string QuadF::ToString() const { |
| return base::StringPrintf("%s;%s;%s;%s", |
| p1_.ToString().c_str(), |
| p2_.ToString().c_str(), |
| p3_.ToString().c_str(), |
| p4_.ToString().c_str()); |
| } |
| |
| static inline bool WithinEpsilon(float a, float b) { |
| return std::abs(a - b) < std::numeric_limits<float>::epsilon(); |
| } |
| |
| bool QuadF::IsRectilinear() const { |
| return |
| (WithinEpsilon(p1_.x(), p2_.x()) && WithinEpsilon(p2_.y(), p3_.y()) && |
| WithinEpsilon(p3_.x(), p4_.x()) && WithinEpsilon(p4_.y(), p1_.y())) || |
| (WithinEpsilon(p1_.y(), p2_.y()) && WithinEpsilon(p2_.x(), p3_.x()) && |
| WithinEpsilon(p3_.y(), p4_.y()) && WithinEpsilon(p4_.x(), p1_.x())); |
| } |
| |
| bool QuadF::IsCounterClockwise() const { |
| // This math computes the signed area of the quad. Positive area |
| // indicates the quad is clockwise; negative area indicates the quad is |
| // counter-clockwise. Note carefully: this is backwards from conventional |
| // math because our geometric space uses screen coordiantes with y-axis |
| // pointing downards. |
| // Reference: http://mathworld.wolfram.com/PolygonArea.html. |
| // The equation can be written: |
| // Signed area = determinant1 + determinant2 + determinant3 + determinant4 |
| // In practise, Refactoring the computation of adding determinants so that |
| // reducing the number of operations. The equation is: |
| // Signed area = element1 + element2 - element3 - element4 |
| |
| float p24 = p2_.y() - p4_.y(); |
| float p31 = p3_.y() - p1_.y(); |
| |
| // Up-cast to double so this cannot overflow. |
| double element1 = static_cast<double>(p1_.x()) * p24; |
| double element2 = static_cast<double>(p2_.x()) * p31; |
| double element3 = static_cast<double>(p3_.x()) * p24; |
| double element4 = static_cast<double>(p4_.x()) * p31; |
| |
| return element1 + element2 < element3 + element4; |
| } |
| |
| bool QuadF::Contains(const PointF& point) const { |
| return PointIsInTriangle(point, p1_, p2_, p3_) || |
| PointIsInTriangle(point, p1_, p3_, p4_); |
| } |
| |
| bool QuadF::ContainsQuad(const QuadF& other) const { |
| return Contains(other.p1()) && Contains(other.p2()) && Contains(other.p3()) && |
| Contains(other.p4()); |
| } |
| |
| void QuadF::Scale(float x_scale, float y_scale) { |
| p1_.Scale(x_scale, y_scale); |
| p2_.Scale(x_scale, y_scale); |
| p3_.Scale(x_scale, y_scale); |
| p4_.Scale(x_scale, y_scale); |
| } |
| |
| void QuadF::operator+=(const Vector2dF& rhs) { |
| p1_ += rhs; |
| p2_ += rhs; |
| p3_ += rhs; |
| p4_ += rhs; |
| } |
| |
| void QuadF::operator-=(const Vector2dF& rhs) { |
| p1_ -= rhs; |
| p2_ -= rhs; |
| p3_ -= rhs; |
| p4_ -= rhs; |
| } |
| |
| QuadF operator+(const QuadF& lhs, const Vector2dF& rhs) { |
| QuadF result = lhs; |
| result += rhs; |
| return result; |
| } |
| |
| QuadF operator-(const QuadF& lhs, const Vector2dF& rhs) { |
| QuadF result = lhs; |
| result -= rhs; |
| return result; |
| } |
| |
| bool QuadF::IntersectsRect(const RectF& rect) const { |
| // For each side of the quad clockwise we check if the rectangle is to the |
| // left of it since only content on the right can overlap with the quad. |
| // This only works if the quad is convex. |
| Vector2dF v1, v2, v3, v4; |
| |
| // Ensure we use clockwise vectors. |
| if (IsCounterClockwise()) { |
| v1 = p4_ - p1_; |
| v2 = p1_ - p2_; |
| v3 = p2_ - p3_; |
| v4 = p3_ - p4_; |
| } else { |
| v1 = p2_ - p1_; |
| v2 = p3_ - p2_; |
| v3 = p4_ - p3_; |
| v4 = p1_ - p4_; |
| } |
| |
| PointF p = RightMostCornerToVector(rect, v1); |
| if (CrossProduct(v1, p - p1_) < 0) |
| return false; |
| |
| p = RightMostCornerToVector(rect, v2); |
| if (CrossProduct(v2, p - p2_) < 0) |
| return false; |
| |
| p = RightMostCornerToVector(rect, v3); |
| if (CrossProduct(v3, p - p3_) < 0) |
| return false; |
| |
| p = RightMostCornerToVector(rect, v4); |
| if (CrossProduct(v4, p - p4_) < 0) |
| return false; |
| |
| // If not all of the rectangle is outside one of the quad's four sides, then |
| // that means at least a part of the rectangle is overlapping the quad. |
| return true; |
| } |
| |
| bool QuadF::IntersectsCircle(const PointF& center, float radius) const { |
| return Contains(center) || LineIntersectsCircle(center, radius, p1_, p2_) || |
| LineIntersectsCircle(center, radius, p2_, p3_) || |
| LineIntersectsCircle(center, radius, p3_, p4_) || |
| LineIntersectsCircle(center, radius, p4_, p1_); |
| } |
| |
| bool QuadF::IntersectsEllipse(const PointF& center, const SizeF& radii) const { |
| // Transform the ellipse to an origin-centered circle whose radius is the |
| // product of major radius and minor radius. Here we apply the same |
| // transformation to the quad. |
| QuadF transformed_quad = *this; |
| transformed_quad -= center.OffsetFromOrigin(); |
| transformed_quad.Scale(radii.height(), radii.width()); |
| |
| PointF origin_point; |
| return transformed_quad.IntersectsCircle(origin_point, |
| radii.height() * radii.width()); |
| } |
| |
| } // namespace gfx |