blob: e7915fca46563e37d62c64faaa42e24d56defb37 [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/geometry/quad_f.h"
#include <limits>
#include "base/strings/stringprintf.h"
#include "ui/gfx/geometry/triangle_f.h"
namespace gfx {
namespace {
PointF RightMostCornerToVector(const RectF& rect, const Vector2dF& vector) {
// Return the corner of the rectangle that if it is to the left of the vector
// would mean all of the rectangle is to the left of the vector.
// The vector here represents the side between two points in a clockwise
// convex polygon.
//
// Q XXX
// QQQ XXX If the lower left corner of X is left of the vector that goes
// QQQ from the top corner of Q to the right corner of Q, then all of X
// Q is left of the vector, and intersection impossible.
//
PointF point;
if (vector.x() >= 0)
point.set_y(rect.bottom());
else
point.set_y(rect.y());
if (vector.y() >= 0)
point.set_x(rect.x());
else
point.set_x(rect.right());
return point;
}
// Tests whether the line is contained by or intersected with the circle.
bool LineIntersectsCircle(const PointF& center,
float radius,
const PointF& p0,
const PointF& p1) {
float x0 = p0.x() - center.x(), y0 = p0.y() - center.y();
float x1 = p1.x() - center.x(), y1 = p1.y() - center.y();
float radius2 = radius * radius;
if ((x0 * x0 + y0 * y0) <= radius2 || (x1 * x1 + y1 * y1) <= radius2)
return true;
if (p0 == p1)
return false;
float a = y0 - y1;
float b = x1 - x0;
float c = x0 * y1 - x1 * y0;
float distance2 = c * c / (a * a + b * b);
// If distance between the center point and the line > the radius,
// the line doesn't cross (or is contained by) the ellipse.
if (distance2 > radius2)
return false;
// The nearest point on the line is between p0 and p1?
float x = -a * c / (a * a + b * b);
float y = -b * c / (a * a + b * b);
return (((x0 <= x && x <= x1) || (x0 >= x && x >= x1)) &&
((y0 <= y && y <= y1) || (y1 <= y && y <= y0)));
}
} // anonymous namespace
void QuadF::operator=(const RectF& rect) {
p1_ = PointF(rect.x(), rect.y());
p2_ = PointF(rect.right(), rect.y());
p3_ = PointF(rect.right(), rect.bottom());
p4_ = PointF(rect.x(), rect.bottom());
}
std::string QuadF::ToString() const {
return base::StringPrintf("%s;%s;%s;%s",
p1_.ToString().c_str(),
p2_.ToString().c_str(),
p3_.ToString().c_str(),
p4_.ToString().c_str());
}
static inline bool WithinEpsilon(float a, float b) {
return std::abs(a - b) < std::numeric_limits<float>::epsilon();
}
bool QuadF::IsRectilinear() const {
return
(WithinEpsilon(p1_.x(), p2_.x()) && WithinEpsilon(p2_.y(), p3_.y()) &&
WithinEpsilon(p3_.x(), p4_.x()) && WithinEpsilon(p4_.y(), p1_.y())) ||
(WithinEpsilon(p1_.y(), p2_.y()) && WithinEpsilon(p2_.x(), p3_.x()) &&
WithinEpsilon(p3_.y(), p4_.y()) && WithinEpsilon(p4_.x(), p1_.x()));
}
bool QuadF::IsCounterClockwise() const {
// This math computes the signed area of the quad. Positive area
// indicates the quad is clockwise; negative area indicates the quad is
// counter-clockwise. Note carefully: this is backwards from conventional
// math because our geometric space uses screen coordiantes with y-axis
// pointing downards.
// Reference: http://mathworld.wolfram.com/PolygonArea.html.
// The equation can be written:
// Signed area = determinant1 + determinant2 + determinant3 + determinant4
// In practise, Refactoring the computation of adding determinants so that
// reducing the number of operations. The equation is:
// Signed area = element1 + element2 - element3 - element4
float p24 = p2_.y() - p4_.y();
float p31 = p3_.y() - p1_.y();
// Up-cast to double so this cannot overflow.
double element1 = static_cast<double>(p1_.x()) * p24;
double element2 = static_cast<double>(p2_.x()) * p31;
double element3 = static_cast<double>(p3_.x()) * p24;
double element4 = static_cast<double>(p4_.x()) * p31;
return element1 + element2 < element3 + element4;
}
bool QuadF::Contains(const PointF& point) const {
return PointIsInTriangle(point, p1_, p2_, p3_) ||
PointIsInTriangle(point, p1_, p3_, p4_);
}
bool QuadF::ContainsQuad(const QuadF& other) const {
return Contains(other.p1()) && Contains(other.p2()) && Contains(other.p3()) &&
Contains(other.p4());
}
void QuadF::Scale(float x_scale, float y_scale) {
p1_.Scale(x_scale, y_scale);
p2_.Scale(x_scale, y_scale);
p3_.Scale(x_scale, y_scale);
p4_.Scale(x_scale, y_scale);
}
void QuadF::operator+=(const Vector2dF& rhs) {
p1_ += rhs;
p2_ += rhs;
p3_ += rhs;
p4_ += rhs;
}
void QuadF::operator-=(const Vector2dF& rhs) {
p1_ -= rhs;
p2_ -= rhs;
p3_ -= rhs;
p4_ -= rhs;
}
QuadF operator+(const QuadF& lhs, const Vector2dF& rhs) {
QuadF result = lhs;
result += rhs;
return result;
}
QuadF operator-(const QuadF& lhs, const Vector2dF& rhs) {
QuadF result = lhs;
result -= rhs;
return result;
}
bool QuadF::IntersectsRect(const RectF& rect) const {
// For each side of the quad clockwise we check if the rectangle is to the
// left of it since only content on the right can overlap with the quad.
// This only works if the quad is convex.
Vector2dF v1, v2, v3, v4;
// Ensure we use clockwise vectors.
if (IsCounterClockwise()) {
v1 = p4_ - p1_;
v2 = p1_ - p2_;
v3 = p2_ - p3_;
v4 = p3_ - p4_;
} else {
v1 = p2_ - p1_;
v2 = p3_ - p2_;
v3 = p4_ - p3_;
v4 = p1_ - p4_;
}
PointF p = RightMostCornerToVector(rect, v1);
if (CrossProduct(v1, p - p1_) < 0)
return false;
p = RightMostCornerToVector(rect, v2);
if (CrossProduct(v2, p - p2_) < 0)
return false;
p = RightMostCornerToVector(rect, v3);
if (CrossProduct(v3, p - p3_) < 0)
return false;
p = RightMostCornerToVector(rect, v4);
if (CrossProduct(v4, p - p4_) < 0)
return false;
// If not all of the rectangle is outside one of the quad's four sides, then
// that means at least a part of the rectangle is overlapping the quad.
return true;
}
bool QuadF::IntersectsCircle(const PointF& center, float radius) const {
return Contains(center) || LineIntersectsCircle(center, radius, p1_, p2_) ||
LineIntersectsCircle(center, radius, p2_, p3_) ||
LineIntersectsCircle(center, radius, p3_, p4_) ||
LineIntersectsCircle(center, radius, p4_, p1_);
}
bool QuadF::IntersectsEllipse(const PointF& center, const SizeF& radii) const {
// Transform the ellipse to an origin-centered circle whose radius is the
// product of major radius and minor radius. Here we apply the same
// transformation to the quad.
QuadF transformed_quad = *this;
transformed_quad -= center.OffsetFromOrigin();
transformed_quad.Scale(radii.height(), radii.width());
PointF origin_point;
return transformed_quad.IntersectsCircle(origin_point,
radii.height() * radii.width());
}
} // namespace gfx