| // Copyright 2012 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // Defines a simple integer rectangle class. The containment semantics |
| // are array-like; that is, the coordinate (x, y) is considered to be |
| // contained by the rectangle, but the coordinate (x + width, y) is not. |
| // The class will happily let you create malformed rectangles (that is, |
| // rectangles with negative width and/or height), but there will be assertions |
| // in the operations (such as Contains()) to complain in this case. |
| |
| #ifndef UI_GFX_GEOMETRY_RECT_H_ |
| #define UI_GFX_GEOMETRY_RECT_H_ |
| |
| #include <cmath> |
| #include <iosfwd> |
| #include <string> |
| |
| #include "base/check.h" |
| #include "base/numerics/clamped_math.h" |
| #include "base/numerics/safe_conversions.h" |
| #include "build/build_config.h" |
| #include "ui/gfx/geometry/insets.h" |
| #include "ui/gfx/geometry/outsets.h" |
| #include "ui/gfx/geometry/point.h" |
| #include "ui/gfx/geometry/size.h" |
| #include "ui/gfx/geometry/vector2d.h" |
| |
| #if BUILDFLAG(IS_WIN) |
| typedef struct tagRECT RECT; |
| #elif BUILDFLAG(IS_APPLE) |
| typedef struct CGRect CGRect; |
| #endif |
| |
| namespace gfx { |
| |
| class GEOMETRY_EXPORT Rect { |
| public: |
| constexpr Rect() = default; |
| constexpr Rect(int width, int height) : size_(width, height) {} |
| constexpr Rect(int x, int y, int width, int height) |
| : origin_(x, y), |
| size_(ClampWidthOrHeight(x, width), ClampWidthOrHeight(y, height)) {} |
| constexpr explicit Rect(const Size& size) : size_(size) {} |
| constexpr Rect(const Point& origin, const Size& size) |
| : origin_(origin), |
| size_(ClampWidthOrHeight(origin.x(), size.width()), |
| ClampWidthOrHeight(origin.y(), size.height())) {} |
| |
| #if BUILDFLAG(IS_WIN) |
| explicit Rect(const RECT& r); |
| #elif BUILDFLAG(IS_APPLE) |
| explicit Rect(const CGRect& r); |
| #endif |
| |
| #if BUILDFLAG(IS_WIN) |
| // Construct an equivalent Win32 RECT object. |
| RECT ToRECT() const; |
| #elif BUILDFLAG(IS_APPLE) |
| // Construct an equivalent CoreGraphics object. |
| CGRect ToCGRect() const; |
| #endif |
| |
| constexpr int x() const { return origin_.x(); } |
| // Sets the X position while preserving the width. |
| void set_x(int x) { |
| origin_.set_x(x); |
| size_.set_width(ClampWidthOrHeight(x, width())); |
| } |
| |
| constexpr int y() const { return origin_.y(); } |
| // Sets the Y position while preserving the height. |
| void set_y(int y) { |
| origin_.set_y(y); |
| size_.set_height(ClampWidthOrHeight(y, height())); |
| } |
| |
| constexpr int width() const { return size_.width(); } |
| void set_width(int width) { size_.set_width(ClampWidthOrHeight(x(), width)); } |
| |
| constexpr int height() const { return size_.height(); } |
| void set_height(int height) { |
| size_.set_height(ClampWidthOrHeight(y(), height)); |
| } |
| |
| constexpr const Point& origin() const { return origin_; } |
| void set_origin(const Point& origin) { |
| origin_ = origin; |
| // Ensure that width and height remain valid. |
| set_width(width()); |
| set_height(height()); |
| } |
| |
| constexpr const Size& size() const { return size_; } |
| void set_size(const Size& size) { |
| set_width(size.width()); |
| set_height(size.height()); |
| } |
| |
| constexpr int right() const { return x() + width(); } |
| constexpr int bottom() const { return y() + height(); } |
| |
| constexpr Point top_right() const { return Point(right(), y()); } |
| constexpr Point bottom_left() const { return Point(x(), bottom()); } |
| constexpr Point bottom_right() const { return Point(right(), bottom()); } |
| |
| constexpr Point left_center() const { return Point(x(), y() + height() / 2); } |
| constexpr Point top_center() const { return Point(x() + width() / 2, y()); } |
| constexpr Point right_center() const { |
| return Point(right(), y() + height() / 2); |
| } |
| constexpr Point bottom_center() const { |
| return Point(x() + width() / 2, bottom()); |
| } |
| |
| Vector2d OffsetFromOrigin() const { return Vector2d(x(), y()); } |
| |
| void SetRect(int x, int y, int width, int height) { |
| origin_.SetPoint(x, y); |
| // Ensure that width and height remain valid. |
| set_width(width); |
| set_height(height); |
| } |
| |
| // Use in place of SetRect() when you know the edges of the rectangle instead |
| // of the dimensions, rather than trying to determine the width/height |
| // yourself. This safely handles cases where the width/height would overflow. |
| void SetByBounds(int left, int top, int right, int bottom) { |
| SetHorizontalBounds(left, right); |
| SetVerticalBounds(top, bottom); |
| } |
| void SetHorizontalBounds(int left, int right) { |
| set_x(left); |
| set_width(base::ClampSub(right, left)); |
| if (UNLIKELY(this->right() != right)) |
| AdjustForSaturatedRight(right); |
| } |
| void SetVerticalBounds(int top, int bottom) { |
| set_y(top); |
| set_height(base::ClampSub(bottom, top)); |
| if (UNLIKELY(this->bottom() != bottom)) |
| AdjustForSaturatedBottom(bottom); |
| } |
| |
| // Shrink the rectangle by |inset| on all sides. |
| void Inset(int inset) { Inset(Insets(inset)); } |
| // Shrink the rectangle by the given |insets|. |
| void Inset(const Insets& insets); |
| |
| // Expand the rectangle by |outset| on all sides. |
| void Outset(int outset) { Inset(-outset); } |
| // Expand the rectangle by the given |outsets|. |
| void Outset(const Outsets& outsets) { Inset(outsets.ToInsets()); } |
| |
| // Move the rectangle by a horizontal and vertical distance. |
| void Offset(int horizontal, int vertical) { |
| Offset(Vector2d(horizontal, vertical)); |
| } |
| void Offset(const Vector2d& distance); |
| void operator+=(const Vector2d& offset) { Offset(offset); } |
| void operator-=(const Vector2d& offset) { Offset(-offset); } |
| |
| Insets InsetsFrom(const Rect& inner) const; |
| |
| // Returns true if the area of the rectangle is zero. |
| bool IsEmpty() const { return size_.IsEmpty(); } |
| |
| // A rect is less than another rect if its origin is less than |
| // the other rect's origin. If the origins are equal, then the |
| // shortest rect is less than the other. If the origin and the |
| // height are equal, then the narrowest rect is less than. |
| // This comparison is required to use Rects in sets, or sorted |
| // vectors. |
| bool operator<(const Rect& other) const; |
| |
| // Returns true if the point identified by point_x and point_y falls inside |
| // this rectangle. The point (x, y) is inside the rectangle, but the |
| // point (x + width, y + height) is not. |
| bool Contains(int point_x, int point_y) const; |
| |
| // Returns true if the specified point is contained by this rectangle. |
| bool Contains(const Point& point) const { |
| return Contains(point.x(), point.y()); |
| } |
| |
| // Returns true if this rectangle contains the specified rectangle. |
| bool Contains(const Rect& rect) const; |
| |
| // Returns true if this rectangle intersects the specified rectangle. |
| // An empty rectangle doesn't intersect any rectangle. |
| bool Intersects(const Rect& rect) const; |
| |
| // Sets this rect to be the intersection of this rectangle with the given |
| // rectangle. |
| void Intersect(const Rect& rect); |
| |
| // Sets this rect to be the intersection of itself and |rect| using |
| // edge-inclusive geometry. If the two rectangles overlap but the overlap |
| // region is zero-area (either because one of the two rectangles is zero-area, |
| // or because the rectangles overlap at an edge or a corner), the result is |
| // the zero-area intersection. The return value indicates whether the two |
| // rectangle actually have an intersection, since checking the result for |
| // isEmpty() is not conclusive. |
| bool InclusiveIntersect(const Rect& rect); |
| |
| // Sets this rect to be the union of this rectangle with the given rectangle. |
| // The union is the smallest rectangle containing both rectangles if not |
| // empty. If both rects are empty, this rect will become |rect|. |
| void Union(const Rect& rect); |
| |
| // Similar to Union(), but the result will contain both rectangles even if |
| // either of them is empty. For example, union of (100, 100, 0x0) and |
| // (200, 200, 50x0) is (100, 100, 150x100). |
| void UnionEvenIfEmpty(const Rect& rect); |
| |
| // Sets this rect to be the rectangle resulting from subtracting |rect| from |
| // |*this|, i.e. the bounding rect of |Region(*this) - Region(rect)|. |
| void Subtract(const Rect& rect); |
| |
| // Fits as much of the receiving rectangle into the supplied rectangle as |
| // possible, becoming the result. For example, if the receiver had |
| // a x-location of 2 and a width of 4, and the supplied rectangle had |
| // an x-location of 0 with a width of 5, the returned rectangle would have |
| // an x-location of 1 with a width of 4. |
| void AdjustToFit(const Rect& rect); |
| |
| // Returns the center of this rectangle. |
| Point CenterPoint() const; |
| |
| // Becomes a rectangle that has the same center point but with a size capped |
| // at given |size|. |
| void ClampToCenteredSize(const Size& size); |
| |
| // Transpose x and y axis. |
| void Transpose(); |
| |
| // Splits |this| in two halves, |left_half| and |right_half|. |
| void SplitVertically(Rect* left_half, Rect* right_half) const; |
| |
| // Returns true if this rectangle shares an entire edge (i.e., same width or |
| // same height) with the given rectangle, and the rectangles do not overlap. |
| bool SharesEdgeWith(const Rect& rect) const; |
| |
| // Returns the manhattan distance from the rect to the point. If the point is |
| // inside the rect, returns 0. |
| int ManhattanDistanceToPoint(const Point& point) const; |
| |
| // Returns the manhattan distance between the contents of this rect and the |
| // contents of the given rect. That is, if the intersection of the two rects |
| // is non-empty then the function returns 0. If the rects share a side, it |
| // returns the smallest non-zero value appropriate for int. |
| int ManhattanInternalDistance(const Rect& rect) const; |
| |
| std::string ToString() const; |
| |
| bool ApproximatelyEqual(const Rect& rect, int tolerance) const; |
| |
| private: |
| // Clamp the width/height to avoid integer overflow in bottom() and right(). |
| // This returns the clamped width/height given an |x_or_y| and a |
| // |width_or_height|. |
| static constexpr int ClampWidthOrHeight(int x_or_y, int width_or_height) { |
| return base::ClampAdd(x_or_y, width_or_height) - x_or_y; |
| } |
| |
| void AdjustForSaturatedRight(int right); |
| void AdjustForSaturatedBottom(int bottom); |
| |
| gfx::Point origin_; |
| gfx::Size size_; |
| }; |
| |
| inline bool operator==(const Rect& lhs, const Rect& rhs) { |
| return lhs.origin() == rhs.origin() && lhs.size() == rhs.size(); |
| } |
| |
| inline bool operator!=(const Rect& lhs, const Rect& rhs) { |
| return !(lhs == rhs); |
| } |
| |
| GEOMETRY_EXPORT Rect operator+(const Rect& lhs, const Vector2d& rhs); |
| GEOMETRY_EXPORT Rect operator-(const Rect& lhs, const Vector2d& rhs); |
| |
| inline Rect operator+(const Vector2d& lhs, const Rect& rhs) { |
| return rhs + lhs; |
| } |
| |
| GEOMETRY_EXPORT Rect IntersectRects(const Rect& a, const Rect& b); |
| GEOMETRY_EXPORT Rect UnionRects(const Rect& a, const Rect& b); |
| GEOMETRY_EXPORT Rect UnionRectsEvenIfEmpty(const Rect& a, const Rect& b); |
| GEOMETRY_EXPORT Rect SubtractRects(const Rect& a, const Rect& b); |
| |
| // Constructs a rectangle with |p1| and |p2| as opposite corners. |
| // |
| // This could also be thought of as "the smallest rect that contains both |
| // points", except that we consider points on the right/bottom edges of the |
| // rect to be outside the rect. So technically one or both points will not be |
| // contained within the rect, because they will appear on one of these edges. |
| GEOMETRY_EXPORT Rect BoundingRect(const Point& p1, const Point& p2); |
| |
| // Scales the rect and returns the enclosing rect. The components are clamped |
| // if they would overflow. |
| inline Rect ScaleToEnclosingRect(const Rect& rect, |
| float x_scale, |
| float y_scale) { |
| if (x_scale == 1.f && y_scale == 1.f) |
| return rect; |
| int x = base::ClampFloor(rect.x() * x_scale); |
| int y = base::ClampFloor(rect.y() * y_scale); |
| int r = rect.width() == 0 ? x : base::ClampCeil(rect.right() * x_scale); |
| int b = rect.height() == 0 ? y : base::ClampCeil(rect.bottom() * y_scale); |
| Rect result; |
| result.SetByBounds(x, y, r, b); |
| return result; |
| } |
| |
| inline Rect ScaleToEnclosingRect(const Rect& rect, float scale) { |
| return ScaleToEnclosingRect(rect, scale, scale); |
| } |
| |
| inline Rect ScaleToEnclosedRect(const Rect& rect, |
| float x_scale, |
| float y_scale) { |
| if (x_scale == 1.f && y_scale == 1.f) |
| return rect; |
| int x = base::ClampCeil(rect.x() * x_scale); |
| int y = base::ClampCeil(rect.y() * y_scale); |
| int r = rect.width() == 0 ? x : base::ClampFloor(rect.right() * x_scale); |
| int b = rect.height() == 0 ? y : base::ClampFloor(rect.bottom() * y_scale); |
| Rect result; |
| result.SetByBounds(x, y, r, b); |
| return result; |
| } |
| |
| inline Rect ScaleToEnclosedRect(const Rect& rect, float scale) { |
| return ScaleToEnclosedRect(rect, scale, scale); |
| } |
| |
| // Scales |rect| by scaling its four corner points. If the corner points lie on |
| // non-integral coordinate after scaling, their values are rounded to the |
| // nearest integer. The components are clamped if they would overflow. |
| // This is helpful during layout when relative positions of multiple gfx::Rect |
| // in a given coordinate space needs to be same after scaling as it was before |
| // scaling. ie. this gives a lossless relative positioning of rects. |
| inline Rect ScaleToRoundedRect(const Rect& rect, float x_scale, float y_scale) { |
| if (x_scale == 1.f && y_scale == 1.f) |
| return rect; |
| int x = base::ClampRound(rect.x() * x_scale); |
| int y = base::ClampRound(rect.y() * y_scale); |
| int r = rect.width() == 0 ? x : base::ClampRound(rect.right() * x_scale); |
| int b = rect.height() == 0 ? y : base::ClampRound(rect.bottom() * y_scale); |
| Rect result; |
| result.SetByBounds(x, y, r, b); |
| return result; |
| } |
| |
| inline Rect ScaleToRoundedRect(const Rect& rect, float scale) { |
| return ScaleToRoundedRect(rect, scale, scale); |
| } |
| |
| // Return a maximum rectangle that is covered by the a or b. |
| GEOMETRY_EXPORT Rect MaximumCoveredRect(const Rect& a, const Rect& b); |
| |
| // This is declared here for use in gtest-based unit tests but is defined in |
| // the //ui/gfx:test_support target. Depend on that to use this in your unit |
| // test. This should not be used in production code - call ToString() instead. |
| void PrintTo(const Rect& rect, ::std::ostream* os); |
| |
| } // namespace gfx |
| |
| #endif // UI_GFX_GEOMETRY_RECT_H_ |