blob: 4ce53df4fcf6eb200d2f58534f88467d7b75366a [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Defines a simple integer rectangle class. The containment semantics
// are array-like; that is, the coordinate (x, y) is considered to be
// contained by the rectangle, but the coordinate (x + width, y) is not.
// The class will happily let you create malformed rectangles (that is,
// rectangles with negative width and/or height), but there will be assertions
// in the operations (such as Contains()) to complain in this case.
#ifndef UI_GFX_GEOMETRY_RECT_H_
#define UI_GFX_GEOMETRY_RECT_H_
#include <cmath>
#include <iosfwd>
#include <string>
#include "base/check.h"
#include "base/numerics/clamped_math.h"
#include "base/numerics/safe_conversions.h"
#include "build/build_config.h"
#include "ui/gfx/geometry/insets.h"
#include "ui/gfx/geometry/outsets.h"
#include "ui/gfx/geometry/point.h"
#include "ui/gfx/geometry/size.h"
#include "ui/gfx/geometry/vector2d.h"
#if BUILDFLAG(IS_WIN)
typedef struct tagRECT RECT;
#elif BUILDFLAG(IS_APPLE)
typedef struct CGRect CGRect;
#endif
namespace gfx {
class GEOMETRY_EXPORT Rect {
public:
constexpr Rect() = default;
constexpr Rect(int width, int height) : size_(width, height) {}
constexpr Rect(int x, int y, int width, int height)
: origin_(x, y),
size_(ClampWidthOrHeight(x, width), ClampWidthOrHeight(y, height)) {}
constexpr explicit Rect(const Size& size) : size_(size) {}
constexpr Rect(const Point& origin, const Size& size)
: origin_(origin),
size_(ClampWidthOrHeight(origin.x(), size.width()),
ClampWidthOrHeight(origin.y(), size.height())) {}
#if BUILDFLAG(IS_WIN)
explicit Rect(const RECT& r);
#elif BUILDFLAG(IS_APPLE)
explicit Rect(const CGRect& r);
#endif
#if BUILDFLAG(IS_WIN)
// Construct an equivalent Win32 RECT object.
RECT ToRECT() const;
#elif BUILDFLAG(IS_APPLE)
// Construct an equivalent CoreGraphics object.
CGRect ToCGRect() const;
#endif
constexpr int x() const { return origin_.x(); }
// Sets the X position while preserving the width.
void set_x(int x) {
origin_.set_x(x);
size_.set_width(ClampWidthOrHeight(x, width()));
}
constexpr int y() const { return origin_.y(); }
// Sets the Y position while preserving the height.
void set_y(int y) {
origin_.set_y(y);
size_.set_height(ClampWidthOrHeight(y, height()));
}
constexpr int width() const { return size_.width(); }
void set_width(int width) { size_.set_width(ClampWidthOrHeight(x(), width)); }
constexpr int height() const { return size_.height(); }
void set_height(int height) {
size_.set_height(ClampWidthOrHeight(y(), height));
}
constexpr const Point& origin() const { return origin_; }
void set_origin(const Point& origin) {
origin_ = origin;
// Ensure that width and height remain valid.
set_width(width());
set_height(height());
}
constexpr const Size& size() const { return size_; }
void set_size(const Size& size) {
set_width(size.width());
set_height(size.height());
}
constexpr int right() const { return x() + width(); }
constexpr int bottom() const { return y() + height(); }
constexpr Point top_right() const { return Point(right(), y()); }
constexpr Point bottom_left() const { return Point(x(), bottom()); }
constexpr Point bottom_right() const { return Point(right(), bottom()); }
constexpr Point left_center() const { return Point(x(), y() + height() / 2); }
constexpr Point top_center() const { return Point(x() + width() / 2, y()); }
constexpr Point right_center() const {
return Point(right(), y() + height() / 2);
}
constexpr Point bottom_center() const {
return Point(x() + width() / 2, bottom());
}
Vector2d OffsetFromOrigin() const { return Vector2d(x(), y()); }
void SetRect(int x, int y, int width, int height) {
origin_.SetPoint(x, y);
// Ensure that width and height remain valid.
set_width(width);
set_height(height);
}
// Use in place of SetRect() when you know the edges of the rectangle instead
// of the dimensions, rather than trying to determine the width/height
// yourself. This safely handles cases where the width/height would overflow.
void SetByBounds(int left, int top, int right, int bottom) {
SetHorizontalBounds(left, right);
SetVerticalBounds(top, bottom);
}
void SetHorizontalBounds(int left, int right) {
set_x(left);
set_width(base::ClampSub(right, left));
if (UNLIKELY(this->right() != right))
AdjustForSaturatedRight(right);
}
void SetVerticalBounds(int top, int bottom) {
set_y(top);
set_height(base::ClampSub(bottom, top));
if (UNLIKELY(this->bottom() != bottom))
AdjustForSaturatedBottom(bottom);
}
// Shrink the rectangle by |inset| on all sides.
void Inset(int inset) { Inset(Insets(inset)); }
// Shrink the rectangle by the given |insets|.
void Inset(const Insets& insets);
// Expand the rectangle by |outset| on all sides.
void Outset(int outset) { Inset(-outset); }
// Expand the rectangle by the given |outsets|.
void Outset(const Outsets& outsets) { Inset(outsets.ToInsets()); }
// Move the rectangle by a horizontal and vertical distance.
void Offset(int horizontal, int vertical) {
Offset(Vector2d(horizontal, vertical));
}
void Offset(const Vector2d& distance);
void operator+=(const Vector2d& offset) { Offset(offset); }
void operator-=(const Vector2d& offset) { Offset(-offset); }
Insets InsetsFrom(const Rect& inner) const;
// Returns true if the area of the rectangle is zero.
bool IsEmpty() const { return size_.IsEmpty(); }
// A rect is less than another rect if its origin is less than
// the other rect's origin. If the origins are equal, then the
// shortest rect is less than the other. If the origin and the
// height are equal, then the narrowest rect is less than.
// This comparison is required to use Rects in sets, or sorted
// vectors.
bool operator<(const Rect& other) const;
// Returns true if the point identified by point_x and point_y falls inside
// this rectangle. The point (x, y) is inside the rectangle, but the
// point (x + width, y + height) is not.
bool Contains(int point_x, int point_y) const;
// Returns true if the specified point is contained by this rectangle.
bool Contains(const Point& point) const {
return Contains(point.x(), point.y());
}
// Returns true if this rectangle contains the specified rectangle.
bool Contains(const Rect& rect) const;
// Returns true if this rectangle intersects the specified rectangle.
// An empty rectangle doesn't intersect any rectangle.
bool Intersects(const Rect& rect) const;
// Sets this rect to be the intersection of this rectangle with the given
// rectangle.
void Intersect(const Rect& rect);
// Sets this rect to be the intersection of itself and |rect| using
// edge-inclusive geometry. If the two rectangles overlap but the overlap
// region is zero-area (either because one of the two rectangles is zero-area,
// or because the rectangles overlap at an edge or a corner), the result is
// the zero-area intersection. The return value indicates whether the two
// rectangle actually have an intersection, since checking the result for
// isEmpty() is not conclusive.
bool InclusiveIntersect(const Rect& rect);
// Sets this rect to be the union of this rectangle with the given rectangle.
// The union is the smallest rectangle containing both rectangles if not
// empty. If both rects are empty, this rect will become |rect|.
void Union(const Rect& rect);
// Similar to Union(), but the result will contain both rectangles even if
// either of them is empty. For example, union of (100, 100, 0x0) and
// (200, 200, 50x0) is (100, 100, 150x100).
void UnionEvenIfEmpty(const Rect& rect);
// Sets this rect to be the rectangle resulting from subtracting |rect| from
// |*this|, i.e. the bounding rect of |Region(*this) - Region(rect)|.
void Subtract(const Rect& rect);
// Fits as much of the receiving rectangle into the supplied rectangle as
// possible, becoming the result. For example, if the receiver had
// a x-location of 2 and a width of 4, and the supplied rectangle had
// an x-location of 0 with a width of 5, the returned rectangle would have
// an x-location of 1 with a width of 4.
void AdjustToFit(const Rect& rect);
// Returns the center of this rectangle.
Point CenterPoint() const;
// Becomes a rectangle that has the same center point but with a size capped
// at given |size|.
void ClampToCenteredSize(const Size& size);
// Transpose x and y axis.
void Transpose();
// Splits |this| in two halves, |left_half| and |right_half|.
void SplitVertically(Rect* left_half, Rect* right_half) const;
// Returns true if this rectangle shares an entire edge (i.e., same width or
// same height) with the given rectangle, and the rectangles do not overlap.
bool SharesEdgeWith(const Rect& rect) const;
// Returns the manhattan distance from the rect to the point. If the point is
// inside the rect, returns 0.
int ManhattanDistanceToPoint(const Point& point) const;
// Returns the manhattan distance between the contents of this rect and the
// contents of the given rect. That is, if the intersection of the two rects
// is non-empty then the function returns 0. If the rects share a side, it
// returns the smallest non-zero value appropriate for int.
int ManhattanInternalDistance(const Rect& rect) const;
std::string ToString() const;
bool ApproximatelyEqual(const Rect& rect, int tolerance) const;
private:
// Clamp the width/height to avoid integer overflow in bottom() and right().
// This returns the clamped width/height given an |x_or_y| and a
// |width_or_height|.
static constexpr int ClampWidthOrHeight(int x_or_y, int width_or_height) {
return base::ClampAdd(x_or_y, width_or_height) - x_or_y;
}
void AdjustForSaturatedRight(int right);
void AdjustForSaturatedBottom(int bottom);
gfx::Point origin_;
gfx::Size size_;
};
inline bool operator==(const Rect& lhs, const Rect& rhs) {
return lhs.origin() == rhs.origin() && lhs.size() == rhs.size();
}
inline bool operator!=(const Rect& lhs, const Rect& rhs) {
return !(lhs == rhs);
}
GEOMETRY_EXPORT Rect operator+(const Rect& lhs, const Vector2d& rhs);
GEOMETRY_EXPORT Rect operator-(const Rect& lhs, const Vector2d& rhs);
inline Rect operator+(const Vector2d& lhs, const Rect& rhs) {
return rhs + lhs;
}
GEOMETRY_EXPORT Rect IntersectRects(const Rect& a, const Rect& b);
GEOMETRY_EXPORT Rect UnionRects(const Rect& a, const Rect& b);
GEOMETRY_EXPORT Rect UnionRectsEvenIfEmpty(const Rect& a, const Rect& b);
GEOMETRY_EXPORT Rect SubtractRects(const Rect& a, const Rect& b);
// Constructs a rectangle with |p1| and |p2| as opposite corners.
//
// This could also be thought of as "the smallest rect that contains both
// points", except that we consider points on the right/bottom edges of the
// rect to be outside the rect. So technically one or both points will not be
// contained within the rect, because they will appear on one of these edges.
GEOMETRY_EXPORT Rect BoundingRect(const Point& p1, const Point& p2);
// Scales the rect and returns the enclosing rect. The components are clamped
// if they would overflow.
inline Rect ScaleToEnclosingRect(const Rect& rect,
float x_scale,
float y_scale) {
if (x_scale == 1.f && y_scale == 1.f)
return rect;
int x = base::ClampFloor(rect.x() * x_scale);
int y = base::ClampFloor(rect.y() * y_scale);
int r = rect.width() == 0 ? x : base::ClampCeil(rect.right() * x_scale);
int b = rect.height() == 0 ? y : base::ClampCeil(rect.bottom() * y_scale);
Rect result;
result.SetByBounds(x, y, r, b);
return result;
}
inline Rect ScaleToEnclosingRect(const Rect& rect, float scale) {
return ScaleToEnclosingRect(rect, scale, scale);
}
inline Rect ScaleToEnclosedRect(const Rect& rect,
float x_scale,
float y_scale) {
if (x_scale == 1.f && y_scale == 1.f)
return rect;
int x = base::ClampCeil(rect.x() * x_scale);
int y = base::ClampCeil(rect.y() * y_scale);
int r = rect.width() == 0 ? x : base::ClampFloor(rect.right() * x_scale);
int b = rect.height() == 0 ? y : base::ClampFloor(rect.bottom() * y_scale);
Rect result;
result.SetByBounds(x, y, r, b);
return result;
}
inline Rect ScaleToEnclosedRect(const Rect& rect, float scale) {
return ScaleToEnclosedRect(rect, scale, scale);
}
// Scales |rect| by scaling its four corner points. If the corner points lie on
// non-integral coordinate after scaling, their values are rounded to the
// nearest integer. The components are clamped if they would overflow.
// This is helpful during layout when relative positions of multiple gfx::Rect
// in a given coordinate space needs to be same after scaling as it was before
// scaling. ie. this gives a lossless relative positioning of rects.
inline Rect ScaleToRoundedRect(const Rect& rect, float x_scale, float y_scale) {
if (x_scale == 1.f && y_scale == 1.f)
return rect;
int x = base::ClampRound(rect.x() * x_scale);
int y = base::ClampRound(rect.y() * y_scale);
int r = rect.width() == 0 ? x : base::ClampRound(rect.right() * x_scale);
int b = rect.height() == 0 ? y : base::ClampRound(rect.bottom() * y_scale);
Rect result;
result.SetByBounds(x, y, r, b);
return result;
}
inline Rect ScaleToRoundedRect(const Rect& rect, float scale) {
return ScaleToRoundedRect(rect, scale, scale);
}
// Return a maximum rectangle that is covered by the a or b.
GEOMETRY_EXPORT Rect MaximumCoveredRect(const Rect& a, const Rect& b);
// This is declared here for use in gtest-based unit tests but is defined in
// the //ui/gfx:test_support target. Depend on that to use this in your unit
// test. This should not be used in production code - call ToString() instead.
void PrintTo(const Rect& rect, ::std::ostream* os);
} // namespace gfx
#endif // UI_GFX_GEOMETRY_RECT_H_