blob: 214ca28a73626d553718dd72ff1eae93532d5bcc [file] [log] [blame]
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/geometry/transform.h"
#include <stddef.h>
#include <limits>
#include <ostream>
#include "base/cxx17_backports.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
#include "ui/gfx/geometry/angle_conversions.h"
#include "ui/gfx/geometry/axis_transform2d.h"
#include "ui/gfx/geometry/box_f.h"
#include "ui/gfx/geometry/decomposed_transform.h"
#include "ui/gfx/geometry/point.h"
#include "ui/gfx/geometry/point3_f.h"
#include "ui/gfx/geometry/quad_f.h"
#include "ui/gfx/geometry/test/geometry_util.h"
#include "ui/gfx/geometry/vector3d_f.h"
namespace gfx {
namespace {
#define STATIC_ROW0_EQ(a, b, c, d, transform) \
static_assert((a) == (transform).rc(0, 0)); \
static_assert((b) == (transform).rc(0, 1)); \
static_assert((c) == (transform).rc(0, 2)); \
static_assert((d) == (transform).rc(0, 3));
#define STATIC_ROW1_EQ(a, b, c, d, transform) \
static_assert((a) == (transform).rc(1, 0)); \
static_assert((b) == (transform).rc(1, 1)); \
static_assert((c) == (transform).rc(1, 2)); \
static_assert((d) == (transform).rc(1, 3));
#define STATIC_ROW2_EQ(a, b, c, d, transform) \
static_assert((a) == (transform).rc(2, 0)); \
static_assert((b) == (transform).rc(2, 1)); \
static_assert((c) == (transform).rc(2, 2)); \
static_assert((d) == (transform).rc(2, 3));
#define STATIC_ROW3_EQ(a, b, c, d, transform) \
static_assert((a) == (transform).rc(3, 0)); \
static_assert((b) == (transform).rc(3, 1)); \
static_assert((c) == (transform).rc(3, 2)); \
static_assert((d) == (transform).rc(3, 3));
#define EXPECT_ROW0_EQ(a, b, c, d, transform) \
EXPECT_FLOAT_EQ((a), (transform).rc(0, 0)); \
EXPECT_FLOAT_EQ((b), (transform).rc(0, 1)); \
EXPECT_FLOAT_EQ((c), (transform).rc(0, 2)); \
EXPECT_FLOAT_EQ((d), (transform).rc(0, 3));
#define EXPECT_ROW1_EQ(a, b, c, d, transform) \
EXPECT_FLOAT_EQ((a), (transform).rc(1, 0)); \
EXPECT_FLOAT_EQ((b), (transform).rc(1, 1)); \
EXPECT_FLOAT_EQ((c), (transform).rc(1, 2)); \
EXPECT_FLOAT_EQ((d), (transform).rc(1, 3));
#define EXPECT_ROW2_EQ(a, b, c, d, transform) \
EXPECT_FLOAT_EQ((a), (transform).rc(2, 0)); \
EXPECT_FLOAT_EQ((b), (transform).rc(2, 1)); \
EXPECT_FLOAT_EQ((c), (transform).rc(2, 2)); \
EXPECT_FLOAT_EQ((d), (transform).rc(2, 3));
#define EXPECT_ROW3_EQ(a, b, c, d, transform) \
EXPECT_FLOAT_EQ((a), (transform).rc(3, 0)); \
EXPECT_FLOAT_EQ((b), (transform).rc(3, 1)); \
EXPECT_FLOAT_EQ((c), (transform).rc(3, 2)); \
EXPECT_FLOAT_EQ((d), (transform).rc(3, 3));
// Checking float values for equality close to zero is not robust using
// EXPECT_FLOAT_EQ (see gtest documentation). So, to verify rotation matrices,
// we must use a looser absolute error threshold in some places.
#define EXPECT_ROW0_NEAR(a, b, c, d, transform, errorThreshold) \
EXPECT_NEAR((a), (transform).rc(0, 0), (errorThreshold)); \
EXPECT_NEAR((b), (transform).rc(0, 1), (errorThreshold)); \
EXPECT_NEAR((c), (transform).rc(0, 2), (errorThreshold)); \
EXPECT_NEAR((d), (transform).rc(0, 3), (errorThreshold));
#define EXPECT_ROW1_NEAR(a, b, c, d, transform, errorThreshold) \
EXPECT_NEAR((a), (transform).rc(1, 0), (errorThreshold)); \
EXPECT_NEAR((b), (transform).rc(1, 1), (errorThreshold)); \
EXPECT_NEAR((c), (transform).rc(1, 2), (errorThreshold)); \
EXPECT_NEAR((d), (transform).rc(1, 3), (errorThreshold));
#define EXPECT_ROW2_NEAR(a, b, c, d, transform, errorThreshold) \
EXPECT_NEAR((a), (transform).rc(2, 0), (errorThreshold)); \
EXPECT_NEAR((b), (transform).rc(2, 1), (errorThreshold)); \
EXPECT_NEAR((c), (transform).rc(2, 2), (errorThreshold)); \
EXPECT_NEAR((d), (transform).rc(2, 3), (errorThreshold));
bool PointsAreNearlyEqual(const PointF& lhs, const PointF& rhs) {
return lhs.IsWithinDistance(rhs, 0.01f);
}
bool PointsAreNearlyEqual(const Point3F& lhs, const Point3F& rhs) {
return lhs.SquaredDistanceTo(rhs) < 0.0001f;
}
bool MatricesAreNearlyEqual(const Transform& lhs, const Transform& rhs) {
float epsilon = 0.0001f;
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
if (std::abs(lhs.rc(row, col) - rhs.rc(row, col)) > epsilon)
return false;
}
}
return true;
}
Transform GetTestMatrix1() {
// clang-format off
constexpr Transform transform = Transform::ColMajor(10.0, 11.0, 12.0, 13.0,
14.0, 15.0, 16.0, 17.0,
18.0, 19.0, 20.0, 21.0,
22.0, 23.0, 24.0, 25.0);
// clang-format on
STATIC_ROW0_EQ(10.0, 14.0, 18.0, 22.0, transform);
STATIC_ROW1_EQ(11.0, 15.0, 19.0, 23.0, transform);
STATIC_ROW2_EQ(12.0, 16.0, 20.0, 24.0, transform);
STATIC_ROW3_EQ(13.0, 17.0, 21.0, 25.0, transform);
EXPECT_ROW0_EQ(10.0, 14.0, 18.0, 22.0, transform);
EXPECT_ROW1_EQ(11.0, 15.0, 19.0, 23.0, transform);
EXPECT_ROW2_EQ(12.0, 16.0, 20.0, 24.0, transform);
EXPECT_ROW3_EQ(13.0, 17.0, 21.0, 25.0, transform);
return transform;
}
Transform GetTestMatrix2() {
constexpr Transform transform =
Transform::RowMajor(30.0, 34.0, 38.0, 42.0, 31.0, 35.0, 39.0, 43.0, 32.0,
36.0, 40.0, 44.0, 33.0, 37.0, 41.0, 45.0);
// clang-format on
STATIC_ROW0_EQ(30.0, 34.0, 38.0, 42.0, transform);
STATIC_ROW1_EQ(31.0, 35.0, 39.0, 43.0, transform);
STATIC_ROW2_EQ(32.0, 36.0, 40.0, 44.0, transform);
STATIC_ROW3_EQ(33.0, 37.0, 41.0, 45.0, transform);
EXPECT_ROW0_EQ(30.0, 34.0, 38.0, 42.0, transform);
EXPECT_ROW1_EQ(31.0, 35.0, 39.0, 43.0, transform);
EXPECT_ROW2_EQ(32.0, 36.0, 40.0, 44.0, transform);
EXPECT_ROW3_EQ(33.0, 37.0, 41.0, 45.0, transform);
return transform;
}
Transform ApproxIdentityMatrix(double error) {
return Transform::ColMajor(1.0 - error, error, error, error, // col0
error, 1.0 - error, error, error, // col1
error, error, 1.0 - error, error, // col2
error, error, error, 1.0 - error); // col3
}
constexpr double kErrorThreshold = 1e-7;
// This test is to make it easier to understand the order of operations.
TEST(XFormTest, PrePostOperations) {
auto m1 = Transform::Affine(1, 2, 3, 4, 5, 6);
auto m2 = m1;
m1.Translate(10, 20);
m2.PreConcat(Transform::MakeTranslation(10, 20));
EXPECT_EQ(m1, m2);
m1.PostTranslate(11, 22);
m2.PostConcat(Transform::MakeTranslation(11, 22));
EXPECT_EQ(m1, m2);
m1.Scale(3, 4);
m2.PreConcat(Transform::MakeScale(3, 4));
EXPECT_EQ(m1, m2);
m1.PostScale(5, 6);
m2.PostConcat(Transform::MakeScale(5, 6));
EXPECT_EQ(m1, m2);
}
// This test mostly overlaps with other tests, but similar to the above test,
// this test may help understand how accumulated transforms are equivalent to
// multiple mapping operations e.g. MapPoint().
TEST(XFormTest, BasicOperations) {
// Just some arbitrary matrix that introduces no rounding, and is unlikely
// to commute with other operations.
auto m = Transform::ColMajor(2.f, 3.f, 5.f, 0.f, 7.f, 11.f, 13.f, 0.f, 17.f,
19.f, 23.f, 0.f, 29.f, 31.f, 37.f, 1.f);
Point3F p(41.f, 43.f, 47.f);
EXPECT_EQ(Point3F(1211.f, 1520.f, 1882.f), m.MapPoint(p));
{
Transform n;
n.Scale(2.f);
EXPECT_EQ(Point3F(82.f, 86.f, 47.f), n.MapPoint(p));
Transform mn = m;
mn.Scale(2.f);
EXPECT_EQ(mn.MapPoint(p), m.MapPoint(n.MapPoint(p)));
}
{
Transform n;
n.Scale(2.f, 3.f);
EXPECT_EQ(Point3F(82.f, 129.f, 47.f), n.MapPoint(p));
Transform mn = m;
mn.Scale(2.f, 3.f);
EXPECT_EQ(mn.MapPoint(p), m.MapPoint(n.MapPoint(p)));
}
{
Transform n;
n.Scale3d(2.f, 3.f, 4.f);
EXPECT_EQ(Point3F(82.f, 129.f, 188.f), n.MapPoint(p));
Transform mn = m;
mn.Scale3d(2.f, 3.f, 4.f);
EXPECT_EQ(mn.MapPoint(p), m.MapPoint(n.MapPoint(p)));
}
{
Transform n;
n.Rotate(90.f);
EXPECT_FLOAT_EQ(0.f, (Point3F(-43.f, 41.f, 47.f) - n.MapPoint(p)).Length());
Transform mn = m;
mn.Rotate(90.f);
EXPECT_FLOAT_EQ(0.f, (mn.MapPoint(p) - m.MapPoint(n.MapPoint(p))).Length());
}
{
Transform n;
n.RotateAbout(10.f, 10.f, 10.f, 120.f);
EXPECT_FLOAT_EQ(0.f, (Point3F(47.f, 41.f, 43.f) - n.MapPoint(p)).Length());
Transform mn = m;
mn.RotateAbout(10.f, 10.f, 10.f, 120.f);
EXPECT_FLOAT_EQ(0.f, (mn.MapPoint(p) - m.MapPoint(n.MapPoint(p))).Length());
}
{
Transform n;
n.Translate(5.f, 6.f);
EXPECT_EQ(Point3F(46.f, 49.f, 47.f), n.MapPoint(p));
Transform mn = m;
mn.Translate(5.f, 6.f);
EXPECT_EQ(mn.MapPoint(p), m.MapPoint(n.MapPoint(p)));
}
{
Transform n;
n.Translate3d(5.f, 6.f, 7.f);
EXPECT_EQ(Point3F(46.f, 49.f, 54.f), n.MapPoint(p));
Transform mn = m;
mn.Translate3d(5.f, 6.f, 7.f);
EXPECT_EQ(mn.MapPoint(p), m.MapPoint(n.MapPoint(p)));
}
{
Transform nm = m;
nm.PostTranslate(5.f, 6.f);
EXPECT_EQ(nm.MapPoint(p), m.MapPoint(p) + Vector3dF(5.f, 6.f, 0.f));
}
{
Transform nm = m;
nm.PostTranslate3d(5.f, 6.f, 7.f);
EXPECT_EQ(nm.MapPoint(p), m.MapPoint(p) + Vector3dF(5.f, 6.f, 7.f));
}
{
Transform n;
n.Skew(45.f, -45.f);
EXPECT_FLOAT_EQ(0.f, (Point3F(84.f, 2.f, 47.f) - n.MapPoint(p)).Length());
Transform mn = m;
mn.Skew(45.f, -45.f);
EXPECT_FLOAT_EQ(0.f, (mn.MapPoint(p) - m.MapPoint(n.MapPoint(p))).Length());
}
{
Transform n;
n.SkewX(45.f);
EXPECT_FLOAT_EQ(0.f, (Point3F(84.f, 43.f, 47.f) - n.MapPoint(p)).Length());
Transform mn = m;
mn.SkewX(45.f);
EXPECT_FLOAT_EQ(0.f, (mn.MapPoint(p) - m.MapPoint(n.MapPoint(p))).Length());
}
{
Transform n;
n.SkewY(45.f);
EXPECT_FLOAT_EQ(0.f, (Point3F(41.f, 84.f, 47.f) - n.MapPoint(p)).Length());
Transform mn = m;
mn.SkewY(45.f);
EXPECT_FLOAT_EQ(0.f, (mn.MapPoint(p) - m.MapPoint(n.MapPoint(p))).Length());
}
{
Transform n;
n.ApplyPerspectiveDepth(94.f);
EXPECT_FLOAT_EQ(0.f, (Point3F(82.f, 86.f, 94.f) - n.MapPoint(p)).Length());
Transform mn = m;
mn.ApplyPerspectiveDepth(94.f);
EXPECT_FLOAT_EQ(0.f, (mn.MapPoint(p) - m.MapPoint(n.MapPoint(p))).Length());
}
{
Transform n = m;
n.Zoom(2.f);
Point3F expectation = p;
expectation.Scale(0.5f, 0.5f, 0.5f);
expectation = m.MapPoint(expectation);
expectation.Scale(2.f, 2.f, 2.f);
EXPECT_EQ(expectation, n.MapPoint(p));
}
}
TEST(XFormTest, Equality) {
Transform lhs, interpolated;
auto rhs = GetTestMatrix1();
interpolated = lhs;
for (int i = 0; i <= 100; ++i) {
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
float a = lhs.rc(row, col);
float b = rhs.rc(row, col);
float t = i / 100.0f;
interpolated.set_rc(row, col, a + (b - a) * t);
}
}
if (i == 100) {
EXPECT_TRUE(rhs == interpolated);
} else {
EXPECT_TRUE(rhs != interpolated);
}
}
lhs = Transform();
rhs = Transform();
for (int i = 1; i < 100; ++i) {
lhs.MakeIdentity();
rhs.MakeIdentity();
lhs.Translate(i, i);
rhs.Translate(-i, -i);
EXPECT_TRUE(lhs != rhs);
rhs.Translate(2 * i, 2 * i);
EXPECT_TRUE(lhs == rhs);
}
}
TEST(XFormTest, ConcatTranslate) {
static const struct TestCase {
int x1;
int y1;
float tx;
float ty;
int x2;
int y2;
} test_cases[] = {
{0, 0, 10.0f, 20.0f, 10, 20},
{0, 0, -10.0f, -20.0f, 0, 0},
{0, 0, -10.0f, -20.0f, -10, -20},
{0, 0, std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::quiet_NaN(), 10, 20},
};
Transform xform;
for (const auto& value : test_cases) {
Transform translation;
translation.Translate(value.tx, value.ty);
xform = translation * xform;
Point3F p1 = xform.MapPoint(Point3F(value.x1, value.y1, 0));
Point3F p2(value.x2, value.y2, 0);
if (value.tx == value.tx && value.ty == value.ty) {
EXPECT_TRUE(PointsAreNearlyEqual(p1, p2));
}
}
}
TEST(XFormTest, ConcatScale) {
static const struct TestCase {
int before;
float scale;
int after;
} test_cases[] = {{1, 10.0f, 10},
{1, .1f, 1},
{1, 100.0f, 100},
{1, -1.0f, -100},
{1, std::numeric_limits<float>::quiet_NaN(), 1}};
Transform xform;
for (const auto& value : test_cases) {
Transform scale;
scale.Scale(value.scale, value.scale);
xform = scale * xform;
Point3F p1 = xform.MapPoint(Point3F(value.before, value.before, 0));
Point3F p2(value.after, value.after, 0);
if (value.scale == value.scale) {
EXPECT_TRUE(PointsAreNearlyEqual(p1, p2));
}
}
}
TEST(XFormTest, ConcatRotate) {
static const struct TestCase {
int x1;
int y1;
float degrees;
int x2;
int y2;
} test_cases[] = {{1, 0, 90.0f, 0, 1},
{1, 0, -90.0f, 1, 0},
{1, 0, 90.0f, 0, 1},
{1, 0, 360.0f, 0, 1},
{1, 0, 0.0f, 0, 1},
{1, 0, std::numeric_limits<float>::quiet_NaN(), 1, 0}};
Transform xform;
for (const auto& value : test_cases) {
Transform rotation;
rotation.Rotate(value.degrees);
xform = rotation * xform;
Point3F p1 = xform.MapPoint(Point3F(value.x1, value.y1, 0));
Point3F p2(value.x2, value.y2, 0);
if (value.degrees == value.degrees) {
EXPECT_POINT3F_NEAR(p1, p2, 0.0001f);
}
}
}
TEST(XFormTest, ConcatSelf) {
auto a = Transform::ColMajor(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17);
auto expected_a_times_a =
Transform::ColMajor(132, 146, 160, 174, 260, 290, 320, 350, 388, 434, 480,
526, 516, 578, 640, 702);
a.PreConcat(a);
EXPECT_EQ(expected_a_times_a, a);
a = Transform::Affine(2, 3, 4, 5, 6, 7);
expected_a_times_a = Transform::Affine(16, 21, 28, 37, 46, 60);
a.PreConcat(a);
EXPECT_TRUE(a.Is2dTransform());
EXPECT_EQ(expected_a_times_a, a);
}
TEST(XFormTest, Translate) {
static const struct TestCase {
int x1;
int y1;
float tx;
float ty;
int x2;
int y2;
} test_cases[] = {{0, 0, 10.0f, 20.0f, 10, 20},
{10, 20, 10.0f, 20.0f, 20, 40},
{10, 20, 0.0f, 0.0f, 10, 20},
{0, 0, std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::quiet_NaN(), 0, 0}};
for (const auto& value : test_cases) {
for (int k = 0; k < 3; ++k) {
Point3F p0, p1, p2;
Transform xform;
switch (k) {
case 0:
p1.SetPoint(value.x1, 0, 0);
p2.SetPoint(value.x2, 0, 0);
xform.Translate(value.tx, 0.0);
break;
case 1:
p1.SetPoint(0, value.y1, 0);
p2.SetPoint(0, value.y2, 0);
xform.Translate(0.0, value.ty);
break;
case 2:
p1.SetPoint(value.x1, value.y1, 0);
p2.SetPoint(value.x2, value.y2, 0);
xform.Translate(value.tx, value.ty);
break;
}
p0 = p1;
p1 = xform.MapPoint(p1);
if (value.tx == value.tx && value.ty == value.ty) {
EXPECT_TRUE(PointsAreNearlyEqual(p1, p2));
const absl::optional<Point3F> transformed_p1 =
xform.InverseMapPoint(p1);
ASSERT_TRUE(transformed_p1.has_value());
EXPECT_TRUE(PointsAreNearlyEqual(transformed_p1.value(), p0));
}
}
}
}
TEST(XFormTest, Scale) {
static const struct TestCase {
int before;
float s;
int after;
} test_cases[] = {
{1, 10.0f, 10},
{1, 1.0f, 1},
{1, 0.0f, 0},
{0, 10.0f, 0},
{1, std::numeric_limits<float>::quiet_NaN(), 0},
};
for (const auto& value : test_cases) {
for (int k = 0; k < 3; ++k) {
Point3F p0, p1, p2;
Transform xform;
switch (k) {
case 0:
p1.SetPoint(value.before, 0, 0);
p2.SetPoint(value.after, 0, 0);
xform.Scale(value.s, 1.0);
break;
case 1:
p1.SetPoint(0, value.before, 0);
p2.SetPoint(0, value.after, 0);
xform.Scale(1.0, value.s);
break;
case 2:
p1.SetPoint(value.before, value.before, 0);
p2.SetPoint(value.after, value.after, 0);
xform.Scale(value.s, value.s);
break;
}
p0 = p1;
p1 = xform.MapPoint(p1);
if (value.s == value.s) {
EXPECT_TRUE(PointsAreNearlyEqual(p1, p2));
if (value.s != 0.0f) {
const absl::optional<Point3F> transformed_p1 =
xform.InverseMapPoint(p1);
ASSERT_TRUE(transformed_p1.has_value());
EXPECT_TRUE(PointsAreNearlyEqual(transformed_p1.value(), p0));
}
}
}
}
}
TEST(XFormTest, SetRotate) {
static const struct SetRotateCase {
int x;
int y;
float degree;
int xprime;
int yprime;
} set_rotate_cases[] = {{100, 0, 90.0f, 0, 100},
{0, 0, 90.0f, 0, 0},
{0, 100, 90.0f, -100, 0},
{0, 1, -90.0f, 1, 0},
{100, 0, 0.0f, 100, 0},
{0, 0, 0.0f, 0, 0},
{0, 0, std::numeric_limits<float>::quiet_NaN(), 0, 0},
{100, 0, 360.0f, 100, 0}};
for (const auto& value : set_rotate_cases) {
Point3F p0;
Point3F p1(value.x, value.y, 0);
Point3F p2(value.xprime, value.yprime, 0);
p0 = p1;
Transform xform;
xform.Rotate(value.degree);
// just want to make sure that we don't crash in the case of NaN.
if (value.degree == value.degree) {
p1 = xform.MapPoint(p1);
EXPECT_TRUE(PointsAreNearlyEqual(p1, p2));
const absl::optional<Point3F> transformed_p1 = xform.InverseMapPoint(p1);
ASSERT_TRUE(transformed_p1.has_value());
EXPECT_TRUE(PointsAreNearlyEqual(transformed_p1.value(), p0));
}
}
}
// 2D tests
TEST(XFormTest, ConcatTranslate2D) {
static const struct TestCase {
int x1;
int y1;
float tx;
float ty;
int x2;
int y2;
} test_cases[] = {
{0, 0, 10.0f, 20.0f, 10, 20},
{0, 0, -10.0f, -20.0f, 0, 0},
{0, 0, -10.0f, -20.0f, -10, -20},
};
Transform xform;
for (const auto& value : test_cases) {
Transform translation;
translation.Translate(value.tx, value.ty);
xform = translation * xform;
Point p1 = xform.MapPoint(Point(value.x1, value.y1));
Point p2(value.x2, value.y2);
if (value.tx == value.tx && value.ty == value.ty) {
EXPECT_EQ(p1.x(), p2.x());
EXPECT_EQ(p1.y(), p2.y());
}
}
}
TEST(XFormTest, ConcatScale2D) {
static const struct TestCase {
int before;
float scale;
int after;
} test_cases[] = {
{1, 10.0f, 10},
{1, .1f, 1},
{1, 100.0f, 100},
{1, -1.0f, -100},
};
Transform xform;
for (const auto& value : test_cases) {
Transform scale;
scale.Scale(value.scale, value.scale);
xform = scale * xform;
Point p1 = xform.MapPoint(Point(value.before, value.before));
Point p2(value.after, value.after);
if (value.scale == value.scale) {
EXPECT_EQ(p1.x(), p2.x());
EXPECT_EQ(p1.y(), p2.y());
}
}
}
TEST(XFormTest, ConcatRotate2D) {
static const struct TestCase {
int x1;
int y1;
float degrees;
int x2;
int y2;
} test_cases[] = {
{1, 0, 90.0f, 0, 1}, {1, 0, -90.0f, 1, 0}, {1, 0, 90.0f, 0, 1},
{1, 0, 360.0f, 0, 1}, {1, 0, 0.0f, 0, 1},
};
Transform xform;
for (const auto& value : test_cases) {
Transform rotation;
rotation.Rotate(value.degrees);
xform = rotation * xform;
Point p1 = xform.MapPoint(Point(value.x1, value.y1));
Point p2(value.x2, value.y2);
if (value.degrees == value.degrees) {
EXPECT_EQ(p1.x(), p2.x());
EXPECT_EQ(p1.y(), p2.y());
}
}
}
TEST(XFormTest, SetTranslate2D) {
static const struct TestCase {
int x1;
int y1;
float tx;
float ty;
int x2;
int y2;
} test_cases[] = {
{0, 0, 10.0f, 20.0f, 10, 20},
{10, 20, 10.0f, 20.0f, 20, 40},
{10, 20, 0.0f, 0.0f, 10, 20},
};
for (const auto& value : test_cases) {
for (int j = -1; j < 2; ++j) {
for (int k = 0; k < 3; ++k) {
float epsilon = 0.0001f;
Point p0, p1, p2;
Transform xform;
switch (k) {
case 0:
p1.SetPoint(value.x1, 0);
p2.SetPoint(value.x2, 0);
xform.Translate(value.tx + j * epsilon, 0.0);
break;
case 1:
p1.SetPoint(0, value.y1);
p2.SetPoint(0, value.y2);
xform.Translate(0.0, value.ty + j * epsilon);
break;
case 2:
p1.SetPoint(value.x1, value.y1);
p2.SetPoint(value.x2, value.y2);
xform.Translate(value.tx + j * epsilon, value.ty + j * epsilon);
break;
}
p0 = p1;
p1 = xform.MapPoint(p1);
if (value.tx == value.tx && value.ty == value.ty) {
EXPECT_EQ(p1.x(), p2.x());
EXPECT_EQ(p1.y(), p2.y());
const absl::optional<Point> transformed_p1 =
xform.InverseMapPoint(p1);
ASSERT_TRUE(transformed_p1.has_value());
EXPECT_EQ(transformed_p1->x(), p0.x());
EXPECT_EQ(transformed_p1->y(), p0.y());
}
}
}
}
}
TEST(XFormTest, SetScale2D) {
static const struct TestCase {
int before;
float s;
int after;
} test_cases[] = {
{1, 10.0f, 10},
{1, 1.0f, 1},
{1, 0.0f, 0},
{0, 10.0f, 0},
};
for (const auto& value : test_cases) {
for (int j = -1; j < 2; ++j) {
for (int k = 0; k < 3; ++k) {
float epsilon = 0.0001f;
Point p0, p1, p2;
Transform xform;
switch (k) {
case 0:
p1.SetPoint(value.before, 0);
p2.SetPoint(value.after, 0);
xform.Scale(value.s + j * epsilon, 1.0);
break;
case 1:
p1.SetPoint(0, value.before);
p2.SetPoint(0, value.after);
xform.Scale(1.0, value.s + j * epsilon);
break;
case 2:
p1.SetPoint(value.before, value.before);
p2.SetPoint(value.after, value.after);
xform.Scale(value.s + j * epsilon, value.s + j * epsilon);
break;
}
p0 = p1;
p1 = xform.MapPoint(p1);
if (value.s == value.s) {
EXPECT_EQ(p1.x(), p2.x());
EXPECT_EQ(p1.y(), p2.y());
if (value.s != 0.0f) {
const absl::optional<Point> transformed_p1 =
xform.InverseMapPoint(p1);
ASSERT_TRUE(transformed_p1.has_value());
EXPECT_EQ(transformed_p1->x(), p0.x());
EXPECT_EQ(transformed_p1->y(), p0.y());
}
}
}
}
}
}
TEST(XFormTest, SetRotate2D) {
static const struct SetRotateCase {
int x;
int y;
float degree;
int xprime;
int yprime;
} set_rotate_cases[] = {{100, 0, 90.0f, 0, 100},
{0, 0, 90.0f, 0, 0},
{0, 100, 90.0f, -100, 0},
{0, 1, -90.0f, 1, 0},
{100, 0, 0.0f, 100, 0},
{0, 0, 0.0f, 0, 0},
{0, 0, std::numeric_limits<float>::quiet_NaN(), 0, 0},
{100, 0, 360.0f, 100, 0}};
for (const auto& value : set_rotate_cases) {
for (int j = 1; j >= -1; --j) {
float epsilon = 0.1f;
Point pt(value.x, value.y);
Transform xform;
// should be invariant to small floating point errors.
xform.Rotate(value.degree + j * epsilon);
// just want to make sure that we don't crash in the case of NaN.
if (value.degree == value.degree) {
pt = xform.MapPoint(pt);
EXPECT_EQ(value.xprime, pt.x());
EXPECT_EQ(value.yprime, pt.y());
const absl::optional<Point> transformed_pt = xform.InverseMapPoint(pt);
ASSERT_TRUE(transformed_pt.has_value());
EXPECT_EQ(transformed_pt->x(), value.x);
EXPECT_EQ(transformed_pt->y(), value.y);
}
}
}
}
TEST(XFormTest, MapPointWithExtremePerspective) {
Point3F point(1.f, 1.f, 1.f);
Transform perspective;
perspective.ApplyPerspectiveDepth(1.f);
Point3F transformed = perspective.MapPoint(point);
EXPECT_EQ(point.ToString(), transformed.ToString());
perspective.MakeIdentity();
perspective.ApplyPerspectiveDepth(1.1f);
transformed = perspective.MapPoint(point);
EXPECT_FLOAT_EQ(11.f, transformed.x());
EXPECT_FLOAT_EQ(11.f, transformed.y());
EXPECT_FLOAT_EQ(11.f, transformed.z());
}
TEST(XFormTest, BlendTranslate) {
Transform from;
for (int i = -5; i < 15; ++i) {
Transform to;
to.Translate3d(1, 1, 1);
double t = i / 9.0;
EXPECT_TRUE(to.Blend(from, t));
EXPECT_FLOAT_EQ(t, to.rc(0, 3));
EXPECT_FLOAT_EQ(t, to.rc(1, 3));
EXPECT_FLOAT_EQ(t, to.rc(2, 3));
}
}
TEST(XFormTest, BlendRotate) {
Vector3dF axes[] = {Vector3dF(1, 0, 0), Vector3dF(0, 1, 0),
Vector3dF(0, 0, 1), Vector3dF(1, 1, 1)};
Transform from;
for (const auto& axis : axes) {
for (int i = -5; i < 15; ++i) {
Transform to;
to.RotateAbout(axis, 90);
double t = i / 9.0;
EXPECT_TRUE(to.Blend(from, t));
Transform expected;
expected.RotateAbout(axis, 90 * t);
EXPECT_TRUE(MatricesAreNearlyEqual(expected, to));
}
}
}
TEST(XFormTest, CanBlend180DegreeRotation) {
Vector3dF axes[] = {Vector3dF(1, 0, 0), Vector3dF(0, 1, 0),
Vector3dF(0, 0, 1), Vector3dF(1, 1, 1)};
Transform from;
for (const auto& axis : axes) {
for (int i = -5; i < 15; ++i) {
Transform to;
to.RotateAbout(axis, 180.0);
double t = i / 9.0;
EXPECT_TRUE(to.Blend(from, t));
// A 180 degree rotation is exactly opposite on the sphere, therefore
// either great circle arc to it is equivalent (and numerical precision
// will determine which is closer). Test both directions.
Transform expected1;
expected1.RotateAbout(axis, 180.0 * t);
Transform expected2;
expected2.RotateAbout(axis, -180.0 * t);
EXPECT_TRUE(MatricesAreNearlyEqual(expected1, to) ||
MatricesAreNearlyEqual(expected2, to))
<< "to: " << to.ToString() << "expected1: " << expected1.ToString()
<< "expected2: " << expected2.ToString()
<< "axis: " << axis.ToString() << ", i: " << i;
}
}
}
TEST(XFormTest, BlendScale) {
Transform from;
for (int i = -5; i < 15; ++i) {
Transform to;
to.Scale3d(5, 4, 3);
double s1 = i / 9.0;
double s2 = 1 - s1;
EXPECT_TRUE(to.Blend(from, s1));
EXPECT_FLOAT_EQ(5 * s1 + s2, to.rc(0, 0)) << "i: " << i;
EXPECT_FLOAT_EQ(4 * s1 + s2, to.rc(1, 1)) << "i: " << i;
EXPECT_FLOAT_EQ(3 * s1 + s2, to.rc(2, 2)) << "i: " << i;
}
}
TEST(XFormTest, BlendSkew) {
Transform from;
for (int i = 0; i < 2; ++i) {
Transform to;
to.Skew(10, 5);
double t = i;
Transform expected;
expected.Skew(t * 10, t * 5);
EXPECT_TRUE(to.Blend(from, t));
EXPECT_TRUE(MatricesAreNearlyEqual(expected, to))
<< expected.ToString() << "\n"
<< to.ToString();
}
}
TEST(XFormTest, ExtrapolateSkew) {
Transform from;
for (int i = -1; i < 2; ++i) {
Transform to;
to.Skew(20, 0);
double t = i;
Transform expected;
expected.Skew(t * 20, t * 0);
EXPECT_TRUE(to.Blend(from, t));
EXPECT_TRUE(MatricesAreNearlyEqual(expected, to));
}
}
TEST(XFormTest, BlendPerspective) {
Transform from;
from.ApplyPerspectiveDepth(200);
for (int i = -1; i < 3; ++i) {
Transform to;
to.ApplyPerspectiveDepth(800);
double t = i;
double depth = 1.0 / ((1.0 / 200) * (1.0 - t) + (1.0 / 800) * t);
Transform expected;
expected.ApplyPerspectiveDepth(depth);
EXPECT_TRUE(to.Blend(from, t));
EXPECT_TRUE(MatricesAreNearlyEqual(expected, to));
}
}
TEST(XFormTest, BlendIdentity) {
Transform from;
Transform to;
EXPECT_TRUE(to.Blend(from, 0.5));
EXPECT_EQ(to, from);
}
TEST(XFormTest, CannotBlendSingularMatrix) {
Transform from;
Transform to;
to.set_rc(1, 1, 0);
Transform original_to = to;
EXPECT_FALSE(to.Blend(from, 0.25));
EXPECT_EQ(original_to, to);
EXPECT_FALSE(to.Blend(from, 0.75));
EXPECT_EQ(original_to, to);
}
TEST(XFormTest, VerifyBlendForTranslation) {
Transform from;
from.Translate3d(100.0, 200.0, 100.0);
Transform to;
to.Translate3d(200.0, 100.0, 300.0);
to.Blend(from, 0.0);
EXPECT_EQ(from, to);
to = Transform();
to.Translate3d(200.0, 100.0, 300.0);
to.Blend(from, 0.25);
EXPECT_ROW0_EQ(1.0f, 0.0f, 0.0f, 125.0f, to);
EXPECT_ROW1_EQ(0.0f, 1.0f, 0.0f, 175.0f, to);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 150.0f, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.Translate3d(200.0, 100.0, 300.0);
to.Blend(from, 0.5);
EXPECT_ROW0_EQ(1.0f, 0.0f, 0.0f, 150.0f, to);
EXPECT_ROW1_EQ(0.0f, 1.0f, 0.0f, 150.0f, to);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 200.0f, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.Translate3d(200.0, 100.0, 300.0);
to.Blend(from, 1.0);
EXPECT_ROW0_EQ(1.0f, 0.0f, 0.0f, 200.0f, to);
EXPECT_ROW1_EQ(0.0f, 1.0f, 0.0f, 100.0f, to);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 300.0f, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
}
TEST(XFormTest, VerifyBlendForScale) {
Transform from;
from.Scale3d(100.0, 200.0, 100.0);
Transform to;
to.Scale3d(200.0, 100.0, 300.0);
to.Blend(from, 0.0);
EXPECT_EQ(from, to);
to = Transform();
to.Scale3d(200.0, 100.0, 300.0);
to.Blend(from, 0.25);
EXPECT_ROW0_EQ(125.0f, 0.0f, 0.0f, 0.0f, to);
EXPECT_ROW1_EQ(0.0f, 175.0f, 0.0f, 0.0f, to);
EXPECT_ROW2_EQ(0.0f, 0.0f, 150.0f, 0.0f, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.Scale3d(200.0, 100.0, 300.0);
to.Blend(from, 0.5);
EXPECT_ROW0_EQ(150.0f, 0.0f, 0.0f, 0.0f, to);
EXPECT_ROW1_EQ(0.0f, 150.0f, 0.0f, 0.0f, to);
EXPECT_ROW2_EQ(0.0f, 0.0f, 200.0f, 0.0f, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.Scale3d(200.0, 100.0, 300.0);
to.Blend(from, 1.0);
EXPECT_ROW0_EQ(200.0f, 0.0f, 0.0f, 0.0f, to);
EXPECT_ROW1_EQ(0.0f, 100.0f, 0.0f, 0.0f, to);
EXPECT_ROW2_EQ(0.0f, 0.0f, 300.0f, 0.0f, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
}
TEST(XFormTest, VerifyBlendForSkew) {
// Along X axis only
Transform from;
from.Skew(0.0, 0.0);
Transform to;
to.Skew(45.0, 0.0);
to.Blend(from, 0.0);
EXPECT_EQ(from, to);
to = Transform();
to.Skew(45.0, 0.0);
to.Blend(from, 0.5);
EXPECT_ROW0_EQ(1.0f, 0.5f, 0.0f, 0.0f, to);
EXPECT_ROW1_EQ(0.0f, 1.0f, 0.0f, 0.0f, to);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.Skew(45.0, 0.0);
to.Blend(from, 0.25);
EXPECT_ROW0_EQ(1.0f, 0.25f, 0.0f, 0.0f, to);
EXPECT_ROW1_EQ(0.0f, 1.0f, 0.0f, 0.0f, to);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.Skew(45.0, 0.0);
to.Blend(from, 1.0);
EXPECT_ROW0_EQ(1.0f, 1.0f, 0.0f, 0.0f, to);
EXPECT_ROW1_EQ(0.0f, 1.0f, 0.0f, 0.0f, to);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
// NOTE CAREFULLY: Decomposition of skew and rotation terms of the matrix
// is inherently underconstrained, and so it does not always compute the
// originally intended skew parameters. The current implementation uses QR
// decomposition, which decomposes the shear into a rotation + non-uniform
// scale.
//
// It is unlikely that the decomposition implementation will need to change
// very often, so to get any test coverage, the compromise is to verify the
// exact matrix that the.Blend() operation produces.
//
// This problem also potentially exists for skew along the X axis, but the
// current QR decomposition implementation just happens to decompose those
// test matrices intuitively.
//
// Unfortunately, this case suffers from uncomfortably large precision
// error.
from = Transform();
from.Skew(0.0, 0.0);
to = Transform();
to.Skew(0.0, 45.0);
to.Blend(from, 0.0);
EXPECT_EQ(from, to);
to = Transform();
to.Skew(0.0, 45.0);
to.Blend(from, 0.25);
EXPECT_LT(1.0, to.rc(0, 0));
EXPECT_GT(1.5, to.rc(0, 0));
EXPECT_LT(0.0, to.rc(0, 1));
EXPECT_GT(0.5, to.rc(0, 1));
EXPECT_FLOAT_EQ(0.0, to.rc(0, 2));
EXPECT_FLOAT_EQ(0.0, to.rc(0, 3));
EXPECT_LT(0.0, to.rc(1, 0));
EXPECT_GT(0.5, to.rc(1, 0));
EXPECT_LT(0.0, to.rc(1, 1));
EXPECT_GT(1.0, to.rc(1, 1));
EXPECT_FLOAT_EQ(0.0, to.rc(1, 2));
EXPECT_FLOAT_EQ(0.0, to.rc(1, 3));
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.Skew(0.0, 45.0);
to.Blend(from, 0.5);
EXPECT_LT(1.0, to.rc(0, 0));
EXPECT_GT(1.5, to.rc(0, 0));
EXPECT_LT(0.0, to.rc(0, 1));
EXPECT_GT(0.5, to.rc(0, 1));
EXPECT_FLOAT_EQ(0.0, to.rc(0, 2));
EXPECT_FLOAT_EQ(0.0, to.rc(0, 3));
EXPECT_LT(0.0, to.rc(1, 0));
EXPECT_GT(1.0, to.rc(1, 0));
EXPECT_LT(0.0, to.rc(1, 1));
EXPECT_GT(1.0, to.rc(1, 1));
EXPECT_FLOAT_EQ(0.0, to.rc(1, 2));
EXPECT_FLOAT_EQ(0.0, to.rc(1, 3));
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.Skew(0.0, 45.0);
to.Blend(from, 1.0);
EXPECT_ROW0_NEAR(1.0, 0.0, 0.0, 0.0, to, kErrorThreshold);
EXPECT_ROW1_NEAR(1.0, 1.0, 0.0, 0.0, to, kErrorThreshold);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
}
TEST(XFormTest, BlendForRotationAboutX) {
// Even though.Blending uses quaternions, axis-aligned rotations should.
// Blend the same with quaternions or Euler angles. So we can test
// rotation.Blending by comparing against manually specified matrices from
// Euler angles.
Transform from;
from.RotateAbout(Vector3dF(1.0, 0.0, 0.0), 0.0);
Transform to;
to.RotateAbout(Vector3dF(1.0, 0.0, 0.0), 90.0);
to.Blend(from, 0.0);
EXPECT_EQ(from, to);
double expectedRotationAngle = gfx::DegToRad(22.5);
to = Transform();
to.RotateAbout(Vector3dF(1.0, 0.0, 0.0), 90.0);
to.Blend(from, 0.25);
EXPECT_ROW0_EQ(1.0, 0.0, 0.0, 0.0, to);
EXPECT_ROW1_NEAR(0.0, std::cos(expectedRotationAngle),
-std::sin(expectedRotationAngle), 0.0, to, kErrorThreshold);
EXPECT_ROW2_NEAR(0.0, std::sin(expectedRotationAngle),
std::cos(expectedRotationAngle), 0.0, to, kErrorThreshold);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
expectedRotationAngle = gfx::DegToRad(45.0);
to = Transform();
to.RotateAbout(Vector3dF(1.0, 0.0, 0.0), 90.0);
to.Blend(from, 0.5);
EXPECT_ROW0_EQ(1.0, 0.0, 0.0, 0.0, to);
EXPECT_ROW1_NEAR(0.0, std::cos(expectedRotationAngle),
-std::sin(expectedRotationAngle), 0.0, to, kErrorThreshold);
EXPECT_ROW2_NEAR(0.0, std::sin(expectedRotationAngle),
std::cos(expectedRotationAngle), 0.0, to, kErrorThreshold);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.RotateAbout(Vector3dF(1.0, 0.0, 0.0), 90.0);
to.Blend(from, 1.0);
EXPECT_ROW0_EQ(1.0, 0.0, 0.0, 0.0, to);
EXPECT_ROW1_NEAR(0.0, 0.0, -1.0, 0.0, to, kErrorThreshold);
EXPECT_ROW2_NEAR(0.0, 1.0, 0.0, 0.0, to, kErrorThreshold);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
}
TEST(XFormTest, BlendForRotationAboutY) {
Transform from;
from.RotateAbout(Vector3dF(0.0, 1.0, 0.0), 0.0);
Transform to;
to.RotateAbout(Vector3dF(0.0, 1.0, 0.0), 90.0);
to.Blend(from, 0.0);
EXPECT_EQ(from, to);
double expectedRotationAngle = gfx::DegToRad(22.5);
to = Transform();
to.RotateAbout(Vector3dF(0.0, 1.0, 0.0), 90.0);
to.Blend(from, 0.25);
EXPECT_ROW0_NEAR(std::cos(expectedRotationAngle), 0.0,
std::sin(expectedRotationAngle), 0.0, to, kErrorThreshold);
EXPECT_ROW1_EQ(0.0, 1.0, 0.0, 0.0, to);
EXPECT_ROW2_NEAR(-std::sin(expectedRotationAngle), 0.0,
std::cos(expectedRotationAngle), 0.0, to, kErrorThreshold);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
expectedRotationAngle = gfx::DegToRad(45.0);
to = Transform();
to.RotateAbout(Vector3dF(0.0, 1.0, 0.0), 90.0);
to.Blend(from, 0.5);
EXPECT_ROW0_NEAR(std::cos(expectedRotationAngle), 0.0,
std::sin(expectedRotationAngle), 0.0, to, kErrorThreshold);
EXPECT_ROW1_EQ(0.0, 1.0, 0.0, 0.0, to);
EXPECT_ROW2_NEAR(-std::sin(expectedRotationAngle), 0.0,
std::cos(expectedRotationAngle), 0.0, to, kErrorThreshold);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.RotateAbout(Vector3dF(0.0, 1.0, 0.0), 90.0);
to.Blend(from, 1.0);
EXPECT_ROW0_NEAR(0.0, 0.0, 1.0, 0.0, to, kErrorThreshold);
EXPECT_ROW1_EQ(0.0, 1.0, 0.0, 0.0, to);
EXPECT_ROW2_NEAR(-1.0, 0.0, 0.0, 0.0, to, kErrorThreshold);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
}
TEST(XFormTest, BlendForRotationAboutZ) {
Transform from;
from.RotateAbout(Vector3dF(0.0, 0.0, 1.0), 0.0);
Transform to;
to.RotateAbout(Vector3dF(0.0, 0.0, 1.0), 90.0);
to.Blend(from, 0.0);
EXPECT_EQ(from, to);
double expectedRotationAngle = gfx::DegToRad(22.5);
to = Transform();
to.RotateAbout(Vector3dF(0.0, 0.0, 1.0), 90.0);
to.Blend(from, 0.25);
EXPECT_ROW0_NEAR(std::cos(expectedRotationAngle),
-std::sin(expectedRotationAngle), 0.0, 0.0, to,
kErrorThreshold);
EXPECT_ROW1_NEAR(std::sin(expectedRotationAngle),
std::cos(expectedRotationAngle), 0.0, 0.0, to,
kErrorThreshold);
EXPECT_ROW2_EQ(0.0, 0.0, 1.0, 0.0, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
expectedRotationAngle = gfx::DegToRad(45.0);
to = Transform();
to.RotateAbout(Vector3dF(0.0, 0.0, 1.0), 90.0);
to.Blend(from, 0.5);
EXPECT_ROW0_NEAR(std::cos(expectedRotationAngle),
-std::sin(expectedRotationAngle), 0.0, 0.0, to,
kErrorThreshold);
EXPECT_ROW1_NEAR(std::sin(expectedRotationAngle),
std::cos(expectedRotationAngle), 0.0, 0.0, to,
kErrorThreshold);
EXPECT_ROW2_EQ(0.0, 0.0, 1.0, 0.0, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.RotateAbout(Vector3dF(0.0, 0.0, 1.0), 90.0);
to.Blend(from, 1.0);
EXPECT_ROW0_NEAR(0.0, -1.0, 0.0, 0.0, to, kErrorThreshold);
EXPECT_ROW1_NEAR(1.0, 0.0, 0.0, 0.0, to, kErrorThreshold);
EXPECT_ROW2_EQ(0.0, 0.0, 1.0, 0.0, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
}
TEST(XFormTest, BlendForCompositeTransform) {
// Verify that the.Blending was done with a decomposition in correct order
// by blending a composite transform. Using matrix x vector notation
// (Ax = b, where x is column vector), the ordering should be:
// perspective * translation * rotation * skew * scale
//
// It is not as important (or meaningful) to check intermediate
// interpolations; order of operations will be tested well enough by the
// end cases that are easier to specify.
Transform from;
Transform to;
Transform expected_end_of_animation;
expected_end_of_animation.ApplyPerspectiveDepth(1.0);
expected_end_of_animation.Translate3d(10.0, 20.0, 30.0);
expected_end_of_animation.RotateAbout(Vector3dF(0.0, 0.0, 1.0), 25.0);
expected_end_of_animation.Skew(0.0, 45.0);
expected_end_of_animation.Scale3d(6.0, 7.0, 8.0);
to = expected_end_of_animation;
to.Blend(from, 0.0);
EXPECT_EQ(from, to);
to = expected_end_of_animation;
// We short circuit if blend is >= 1, so to check the numerics, we will
// check that we get close to what we expect when we're nearly done
// interpolating.
to.Blend(from, .99999f);
// Recomposing the matrix results in a normalized matrix, so to verify we
// need to normalize the expectedEndOfAnimation before comparing elements.
// Normalizing means dividing everything by expectedEndOfAnimation.m44().
Transform normalized_expected_end_of_animation = expected_end_of_animation;
Transform normalization_matrix;
double inv_w = 1.0 / expected_end_of_animation.rc(3, 3);
normalization_matrix.set_rc(0, 0, inv_w);
normalization_matrix.set_rc(1, 1, inv_w);
normalization_matrix.set_rc(2, 2, inv_w);
normalization_matrix.set_rc(3, 3, inv_w);
normalized_expected_end_of_animation.PreConcat(normalization_matrix);
EXPECT_TRUE(MatricesAreNearlyEqual(normalized_expected_end_of_animation, to));
}
TEST(XFormTest, Blend2dXFlip) {
// Test 2D x-flip (crbug.com/797472).
auto from = Transform::Affine(1, 0, 0, 1, 100, 150);
auto to = Transform::Affine(-1, 0, 0, 1, 400, 150);
EXPECT_TRUE(from.Is2dTransform());
EXPECT_TRUE(to.Is2dTransform());
// OK for interpolated transform to be degenerate.
Transform result = to;
EXPECT_TRUE(result.Blend(from, 0.5));
auto expected = Transform::Affine(0, 0, 0, 1, 250, 150);
EXPECT_TRANSFORM_EQ(expected, result);
}
TEST(XFormTest, Blend2dRotationDirection) {
// Interpolate taking shorter rotation path.
auto from =
Transform::Affine(-0.5, 0.86602575498, -0.86602575498, -0.5, 0, 0);
auto to = Transform::Affine(-0.5, -0.86602575498, 0.86602575498, -0.5, 0, 0);
// Expect clockwise Rotation.
Transform result = to;
EXPECT_TRUE(result.Blend(from, 0.5));
auto expected = Transform::Affine(-1, 0, 0, -1, 0, 0);
EXPECT_TRANSFORM_EQ(expected, result);
// Reverse from and to.
// Expect same midpoint with counter-clockwise rotation.
result = from;
EXPECT_TRUE(result.Blend(to, 0.5));
EXPECT_TRANSFORM_EQ(expected, result);
}
gfx::DecomposedTransform GetRotationDecomp(double x,
double y,
double z,
double w) {
gfx::DecomposedTransform decomp;
decomp.quaternion = gfx::Quaternion(x, y, z, w);
return decomp;
}
const double kCos30deg = std::cos(base::kPiDouble / 6);
const double kSin30deg = 0.5;
const double kRoot2 = std::sqrt(2);
TEST(XFormTest, QuaternionFromRotationMatrix) {
// Test rotation around each axis.
Transform m;
m.RotateAbout(1, 0, 0, 60);
absl::optional<DecomposedTransform> decomp = m.Decompose();
ASSERT_TRUE(decomp);
EXPECT_QUATERNION_NEAR(decomp->quaternion,
gfx::Quaternion(kSin30deg, 0, 0, kCos30deg), 1e-6);
m.MakeIdentity();
m.RotateAbout(0, 1, 0, 60);
decomp = m.Decompose();
ASSERT_TRUE(decomp);
EXPECT_QUATERNION_NEAR(decomp->quaternion,
gfx::Quaternion(0, kSin30deg, 0, kCos30deg), 1e-6);
m.MakeIdentity();
m.RotateAbout(0, 0, 1, 60);
decomp = m.Decompose();
ASSERT_TRUE(decomp);
EXPECT_QUATERNION_NEAR(decomp->quaternion,
gfx::Quaternion(0, 0, kSin30deg, kCos30deg), 1e-6);
// Test rotation around non-axis aligned vector.
m.MakeIdentity();
m.RotateAbout(1, 1, 0, 60);
decomp = m.Decompose();
ASSERT_TRUE(decomp);
EXPECT_QUATERNION_NEAR(
decomp->quaternion,
gfx::Quaternion(kSin30deg / kRoot2, kSin30deg / kRoot2, 0, kCos30deg),
1e-6);
// Test edge tests.
// Cases where q_w = 0. In such cases we resort to basing the calculations on
// the largest diagonal element in the rotation matrix to ensure numerical
// stability.
m.MakeIdentity();
m.RotateAbout(1, 0, 0, 180);
decomp = m.Decompose();
ASSERT_TRUE(decomp);
EXPECT_QUATERNION_NEAR(decomp->quaternion, gfx::Quaternion(1, 0, 0, 0), 1e-6);
m.MakeIdentity();
m.RotateAbout(0, 1, 0, 180);
decomp = m.Decompose();
ASSERT_TRUE(decomp);
EXPECT_QUATERNION_NEAR(decomp->quaternion, gfx::Quaternion(0, 1, 0, 0), 1e-6);
m.MakeIdentity();
m.RotateAbout(0, 0, 1, 180);
decomp = m.Decompose();
ASSERT_TRUE(decomp);
EXPECT_QUATERNION_NEAR(decomp->quaternion, gfx::Quaternion(0, 0, 1, 0), 1e-6);
// No rotation.
m.MakeIdentity();
decomp = m.Decompose();
ASSERT_TRUE(decomp);
EXPECT_QUATERNION_NEAR(decomp->quaternion, gfx::Quaternion(0, 0, 0, 1), 1e-6);
m.MakeIdentity();
m.RotateAbout(0, 0, 1, 360);
decomp = m.Decompose();
ASSERT_TRUE(decomp);
EXPECT_QUATERNION_NEAR(decomp->quaternion, gfx::Quaternion(0, 0, 0, 1), 1e-6);
}
TEST(XFormTest, QuaternionToRotationMatrixTest) {
// Test rotation about each axis.
Transform rotate_x_60deg;
rotate_x_60deg.RotateAboutXAxis(60);
EXPECT_TRANSFORM_EQ(rotate_x_60deg, Transform::Compose(GetRotationDecomp(
kSin30deg, 0, 0, kCos30deg)));
Transform rotate_y_60deg;
rotate_y_60deg.RotateAboutYAxis(60);
EXPECT_TRANSFORM_EQ(rotate_y_60deg, Transform::Compose(GetRotationDecomp(
0, kSin30deg, 0, kCos30deg)));
Transform rotate_z_60deg;
rotate_z_60deg.RotateAboutZAxis(60);
EXPECT_TRANSFORM_EQ(rotate_z_60deg, Transform::Compose(GetRotationDecomp(
0, 0, kSin30deg, kCos30deg)));
// Test non-axis aligned rotation
Transform rotate_xy_60deg;
rotate_xy_60deg.RotateAbout(1, 1, 0, 60);
EXPECT_TRANSFORM_EQ(rotate_xy_60deg, Transform::Compose(GetRotationDecomp(
kSin30deg / kRoot2,
kSin30deg / kRoot2, 0, kCos30deg)));
// Test 180deg rotation.
auto rotate_z_180deg = Transform::Affine(-1, 0, 0, -1, 0, 0);
EXPECT_TRANSFORM_EQ(rotate_z_180deg,
Transform::Compose(GetRotationDecomp(0, 0, 1, 0)));
}
TEST(XFormTest, QuaternionInterpolation) {
// Rotate from identity matrix.
Transform from_matrix;
Transform to_matrix;
to_matrix.RotateAbout(0, 0, 1, 120);
to_matrix.Blend(from_matrix, 0.5);
Transform rotate_z_60;
rotate_z_60.Rotate(60);
EXPECT_TRANSFORM_EQ(rotate_z_60, to_matrix);
// Rotate to identity matrix.
from_matrix.MakeIdentity();
from_matrix.RotateAbout(0, 0, 1, 120);
to_matrix.MakeIdentity();
EXPECT_TRUE(to_matrix.Blend(from_matrix, 0.5));
EXPECT_TRANSFORM_EQ(rotate_z_60, to_matrix);
// Interpolation about a common axis of rotation.
from_matrix.MakeIdentity();
from_matrix.RotateAbout(1, 1, 0, 45);
to_matrix.MakeIdentity();
from_matrix.RotateAbout(1, 1, 0, 135);
EXPECT_TRUE(to_matrix.Blend(from_matrix, 0.5));
Transform rotate_xy_90;
rotate_xy_90.RotateAbout(1, 1, 0, 90);
EXPECT_TRANSFORM_NEAR(rotate_xy_90, to_matrix, 1e-15);
// Interpolation without a common axis of rotation.
from_matrix.MakeIdentity();
from_matrix.RotateAbout(1, 0, 0, 90);
to_matrix.MakeIdentity();
to_matrix.RotateAbout(0, 0, 1, 90);
EXPECT_TRUE(to_matrix.Blend(from_matrix, 0.5));
Transform expected;
expected.RotateAbout(1 / kRoot2, 0, 1 / kRoot2, 70.528778372);
EXPECT_TRANSFORM_EQ(expected, to_matrix);
}
TEST(XFormTest, ComposeIdentity) {
DecomposedTransform decomp;
for (int i = 0; i < 3; ++i) {
EXPECT_EQ(0.0, decomp.translate[i]);
EXPECT_EQ(1.0, decomp.scale[i]);
EXPECT_EQ(0.0, decomp.skew[i]);
EXPECT_EQ(0.0, decomp.perspective[i]);
}
EXPECT_EQ(1.0, decomp.perspective[3]);
EXPECT_EQ(0.0, decomp.quaternion.x());
EXPECT_EQ(0.0, decomp.quaternion.y());
EXPECT_EQ(0.0, decomp.quaternion.z());
EXPECT_EQ(1.0, decomp.quaternion.w());
EXPECT_TRUE(Transform::Compose(decomp).IsIdentity());
}
TEST(XFormTest, DecomposeTranslateRotateScale) {
for (int degrees = 0; degrees < 180; ++degrees) {
// build a transformation matrix.
gfx::Transform transform;
transform.Translate(degrees * 2, -degrees * 3);
transform.Rotate(degrees);
transform.Scale(degrees + 1, 2 * degrees + 1);
// factor the matrix
absl::optional<DecomposedTransform> decomp = transform.Decompose();
EXPECT_TRUE(decomp);
EXPECT_FLOAT_EQ(decomp->translate[0], degrees * 2);
EXPECT_FLOAT_EQ(decomp->translate[1], -degrees * 3);
double rotation =
gfx::RadToDeg(std::acos(double{decomp->quaternion.w()}) * 2);
while (rotation < 0.0)
rotation += 360.0;
while (rotation > 360.0)
rotation -= 360.0;
const float epsilon = 0.00015f;
EXPECT_NEAR(rotation, degrees, epsilon);
EXPECT_NEAR(decomp->scale[0], degrees + 1, epsilon);
EXPECT_NEAR(decomp->scale[1], 2 * degrees + 1, epsilon);
}
}
TEST(XFormTest, DecomposeScaleTransform) {
for (float scale = 0.001f; scale < 2.0f; scale += 0.001f) {
Transform transform = Transform::MakeScale(scale);
absl::optional<DecomposedTransform> decomp = transform.Decompose();
EXPECT_TRUE(decomp);
Transform compose_transform = Transform::Compose(*decomp);
EXPECT_TRUE(compose_transform.Preserves2dAxisAlignment());
EXPECT_EQ(transform, compose_transform);
}
}
TEST(XFormTest, Decompose2d) {
DecomposedTransform decomp_flip_x = *Transform::MakeScale(-2, 2).Decompose();
EXPECT_DECOMPOSED_TRANSFORM_EQ(
(DecomposedTransform{
{0, 0, 0}, {-2, 2, 1}, {0, 0, 0}, {0, 0, 0, 1}, {0, 0, 0, 1}}),
decomp_flip_x);
DecomposedTransform decomp_flip_y = *Transform::MakeScale(2, -2).Decompose();
EXPECT_DECOMPOSED_TRANSFORM_EQ(
(DecomposedTransform{
{0, 0, 0}, {2, -2, 1}, {0, 0, 0}, {0, 0, 0, 1}, {0, 0, 0, 1}}),
decomp_flip_y);
DecomposedTransform decomp_rotate_180 =
*Transform::Make180degRotation().Decompose();
EXPECT_DECOMPOSED_TRANSFORM_EQ(
(DecomposedTransform{
{0, 0, 0}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}}),
decomp_rotate_180);
const double kSqrt2 = std::sqrt(2);
const double kInvSqrt2 = 1.0 / kSqrt2;
DecomposedTransform decomp_rotate_90 =
*Transform::Make90degRotation().Decompose();
EXPECT_DECOMPOSED_TRANSFORM_EQ(
(DecomposedTransform{{0, 0, 0},
{1, 1, 1},
{0, 0, 0},
{0, 0, 0, 1},
{0, 0, kInvSqrt2, kInvSqrt2}}),
decomp_rotate_90);
auto translate_rotate_90 =
Transform::MakeTranslation(-1, 1) * Transform::Make90degRotation();
DecomposedTransform decomp_translate_rotate_90 =
*translate_rotate_90.Decompose();
EXPECT_DECOMPOSED_TRANSFORM_EQ(
(DecomposedTransform{{-1, 1, 0},
{1, 1, 1},
{0, 0, 0},
{0, 0, 0, 1},
{0, 0, kInvSqrt2, kInvSqrt2}}),
decomp_translate_rotate_90);
DecomposedTransform decomp_skew_rotate =
*Transform::Affine(1, 1, 1, 0, 0, 0).Decompose();
EXPECT_DECOMPOSED_TRANSFORM_EQ(
(DecomposedTransform{{0, 0, 0},
{kSqrt2, -kInvSqrt2, 1},
{-1, 0, 0},
{0, 0, 0, 1},
{0, 0, std::sin(base::kPiDouble / 8),
std::cos(base::kPiDouble / 8)}}),
decomp_skew_rotate);
}
double ComputeDecompRecompError(const Transform& transform) {
DecomposedTransform decomp = *transform.Decompose();
Transform composed = Transform::Compose(decomp);
float expected[16];
float actual[16];
transform.GetColMajorF(expected);
composed.GetColMajorF(actual);
double sse = 0;
for (int i = 0; i < 16; i++) {
double diff = expected[i] - actual[i];
sse += diff * diff;
}
return sse;
}
TEST(XFormTest, DecomposeAndCompose) {
// rotateZ(90deg)
EXPECT_NEAR(0, ComputeDecompRecompError(Transform::Make90degRotation()),
1e-20);
// rotateZ(180deg)
// Edge case where w = 0.
EXPECT_EQ(0, ComputeDecompRecompError(Transform::Make180degRotation()));
// rotateX(90deg) rotateY(90deg) rotateZ(90deg)
// [1 0 0][ 0 0 1][0 -1 0] [0 0 1][0 -1 0] [0 0 1]
// [0 0 -1][ 0 1 0][1 0 0] = [1 0 0][1 0 0] = [0 -1 0]
// [0 1 0][-1 0 0][0 0 1] [0 1 0][0 0 1] [1 0 0]
// This test case leads to Gimbal lock when using Euler angles.
EXPECT_NEAR(0,
ComputeDecompRecompError(Transform::RowMajor(
0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1)),
1e-20);
// Quaternion matrices with 0 off-diagonal elements, and negative trace.
// Stress tests handling of degenerate cases in computing quaternions.
// Validates fix for https://crbug.com/647554.
EXPECT_EQ(0, ComputeDecompRecompError(Transform::Affine(1, 1, 1, 0, 0, 0)));
EXPECT_EQ(0, ComputeDecompRecompError(Transform::MakeScale(-1, 1)));
EXPECT_EQ(0, ComputeDecompRecompError(Transform::MakeScale(1, -1)));
Transform flip_z;
flip_z.Scale3d(1, 1, -1);
EXPECT_EQ(0, ComputeDecompRecompError(flip_z));
// The following cases exercise the branches Q_xx/yy/zz for quaternion in
// Matrix44::Decompose().
auto transform = [](double sx, double sy, double sz, int skew_r, int skew_c) {
Transform t;
t.Scale3d(sx, sy, sz);
t.set_rc(skew_r, skew_c, 1);
t.set_rc(skew_c, skew_r, 1);
return t;
};
EXPECT_EQ(0, ComputeDecompRecompError(transform(1, -1, -1, 0, 1)));
EXPECT_EQ(0, ComputeDecompRecompError(transform(1, -1, -1, 0, 2)));
EXPECT_EQ(0, ComputeDecompRecompError(transform(-1, 1, -1, 0, 1)));
EXPECT_EQ(0, ComputeDecompRecompError(transform(-1, 1, -1, 1, 2)));
EXPECT_EQ(0, ComputeDecompRecompError(transform(-1, -1, 1, 0, 2)));
EXPECT_EQ(0, ComputeDecompRecompError(transform(-1, -1, 1, 1, 2)));
}
TEST(XFormTest, IsIdentityOr2dTranslation) {
EXPECT_TRUE(Transform().IsIdentityOr2dTranslation());
EXPECT_TRUE(Transform::MakeTranslation(10, 0).IsIdentityOr2dTranslation());
EXPECT_TRUE(Transform::MakeTranslation(0, -20).IsIdentityOr2dTranslation());
Transform transform;
transform.Translate3d(0, 0, 1);
EXPECT_FALSE(transform.IsIdentityOr2dTranslation());
transform.MakeIdentity();
transform.Rotate(40);
EXPECT_FALSE(transform.IsIdentityOr2dTranslation());
transform.MakeIdentity();
transform.SkewX(30);
EXPECT_FALSE(transform.IsIdentityOr2dTranslation());
}
TEST(XFormTest, IntegerTranslation) {
gfx::Transform transform;
EXPECT_TRUE(transform.IsIdentityOrIntegerTranslation());
transform.Translate3d(1, 2, 3);
EXPECT_TRUE(transform.IsIdentityOrIntegerTranslation());
transform.MakeIdentity();
transform.Translate3d(-1, -2, -3);
EXPECT_TRUE(transform.IsIdentityOrIntegerTranslation());
transform.MakeIdentity();
transform.Translate3d(4.5f, 0, 0);
EXPECT_FALSE(transform.IsIdentityOrIntegerTranslation());
transform.MakeIdentity();
transform.Translate3d(0, -6.7f, 0);
EXPECT_FALSE(transform.IsIdentityOrIntegerTranslation());
transform.MakeIdentity();
transform.Translate3d(0, 0, 8.9f);
EXPECT_FALSE(transform.IsIdentityOrIntegerTranslation());
float max_int = static_cast<float>(std::numeric_limits<int>::max());
transform.MakeIdentity();
transform.Translate3d(0, 0, max_int + 1000.5f);
EXPECT_FALSE(transform.IsIdentityOrIntegerTranslation());
float max_float = std::numeric_limits<float>::max();
transform.MakeIdentity();
transform.Translate3d(0, 0, max_float - 0.5f);
EXPECT_FALSE(transform.IsIdentityOrIntegerTranslation());
}
TEST(XFormTest, Integer2dTranslation) {
EXPECT_TRUE(Transform().IsIdentityOrInteger2dTranslation());
EXPECT_TRUE(
Transform::MakeTranslation(1, 2).IsIdentityOrInteger2dTranslation());
EXPECT_FALSE(Transform::MakeTranslation(1.00001, 2)
.IsIdentityOrInteger2dTranslation());
EXPECT_FALSE(Transform::MakeTranslation(1, 2.00002)
.IsIdentityOrInteger2dTranslation());
EXPECT_FALSE(
Transform::Make90degRotation().IsIdentityOrInteger2dTranslation());
Transform transform;
transform.Translate3d(1, 2, 3);
EXPECT_FALSE(transform.IsIdentityOrInteger2dTranslation());
}
TEST(XFormTest, Inverse) {
{
Transform identity;
Transform inverse_identity;
EXPECT_TRUE(identity.GetInverse(&inverse_identity));
EXPECT_EQ(identity, inverse_identity);
EXPECT_EQ(identity, identity.InverseOrIdentity());
}
{
// Invert a translation
Transform translation;
translation.Translate3d(2.0, 3.0, 4.0);
EXPECT_TRUE(translation.IsInvertible());
Transform inverse_translation;
bool is_invertible = translation.GetInverse(&inverse_translation);
EXPECT_TRUE(is_invertible);
EXPECT_ROW0_EQ(1.0f, 0.0f, 0.0f, -2.0f, inverse_translation);
EXPECT_ROW1_EQ(0.0f, 1.0f, 0.0f, -3.0f, inverse_translation);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, -4.0f, inverse_translation);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, inverse_translation);
EXPECT_EQ(inverse_translation, translation.InverseOrIdentity());
// GetInverse with the parameter pointing to itself.
EXPECT_TRUE(translation.GetInverse(&translation));
EXPECT_EQ(translation, inverse_translation);
}
{
// Invert a non-uniform scale
Transform scale;
scale.Scale3d(4.0, 10.0, 100.0);
EXPECT_TRUE(scale.IsInvertible());
Transform inverse_scale;
bool is_invertible = scale.GetInverse(&inverse_scale);
EXPECT_TRUE(is_invertible);
EXPECT_ROW0_EQ(0.25f, 0.0f, 0.0f, 0.0f, inverse_scale);
EXPECT_ROW1_EQ(0.0f, 0.1f, 0.0f, 0.0f, inverse_scale);
EXPECT_ROW2_EQ(0.0f, 0.0f, 0.01f, 0.0f, inverse_scale);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, inverse_scale);
EXPECT_EQ(inverse_scale, scale.InverseOrIdentity());
}
{
Transform m1;
m1.Translate(10, 20);
m1.Rotate(30);
Transform m2;
m2.Rotate(-30);
m2.Translate(-10, -20);
Transform inverse_m1, inverse_m2;
EXPECT_TRUE(m1.GetInverse(&inverse_m1));
EXPECT_TRUE(m2.GetInverse(&inverse_m2));
EXPECT_TRUE(inverse_m1.Is2dTransform());
EXPECT_TRUE(inverse_m2.Is2dTransform());
EXPECT_TRANSFORM_NEAR(m1, inverse_m2, 1e-6);
EXPECT_TRANSFORM_NEAR(m2, inverse_m1, 1e-6);
}
{
Transform m1;
m1.RotateAboutZAxis(-30);
m1.RotateAboutYAxis(10);
m1.RotateAboutXAxis(20);
m1.ApplyPerspectiveDepth(100);
Transform m2;
m2.ApplyPerspectiveDepth(-100);
m2.RotateAboutXAxis(-20);
m2.RotateAboutYAxis(-10);
m2.RotateAboutZAxis(30);
Transform inverse_m1, inverse_m2;
EXPECT_TRUE(m1.GetInverse(&inverse_m1));
EXPECT_TRUE(m2.GetInverse(&inverse_m2));
EXPECT_TRANSFORM_NEAR(m1, inverse_m2, 1e-6);
EXPECT_TRANSFORM_NEAR(m2, inverse_m1, 1e-6);
}
{
// Try to invert a matrix that is not invertible.
// The inverse() function should reset the output matrix to identity.
Transform uninvertible;
uninvertible.set_rc(0, 0, 0.f);
uninvertible.set_rc(1, 1, 0.f);
uninvertible.set_rc(2, 2, 0.f);
uninvertible.set_rc(3, 3, 0.f);
EXPECT_FALSE(uninvertible.IsInvertible());
Transform inverse_of_uninvertible;
// Add a scale just to more easily ensure that inverse_of_uninvertible is
// reset to identity.
inverse_of_uninvertible.Scale3d(4.0, 10.0, 100.0);
bool is_invertible = uninvertible.GetInverse(&inverse_of_uninvertible);
EXPECT_FALSE(is_invertible);
EXPECT_TRUE(inverse_of_uninvertible.IsIdentity());
EXPECT_ROW0_EQ(1.0f, 0.0f, 0.0f, 0.0f, inverse_of_uninvertible);
EXPECT_ROW1_EQ(0.0f, 1.0f, 0.0f, 0.0f, inverse_of_uninvertible);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, inverse_of_uninvertible);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, inverse_of_uninvertible);
EXPECT_EQ(inverse_of_uninvertible, uninvertible.InverseOrIdentity());
}
}
TEST(XFormTest, verifyBackfaceVisibilityBasicCases) {
Transform transform;
transform.MakeIdentity();
EXPECT_FALSE(transform.IsBackFaceVisible());
transform.MakeIdentity();
transform.RotateAboutYAxis(80.0);
EXPECT_FALSE(transform.IsBackFaceVisible());
transform.MakeIdentity();
transform.RotateAboutYAxis(100.0);
EXPECT_TRUE(transform.IsBackFaceVisible());
// Edge case, 90 degree rotation should return false.
transform.MakeIdentity();
transform.RotateAboutYAxis(90.0);
EXPECT_FALSE(transform.IsBackFaceVisible());
// 2d scale doesn't affect backface visibility.
auto check_scale = [&](float scale_x, float scale_y) {
transform = Transform::MakeScale(scale_x, scale_y);
EXPECT_FALSE(transform.IsBackFaceVisible());
transform.EnsureFullMatrixForTesting();
EXPECT_FALSE(transform.IsBackFaceVisible());
};
check_scale(1, 2);
check_scale(-1, 2);
check_scale(1, -2);
check_scale(-1, -2);
}
TEST(XFormTest, verifyBackfaceVisibilityForPerspective) {
Transform layer_space_to_projection_plane;
// This tests if IsBackFaceVisible works properly under perspective
// transforms. Specifically, layers that may have their back face visible in
// orthographic projection, may not actually have back face visible under
// perspective projection.
// Case 1: Layer is rotated by slightly more than 90 degrees, at the center
// of the perspective projection. In this case, the layer's back-side
// is visible to the camera.
layer_space_to_projection_plane.MakeIdentity();
layer_space_to_projection_plane.ApplyPerspectiveDepth(1.0);
layer_space_to_projection_plane.Translate3d(0.0, 0.0, 0.0);
layer_space_to_projection_plane.RotateAboutYAxis(100.0);
EXPECT_TRUE(layer_space_to_projection_plane.IsBackFaceVisible());
// Case 2: Layer is rotated by slightly more than 90 degrees, but shifted off
// to the side of the camera. Because of the wide field-of-view, the
// layer's front side is still visible.
//
// |<-- front side of layer is visible to camera
// \ | /
// \ | /
// \| /
// | /
// |\ /<-- camera field of view
// | \ /
// back side of layer -->| \ /
// \./ <-- camera origin
//
layer_space_to_projection_plane.MakeIdentity();
layer_space_to_projection_plane.ApplyPerspectiveDepth(1.0);
layer_space_to_projection_plane.Translate3d(-10.0, 0.0, 0.0);
layer_space_to_projection_plane.RotateAboutYAxis(100.0);
EXPECT_FALSE(layer_space_to_projection_plane.IsBackFaceVisible());
// Case 3: Additionally rotating the layer by 180 degrees should of course
// show the opposite result of case 2.
layer_space_to_projection_plane.RotateAboutYAxis(180.0);
EXPECT_TRUE(layer_space_to_projection_plane.IsBackFaceVisible());
}
TEST(XFormTest, verifyDefaultConstructorCreatesIdentityMatrix) {
constexpr Transform A;
STATIC_ROW0_EQ(1.0, 0.0, 0.0, 0.0, A);
STATIC_ROW1_EQ(0.0, 1.0, 0.0, 0.0, A);
STATIC_ROW2_EQ(0.0, 0.0, 1.0, 0.0, A);
STATIC_ROW3_EQ(0.0, 0.0, 0.0, 1.0, A);
EXPECT_TRUE(A.IsIdentity());
}
TEST(XFormTest, verifyCopyConstructor) {
Transform A = GetTestMatrix1();
// Copy constructor should produce exact same elements as matrix A.
Transform B(A);
EXPECT_EQ(A, B);
EXPECT_ROW0_EQ(10.0, 14.0, 18.0, 22.0, B);
EXPECT_ROW1_EQ(11.0, 15.0, 19.0, 23.0, B);
EXPECT_ROW2_EQ(12.0, 16.0, 20.0, 24.0, B);
EXPECT_ROW3_EQ(13.0, 17.0, 21.0, 25.0, B);
}
// ColMajor() and RowMajor() are tested in GetTestMatrix1() and
// GetTestTransform2().
TEST(XFormTest, GetColMajor) {
auto transform = GetTestMatrix1();
double data[16];
transform.GetColMajor(data);
for (int i = 0; i < 16; i++) {
EXPECT_EQ(i + 10.0, data[i]);
EXPECT_EQ(data[i], transform.ColMajorData(i));
}
EXPECT_EQ(transform, Transform::ColMajor(data));
}
TEST(XFormTest, Affine) {
constexpr auto transform = Transform::Affine(2.0, 3., 4.0, 5.0, 6.0, 7.0);
STATIC_ROW0_EQ(2.0, 4.0, 0.0, 6.0, transform);
STATIC_ROW1_EQ(3.0, 5.0, 0.0, 7.0, transform);
STATIC_ROW2_EQ(0.0, 0.0, 1.0, 0.0, transform);
STATIC_ROW3_EQ(0.0, 0.0, 0.0, 1.0, transform);
}
TEST(XFormTest, MakeTranslation) {
constexpr auto t = Transform::MakeTranslation(3.5, 4.75);
STATIC_ROW0_EQ(1.0, 0.0, 0.0, 3.5, t);
STATIC_ROW1_EQ(0.0, 1.0, 0.0, 4.75, t);
STATIC_ROW2_EQ(0.0, 0.0, 1.0, 0.0, t);
STATIC_ROW3_EQ(0.0, 0.0, 0.0, 1.0, t);
}
TEST(XFormTest, MakeScale) {
constexpr auto s = Transform::MakeScale(3.5, 4.75);
STATIC_ROW0_EQ(3.5, 0.0, 0.0, 0, s);
STATIC_ROW1_EQ(0.0, 4.75, 0.0, 0, s);
STATIC_ROW2_EQ(0.0, 0.0, 1.0, 0.0, s);
STATIC_ROW3_EQ(0.0, 0.0, 0.0, 1.0, s);
}
TEST(XFormTest, MakeRotation) {
constexpr auto r1 = Transform::Make90degRotation();
STATIC_ROW0_EQ(0.0, -1.0, 0.0, 0, r1);
STATIC_ROW1_EQ(1.0, 0.0, 0.0, 0, r1);
STATIC_ROW2_EQ(0.0, 0.0, 1.0, 0.0, r1);
STATIC_ROW3_EQ(0.0, 0.0, 0.0, 1.0, r1);
constexpr auto r2 = Transform::Make180degRotation();
STATIC_ROW0_EQ(-1.0, 0.0, 0.0, 0, r2);
STATIC_ROW1_EQ(0.0, -1.0, 0.0, 0, r2);
STATIC_ROW2_EQ(0.0, 0.0, 1.0, 0.0, r2);
STATIC_ROW3_EQ(0.0, 0.0, 0.0, 1.0, r2);
constexpr auto r3 = Transform::Make270degRotation();
STATIC_ROW0_EQ(0.0, 1.0, 0.0, 0, r3);
STATIC_ROW1_EQ(-1.0, 0.0, 0.0, 0, r3);
STATIC_ROW2_EQ(0.0, 0.0, 1.0, 0.0, r3);
STATIC_ROW3_EQ(0.0, 0.0, 0.0, 1.0, r3);
}
TEST(XFormTest, ColMajorF) {
float data[] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17};
auto transform = Transform::ColMajorF(data);
EXPECT_ROW0_EQ(2.0, 6.0, 10.0, 14.0, transform);
EXPECT_ROW1_EQ(3.0, 7.0, 11.0, 15.0, transform);
EXPECT_ROW2_EQ(4.0, 8.0, 12.0, 16.0, transform);
EXPECT_ROW3_EQ(5.0, 9.0, 13.0, 17.0, transform);
float data1[16];
transform.GetColMajorF(data1);
for (int i = 0; i < 16; i++)
EXPECT_EQ(data1[i], data[i]);
EXPECT_EQ(transform, Transform::ColMajorF(data1));
}
TEST(XFormTest, FromQuaternion) {
Transform t(Quaternion(1, 2, 3, 4));
EXPECT_ROW0_EQ(-25.f, -20.f, 22.f, 0.f, t);
EXPECT_ROW1_EQ(28.f, -19.f, 4.f, 0.f, t);
EXPECT_ROW2_EQ(-10.f, 20.f, -9.f, 0.f, t);
EXPECT_ROW3_EQ(0.f, 0.f, 0.f, 1.f, t);
}
TEST(XFormTest, verifyAssignmentOperator) {
Transform A = GetTestMatrix1();
Transform B = GetTestMatrix2();
Transform C = GetTestMatrix2();
C = B = A;
// Both B and C should now have been re-assigned to the value of A.
EXPECT_ROW0_EQ(10.0f, 14.0f, 18.0f, 22.0f, B);
EXPECT_ROW1_EQ(11.0f, 15.0f, 19.0f, 23.0f, B);
EXPECT_ROW2_EQ(12.0f, 16.0f, 20.0f, 24.0f, B);
EXPECT_ROW3_EQ(13.0f, 17.0f, 21.0f, 25.0f, B);
EXPECT_ROW0_EQ(10.0f, 14.0f, 18.0f, 22.0f, C);
EXPECT_ROW1_EQ(11.0f, 15.0f, 19.0f, 23.0f, C);
EXPECT_ROW2_EQ(12.0f, 16.0f, 20.0f, 24.0f, C);
EXPECT_ROW3_EQ(13.0f, 17.0f, 21.0f, 25.0f, C);
}
TEST(XFormTest, verifyEqualsBooleanOperator) {
Transform A = GetTestMatrix1();
Transform B = GetTestMatrix1();
EXPECT_TRUE(A == B);
// Modifying multiple elements should cause equals operator to return false.
Transform C = GetTestMatrix2();
EXPECT_FALSE(A == C);
// Modifying any one individual element should cause equals operator to
// return false.
Transform D;
D = A;
D.set_rc(0, 0, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.set_rc(1, 0, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.set_rc(2, 0, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.set_rc(3, 0, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.set_rc(0, 1, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.set_rc(1, 1, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.set_rc(2, 1, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.set_rc(3, 1, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.set_rc(0, 2, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.set_rc(1, 2, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.set_rc(2, 2, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.set_rc(3, 2, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.set_rc(0, 3, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.set_rc(1, 3, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.set_rc(2, 3, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.set_rc(3, 3, 0.f);
EXPECT_FALSE(A == D);
}
TEST(XFormTest, verifyMultiplyOperator) {
Transform A = GetTestMatrix1();
Transform B = GetTestMatrix2();
Transform C = A * B;
EXPECT_ROW0_EQ(2036.0f, 2292.0f, 2548.0f, 2804.0f, C);
EXPECT_ROW1_EQ(2162.0f, 2434.0f, 2706.0f, 2978.0f, C);
EXPECT_ROW2_EQ(2288.0f, 2576.0f, 2864.0f, 3152.0f, C);
EXPECT_ROW3_EQ(2414.0f, 2718.0f, 3022.0f, 3326.0f, C);
// Just an additional sanity check; matrix multiplication is not commutative.
EXPECT_FALSE(A * B == B * A);
}
TEST(XFormTest, verifyMultiplyAndAssignOperator) {
Transform A = GetTestMatrix1();
Transform B = GetTestMatrix2();
A *= B;
EXPECT_ROW0_EQ(2036.0f, 2292.0f, 2548.0f, 2804.0f, A);
EXPECT_ROW1_EQ(2162.0f, 2434.0f, 2706.0f, 2978.0f, A);
EXPECT_ROW2_EQ(2288.0f, 2576.0f, 2864.0f, 3152.0f, A);
EXPECT_ROW3_EQ(2414.0f, 2718.0f, 3022.0f, 3326.0f, A);
// Just an additional sanity check; matrix multiplication is not commutative.
Transform C = A;
C *= B;
Transform D = B;
D *= A;
EXPECT_FALSE(C == D);
}
TEST(XFormTest, PreConcat) {
Transform A = GetTestMatrix1();
Transform B = GetTestMatrix2();
A.PreConcat(B);
EXPECT_ROW0_EQ(2036.0f, 2292.0f, 2548.0f, 2804.0f, A);
EXPECT_ROW1_EQ(2162.0f, 2434.0f, 2706.0f, 2978.0f, A);
EXPECT_ROW2_EQ(2288.0f, 2576.0f, 2864.0f, 3152.0f, A);
EXPECT_ROW3_EQ(2414.0f, 2718.0f, 3022.0f, 3326.0f, A);
}
TEST(XFormTest, verifyMakeIdentiy) {
Transform A = GetTestMatrix1();
A.MakeIdentity();
EXPECT_ROW0_EQ(1.0f, 0.0f, 0.0f, 0.0f, A);
EXPECT_ROW1_EQ(0.0f, 1.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
EXPECT_TRUE(A.IsIdentity());
}
TEST(XFormTest, verifyTranslate) {
Transform A;
A.Translate(2.0, 3.0);
EXPECT_ROW0_EQ(1.0f, 0.0f, 0.0f, 2.0f, A);
EXPECT_ROW1_EQ(0.0f, 1.0f, 0.0f, 3.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that Translate() post-multiplies the existing matrix.
A.MakeIdentity();
A.Scale(5.0, 5.0);
A.Translate(2.0, 3.0);
EXPECT_ROW0_EQ(5.0f, 0.0f, 0.0f, 10.0f, A);
EXPECT_ROW1_EQ(0.0f, 5.0f, 0.0f, 15.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
Transform B;
B.Scale(5.0, 5.0);
B.Translate(Vector2dF(2.0f, 3.0f));
EXPECT_EQ(A, B);
}
TEST(XFormTest, verifyPostTranslate) {
Transform A;
A.PostTranslate(2.0, 3.0);
EXPECT_ROW0_EQ(1.0f, 0.0f, 0.0f, 2.0f, A);
EXPECT_ROW1_EQ(0.0f, 1.0f, 0.0f, 3.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that PostTranslate() pre-multiplies the existing matrix.
A.MakeIdentity();
A.Scale(5.0, 5.0);
A.PostTranslate(2.0, 3.0);
EXPECT_ROW0_EQ(5.0f, 0.0f, 0.0f, 2.0f, A);
EXPECT_ROW1_EQ(0.0f, 5.0f, 0.0f, 3.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
Transform B;
B.Scale(5.0, 5.0);
B.PostTranslate(Vector2dF(2.0f, 3.0f));
EXPECT_EQ(A, B);
}
TEST(XFormTest, verifyTranslate3d) {
Transform A;
A.Translate3d(2.0, 3.0, 4.0);
EXPECT_ROW0_EQ(1.0f, 0.0f, 0.0f, 2.0f, A);
EXPECT_ROW1_EQ(0.0f, 1.0f, 0.0f, 3.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 4.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that Translate3d() post-multiplies the existing matrix.
A.MakeIdentity();
A.Scale3d(6.0, 7.0, 8.0);
A.Translate3d(2.0, 3.0, 4.0);
EXPECT_ROW0_EQ(6.0f, 0.0f, 0.0f, 12.0f, A);
EXPECT_ROW1_EQ(0.0f, 7.0f, 0.0f, 21.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 8.0f, 32.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
Transform B;
B.Scale3d(6.0, 7.0, 8.0);
B.Translate3d(Vector3dF(2.0f, 3.0f, 4.0f));
EXPECT_EQ(A, B);
}
TEST(XFormTest, verifyPostTranslate3d) {
Transform A;
A.PostTranslate3d(2.0, 3.0, 4.0);
EXPECT_ROW0_EQ(1.0f, 0.0f, 0.0f, 2.0f, A);
EXPECT_ROW1_EQ(0.0f, 1.0f, 0.0f, 3.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 4.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that PostTranslate3d() pre-multiplies the existing matrix.
A.MakeIdentity();
A.Scale3d(6.0, 7.0, 8.0);
A.PostTranslate3d(2.0, 3.0, 4.0);
EXPECT_ROW0_EQ(6.0f, 0.0f, 0.0f, 2.0f, A);
EXPECT_ROW1_EQ(0.0f, 7.0f, 0.0f, 3.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 8.0f, 4.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
Transform B;
B.Scale3d(6.0, 7.0, 8.0);
B.PostTranslate3d(Vector3dF(2.0f, 3.0f, 4.0f));
EXPECT_EQ(A, B);
}
TEST(XFormTest, verifyScale) {
Transform A;
A.Scale(6.0, 7.0);
EXPECT_ROW0_EQ(6.0f, 0.0f, 0.0f, 0.0f, A);
EXPECT_ROW1_EQ(0.0f, 7.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that Scale() post-multiplies the existing matrix.
A.MakeIdentity();
A.Translate3d(2.0, 3.0, 4.0);
A.Scale(6.0, 7.0);
EXPECT_ROW0_EQ(6.0f, 0.0f, 0.0f, 2.0f, A);
EXPECT_ROW1_EQ(0.0f, 7.0f, 0.0f, 3.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 4.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, verifyScale3d) {
Transform A;
A.Scale3d(6.0, 7.0, 8.0);
EXPECT_ROW0_EQ(6.0f, 0.0f, 0.0f, 0.0f, A);
EXPECT_ROW1_EQ(0.0f, 7.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 8.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that scale3d() post-multiplies the existing matrix.
A.MakeIdentity();
A.Translate3d(2.0, 3.0, 4.0);
A.Scale3d(6.0, 7.0, 8.0);
EXPECT_ROW0_EQ(6.0f, 0.0f, 0.0f, 2.0f, A);
EXPECT_ROW1_EQ(0.0f, 7.0f, 0.0f, 3.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 8.0f, 4.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, verifyPostScale3d) {
Transform A;
A.PostScale3d(6.0, 7.0, 8.0);
EXPECT_ROW0_EQ(6.0f, 0.0f, 0.0f, 0.0f, A);
EXPECT_ROW1_EQ(0.0f, 7.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 8.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that PostScale3d() pre-multiplies the existing matrix.
A.MakeIdentity();
A.Translate3d(2.0, 3.0, 4.0);
A.PostScale3d(6.0, 7.0, 8.0);
EXPECT_ROW0_EQ(6.0f, 0.0f, 0.0f, 12.0f, A);
EXPECT_ROW1_EQ(0.0f, 7.0f, 0.0f, 21.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 8.0f, 32.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, Rotate) {
Transform A;
A.Rotate(90.0);
EXPECT_ROW0_EQ(0.0, -1.0, 0.0, 0.0, A);
EXPECT_ROW1_EQ(1.0, 0.0, 0.0, 0.0, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that Rotate() post-multiplies the existing matrix.
A.MakeIdentity();
A.Scale3d(6.0, 7.0, 8.0);
A.Rotate(90.0);
EXPECT_ROW0_EQ(0.0, -6.0, 0.0, 0.0, A);
EXPECT_ROW1_EQ(7.0, 0.0, 0.0, 0.0, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 8.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, RotateAboutXAxis) {
Transform A;
double sin45 = 0.5 * sqrt(2.0);
double cos45 = sin45;
A.MakeIdentity();
A.RotateAboutXAxis(90.0);
EXPECT_ROW0_EQ(1.0f, 0.0f, 0.0f, 0.0f, A);
EXPECT_ROW1_EQ(0.0, 0.0, -1.0, 0.0, A);
EXPECT_ROW2_EQ(0.0, 1.0, 0.0, 0.0, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
A.MakeIdentity();
A.RotateAboutXAxis(45.0);
EXPECT_ROW0_EQ(1.0f, 0.0f, 0.0f, 0.0f, A);
EXPECT_ROW1_NEAR(0.0, cos45, -sin45, 0.0, A, kErrorThreshold);
EXPECT_ROW2_NEAR(0.0, sin45, cos45, 0.0, A, kErrorThreshold);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that RotateAboutXAxis(angle) post-multiplies the existing matrix.
A.MakeIdentity();
A.Scale3d(6.0, 7.0, 8.0);
A.RotateAboutXAxis(90.0);
EXPECT_ROW0_EQ(6.0, 0.0, 0.0, 0.0, A);
EXPECT_ROW1_EQ(0.0, 0.0, -7.0, 0.0, A);
EXPECT_ROW2_EQ(0.0, 8.0, 0.0, 0.0, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, RotateAboutYAxis) {
Transform A;
double sin45 = 0.5 * sqrt(2.0);
double cos45 = sin45;
// Note carefully, the expected pattern is inverted compared to rotating
// about x axis or z axis.
A.MakeIdentity();
A.RotateAboutYAxis(90.0);
EXPECT_ROW0_EQ(0.0, 0.0, 1.0, 0.0, A);
EXPECT_ROW1_EQ(0.0f, 1.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_EQ(-1.0, 0.0, 0.0, 0.0, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
A.MakeIdentity();
A.RotateAboutYAxis(45.0);
EXPECT_ROW0_NEAR(cos45, 0.0, sin45, 0.0, A, kErrorThreshold);
EXPECT_ROW1_EQ(0.0f, 1.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_NEAR(-sin45, 0.0, cos45, 0.0, A, kErrorThreshold);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that RotateAboutYAxis(angle) post-multiplies the existing matrix.
A.MakeIdentity();
A.Scale3d(6.0, 7.0, 8.0);
A.RotateAboutYAxis(90.0);
EXPECT_ROW0_EQ(0.0, 0.0, 6.0, 0.0, A);
EXPECT_ROW1_EQ(0.0, 7.0, 0.0, 0.0, A);
EXPECT_ROW2_EQ(-8.0, 0.0, 0.0, 0.0, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, RotateAboutZAxis) {
Transform A;
double sin45 = 0.5 * sqrt(2.0);
double cos45 = sin45;
A.MakeIdentity();
A.RotateAboutZAxis(90.0);
EXPECT_ROW0_EQ(0.0, -1.0, 0.0, 0.0, A);
EXPECT_ROW1_EQ(1.0, 0.0, 0.0, 0.0, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
A.MakeIdentity();
A.RotateAboutZAxis(45.0);
EXPECT_ROW0_NEAR(cos45, -sin45, 0.0, 0.0, A, kErrorThreshold);
EXPECT_ROW1_NEAR(sin45, cos45, 0.0, 0.0, A, kErrorThreshold);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that RotateAboutZAxis(angle) post-multiplies the existing matrix.
A.MakeIdentity();
A.Scale3d(6.0, 7.0, 8.0);
A.RotateAboutZAxis(90.0);
EXPECT_ROW0_EQ(0.0, -6.0, 0.0, 0.0, A);
EXPECT_ROW1_EQ(7.0, 0.0, 0.0, 0.0, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 8.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, RotateAboutForAlignedAxes) {
Transform A;
// Check rotation about z-axis
A.MakeIdentity();
A.RotateAbout(Vector3dF(0.0, 0.0, 1.0), 90.0);
EXPECT_ROW0_EQ(0.0, -1.0, 0.0, 0.0, A);
EXPECT_ROW1_EQ(1.0, 0.0, 0.0, 0.0, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Check rotation about x-axis
A.MakeIdentity();
A.RotateAbout(Vector3dF(1.0, 0.0, 0.0), 90.0);
EXPECT_ROW0_EQ(1.0f, 0.0f, 0.0f, 0.0f, A);
EXPECT_ROW1_EQ(0.0, 0.0, -1.0, 0.0, A);
EXPECT_ROW2_EQ(0.0, 1.0, 0.0, 0.0, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Check rotation about y-axis. Note carefully, the expected pattern is
// inverted compared to rotating about x axis or z axis.
A.MakeIdentity();
A.RotateAbout(Vector3dF(0.0, 1.0, 0.0), 90.0);
EXPECT_ROW0_EQ(0.0, 0.0, 1.0, 0.0, A);
EXPECT_ROW1_EQ(0.0f, 1.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_EQ(-1.0, 0.0, 0.0, 0.0, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that rotate3d(axis, angle) post-multiplies the existing matrix.
A.MakeIdentity();
A.Scale3d(6.0, 7.0, 8.0);
A.RotateAboutZAxis(90.0);
EXPECT_ROW0_EQ(0.0, -6.0, 0.0, 0.0, A);
EXPECT_ROW1_EQ(7.0, 0.0, 0.0, 0.0, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 8.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, verifyRotateAboutForArbitraryAxis) {
// Check rotation about an arbitrary non-axis-aligned vector.
Transform A;
A.RotateAbout(Vector3dF(1.0, 1.0, 1.0), 90.0);
EXPECT_ROW0_NEAR(0.3333333333333334258519187, -0.2440169358562924717404030,
0.9106836025229592124219380, 0.0, A, kErrorThreshold);
EXPECT_ROW1_NEAR(0.9106836025229592124219380, 0.3333333333333334258519187,
-0.2440169358562924717404030, 0.0, A, kErrorThreshold);
EXPECT_ROW2_NEAR(-0.2440169358562924717404030, 0.9106836025229592124219380,
0.3333333333333334258519187, 0.0, A, kErrorThreshold);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, verifyRotateAboutForDegenerateAxis) {
// Check rotation about a degenerate zero vector.
// It is expected to skip applying the rotation.
Transform A;
A.RotateAbout(Vector3dF(0.0, 0.0, 0.0), 45.0);
// Verify that A remains unchanged.
EXPECT_TRUE(A.IsIdentity());
A = GetTestMatrix1();
A.RotateAbout(Vector3dF(0.0, 0.0, 0.0), 35.0);
// Verify that A remains unchanged.
EXPECT_ROW0_EQ(10.0f, 14.0f, 18.0f, 22.0f, A);
EXPECT_ROW1_EQ(11.0f, 15.0f, 19.0f, 23.0f, A);
EXPECT_ROW2_EQ(12.0f, 16.0f, 20.0f, 24.0f, A);
EXPECT_ROW3_EQ(13.0f, 17.0f, 21.0f, 25.0f, A);
}
TEST(XFormTest, verifySkew) {
// Test a skew along X axis only
Transform A;
A.Skew(45.0, 0.0);
EXPECT_ROW0_EQ(1.0f, 1.0f, 0.0f, 0.0f, A);
EXPECT_ROW1_EQ(0.0f, 1.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Test a skew along Y axis only
A.MakeIdentity();
A.Skew(0.0, 45.0);
EXPECT_ROW0_EQ(1.0f, 0.0f, 0.0f, 0.0f, A);
EXPECT_ROW1_EQ(1.0f, 1.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that skew() post-multiplies the existing matrix. Row 1, column 2,
// would incorrectly have value "7" if the matrix is pre-multiplied instead
// of post-multiplied.
A.MakeIdentity();
A.Scale3d(6.0, 7.0, 8.0);
A.Skew(45.0, 0.0);
EXPECT_ROW0_EQ(6.0f, 6.0f, 0.0f, 0.0f, A);
EXPECT_ROW1_EQ(0.0f, 7.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 8.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Test a skew along X and Y axes both
A.MakeIdentity();
A.Skew(45.0, 45.0);
EXPECT_ROW0_EQ(1.0f, 1.0f, 0.0f, 0.0f, A);
EXPECT_ROW1_EQ(1.0f, 1.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, verifyPerspectiveDepth) {
Transform A;
A.ApplyPerspectiveDepth(1.0);
EXPECT_ROW0_EQ(1.0f, 0.0f, 0.0f, 0.0f, A);
EXPECT_ROW1_EQ(0.0f, 1.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, -1.0f, 1.0f, A);
// Verify that PerspectiveDepth() post-multiplies the existing matrix.
A.MakeIdentity();
A.Translate3d(2.0, 3.0, 4.0);
A.ApplyPerspectiveDepth(1.0);
EXPECT_ROW0_EQ(1.0f, 0.0f, -2.0f, 2.0f, A);
EXPECT_ROW1_EQ(0.0f, 1.0f, -3.0f, 3.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, -3.0f, 4.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, -1.0f, 1.0f, A);
}
TEST(XFormTest, verifyHasPerspective) {
Transform A;
A.ApplyPerspectiveDepth(1.0);
EXPECT_TRUE(A.HasPerspective());
A.MakeIdentity();
A.ApplyPerspectiveDepth(0.0);
EXPECT_FALSE(A.HasPerspective());
A.MakeIdentity();
A.set_rc(3, 0, -1.f);
EXPECT_TRUE(A.HasPerspective());
A.MakeIdentity();
A.set_rc(3, 1, -1.f);
EXPECT_TRUE(A.HasPerspective());
A.MakeIdentity();
A.set_rc(3, 2, -0.3f);
EXPECT_TRUE(A.HasPerspective());
A.MakeIdentity();
A.set_rc(3, 3, 0.5f);
EXPECT_TRUE(A.HasPerspective());
A.MakeIdentity();
A.set_rc(3, 3, 0.f);
EXPECT_TRUE(A.HasPerspective());
}
TEST(XFormTest, verifyIsInvertible) {
Transform A;
// Translations, rotations, scales, skews and arbitrary combinations of them
// are invertible.
A.MakeIdentity();
EXPECT_TRUE(A.IsInvertible());
A.MakeIdentity();
A.Translate3d(2.0, 3.0, 4.0);
EXPECT_TRUE(A.IsInvertible());
A.MakeIdentity();
A.Scale3d(6.0, 7.0, 8.0);
EXPECT_TRUE(A.IsInvertible());
A.MakeIdentity();
A.RotateAboutXAxis(10.0);
A.RotateAboutYAxis(20.0);
A.RotateAboutZAxis(30.0);
EXPECT_TRUE(A.IsInvertible());
A.MakeIdentity();
A.Skew(45.0, 0.0);
EXPECT_TRUE(A.IsInvertible());
// A perspective matrix (projection plane at z=0) is invertible. The
// intuitive explanation is that perspective is equivalent to a skew of the
// w-axis; skews are invertible.
A.MakeIdentity();
A.ApplyPerspectiveDepth(1.0);
EXPECT_TRUE(A.IsInvertible());
// A "pure" perspective matrix derived by similar triangles, with rc(3, 3) set
// to zero (i.e. camera positioned at the origin), is not invertible.
A.MakeIdentity();
A.ApplyPerspectiveDepth(1.0);
A.set_rc(3, 3, 0.f);
EXPECT_FALSE(A.IsInvertible());
// Adding more to a non-invertible matrix will not make it invertible in the
// general case.
A.MakeIdentity();
A.ApplyPerspectiveDepth(1.0);
A.set_rc(3, 3, 0.f);
EXPECT_FALSE(A.IsInvertible());
A.Scale3d(6.0, 7.0, 8.0);
EXPECT_FALSE(A.IsInvertible());
A.RotateAboutXAxis(10.0);
EXPECT_FALSE(A.IsInvertible());
A.RotateAboutYAxis(20.0);
EXPECT_FALSE(A.IsInvertible());
A.RotateAboutZAxis(30.0);
EXPECT_FALSE(A.IsInvertible());
A.Translate3d(6.0, 7.0, 8.0);
if (A.IsInvertible()) {
// Due to some computation errors, now A may become invertible with a tiny
// determinant.
EXPECT_NEAR(A.Determinant(), 0.0, 1e-12);
}
// A degenerate matrix of all zeros is not invertible.
A.MakeIdentity();
A.set_rc(0, 0, 0.f);
A.set_rc(1, 1, 0.f);
A.set_rc(2, 2, 0.f);
A.set_rc(3, 3, 0.f);
EXPECT_FALSE(A.IsInvertible());
}
TEST(XFormTest, verifyIsIdentity) {
Transform A = GetTestMatrix1();
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
EXPECT_TRUE(A.IsIdentity());
// Modifying any one individual element should cause the matrix to no longer
// be identity.
A.MakeIdentity();
A.set_rc(0, 0, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.set_rc(1, 0, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.set_rc(2, 0, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.set_rc(3, 0, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.set_rc(0, 1, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.set_rc(1, 1, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.set_rc(2, 1, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.set_rc(3, 1, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.set_rc(0, 2, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.set_rc(1, 2, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.set_rc(2, 2, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.set_rc(3, 2, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.set_rc(0, 3, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.set_rc(1, 3, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.set_rc(2, 3, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.set_rc(3, 3, 2.f);
EXPECT_FALSE(A.IsIdentity());
}
TEST(XFormTest, verifyIsIdentityOrTranslation) {
Transform A = GetTestMatrix1();
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
EXPECT_TRUE(A.IsIdentityOrTranslation());
// Modifying any non-translation components should cause
// IsIdentityOrTranslation() to return false. NOTE: (0, 3), (1, 3), and
// (2, 3) are the translation components, so modifying them should still
// return true.
A.MakeIdentity();
A.set_rc(0, 0, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.set_rc(1, 0, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.set_rc(2, 0, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.set_rc(3, 0, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.set_rc(0, 1, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.set_rc(1, 1, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.set_rc(2, 1, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.set_rc(3, 1, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.set_rc(0, 2, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.set_rc(1, 2, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.set_rc(2, 2, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.set_rc(3, 2, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
// Note carefully - expecting true here.
A.MakeIdentity();
A.set_rc(0, 3, 2.f);
EXPECT_TRUE(A.IsIdentityOrTranslation());
// Note carefully - expecting true here.
A.MakeIdentity();
A.set_rc(1, 3, 2.f);
EXPECT_TRUE(A.IsIdentityOrTranslation());
// Note carefully - expecting true here.
A.MakeIdentity();
A.set_rc(2, 3, 2.f);
EXPECT_TRUE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.set_rc(3, 3, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
}
TEST(XFormTest, ApproximatelyIdentityOrTranslation) {
constexpr double kBigError = 1e-4;
constexpr double kSmallError = std::numeric_limits<float>::epsilon() / 2.0;
// Exact pure translation.
Transform a;
EXPECT_TRUE(a.IsApproximatelyIdentityOrTranslation(0));
EXPECT_TRUE(a.IsApproximatelyIdentityOrTranslation(kBigError));
EXPECT_TRUE(a.IsApproximatelyIdentityOrIntegerTranslation(0));
EXPECT_TRUE(a.IsApproximatelyIdentityOrIntegerTranslation(kBigError));
// Set translate values to integer values other than 0 or 1.
a.set_rc(0, 3, 3);
a.set_rc(1, 3, 4);
a.set_rc(2, 3, 5);
EXPECT_TRUE(a.IsApproximatelyIdentityOrTranslation(0));
EXPECT_TRUE(a.IsApproximatelyIdentityOrTranslation(kBigError));
EXPECT_TRUE(a.IsApproximatelyIdentityOrIntegerTranslation(0));
EXPECT_TRUE(a.IsApproximatelyIdentityOrIntegerTranslation(kBigError));
// Set translate values to values other than 0 or 1.
a.set_rc(0, 3, 3.4f);
a.set_rc(1, 3, 4.4f);
a.set_rc(2, 3, 5.6f);
EXPECT_TRUE(a.IsApproximatelyIdentityOrTranslation(0));
EXPECT_TRUE(a.IsApproximatelyIdentityOrTranslation(kBigError));
EXPECT_FALSE(a.IsApproximatelyIdentityOrIntegerTranslation(0));
EXPECT_FALSE(a.IsApproximatelyIdentityOrIntegerTranslation(kBigError));
// Approximately pure translation.
a = ApproxIdentityMatrix(kBigError);
// All these are false because the perspective error is bigger than the
// allowed std::min(float_epsilon, tolerance);
EXPECT_FALSE(a.IsApproximatelyIdentityOrTranslation(0));
EXPECT_FALSE(a.IsApproximatelyIdentityOrTranslation(kBigError));
EXPECT_FALSE(a.IsApproximatelyIdentityOrTranslation(kSmallError));
EXPECT_FALSE(a.IsApproximatelyIdentityOrIntegerTranslation(0));
EXPECT_FALSE(a.IsApproximatelyIdentityOrTranslation(kBigError));
EXPECT_FALSE(a.IsApproximatelyIdentityOrIntegerTranslation(kSmallError));
// Set perspective components to be exact identity.
a.set_rc(3, 0, 0);
a.set_rc(3, 1, 0);
a.set_rc(3, 2, 0);
a.set_rc(3, 3, 1);
EXPECT_FALSE(a.IsApproximatelyIdentityOrTranslation(0));
EXPECT_TRUE(a.IsApproximatelyIdentityOrTranslation(kBigError));
EXPECT_FALSE(a.IsApproximatelyIdentityOrTranslation(kSmallError));
EXPECT_FALSE(a.IsApproximatelyIdentityOrIntegerTranslation(0));
EXPECT_TRUE(a.IsApproximatelyIdentityOrIntegerTranslation(kBigError));
EXPECT_FALSE(a.IsApproximatelyIdentityOrIntegerTranslation(kSmallError));
// Set translate values to values other than 0 or 1.
// The error is set to kBigError / 2 instead of kBigError because the
// arithmetic may make the error bigger.
a.set_rc(0, 3, 3.0 + kBigError / 2);
a.set_rc(1, 3, 4.0 + kBigError / 2);
a.set_rc(2, 3, 5.0 + kBigError / 2);
EXPECT_FALSE(a.IsApproximatelyIdentityOrTranslation(0));
EXPECT_TRUE(a.IsApproximatelyIdentityOrTranslation(kBigError));
EXPECT_FALSE(a.IsApproximatelyIdentityOrTranslation(kSmallError));
EXPECT_FALSE(a.IsApproximatelyIdentityOrIntegerTranslation(0));
EXPECT_TRUE(a.IsApproximatelyIdentityOrIntegerTranslation(kBigError));
EXPECT_FALSE(a.IsApproximatelyIdentityOrIntegerTranslation(kSmallError));
// Set translate values to values other than 0 or 1.
a.set_rc(0, 3, 3.4f);
a.set_rc(1, 3, 4.4f);
a.set_rc(2, 3, 5.6f);
EXPECT_FALSE(a.IsApproximatelyIdentityOrTranslation(0));
EXPECT_TRUE(a.IsApproximatelyIdentityOrTranslation(kBigError));
EXPECT_FALSE(a.IsApproximatelyIdentityOrTranslation(kSmallError));
EXPECT_FALSE(a.IsApproximatelyIdentityOrIntegerTranslation(0));
EXPECT_FALSE(a.IsApproximatelyIdentityOrIntegerTranslation(kBigError));
EXPECT_FALSE(a.IsApproximatelyIdentityOrIntegerTranslation(kSmallError));
// Test with kSmallError in the matrix.
a = ApproxIdentityMatrix(kSmallError);
EXPECT_FALSE(a.IsApproximatelyIdentityOrTranslation(0));
EXPECT_TRUE(a.IsApproximatelyIdentityOrTranslation(kBigError));
EXPECT_TRUE(a.IsApproximatelyIdentityOrTranslation(kSmallError));
EXPECT_FALSE(a.IsApproximatelyIdentityOrIntegerTranslation(0));
EXPECT_TRUE(a.IsApproximatelyIdentityOrTranslation(kBigError));
EXPECT_TRUE(a.IsApproximatelyIdentityOrIntegerTranslation(kSmallError));
// Set some values (not translate values) to values other than 0 or 1.
a.set_rc(0, 1, 3.4f);
a.set_rc(3, 2, 4.4f);
a.set_rc(2, 0, 5.6f);
EXPECT_FALSE(a.IsApproximatelyIdentityOrTranslation(0));
EXPECT_FALSE(a.IsApproximatelyIdentityOrTranslation(kBigError));
EXPECT_FALSE(a.IsApproximatelyIdentityOrTranslation(kSmallError));
EXPECT_FALSE(a.IsApproximatelyIdentityOrIntegerTranslation(0));
EXPECT_FALSE(a.IsApproximatelyIdentityOrIntegerTranslation(kBigError));
EXPECT_FALSE(a.IsApproximatelyIdentityOrIntegerTranslation(kSmallError));
}
TEST(XFormTest, RoundToIdentityOrIntegerTranslation) {
Transform a = ApproxIdentityMatrix(0.1);
EXPECT_FALSE(a.IsIdentityOrIntegerTranslation());
a.RoundToIdentityOrIntegerTranslation();
EXPECT_TRUE(a.IsIdentity());
EXPECT_TRUE(a.IsIdentityOrIntegerTranslation());
a.Translate3d(1.1, 2.2, 3.8);
EXPECT_FALSE(a.IsIdentityOrIntegerTranslation());
a.RoundToIdentityOrIntegerTranslation();
EXPECT_TRUE(a.IsIdentityOrIntegerTranslation());
EXPECT_EQ(1.0, a.rc(0, 3));
EXPECT_EQ(2.0, a.rc(1, 3));
EXPECT_EQ(4.0, a.rc(2, 3));
}
TEST(XFormTest, verifyIsScaleOrTranslation) {
EXPECT_TRUE(Transform().IsScaleOrTranslation());
EXPECT_TRUE(Transform::MakeScale(2, 3).IsScaleOrTranslation());
EXPECT_TRUE(Transform::MakeTranslation(4, 5).IsScaleOrTranslation());
EXPECT_TRUE((Transform::MakeTranslation(4, 5) * Transform::MakeScale(2, 3))
.IsScaleOrTranslation());
Transform A = GetTestMatrix1();
EXPECT_FALSE(A.IsScaleOrTranslation());
// Modifying any non-scale or non-translation components should cause
// IsScaleOrTranslation() to return false. (0, 0), (1, 1), (2, 2), (0, 3),
// (1, 3), and (2, 3) are the scale and translation components, so
// modifying them should still return true.
// Note carefully - expecting true here.
A.MakeIdentity();
EXPECT_TRUE(A.IsScaleOrTranslation());
A.set_rc(0, 0, 2.f);
EXPECT_TRUE(A.IsScaleOrTranslation());
A.MakeIdentity();
A.set_rc(1, 0, 2.f);
EXPECT_FALSE(A.IsScaleOrTranslation());
A.MakeIdentity();
A.set_rc(2, 0, 2.f);
EXPECT_FALSE(A.IsScaleOrTranslation());
A.MakeIdentity();
A.set_rc(3, 0, 2.f);
EXPECT_FALSE(A.IsScaleOrTranslation());
A.MakeIdentity();
A.set_rc(0, 1, 2.f);
EXPECT_FALSE(A.IsScaleOrTranslation());
// Note carefully - expecting true here.
A.MakeIdentity();
A.set_rc(1, 1, 2.f);
EXPECT_TRUE(A.IsScaleOrTranslation());
A.MakeIdentity();
A.set_rc(2, 1, 2.f);
EXPECT_FALSE(A.IsScaleOrTranslation());
A.MakeIdentity();
A.set_rc(3, 1, 2.f);
EXPECT_FALSE(A.IsScaleOrTranslation());
A.MakeIdentity();
A.set_rc(0, 2, 2.f);
EXPECT_FALSE(A.IsScaleOrTranslation());
A.MakeIdentity();
A.set_rc(1, 2, 2.f);
EXPECT_FALSE(A.IsScaleOrTranslation());
// Note carefully - expecting true here.
A.MakeIdentity();
A.set_rc(2, 2, 2.f);
EXPECT_TRUE(A.IsScaleOrTranslation());
A.MakeIdentity();
A.set_rc(3, 2, 2.f);
EXPECT_FALSE(A.IsScaleOrTranslation());
// Note carefully - expecting true here.
A.MakeIdentity();
A.set_rc(0, 3, 2.f);
EXPECT_TRUE(A.IsScaleOrTranslation());
// Note carefully - expecting true here.
A.MakeIdentity();
A.set_rc(1, 3, 2.f);
EXPECT_TRUE(A.IsScaleOrTranslation());
// Note carefully - expecting true here.
A.MakeIdentity();
A.set_rc(2, 3, 2.f);
EXPECT_TRUE(A.IsScaleOrTranslation());
A.MakeIdentity();
A.set_rc(3, 3, 2.f);
EXPECT_FALSE(A.IsScaleOrTranslation());
}
TEST(XFormTest, To2dScale) {
Transform t;
EXPECT_TRUE(t.IsScale2d());
EXPECT_EQ(Vector2dF(1, 1), t.To2dScale());
t.Scale(2.5f, 3.75f);
EXPECT_TRUE(t.IsScale2d());
EXPECT_EQ(Vector2dF(2.5f, 3.75f), t.To2dScale());
t.EnsureFullMatrixForTesting();
EXPECT_TRUE(t.IsScale2d());
EXPECT_EQ(Vector2dF(2.5f, 3.75f), t.To2dScale());
t.Scale3d(3, 4, 5);
EXPECT_FALSE(t.IsScale2d());
EXPECT_EQ(Vector2dF(7.5f, 15.f), t.To2dScale());
for (int row = 0; row < 4; row++) {
for (int col = 0; col < 4; col++) {
t.MakeIdentity();
t.set_rc(row, col, 100);
bool is_scale_2d = row == col && (row == 0 || row == 1);
EXPECT_EQ(is_scale_2d, t.IsScale2d()) << " row=" << row << " col=" << col;
}
}
}
TEST(XFormTest, Flatten) {
Transform A = GetTestMatrix1();
EXPECT_FALSE(A.IsFlat());
A.Flatten();
EXPECT_ROW0_EQ(10.0f, 14.0f, 0.0f, 22.0f, A);
EXPECT_ROW1_EQ(11.0f, 15.0f, 0.0f, 23.0f, A);
EXPECT_ROW2_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW3_EQ(13.0f, 17.0f, 0.0f, 25.0f, A);
EXPECT_TRUE(A.IsFlat());
}
TEST(XFormTest, IsFlat) {
Transform transform = GetTestMatrix1();
// A transform with all entries non-zero isn't flat.
EXPECT_FALSE(transform.IsFlat());
transform.set_rc(0, 2, 0.f);
transform.set_rc(1, 2, 0.f);
transform.set_rc(2, 2, 1.f);
transform.set_rc(3, 2, 0.f);
EXPECT_FALSE(transform.IsFlat());
transform.set_rc(2, 0, 0.f);
transform.set_rc(2, 1, 0.f);
transform.set_rc(2, 3, 0.f);
// Since the third column and row are both (0, 0, 1, 0), the transform is
// flat.
EXPECT_TRUE(transform.IsFlat());
}
// Another implementation of Preserves2dAxisAlignment that isn't as fast,
// good for testing the faster implementation.
static bool EmpiricallyPreserves2dAxisAlignment(const Transform& transform) {
Point3F p1(5.0f, 5.0f, 0.0f);
Point3F p2(10.0f, 5.0f, 0.0f);
Point3F p3(10.0f, 20.0f, 0.0f);
Point3F p4(5.0f, 20.0f, 0.0f);
QuadF test_quad(PointF(p1.x(), p1.y()), PointF(p2.x(), p2.y()),
PointF(p3.x(), p3.y()), PointF(p4.x(), p4.y()));
EXPECT_TRUE(test_quad.IsRectilinear());
p1 = transform.MapPoint(p1);
p2 = transform.MapPoint(p2);
p3 = transform.MapPoint(p3);
p4 = transform.MapPoint(p4);
QuadF transformedQuad(PointF(p1.x(), p1.y()), PointF(p2.x(), p2.y()),
PointF(p3.x(), p3.y()), PointF(p4.x(), p4.y()));
return transformedQuad.IsRectilinear();
}
TEST(XFormTest, Preserves2dAxisAlignment) {
static const struct TestCase {
double a; // row 1, column 1
double b; // row 1, column 2
double c; // row 2, column 1
double d; // row 2, column 2
bool expected;
bool degenerate;
} test_cases[] = {
// clang-format off
{ 3.0, 0.0,
0.0, 4.0, true, false }, // basic case
{ 0.0, 4.0,
3.0, 0.0, true, false }, // rotate by 90
{ 0.0, 0.0,
0.0, 4.0, true, true }, // degenerate x
{ 3.0, 0.0,
0.0, 0.0, true, true }, // degenerate y
{ 0.0, 0.0,
3.0, 0.0, true, true }, // degenerate x + rotate by 90
{ 0.0, 4.0,
0.0, 0.0, true, true }, // degenerate y + rotate by 90
{ 3.0, 4.0,
0.0, 0.0, false, true },
{ 0.0, 0.0,
3.0, 4.0, false, true },
{ 0.0, 3.0,
0.0, 4.0, false, true },
{ 3.0, 0.0,
4.0, 0.0, false, true },
{ 3.0, 4.0,
5.0, 0.0, false, false },
{ 3.0, 4.0,
0.0, 5.0, false, false },
{ 3.0, 0.0,
4.0, 5.0, false, false },
{ 0.0, 3.0,
4.0, 5.0, false, false },
{ 2.0, 3.0,
4.0, 5.0, false, false },
// clang-format on
};
Transform transform;
for (const auto& value : test_cases) {
transform.MakeIdentity();
transform.set_rc(0, 0, value.a);
transform.set_rc(0, 1, value.b);
transform.set_rc(1, 0, value.c);
transform.set_rc(1, 1, value.d);
if (value.expected) {
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
if (value.degenerate) {
EXPECT_FALSE(transform.NonDegeneratePreserves2dAxisAlignment());
} else {
EXPECT_TRUE(transform.NonDegeneratePreserves2dAxisAlignment());
}
} else {
EXPECT_FALSE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_FALSE(transform.Preserves2dAxisAlignment());
EXPECT_FALSE(transform.NonDegeneratePreserves2dAxisAlignment());
}
}
// Try the same test cases again, but this time make sure that other matrix
// elements (except perspective) have entries, to test that they are ignored.
for (const auto& value : test_cases) {
transform.MakeIdentity();
transform.set_rc(0, 0, value.a);
transform.set_rc(0, 1, value.b);
transform.set_rc(1, 0, value.c);
transform.set_rc(1, 1, value.d);
transform.set_rc(0, 2, 1.f);
transform.set_rc(0, 3, 2.f);
transform.set_rc(1, 2, 3.f);
transform.set_rc(1, 3, 4.f);
transform.set_rc(2, 0, 5.f);
transform.set_rc(2, 1, 6.f);
transform.set_rc(2, 2, 7.f);
transform.set_rc(2, 3, 8.f);
if (value.expected) {
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
if (value.degenerate) {
EXPECT_FALSE(transform.NonDegeneratePreserves2dAxisAlignment());
} else {
EXPECT_TRUE(transform.NonDegeneratePreserves2dAxisAlignment());
}
} else {
EXPECT_FALSE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_FALSE(transform.Preserves2dAxisAlignment());
EXPECT_FALSE(transform.NonDegeneratePreserves2dAxisAlignment());
}
}
// Try the same test cases again, but this time add perspective which is
// always assumed to not-preserve axis alignment.
for (const auto& value : test_cases) {
transform.MakeIdentity();
transform.set_rc(0, 0, value.a);
transform.set_rc(0, 1, value.b);
transform.set_rc(1, 0, value.c);
transform.set_rc(1, 1, value.d);
transform.set_rc(0, 2, 1.f);
transform.set_rc(0, 3, 2.f);
transform.set_rc(1, 2, 3.f);
transform.set_rc(1, 3, 4.f);
transform.set_rc(2, 0, 5.f);
transform.set_rc(2, 1, 6.f);
transform.set_rc(2, 2, 7.f);
transform.set_rc(2, 3, 8.f);
transform.set_rc(3, 0, 9.f);
transform.set_rc(3, 1, 10.f);
transform.set_rc(3, 2, 11.f);
transform.set_rc(3, 3, 12.f);
EXPECT_FALSE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_FALSE(transform.Preserves2dAxisAlignment());
EXPECT_FALSE(transform.NonDegeneratePreserves2dAxisAlignment());
}
// Try a few more practical situations to check precision
transform.MakeIdentity();
constexpr double kNear90Degrees = 90.0 + kErrorThreshold / 2;
transform.RotateAboutZAxis(kNear90Degrees);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
EXPECT_TRUE(transform.NonDegeneratePreserves2dAxisAlignment());
transform.MakeIdentity();
transform.RotateAboutZAxis(kNear90Degrees * 2);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
EXPECT_TRUE(transform.NonDegeneratePreserves2dAxisAlignment());
transform.MakeIdentity();
transform.RotateAboutZAxis(kNear90Degrees * 3);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
EXPECT_TRUE(transform.NonDegeneratePreserves2dAxisAlignment());
transform.MakeIdentity();
transform.RotateAboutYAxis(kNear90Degrees);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
EXPECT_FALSE(transform.NonDegeneratePreserves2dAxisAlignment());
transform.MakeIdentity();
transform.RotateAboutXAxis(kNear90Degrees);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
EXPECT_FALSE(transform.NonDegeneratePreserves2dAxisAlignment());
transform.MakeIdentity();
transform.RotateAboutZAxis(kNear90Degrees);
transform.RotateAboutYAxis(kNear90Degrees);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
EXPECT_FALSE(transform.NonDegeneratePreserves2dAxisAlignment());
transform.MakeIdentity();
transform.RotateAboutZAxis(kNear90Degrees);
transform.RotateAboutXAxis(kNear90Degrees);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
EXPECT_FALSE(transform.NonDegeneratePreserves2dAxisAlignment());
transform.MakeIdentity();
transform.RotateAboutYAxis(kNear90Degrees);
transform.RotateAboutZAxis(kNear90Degrees);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
EXPECT_FALSE(transform.NonDegeneratePreserves2dAxisAlignment());
transform.MakeIdentity();
transform.RotateAboutZAxis(45.0);
EXPECT_FALSE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_FALSE(transform.Preserves2dAxisAlignment());
EXPECT_FALSE(transform.NonDegeneratePreserves2dAxisAlignment());
// 3-d case; In 2d after an orthographic projection, this case does
// preserve 2d axis alignment. But in 3d, it does not preserve axis
// alignment.
transform.MakeIdentity();
transform.RotateAboutYAxis(45.0);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
EXPECT_TRUE(transform.NonDegeneratePreserves2dAxisAlignment());
transform.MakeIdentity();
transform.RotateAboutXAxis(45.0);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
EXPECT_TRUE(transform.NonDegeneratePreserves2dAxisAlignment());
// Perspective cases.
transform.MakeIdentity();
transform.ApplyPerspectiveDepth(10.0);
transform.RotateAboutYAxis(45.0);
EXPECT_FALSE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_FALSE(transform.Preserves2dAxisAlignment());
EXPECT_FALSE(transform.NonDegeneratePreserves2dAxisAlignment());
transform.MakeIdentity();
transform.ApplyPerspectiveDepth(10.0);
transform.RotateAboutZAxis(90.0);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
EXPECT_TRUE(transform.NonDegeneratePreserves2dAxisAlignment());
transform.MakeIdentity();
transform.ApplyPerspectiveDepth(-10.0);
transform.RotateAboutZAxis(90.0);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
EXPECT_TRUE(transform.NonDegeneratePreserves2dAxisAlignment());
// To be non-degenerate, the constant contribution to perspective must
// be positive.
// clang-format off
transform = Transform::RowMajor(1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, -1.0);
// clang-format on
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
EXPECT_FALSE(transform.NonDegeneratePreserves2dAxisAlignment());
// clang-format off
transform = Transform::RowMajor(2.0, 0.0, 0.0, 0.0,
0.0, 5.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0);
// clang-format on
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
EXPECT_FALSE(transform.NonDegeneratePreserves2dAxisAlignment());
}
TEST(XFormTest, To2dTranslation) {
Vector2dF translation(3.f, 7.f);
Transform transform;
transform.Translate(translation.x(), translation.y() + 1);
EXPECT_NE(translation, transform.To2dTranslation());
transform.MakeIdentity();
transform.Translate(translation.x(), translation.y());
transform.set_rc(1, 1, 100);
EXPECT_EQ(translation, transform.To2dTranslation());
}
TEST(XFormTest, To3dTranslation) {
Transform transform;
EXPECT_EQ(gfx::Vector3dF(), transform.To3dTranslation());
transform.Translate(10, 20);
EXPECT_EQ(gfx::Vector3dF(10, 20, 0), transform.To3dTranslation());
transform.Translate3d(20, -60, -10);
EXPECT_EQ(gfx::Vector3dF(30, -40, -10), transform.To3dTranslation());
transform.set_rc(1, 1, 100);
EXPECT_EQ(gfx::Vector3dF(30, -40, -10), transform.To3dTranslation());
}
TEST(XFormTest, MapRect) {
Transform translation = Transform::MakeTranslation(3.25f, 7.75f);
RectF rect(1.25f, 2.5f, 3.75f, 4.f);
RectF expected(4.5f, 10.25f, 3.75f, 4.f);
EXPECT_EQ(expected, translation.MapRect(rect));
EXPECT_EQ(rect, Transform().MapRect(rect));
auto singular = Transform::MakeScale(0.f);
EXPECT_EQ(RectF(0, 0, 0, 0), singular.MapRect(rect));
auto negative_scale = Transform::MakeScale(-1, -2);
EXPECT_EQ(RectF(-5.f, -13.f, 3.75f, 8.f), negative_scale.MapRect(rect));
auto rotate = Transform::Make90degRotation();
EXPECT_EQ(RectF(-6.5f, 1.25f, 4.f, 3.75f), rotate.MapRect(rect));
}
TEST(XFormTest, MapIntRect) {
auto translation = Transform::MakeTranslation(3.25f, 7.75f);
EXPECT_EQ(Rect(4, 9, 4, 5), translation.MapRect(Rect(1, 2, 3, 4)));
EXPECT_EQ(Rect(1, 2, 3, 4), Transform().MapRect(Rect(1, 2, 3, 4)));
auto singular = Transform::MakeScale(0.f);
EXPECT_EQ(Rect(0, 0, 0, 0), singular.MapRect(Rect(1, 2, 3, 4)));
}
TEST(XFormTest, TransformRectReverse) {
auto translation = Transform::MakeTranslation(3.25f, 7.75f);
RectF rect(1.25f, 2.5f, 3.75f, 4.f);
RectF expected(-2.f, -5.25f, 3.75f, 4.f);
EXPECT_EQ(expected, translation.InverseMapRect(rect));
EXPECT_EQ(rect, Transform().InverseMapRect(rect));
auto singular = Transform::MakeScale(0.f);
EXPECT_FALSE(singular.InverseMapRect(rect));
auto negative_scale = Transform::MakeScale(-1, -2);
EXPECT_EQ(RectF(-5.f, -3.25f, 3.75f, 2.f),
negative_scale.InverseMapRect(rect));
auto rotate = Transform::Make90degRotation();
EXPECT_EQ(RectF(2.5f, -5.f, 4.f, 3.75f), rotate.InverseMapRect(rect));
}
TEST(XFormTest, InverseMapIntRect) {
auto translation = Transform::MakeTranslation(3.25f, 7.75f);
EXPECT_EQ(Rect(-3, -6, 4, 5), translation.InverseMapRect(Rect(1, 2, 3, 4)));
EXPECT_EQ(Rect(1, 2, 3, 4), Transform().InverseMapRect(Rect(1, 2, 3, 4)));
auto singular = Transform::MakeScale(0.f);
EXPECT_FALSE(singular.InverseMapRect(Rect(1, 2, 3, 4)));
}
TEST(XFormTest, MapQuad) {
auto translation = Transform::MakeTranslation(3.25f, 7.75f);
QuadF q(PointF(1.25f, 2.5f), PointF(3.75f, 4.f), PointF(23.f, 45.f),
PointF(12.f, 67.f));
EXPECT_EQ(QuadF(PointF(4.5f, 10.25f), PointF(7.f, 11.75f),
PointF(26.25f, 52.75f), PointF(15.25f, 74.75f)),
translation.MapQuad(q));
EXPECT_EQ(q, Transform().MapQuad(q));
auto singular = Transform::MakeScale(0.f);
EXPECT_EQ(QuadF(), singular.MapQuad(q));
auto negative_scale = Transform::MakeScale(-1, -2);
EXPECT_EQ(QuadF(PointF(-1.25f, -5.f), PointF(-3.75f, -8.f),
PointF(-23.f, -90.f), PointF(-12.f, -134.f)),
negative_scale.MapQuad(q));
auto rotate = Transform::Make90degRotation();
EXPECT_EQ(QuadF(PointF(-2.5f, 1.25f), PointF(-4.f, 3.75f),
PointF(-45.f, 23.f), PointF(-67.f, 12.f)),
rotate.MapQuad(q));
}
TEST(XFormTest, MapBox) {
Transform translation;
translation.Translate3d(3.f, 7.f, 6.f);
BoxF box(1.f, 2.f, 3.f, 4.f, 5.f, 6.f);
BoxF expected(4.f, 9.f, 9.f, 4.f, 5.f, 6.f);
BoxF transformed = translation.MapBox(box);
EXPECT_EQ(expected, transformed);
}
TEST(XFormTest, Round2dTranslationComponents) {
Transform translation;
Transform expected;
translation.Round2dTranslationComponents();
EXPECT_EQ(expected.ToString(), translation.ToString());
translation.Translate(1.0f, 1.0f);
expected.Translate(1.0f, 1.0f);
translation.Round2dTranslationComponents();
EXPECT_EQ(expected.ToString(), translation.ToString());
translation.Translate(0.5f, 0.4f);
expected.Translate(1.0f, 0.0f);
translation.Round2dTranslationComponents();
EXPECT_EQ(expected.ToString(), translation.ToString());
// Rounding should only affect 2d translation components.
translation.Translate3d(0.f, 0.f, 0.5f);
expected.Translate3d(0.f, 0.f, 0.5f);
translation.Round2dTranslationComponents();
EXPECT_EQ(expected.ToString(), translation.ToString());
}
TEST(XFormTest, BackFaceVisiblilityTolerance) {
Transform backface_invisible;
backface_invisible.set_rc(0, 3, 1.f);
backface_invisible.set_rc(3, 0, 1.f);
backface_invisible.set_rc(2, 0, 1.f);
backface_invisible.set_rc(3, 2, 1.f);
// The transformation matrix has a determinant = 1 and cofactor33 = 0. So,
// IsBackFaceVisible should return false.
EXPECT_EQ(backface_invisible.Determinant(), 1.f);
EXPECT_FALSE(backface_invisible.IsBackFaceVisible());
// Adding a noise to the transformsation matrix that is within the tolerance
// (machine epsilon) should not change the result.
float noise = std::numeric_limits<float>::epsilon();
backface_invisible.set_rc(0, 3, 1.f + noise);
EXPECT_FALSE(backface_invisible.IsBackFaceVisible());
// A noise that is more than the tolerance should change the result.
backface_invisible.set_rc(0, 3, 1.f + (2 * noise));
EXPECT_TRUE(backface_invisible.IsBackFaceVisible());
}
TEST(XFormTest, TransformVector4) {
Transform transform;
transform.set_rc(0, 0, 2.5f);
transform.set_rc(1, 1, 3.5f);
transform.set_rc(2, 2, 4.5f);
transform.set_rc(3, 3, 5.5f);
std::array<float, 4> input = {11.5f, 22.5f, 33.5f, 44.5f};
auto vector = input;
std::array<float, 4> expected = {28.75f, 78.75f, 150.75f, 244.75f};
transform.TransformVector4(vector.data());
EXPECT_EQ(expected, vector);
// With translations and perspectives.
transform.set_rc(0, 3, 10);
transform.set_rc(1, 3, 20);
transform.set_rc(2, 3, 30);
transform.set_rc(3, 0, 40);
transform.set_rc(3, 1, 50);
transform.set_rc(3, 2, 60);
vector = input;
expected = {473.75f, 968.75f, 1485.75f, 3839.75f};
transform.TransformVector4(vector.data());
EXPECT_EQ(expected, vector);
// TransformVector4 with simple 2d transform.
transform =
Transform::MakeTranslation(10, 20) * Transform::MakeScale(2.5f, 3.5f);
vector = input;
expected = {473.75f, 968.75f, 33.5f, 44.5f};
transform.TransformVector4(vector.data());
EXPECT_EQ(expected, vector);
vector = input;
transform.EnsureFullMatrixForTesting();
transform.TransformVector4(vector.data());
EXPECT_EQ(expected, vector);
}
TEST(XFormTest, Make90NRotation) {
auto t1 = Transform::Make90degRotation();
EXPECT_EQ(gfx::PointF(-50, 100), t1.MapPoint(gfx::PointF(100, 50)));
auto t2 = Transform::Make180degRotation();
EXPECT_EQ(Transform::MakeScale(-1), t2);
EXPECT_EQ(gfx::PointF(-100, -50), t2.MapPoint(gfx::PointF(100, 50)));
auto t3 = Transform::Make270degRotation();
EXPECT_EQ(gfx::PointF(50, -100), t3.MapPoint(gfx::PointF(100, 50)));
auto t4 = t1 * t1;
EXPECT_EQ(t2, t4);
t4.PreConcat(t1);
EXPECT_EQ(t3, t4);
t4.PreConcat(t1);
EXPECT_TRUE(t4.IsIdentity());
t2.PreConcat(t2);
EXPECT_TRUE(t2.IsIdentity());
}
TEST(XFormTest, Rotate90NDegrees) {
Transform t1;
t1.Rotate(90);
EXPECT_EQ(Transform::Make90degRotation(), t1);
Transform t2;
t2.Rotate(180);
EXPECT_EQ(Transform::Make180degRotation(), t2);
Transform t3;
t3.Rotate(270);
EXPECT_EQ(Transform::Make270degRotation(), t3);
Transform t4;
t4.Rotate(360);
EXPECT_EQ(Transform(), t4);
t4.Rotate(-270);
EXPECT_EQ(t1, t4);
t4.Rotate(-180);
EXPECT_EQ(t3, t4);
t4.Rotate(270);
EXPECT_EQ(t2, t4);
t1.Rotate(-90);
t2.Rotate(180);
t3.Rotate(-270);
t4.Rotate(-180);
EXPECT_TRUE(t1.IsIdentity());
EXPECT_TRUE(t2.IsIdentity());
EXPECT_TRUE(t3.IsIdentity());
EXPECT_TRUE(t4.IsIdentity());
// This should not crash. https://crbug.com/1378323.
Transform t;
t.Rotate(-1e-30);
}
TEST(XFormTest, MapPoint) {
Transform transform;
transform.Translate3d(1.25f, 2.75f, 3.875f);
transform.Scale3d(3, 4, 5);
EXPECT_EQ(PointF(38.75f, 140.75f), transform.MapPoint(PointF(12.5f, 34.5f)));
EXPECT_EQ(Point3F(38.75f, 140.75f, 286.375f),
transform.MapPoint(Point3F(12.5f, 34.5f, 56.5f)));
transform.MakeIdentity();
transform.set_rc(3, 0, 0.5);
transform.set_rc(3, 1, 2);
transform.set_rc(3, 2, 0.75);
EXPECT_POINTF_EQ(PointF(0.2, 0.4), transform.MapPoint(PointF(2, 4)));
EXPECT_POINT3F_EQ(Point3F(0.18181818f, 0.27272727f, 0.36363636f),
transform.MapPoint(Point3F(2, 3, 4)));
// 0 in all perspectives should be ignored.
transform.MakeIdentity();
transform.Translate3d(10, 20, 30);
transform.set_rc(3, 3, 0);
EXPECT_EQ(PointF(12, 24), transform.MapPoint(PointF(2, 4)));
EXPECT_EQ(Point3F(12, 23, 34), transform.MapPoint(Point3F(2, 3, 4)));
// NaN in perspective should be ignored.
transform.set_rc(3, 3, std::numeric_limits<float>::quiet_NaN());
EXPECT_EQ(PointF(12, 24), transform.MapPoint(PointF(2, 4)));
EXPECT_EQ(Point3F(12, 23, 34), transform.MapPoint(Point3F(2, 3, 4)));
// MapPoint with simple 2d transform.
transform = Transform::MakeTranslation(10, 20) * Transform::MakeScale(3, 4);
EXPECT_EQ(PointF(47.5f, 158.0f), transform.MapPoint(PointF(12.5f, 34.5f)));
EXPECT_EQ(Point3F(47.5f, 158.0f, 56.5f),
transform.MapPoint(Point3F(12.5f, 34.5f, 56.5f)));
transform.EnsureFullMatrixForTesting();
EXPECT_EQ(PointF(47.5f, 158.0f), transform.MapPoint(PointF(12.5f, 34.5f)));
EXPECT_EQ(Point3F(47.5f, 158.0f, 56.5f),
transform.MapPoint(Point3F(12.5f, 34.5f, 56.5f)));
}
TEST(XFormTest, InverseMapPoint) {
Transform transform;
transform.Translate(1, 2);
transform.Rotate(70);
transform.Scale(3, 4);
transform.Skew(30, 70);
const PointF point_f(12.34f, 56.78f);
PointF transformed_point_f = transform.MapPoint(point_f);
const absl::optional<PointF> reverted_point_f =
transform.InverseMapPoint(transformed_point_f);
ASSERT_TRUE(reverted_point_f.has_value());
EXPECT_TRUE(PointsAreNearlyEqual(reverted_point_f.value(), point_f));
const Point point(12, 13);
Point transformed_point = transform.MapPoint(point);
EXPECT_EQ(point, transform.InverseMapPoint(transformed_point));
Transform transform3d;
transform3d.Translate3d(1, 2, 3);
transform3d.RotateAbout(Vector3dF(4, 5, 6), 70);
transform3d.Scale3d(7, 8, 9);
transform3d.Skew(30, 70);
const Point3F point_3f(14, 15, 16);
Point3F transformed_point_3f = transform3d.MapPoint(point_3f);
const absl::optional<Point3F> reverted_point_3f =
transform3d.InverseMapPoint(transformed_point_3f);
ASSERT_TRUE(reverted_point_3f.has_value());
EXPECT_TRUE(PointsAreNearlyEqual(reverted_point_3f.value(), point_3f));
// MapPoint with simple 2d transform.
transform = Transform::MakeTranslation(10, 20) * Transform::MakeScale(3, 4);
EXPECT_EQ(PointF(47.5f, 158.0f), transform.MapPoint(PointF(12.5f, 34.5f)));
EXPECT_EQ(Point3F(47.5f, 158.0f, 56.5f),
transform.MapPoint(Point3F(12.5f, 34.5f, 56.5f)));
transform.EnsureFullMatrixForTesting();
EXPECT_EQ(PointF(47.5f, 158.0f), transform.MapPoint(PointF(12.5f, 34.5f)));
EXPECT_EQ(Point3F(47.5f, 158.0f, 56.5f),
transform.MapPoint(Point3F(12.5f, 34.5f, 56.5f)));
}
TEST(XFormTest, MapVector) {
Transform transform;
transform.Scale3d(3, 4, 5);
Vector3dF vector(12.5f, 34.5f, 56.5f);
Vector3dF expected(37.5f, 138.0f, 282.5f);
EXPECT_EQ(expected, transform.MapVector(vector));
// The translation components should be ignored.
transform.Translate3d(1.25f, 2.75f, 3.875f);
EXPECT_EQ(expected, transform.MapVector(vector));
// The perspective components should be ignored.
transform.set_rc(3, 0, 0.5f);
transform.set_rc(3, 1, 2.5f);
transform.set_rc(3, 2, 4.5f);
transform.set_rc(3, 3, 8.5f);
EXPECT_EQ(expected, transform.MapVector(vector));
// MapVector with a simple 2d transform.
transform = Transform::MakeTranslation(10, 20) * Transform::MakeScale(3, 4);
expected.set_z(vector.z());
EXPECT_EQ(expected, transform.MapVector(vector));
transform.EnsureFullMatrixForTesting();
EXPECT_EQ(expected, transform.MapVector(vector));
}
TEST(XFormTest, PreConcatAxisTransform2d) {
auto t = Transform::RowMajor(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17);
auto axis = AxisTransform2d::FromScaleAndTranslation(Vector2dF(10, 20),
Vector2dF(100, 200));
auto axis_full =
Transform::MakeTranslation(100, 200) * Transform::MakeScale(10, 20);
auto t1 = t;
t.PreConcat(axis);
t1.PreConcat(axis_full);
EXPECT_EQ(t, t1);
}
TEST(XFormTest, PostConcatAxisTransform2d) {
auto t = Transform::RowMajor(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17);
auto axis = AxisTransform2d::FromScaleAndTranslation(Vector2dF(10, 20),
Vector2dF(100, 200));
auto axis_full =
Transform::MakeTranslation(100, 200) * Transform::MakeScale(10, 20);
auto t1 = t;
t.PostConcat(axis);
t1.PostConcat(axis_full);
EXPECT_EQ(t, t1);
}
TEST(XFormTest, ClampOutput) {
double entries[][2] = {
// The first entry is used to initialize the transform.
// The second entry is used to initialize the object to be mapped.
{std::numeric_limits<float>::max(),
std::numeric_limits<float>::infinity()},
{1, std::numeric_limits<float>::infinity()},
{-1, std::numeric_limits<float>::infinity()},
{1, -std::numeric_limits<float>::infinity()},
{
std::numeric_limits<float>::max(),
std::numeric_limits<float>::max(),
},
{
std::numeric_limits<float>::lowest(),
-std::numeric_limits<float>::infinity(),
},
};
for (double* entry : entries) {
const float mv = entry[0];
const float factor = entry[1];
auto is_valid_point = [&](const PointF& p) -> bool {
return std::isfinite(p.x()) && std::isfinite(p.y());
};
auto is_valid_point3 = [&](const Point3F& p) -> bool {
return std::isfinite(p.x()) && std::isfinite(p.y()) &&
std::isfinite(p.z());
};
auto is_valid_vector2 = [&](const Vector2dF& v) -> bool {
return std::isfinite(v.x()) && std::isfinite(v.y());
};
auto is_valid_vector3 = [&](const Vector3dF& v) -> bool {
return std::isfinite(v.x()) && std::isfinite(v.y()) &&
std::isfinite(v.z());
};
auto is_valid_rect = [&](const RectF& r) -> bool {
return is_valid_point(r.origin()) && std::isfinite(r.width()) &&
std::isfinite(r.height());
};
auto is_valid_array = [&](const float* a, size_t size) -> bool {
for (size_t i = 0; i < size; i++) {
if (!std::isfinite(a[i]))
return false;
}
return true;
};
auto test = [&](const Transform& m) {
SCOPED_TRACE(base::StringPrintf("m: %s factor: %lg", m.ToString().c_str(),
factor));
auto p = m.MapPoint(PointF(factor, factor));
EXPECT_TRUE(is_valid_point(p)) << p.ToString();
auto p3 = m.MapPoint(Point3F(factor, factor, factor));
EXPECT_TRUE(is_valid_point3(p3)) << p3.ToString();
auto r = m.MapRect(RectF(factor, factor, factor, factor));
EXPECT_TRUE(is_valid_rect(r)) << r.ToString();
auto v3 = m.MapVector(Vector3dF(factor, factor, factor));
EXPECT_TRUE(is_valid_vector3(v3)) << v3.ToString();
float v4[4] = {factor, factor, factor, factor};
m.TransformVector4(v4);
EXPECT_TRUE(is_valid_array(v4, 4));
auto v2 = m.To2dTranslation();
EXPECT_TRUE(is_valid_vector2(v2)) << v2.ToString();
v2 = m.To2dScale();
EXPECT_TRUE(is_valid_vector2(v2)) << v2.ToString();
v3 = m.To3dTranslation();
EXPECT_TRUE(is_valid_vector3(v3)) << v3.ToString();
};
test(Transform::ColMajor(mv, mv, mv, mv, mv, mv, mv, mv, mv, mv, mv, mv, mv,
mv, mv, mv));
test(Transform::MakeTranslation(mv, mv));
}
}
constexpr float kProjectionClampedBigNumber =
1 << (std::numeric_limits<float>::digits - 1);
// This test also demonstrates the relationship between ProjectPoint() and
// MapPoint().
TEST(XFormTest, ProjectPoint) {
Transform transform;
PointF p(1.25f, -3.5f);
bool clamped = true;
EXPECT_EQ(p, transform.ProjectPoint(p));
EXPECT_EQ(p, transform.ProjectPoint(p, &clamped));
EXPECT_FALSE(clamped);
// MapPoint() and ProjectPoint() are the same with a flat transform.
EXPECT_EQ(p, transform.MapPoint(p));
// ProjectPoint with simple 2d transform.
transform = Transform::MakeTranslation(10, 20) * Transform::MakeScale(3, 4);
clamped = true;
gfx::PointF projected = transform.ProjectPoint(p, &clamped);
EXPECT_EQ(PointF(13.75f, 6.f), projected);
EXPECT_FALSE(clamped);
// MapPoint() and ProjectPoint() are the same with a flat transform.
EXPECT_EQ(projected, transform.MapPoint(p));
clamped = true;
transform.EnsureFullMatrixForTesting();
EXPECT_EQ(projected, transform.ProjectPoint(p, &clamped));
EXPECT_FALSE(clamped);
EXPECT_EQ(projected, transform.MapPoint(p));
// Set scale z to 0.
transform.set_rc(2, 2, 0);
clamped = true;
projected = transform.ProjectPoint(p, &clamped);
EXPECT_EQ(PointF(), projected);
EXPECT_TRUE(clamped);
// MapPoint() still produces the original result.
EXPECT_EQ(PointF(13.75f, 6.f), transform.MapPoint(p));
// Normally (except the last case below), t.ProjectPoint() is equivalent to
// inverse(flatten(inverse(t))).MapPoint().
auto projection_transform = [](const Transform& t) {
auto flat = t.GetCheckedInverse();
flat.Flatten();
return flat.GetCheckedInverse();
};
transform.MakeIdentity();
transform.RotateAboutYAxis(60);
clamped = true;
projected = transform.ProjectPoint(p, &clamped);
EXPECT_EQ(PointF(2.5f, -3.5f), projected);
EXPECT_FALSE(clamped);
EXPECT_EQ(PointF(0.625f, -3.5f), transform.MapPoint(p));
EXPECT_EQ(projected, projection_transform(transform).MapPoint(p));
EXPECT_EQ(projected, projection_transform(transform).ProjectPoint(p));
transform.ApplyPerspectiveDepth(10);
clamped = true;
projected = transform.ProjectPoint(p, &clamped);
EXPECT_POINTF_NEAR(PointF(3.19f, -4.47f), projected, 0.01f);
EXPECT_FALSE(clamped);
EXPECT_EQ(PointF(0.625f, -3.5f), transform.MapPoint(p));
EXPECT_POINTF_NEAR(projected, projection_transform(transform).MapPoint(p),
1e-5f);
EXPECT_POINTF_NEAR(projected, projection_transform(transform).ProjectPoint(p),
1e-5f);
// With a small perspective, the ray doesn't intersect the destination plane.
transform.ApplyPerspectiveDepth(2);
clamped = false;
projected = transform.ProjectPoint(p, &clamped);
EXPECT_TRUE(clamped);
EXPECT_EQ(projected.x(), kProjectionClampedBigNumber);
EXPECT_EQ(projected.y(), -kProjectionClampedBigNumber);
EXPECT_EQ(PointF(0.625f, -3.5f), transform.MapPoint(p));
// In this case, MapPoint() returns a point behind the eye.
EXPECT_POINTF_NEAR(PointF(-8.36014f, 11.7042f),
projection_transform(transform).MapPoint(p), 1e-5f);
EXPECT_POINTF_NEAR(projected, projection_transform(transform).ProjectPoint(p),
1e-5f);
}
TEST(XFormTest, ProjectQuad) {
auto transform = Transform::MakeTranslation(3.25f, 7.75f);
QuadF q(PointF(1.25f, 2.5f), PointF(3.75f, 4.f), PointF(23.f, 45.f),
PointF(12.f, 67.f));
EXPECT_EQ(QuadF(PointF(4.5f, 10.25f), PointF(7.f, 11.75f),
PointF(26.25f, 52.75f), PointF(15.25f, 74.75f)),
transform.ProjectQuad(q));
transform.set_rc(2, 2, 0);
EXPECT_EQ(QuadF(), transform.ProjectQuad(q));
transform.MakeIdentity();
transform.RotateAboutYAxis(60);
EXPECT_EQ(QuadF(PointF(2.5f, 2.5f), PointF(7.5f, 4.f), PointF(46.f, 45.f),
PointF(24.f, 67.f)),
transform.ProjectQuad(q));
// With a small perspective, all points of |q| are clamped, and the
// projected result is an empty quad.
transform.ApplyPerspectiveDepth(2);
EXPECT_EQ(QuadF(), transform.ProjectQuad(q));
// Change the quad so that 2 points are clamped.
q.set_p1(PointF(-1.25f, -2.5f));
q.set_p2(PointF(-3.75f, 4.f));
q.set_p3(PointF(23.f, -45.f));
QuadF q1 = transform.ProjectQuad(q);
EXPECT_POINTF_NEAR(PointF(-1.2f, -1.2f), q1.p1(), 0.01f);
EXPECT_POINTF_NEAR(PointF(-1.77f, 0.94f), q1.p2(), 0.01f);
EXPECT_EQ(q1.p3().x(), kProjectionClampedBigNumber);
EXPECT_EQ(q1.p3().y(), -kProjectionClampedBigNumber);
EXPECT_EQ(q1.p4().x(), kProjectionClampedBigNumber);
EXPECT_EQ(q1.p4().y(), kProjectionClampedBigNumber);
}
TEST(XFormTest, ToString) {
auto zeros =
Transform::ColMajor(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
EXPECT_EQ("[ 0 0 0 0\n 0 0 0 0\n 0 0 0 0\n 0 0 0 0 ]\n", zeros.ToString());
EXPECT_EQ("[ 0 0 0 0\n 0 0 0 0\n 0 0 0 0\n 0 0 0 0 ]\n(degenerate)",
zeros.ToDecomposedString());
Transform identity;
EXPECT_EQ("[ 1 0 0 0\n 0 1 0 0\n 0 0 1 0\n 0 0 0 1 ]\n",
identity.ToString());
EXPECT_EQ("identity", identity.ToDecomposedString());
Transform translation;
translation.Translate3d(3, 5, 7);
EXPECT_EQ("[ 1 0 0 3\n 0 1 0 5\n 0 0 1 7\n 0 0 0 1 ]\n",
translation.ToString());
EXPECT_EQ("translate: 3,5,7", translation.ToDecomposedString());
auto transform = Transform::ColMajor(1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8,
1e20, 1e-20, 1.0 / 3.0, 0, 0, 0, 0, 1);
EXPECT_EQ(
"[ 1.1 5.5 1e+20 0\n 2.2 6.6 1e-20 0\n 3.3 7.7 0.333333 0\n"
" 4.4 8.8 0 1 ]\n",
transform.ToString());
EXPECT_EQ(
"translate: +0 +0 +0\n"
"scale: -4.11582 -2.88048 -4.08248e+19\n"
"skew: +3.87836 +0.654654 +2.13809\n"
"perspective: -6.66667e-21 -1 +2 +1\n"
"quaternion: -0.582925 +0.603592 +0.518949 +0.162997\n",
transform.ToDecomposedString());
}
TEST(XFormTest, Is2dProportionalUpscaleAndOr2dTranslation) {
Transform transform;
EXPECT_TRUE(transform.Is2dProportionalUpscaleAndOr2dTranslation());
transform.MakeIdentity();
transform.Translate(10, 0);
EXPECT_TRUE(transform.Is2dProportionalUpscaleAndOr2dTranslation());
transform.MakeIdentity();
transform.Scale(1.3);
EXPECT_TRUE(transform.Is2dProportionalUpscaleAndOr2dTranslation());
transform.MakeIdentity();
transform.Translate(0, -20);
transform.Scale(1.7);
EXPECT_TRUE(transform.Is2dProportionalUpscaleAndOr2dTranslation());
transform.MakeIdentity();
transform.Scale(0.99);
EXPECT_FALSE(transform.Is2dProportionalUpscaleAndOr2dTranslation());
transform.MakeIdentity();
transform.Translate3d(0, 0, 1);
EXPECT_FALSE(transform.Is2dProportionalUpscaleAndOr2dTranslation());
transform.MakeIdentity();
transform.Rotate(40);
EXPECT_FALSE(transform.Is2dProportionalUpscaleAndOr2dTranslation());
transform.MakeIdentity();
transform.SkewX(30);
EXPECT_FALSE(transform.Is2dProportionalUpscaleAndOr2dTranslation());
}
TEST(XFormTest, Creates3d) {
EXPECT_FALSE(Transform().Creates3d());
EXPECT_FALSE(Transform::MakeTranslation(1, 2).Creates3d());
Transform transform;
transform.ApplyPerspectiveDepth(100);
EXPECT_FALSE(transform.Creates3d());
transform.Scale3d(2, 3, 4);
EXPECT_FALSE(transform.Creates3d());
transform.Translate3d(1, 2, 3);
EXPECT_TRUE(transform.Creates3d());
transform.MakeIdentity();
transform.RotateAboutYAxis(20);
EXPECT_TRUE(transform.Creates3d());
}
TEST(XFormTest, ApplyTransformOrigin) {
// (0,0,0) is a fixed point of this scale.
// (1,1,1) should be scaled appropriately.
Transform transform;
transform.Scale3d(2, 3, 4);
EXPECT_EQ(Point3F(0, 0, 0), transform.MapPoint(Point3F(0, 0, 0)));
EXPECT_EQ(Point3F(2, 3, -4), transform.MapPoint(Point3F(1, 1, -1)));
// With the transform origin applied, (1,2,3) is the fixed point.
// (0,0,0) should be scaled according to its distance from (1,2,3).
transform.ApplyTransformOrigin(1, 2, 3);
EXPECT_EQ(Point3F(1, 2, 3), transform.MapPoint(Point3F(1, 2, 3)));
EXPECT_EQ(Point3F(-1, -4, -9), transform.MapPoint(Point3F(0, 0, 0)));
transform = GetTestMatrix1();
Vector3dF origin(5.f, 6.f, 7.f);
Transform with_origin = transform;
Point3F p(41.f, 43.f, 47.f);
with_origin.ApplyTransformOrigin(origin.x(), origin.y(), origin.z());
EXPECT_POINT3F_EQ(transform.MapPoint(p - origin) + origin,
with_origin.MapPoint(p));
}
TEST(XFormTest, Zoom) {
Transform transform = GetTestMatrix1();
auto zoomed = transform;
zoomed.Zoom(2.f);
Point3F p(41.f, 43.f, 47.f);
Point3F expected = p;
expected.Scale(0.5f, 0.5f, 0.5f);
expected = transform.MapPoint(expected);
expected.Scale(2.f, 2.f, 2.f);
EXPECT_POINT3F_EQ(expected, zoomed.MapPoint(p));
}
TEST(XFormTest, ApproximatelyEqual) {
EXPECT_TRUE(Transform().ApproximatelyEqual(Transform()));
EXPECT_TRUE(Transform().ApproximatelyEqual(Transform(), 0));
EXPECT_TRUE(GetTestMatrix1().ApproximatelyEqual(GetTestMatrix1()));
EXPECT_TRUE(GetTestMatrix1().ApproximatelyEqual(GetTestMatrix1(), 0));
Transform t1 = Transform::MakeTranslation(0.9, -0.9);
Transform t2 = Transform::MakeScale(1.099, 0.901);
EXPECT_TRUE(t1.ApproximatelyEqual(t2));
EXPECT_FALSE(t1.ApproximatelyEqual(t2, 0.8f, 0.2f, 0.0f));
EXPECT_FALSE(t1.ApproximatelyEqual(t2, 1.0f, 0.01f, 0.0f));
EXPECT_FALSE(t1.ApproximatelyEqual(t2, 1.0f, 0.01f, 0.05f));
EXPECT_TRUE(t1.ApproximatelyEqual(t2, 1.0f, 0.2f, 1.f));
EXPECT_TRUE(t1.ApproximatelyEqual(t2, 1.0f, 0.2f, 0.1f));
for (int r = 0; r < 4; r++) {
for (int c = 0; c < 4; c++) {
t1 = Transform();
t1.set_rc(r, c, t1.rc(r, c) + 0.25f);
EXPECT_TRUE(t1.ApproximatelyEqual(Transform(), 0.25f));
EXPECT_FALSE(t1.ApproximatelyEqual(Transform(), 0.24f));
}
}
}
} // namespace
} // namespace gfx