blob: ee1ef6d93954afc20b5be06b122ccc97a4777da9 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/codegen/assembler-inl.h"
#include "src/codegen/callable.h"
#include "src/codegen/macro-assembler.h"
#include "src/codegen/optimized-compilation-info.h"
#include "src/compiler/backend/code-generator-impl.h"
#include "src/compiler/backend/code-generator.h"
#include "src/compiler/backend/gap-resolver.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/osr.h"
#include "src/heap/memory-chunk.h"
#include "src/numbers/double.h"
#include "src/wasm/wasm-code-manager.h"
#include "src/wasm/wasm-objects.h"
namespace v8 {
namespace internal {
namespace compiler {
#define __ tasm()->
#define kScratchReg r11
// Adds PPC-specific methods to convert InstructionOperands.
class PPCOperandConverter final : public InstructionOperandConverter {
public:
PPCOperandConverter(CodeGenerator* gen, Instruction* instr)
: InstructionOperandConverter(gen, instr) {}
size_t OutputCount() { return instr_->OutputCount(); }
RCBit OutputRCBit() const {
switch (instr_->flags_mode()) {
case kFlags_branch:
case kFlags_branch_and_poison:
case kFlags_deoptimize:
case kFlags_deoptimize_and_poison:
case kFlags_set:
case kFlags_trap:
return SetRC;
case kFlags_none:
return LeaveRC;
}
UNREACHABLE();
}
bool CompareLogical() const {
switch (instr_->flags_condition()) {
case kUnsignedLessThan:
case kUnsignedGreaterThanOrEqual:
case kUnsignedLessThanOrEqual:
case kUnsignedGreaterThan:
return true;
default:
return false;
}
UNREACHABLE();
}
Operand InputImmediate(size_t index) {
Constant constant = ToConstant(instr_->InputAt(index));
switch (constant.type()) {
case Constant::kInt32:
return Operand(constant.ToInt32());
case Constant::kFloat32:
return Operand::EmbeddedNumber(constant.ToFloat32());
case Constant::kFloat64:
return Operand::EmbeddedNumber(constant.ToFloat64().value());
case Constant::kInt64:
#if V8_TARGET_ARCH_PPC64
return Operand(constant.ToInt64());
#endif
case Constant::kExternalReference:
return Operand(constant.ToExternalReference());
case Constant::kDelayedStringConstant:
return Operand::EmbeddedStringConstant(
constant.ToDelayedStringConstant());
case Constant::kCompressedHeapObject:
case Constant::kHeapObject:
case Constant::kRpoNumber:
break;
}
UNREACHABLE();
}
MemOperand MemoryOperand(AddressingMode* mode, size_t* first_index) {
const size_t index = *first_index;
AddressingMode addr_mode = AddressingModeField::decode(instr_->opcode());
if (mode) *mode = addr_mode;
switch (addr_mode) {
case kMode_None:
break;
case kMode_MRI:
*first_index += 2;
return MemOperand(InputRegister(index + 0), InputInt32(index + 1));
case kMode_MRR:
*first_index += 2;
return MemOperand(InputRegister(index + 0), InputRegister(index + 1));
}
UNREACHABLE();
}
MemOperand MemoryOperand(AddressingMode* mode = NULL,
size_t first_index = 0) {
return MemoryOperand(mode, &first_index);
}
MemOperand ToMemOperand(InstructionOperand* op) const {
DCHECK_NOT_NULL(op);
DCHECK(op->IsStackSlot() || op->IsFPStackSlot());
return SlotToMemOperand(AllocatedOperand::cast(op)->index());
}
MemOperand SlotToMemOperand(int slot) const {
FrameOffset offset = frame_access_state()->GetFrameOffset(slot);
return MemOperand(offset.from_stack_pointer() ? sp : fp, offset.offset());
}
};
static inline bool HasRegisterInput(Instruction* instr, size_t index) {
return instr->InputAt(index)->IsRegister();
}
namespace {
class OutOfLineRecordWrite final : public OutOfLineCode {
public:
OutOfLineRecordWrite(CodeGenerator* gen, Register object, Register offset,
Register value, Register scratch0, Register scratch1,
RecordWriteMode mode, StubCallMode stub_mode,
UnwindingInfoWriter* unwinding_info_writer)
: OutOfLineCode(gen),
object_(object),
offset_(offset),
offset_immediate_(0),
value_(value),
scratch0_(scratch0),
scratch1_(scratch1),
mode_(mode),
stub_mode_(stub_mode),
must_save_lr_(!gen->frame_access_state()->has_frame()),
unwinding_info_writer_(unwinding_info_writer),
zone_(gen->zone()) {}
OutOfLineRecordWrite(CodeGenerator* gen, Register object, int32_t offset,
Register value, Register scratch0, Register scratch1,
RecordWriteMode mode, StubCallMode stub_mode,
UnwindingInfoWriter* unwinding_info_writer)
: OutOfLineCode(gen),
object_(object),
offset_(no_reg),
offset_immediate_(offset),
value_(value),
scratch0_(scratch0),
scratch1_(scratch1),
mode_(mode),
stub_mode_(stub_mode),
must_save_lr_(!gen->frame_access_state()->has_frame()),
unwinding_info_writer_(unwinding_info_writer),
zone_(gen->zone()) {}
void Generate() final {
ConstantPoolUnavailableScope constant_pool_unavailable(tasm());
if (mode_ > RecordWriteMode::kValueIsPointer) {
__ JumpIfSmi(value_, exit());
}
if (COMPRESS_POINTERS_BOOL) {
__ DecompressTaggedPointer(value_, value_);
}
__ CheckPageFlag(value_, scratch0_,
MemoryChunk::kPointersToHereAreInterestingMask, eq,
exit());
if (offset_ == no_reg) {
__ addi(scratch1_, object_, Operand(offset_immediate_));
} else {
DCHECK_EQ(0, offset_immediate_);
__ add(scratch1_, object_, offset_);
}
RememberedSetAction const remembered_set_action =
mode_ > RecordWriteMode::kValueIsMap ? EMIT_REMEMBERED_SET
: OMIT_REMEMBERED_SET;
SaveFPRegsMode const save_fp_mode =
frame()->DidAllocateDoubleRegisters() ? kSaveFPRegs : kDontSaveFPRegs;
if (must_save_lr_) {
// We need to save and restore lr if the frame was elided.
__ mflr(scratch0_);
__ Push(scratch0_);
unwinding_info_writer_->MarkLinkRegisterOnTopOfStack(__ pc_offset());
}
if (mode_ == RecordWriteMode::kValueIsEphemeronKey) {
__ CallEphemeronKeyBarrier(object_, scratch1_, save_fp_mode);
} else if (stub_mode_ == StubCallMode::kCallWasmRuntimeStub) {
__ CallRecordWriteStub(object_, scratch1_, remembered_set_action,
save_fp_mode, wasm::WasmCode::kRecordWrite);
} else {
__ CallRecordWriteStub(object_, scratch1_, remembered_set_action,
save_fp_mode);
}
if (must_save_lr_) {
// We need to save and restore lr if the frame was elided.
__ Pop(scratch0_);
__ mtlr(scratch0_);
unwinding_info_writer_->MarkPopLinkRegisterFromTopOfStack(__ pc_offset());
}
}
private:
Register const object_;
Register const offset_;
int32_t const offset_immediate_; // Valid if offset_ == no_reg.
Register const value_;
Register const scratch0_;
Register const scratch1_;
RecordWriteMode const mode_;
StubCallMode stub_mode_;
bool must_save_lr_;
UnwindingInfoWriter* const unwinding_info_writer_;
Zone* zone_;
};
Condition FlagsConditionToCondition(FlagsCondition condition, ArchOpcode op) {
switch (condition) {
case kEqual:
return eq;
case kNotEqual:
return ne;
case kSignedLessThan:
case kUnsignedLessThan:
return lt;
case kSignedGreaterThanOrEqual:
case kUnsignedGreaterThanOrEqual:
return ge;
case kSignedLessThanOrEqual:
case kUnsignedLessThanOrEqual:
return le;
case kSignedGreaterThan:
case kUnsignedGreaterThan:
return gt;
case kOverflow:
// Overflow checked for add/sub only.
switch (op) {
#if V8_TARGET_ARCH_PPC64
case kPPC_Add32:
case kPPC_Add64:
case kPPC_Sub:
#endif
case kPPC_AddWithOverflow32:
case kPPC_SubWithOverflow32:
return lt;
default:
break;
}
break;
case kNotOverflow:
switch (op) {
#if V8_TARGET_ARCH_PPC64
case kPPC_Add32:
case kPPC_Add64:
case kPPC_Sub:
#endif
case kPPC_AddWithOverflow32:
case kPPC_SubWithOverflow32:
return ge;
default:
break;
}
break;
default:
break;
}
UNREACHABLE();
}
void EmitWordLoadPoisoningIfNeeded(CodeGenerator* codegen, Instruction* instr,
PPCOperandConverter const& i) {
const MemoryAccessMode access_mode =
static_cast<MemoryAccessMode>(MiscField::decode(instr->opcode()));
if (access_mode == kMemoryAccessPoisoned) {
Register value = i.OutputRegister();
codegen->tasm()->and_(value, value, kSpeculationPoisonRegister);
}
}
} // namespace
#define ASSEMBLE_FLOAT_UNOP_RC(asm_instr, round) \
do { \
__ asm_instr(i.OutputDoubleRegister(), i.InputDoubleRegister(0), \
i.OutputRCBit()); \
if (round) { \
__ frsp(i.OutputDoubleRegister(), i.OutputDoubleRegister()); \
} \
} while (0)
#define ASSEMBLE_FLOAT_BINOP_RC(asm_instr, round) \
do { \
__ asm_instr(i.OutputDoubleRegister(), i.InputDoubleRegister(0), \
i.InputDoubleRegister(1), i.OutputRCBit()); \
if (round) { \
__ frsp(i.OutputDoubleRegister(), i.OutputDoubleRegister()); \
} \
} while (0)
#define ASSEMBLE_BINOP(asm_instr_reg, asm_instr_imm) \
do { \
if (HasRegisterInput(instr, 1)) { \
__ asm_instr_reg(i.OutputRegister(), i.InputRegister(0), \
i.InputRegister(1)); \
} else { \
__ asm_instr_imm(i.OutputRegister(), i.InputRegister(0), \
i.InputImmediate(1)); \
} \
} while (0)
#define ASSEMBLE_BINOP_RC(asm_instr_reg, asm_instr_imm) \
do { \
if (HasRegisterInput(instr, 1)) { \
__ asm_instr_reg(i.OutputRegister(), i.InputRegister(0), \
i.InputRegister(1), i.OutputRCBit()); \
} else { \
__ asm_instr_imm(i.OutputRegister(), i.InputRegister(0), \
i.InputImmediate(1), i.OutputRCBit()); \
} \
} while (0)
#define ASSEMBLE_BINOP_INT_RC(asm_instr_reg, asm_instr_imm) \
do { \
if (HasRegisterInput(instr, 1)) { \
__ asm_instr_reg(i.OutputRegister(), i.InputRegister(0), \
i.InputRegister(1), i.OutputRCBit()); \
} else { \
__ asm_instr_imm(i.OutputRegister(), i.InputRegister(0), \
i.InputInt32(1), i.OutputRCBit()); \
} \
} while (0)
#define ASSEMBLE_ADD_WITH_OVERFLOW() \
do { \
if (HasRegisterInput(instr, 1)) { \
__ AddAndCheckForOverflow(i.OutputRegister(), i.InputRegister(0), \
i.InputRegister(1), kScratchReg, r0); \
} else { \
__ AddAndCheckForOverflow(i.OutputRegister(), i.InputRegister(0), \
i.InputInt32(1), kScratchReg, r0); \
} \
} while (0)
#define ASSEMBLE_SUB_WITH_OVERFLOW() \
do { \
if (HasRegisterInput(instr, 1)) { \
__ SubAndCheckForOverflow(i.OutputRegister(), i.InputRegister(0), \
i.InputRegister(1), kScratchReg, r0); \
} else { \
__ AddAndCheckForOverflow(i.OutputRegister(), i.InputRegister(0), \
-i.InputInt32(1), kScratchReg, r0); \
} \
} while (0)
#if V8_TARGET_ARCH_PPC64
#define ASSEMBLE_ADD_WITH_OVERFLOW32() \
do { \
ASSEMBLE_ADD_WITH_OVERFLOW(); \
__ extsw(kScratchReg, kScratchReg, SetRC); \
} while (0)
#define ASSEMBLE_SUB_WITH_OVERFLOW32() \
do { \
ASSEMBLE_SUB_WITH_OVERFLOW(); \
__ extsw(kScratchReg, kScratchReg, SetRC); \
} while (0)
#else
#define ASSEMBLE_ADD_WITH_OVERFLOW32 ASSEMBLE_ADD_WITH_OVERFLOW
#define ASSEMBLE_SUB_WITH_OVERFLOW32 ASSEMBLE_SUB_WITH_OVERFLOW
#endif
#define ASSEMBLE_COMPARE(cmp_instr, cmpl_instr) \
do { \
const CRegister cr = cr0; \
if (HasRegisterInput(instr, 1)) { \
if (i.CompareLogical()) { \
__ cmpl_instr(i.InputRegister(0), i.InputRegister(1), cr); \
} else { \
__ cmp_instr(i.InputRegister(0), i.InputRegister(1), cr); \
} \
} else { \
if (i.CompareLogical()) { \
__ cmpl_instr##i(i.InputRegister(0), i.InputImmediate(1), cr); \
} else { \
__ cmp_instr##i(i.InputRegister(0), i.InputImmediate(1), cr); \
} \
} \
DCHECK_EQ(SetRC, i.OutputRCBit()); \
} while (0)
#define ASSEMBLE_FLOAT_COMPARE(cmp_instr) \
do { \
const CRegister cr = cr0; \
__ cmp_instr(i.InputDoubleRegister(0), i.InputDoubleRegister(1), cr); \
DCHECK_EQ(SetRC, i.OutputRCBit()); \
} while (0)
#define ASSEMBLE_MODULO(div_instr, mul_instr) \
do { \
const Register scratch = kScratchReg; \
__ div_instr(scratch, i.InputRegister(0), i.InputRegister(1)); \
__ mul_instr(scratch, scratch, i.InputRegister(1)); \
__ sub(i.OutputRegister(), i.InputRegister(0), scratch, LeaveOE, \
i.OutputRCBit()); \
} while (0)
#define ASSEMBLE_FLOAT_MODULO() \
do { \
FrameScope scope(tasm(), StackFrame::MANUAL); \
__ PrepareCallCFunction(0, 2, kScratchReg); \
__ MovToFloatParameters(i.InputDoubleRegister(0), \
i.InputDoubleRegister(1)); \
__ CallCFunction(ExternalReference::mod_two_doubles_operation(), 0, 2); \
__ MovFromFloatResult(i.OutputDoubleRegister()); \
DCHECK_EQ(LeaveRC, i.OutputRCBit()); \
} while (0)
#define ASSEMBLE_IEEE754_UNOP(name) \
do { \
/* TODO(bmeurer): We should really get rid of this special instruction, */ \
/* and generate a CallAddress instruction instead. */ \
FrameScope scope(tasm(), StackFrame::MANUAL); \
__ PrepareCallCFunction(0, 1, kScratchReg); \
__ MovToFloatParameter(i.InputDoubleRegister(0)); \
__ CallCFunction(ExternalReference::ieee754_##name##_function(), 0, 1); \
/* Move the result in the double result register. */ \
__ MovFromFloatResult(i.OutputDoubleRegister()); \
DCHECK_EQ(LeaveRC, i.OutputRCBit()); \
} while (0)
#define ASSEMBLE_IEEE754_BINOP(name) \
do { \
/* TODO(bmeurer): We should really get rid of this special instruction, */ \
/* and generate a CallAddress instruction instead. */ \
FrameScope scope(tasm(), StackFrame::MANUAL); \
__ PrepareCallCFunction(0, 2, kScratchReg); \
__ MovToFloatParameters(i.InputDoubleRegister(0), \
i.InputDoubleRegister(1)); \
__ CallCFunction(ExternalReference::ieee754_##name##_function(), 0, 2); \
/* Move the result in the double result register. */ \
__ MovFromFloatResult(i.OutputDoubleRegister()); \
DCHECK_EQ(LeaveRC, i.OutputRCBit()); \
} while (0)
#define ASSEMBLE_FLOAT_MAX() \
do { \
DoubleRegister left_reg = i.InputDoubleRegister(0); \
DoubleRegister right_reg = i.InputDoubleRegister(1); \
DoubleRegister result_reg = i.OutputDoubleRegister(); \
Label check_zero, return_left, return_right, return_nan, done; \
__ fcmpu(left_reg, right_reg); \
__ bunordered(&return_nan); \
__ beq(&check_zero); \
__ bge(&return_left); \
__ b(&return_right); \
\
__ bind(&check_zero); \
__ fcmpu(left_reg, kDoubleRegZero); \
/* left == right != 0. */ \
__ bne(&return_left); \
/* At this point, both left and right are either 0 or -0. */ \
__ fadd(result_reg, left_reg, right_reg); \
__ b(&done); \
\
__ bind(&return_nan); \
/* If left or right are NaN, fadd propagates the appropriate one.*/ \
__ fadd(result_reg, left_reg, right_reg); \
__ b(&done); \
\
__ bind(&return_right); \
if (right_reg != result_reg) { \
__ fmr(result_reg, right_reg); \
} \
__ b(&done); \
\
__ bind(&return_left); \
if (left_reg != result_reg) { \
__ fmr(result_reg, left_reg); \
} \
__ bind(&done); \
} while (0)
#define ASSEMBLE_FLOAT_MIN() \
do { \
DoubleRegister left_reg = i.InputDoubleRegister(0); \
DoubleRegister right_reg = i.InputDoubleRegister(1); \
DoubleRegister result_reg = i.OutputDoubleRegister(); \
Label check_zero, return_left, return_right, return_nan, done; \
__ fcmpu(left_reg, right_reg); \
__ bunordered(&return_nan); \
__ beq(&check_zero); \
__ ble(&return_left); \
__ b(&return_right); \
\
__ bind(&check_zero); \
__ fcmpu(left_reg, kDoubleRegZero); \
/* left == right != 0. */ \
__ bne(&return_left); \
/* At this point, both left and right are either 0 or -0. */ \
/* Min: The algorithm is: -((-L) + (-R)), which in case of L and R */ \
/* being different registers is most efficiently expressed */ \
/* as -((-L) - R). */ \
__ fneg(kScratchDoubleReg, left_reg); \
if (kScratchDoubleReg == right_reg) { \
__ fadd(result_reg, kScratchDoubleReg, right_reg); \
} else { \
__ fsub(result_reg, kScratchDoubleReg, right_reg); \
} \
__ fneg(result_reg, result_reg); \
__ b(&done); \
\
__ bind(&return_nan); \
/* If left or right are NaN, fadd propagates the appropriate one.*/ \
__ fadd(result_reg, left_reg, right_reg); \
__ b(&done); \
\
__ bind(&return_right); \
if (right_reg != result_reg) { \
__ fmr(result_reg, right_reg); \
} \
__ b(&done); \
\
__ bind(&return_left); \
if (left_reg != result_reg) { \
__ fmr(result_reg, left_reg); \
} \
__ bind(&done); \
} while (0)
#define ASSEMBLE_LOAD_FLOAT(asm_instr, asm_instrx) \
do { \
DoubleRegister result = i.OutputDoubleRegister(); \
AddressingMode mode = kMode_None; \
MemOperand operand = i.MemoryOperand(&mode); \
bool is_atomic = i.InputInt32(2); \
if (mode == kMode_MRI) { \
__ asm_instr(result, operand); \
} else { \
__ asm_instrx(result, operand); \
} \
if (is_atomic) __ lwsync(); \
DCHECK_EQ(LeaveRC, i.OutputRCBit()); \
} while (0)
#define ASSEMBLE_LOAD_INTEGER(asm_instr, asm_instrx) \
do { \
Register result = i.OutputRegister(); \
AddressingMode mode = kMode_None; \
MemOperand operand = i.MemoryOperand(&mode); \
bool is_atomic = i.InputInt32(2); \
if (mode == kMode_MRI) { \
__ asm_instr(result, operand); \
} else { \
__ asm_instrx(result, operand); \
} \
if (is_atomic) __ lwsync(); \
DCHECK_EQ(LeaveRC, i.OutputRCBit()); \
} while (0)
#define ASSEMBLE_STORE_FLOAT(asm_instr, asm_instrx) \
do { \
size_t index = 0; \
AddressingMode mode = kMode_None; \
MemOperand operand = i.MemoryOperand(&mode, &index); \
DoubleRegister value = i.InputDoubleRegister(index); \
bool is_atomic = i.InputInt32(3); \
if (is_atomic) __ lwsync(); \
/* removed frsp as instruction-selector checked */ \
/* value to be kFloat32 */ \
if (mode == kMode_MRI) { \
__ asm_instr(value, operand); \
} else { \
__ asm_instrx(value, operand); \
} \
if (is_atomic) __ sync(); \
DCHECK_EQ(LeaveRC, i.OutputRCBit()); \
} while (0)
#define ASSEMBLE_STORE_INTEGER(asm_instr, asm_instrx) \
do { \
size_t index = 0; \
AddressingMode mode = kMode_None; \
MemOperand operand = i.MemoryOperand(&mode, &index); \
Register value = i.InputRegister(index); \
bool is_atomic = i.InputInt32(3); \
if (is_atomic) __ lwsync(); \
if (mode == kMode_MRI) { \
__ asm_instr(value, operand); \
} else { \
__ asm_instrx(value, operand); \
} \
if (is_atomic) __ sync(); \
DCHECK_EQ(LeaveRC, i.OutputRCBit()); \
} while (0)
#if V8_TARGET_ARCH_PPC64
// TODO(mbrandy): fix paths that produce garbage in offset's upper 32-bits.
#define CleanUInt32(x) __ ClearLeftImm(x, x, Operand(32))
#else
#define CleanUInt32(x)
#endif
#define ASSEMBLE_ATOMIC_EXCHANGE_INTEGER(load_instr, store_instr) \
do { \
Label exchange; \
__ lwsync(); \
__ bind(&exchange); \
__ load_instr(i.OutputRegister(0), \
MemOperand(i.InputRegister(0), i.InputRegister(1))); \
__ store_instr(i.InputRegister(2), \
MemOperand(i.InputRegister(0), i.InputRegister(1))); \
__ bne(&exchange, cr0); \
__ sync(); \
} while (0)
#define ASSEMBLE_ATOMIC_BINOP(bin_inst, load_inst, store_inst) \
do { \
MemOperand operand = MemOperand(i.InputRegister(0), i.InputRegister(1)); \
Label binop; \
__ lwsync(); \
__ bind(&binop); \
__ load_inst(i.OutputRegister(), operand); \
__ bin_inst(kScratchReg, i.OutputRegister(), i.InputRegister(2)); \
__ store_inst(kScratchReg, operand); \
__ bne(&binop, cr0); \
__ sync(); \
} while (false)
#define ASSEMBLE_ATOMIC_BINOP_SIGN_EXT(bin_inst, load_inst, store_inst, \
ext_instr) \
do { \
MemOperand operand = MemOperand(i.InputRegister(0), i.InputRegister(1)); \
Label binop; \
__ lwsync(); \
__ bind(&binop); \
__ load_inst(i.OutputRegister(), operand); \
__ ext_instr(i.OutputRegister(), i.OutputRegister()); \
__ bin_inst(kScratchReg, i.OutputRegister(), i.InputRegister(2)); \
__ store_inst(kScratchReg, operand); \
__ bne(&binop, cr0); \
__ sync(); \
} while (false)
#define ASSEMBLE_ATOMIC_COMPARE_EXCHANGE(cmp_inst, load_inst, store_inst, \
input_ext) \
do { \
MemOperand operand = MemOperand(i.InputRegister(0), i.InputRegister(1)); \
Label loop; \
Label exit; \
__ input_ext(r0, i.InputRegister(2)); \
__ lwsync(); \
__ bind(&loop); \
__ load_inst(i.OutputRegister(), operand); \
__ cmp_inst(i.OutputRegister(), r0, cr0); \
__ bne(&exit, cr0); \
__ store_inst(i.InputRegister(3), operand); \
__ bne(&loop, cr0); \
__ bind(&exit); \
__ sync(); \
} while (false)
#define ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_SIGN_EXT(cmp_inst, load_inst, \
store_inst, ext_instr) \
do { \
MemOperand operand = MemOperand(i.InputRegister(0), i.InputRegister(1)); \
Label loop; \
Label exit; \
__ ext_instr(r0, i.InputRegister(2)); \
__ lwsync(); \
__ bind(&loop); \
__ load_inst(i.OutputRegister(), operand); \
__ ext_instr(i.OutputRegister(), i.OutputRegister()); \
__ cmp_inst(i.OutputRegister(), r0, cr0); \
__ bne(&exit, cr0); \
__ store_inst(i.InputRegister(3), operand); \
__ bne(&loop, cr0); \
__ bind(&exit); \
__ sync(); \
} while (false)
void CodeGenerator::AssembleDeconstructFrame() {
__ LeaveFrame(StackFrame::MANUAL);
unwinding_info_writer_.MarkFrameDeconstructed(__ pc_offset());
}
void CodeGenerator::AssemblePrepareTailCall() {
if (frame_access_state()->has_frame()) {
__ RestoreFrameStateForTailCall();
}
frame_access_state()->SetFrameAccessToSP();
}
void CodeGenerator::AssemblePopArgumentsAdaptorFrame(Register args_reg,
Register scratch1,
Register scratch2,
Register scratch3) {
DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3));
Label done;
// Check if current frame is an arguments adaptor frame.
__ LoadP(scratch1, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ cmpi(scratch1,
Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
__ bne(&done);
// Load arguments count from current arguments adaptor frame (note, it
// does not include receiver).
Register caller_args_count_reg = scratch1;
__ LoadP(caller_args_count_reg,
MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(caller_args_count_reg);
__ PrepareForTailCall(args_reg, caller_args_count_reg, scratch2, scratch3);
__ bind(&done);
}
namespace {
void FlushPendingPushRegisters(TurboAssembler* tasm,
FrameAccessState* frame_access_state,
ZoneVector<Register>* pending_pushes) {
switch (pending_pushes->size()) {
case 0:
break;
case 1:
tasm->Push((*pending_pushes)[0]);
break;
case 2:
tasm->Push((*pending_pushes)[0], (*pending_pushes)[1]);
break;
case 3:
tasm->Push((*pending_pushes)[0], (*pending_pushes)[1],
(*pending_pushes)[2]);
break;
default:
UNREACHABLE();
}
frame_access_state->IncreaseSPDelta(pending_pushes->size());
pending_pushes->clear();
}
void AdjustStackPointerForTailCall(
TurboAssembler* tasm, FrameAccessState* state, int new_slot_above_sp,
ZoneVector<Register>* pending_pushes = nullptr,
bool allow_shrinkage = true) {
int current_sp_offset = state->GetSPToFPSlotCount() +
StandardFrameConstants::kFixedSlotCountAboveFp;
int stack_slot_delta = new_slot_above_sp - current_sp_offset;
if (stack_slot_delta > 0) {
if (pending_pushes != nullptr) {
FlushPendingPushRegisters(tasm, state, pending_pushes);
}
tasm->Add(sp, sp, -stack_slot_delta * kSystemPointerSize, r0);
state->IncreaseSPDelta(stack_slot_delta);
} else if (allow_shrinkage && stack_slot_delta < 0) {
if (pending_pushes != nullptr) {
FlushPendingPushRegisters(tasm, state, pending_pushes);
}
tasm->Add(sp, sp, -stack_slot_delta * kSystemPointerSize, r0);
state->IncreaseSPDelta(stack_slot_delta);
}
}
} // namespace
void CodeGenerator::AssembleTailCallBeforeGap(Instruction* instr,
int first_unused_stack_slot) {
ZoneVector<MoveOperands*> pushes(zone());
GetPushCompatibleMoves(instr, kRegisterPush, &pushes);
if (!pushes.empty() &&
(LocationOperand::cast(pushes.back()->destination()).index() + 1 ==
first_unused_stack_slot)) {
PPCOperandConverter g(this, instr);
ZoneVector<Register> pending_pushes(zone());
for (auto move : pushes) {
LocationOperand destination_location(
LocationOperand::cast(move->destination()));
InstructionOperand source(move->source());
AdjustStackPointerForTailCall(
tasm(), frame_access_state(),
destination_location.index() - pending_pushes.size(),
&pending_pushes);
// Pushes of non-register data types are not supported.
DCHECK(source.IsRegister());
LocationOperand source_location(LocationOperand::cast(source));
pending_pushes.push_back(source_location.GetRegister());
// TODO(arm): We can push more than 3 registers at once. Add support in
// the macro-assembler for pushing a list of registers.
if (pending_pushes.size() == 3) {
FlushPendingPushRegisters(tasm(), frame_access_state(),
&pending_pushes);
}
move->Eliminate();
}
FlushPendingPushRegisters(tasm(), frame_access_state(), &pending_pushes);
}
AdjustStackPointerForTailCall(tasm(), frame_access_state(),
first_unused_stack_slot, nullptr, false);
}
void CodeGenerator::AssembleTailCallAfterGap(Instruction* instr,
int first_unused_stack_slot) {
AdjustStackPointerForTailCall(tasm(), frame_access_state(),
first_unused_stack_slot);
}
// Check that {kJavaScriptCallCodeStartRegister} is correct.
void CodeGenerator::AssembleCodeStartRegisterCheck() {
Register scratch = kScratchReg;
__ ComputeCodeStartAddress(scratch);
__ cmp(scratch, kJavaScriptCallCodeStartRegister);
__ Assert(eq, AbortReason::kWrongFunctionCodeStart);
}
// Check if the code object is marked for deoptimization. If it is, then it
// jumps to the CompileLazyDeoptimizedCode builtin. In order to do this we need
// to:
// 1. read from memory the word that contains that bit, which can be found in
// the flags in the referenced {CodeDataContainer} object;
// 2. test kMarkedForDeoptimizationBit in those flags; and
// 3. if it is not zero then it jumps to the builtin.
void CodeGenerator::BailoutIfDeoptimized() {
if (FLAG_debug_code) {
// Check that {kJavaScriptCallCodeStartRegister} is correct.
__ ComputeCodeStartAddress(ip);
__ cmp(ip, kJavaScriptCallCodeStartRegister);
__ Assert(eq, AbortReason::kWrongFunctionCodeStart);
}
int offset = Code::kCodeDataContainerOffset - Code::kHeaderSize;
__ LoadTaggedPointerField(
r11, MemOperand(kJavaScriptCallCodeStartRegister, offset));
__ LoadWordArith(
r11, FieldMemOperand(r11, CodeDataContainer::kKindSpecificFlagsOffset));
__ TestBit(r11, Code::kMarkedForDeoptimizationBit);
__ Jump(BUILTIN_CODE(isolate(), CompileLazyDeoptimizedCode),
RelocInfo::CODE_TARGET, ne, cr0);
}
void CodeGenerator::GenerateSpeculationPoisonFromCodeStartRegister() {
Register scratch = kScratchReg;
__ ComputeCodeStartAddress(scratch);
// Calculate a mask which has all bits set in the normal case, but has all
// bits cleared if we are speculatively executing the wrong PC.
__ cmp(kJavaScriptCallCodeStartRegister, scratch);
__ li(scratch, Operand::Zero());
__ notx(kSpeculationPoisonRegister, scratch);
__ isel(eq, kSpeculationPoisonRegister, kSpeculationPoisonRegister, scratch);
}
void CodeGenerator::AssembleRegisterArgumentPoisoning() {
__ and_(kJSFunctionRegister, kJSFunctionRegister, kSpeculationPoisonRegister);
__ and_(kContextRegister, kContextRegister, kSpeculationPoisonRegister);
__ and_(sp, sp, kSpeculationPoisonRegister);
}
// Assembles an instruction after register allocation, producing machine code.
CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction(
Instruction* instr) {
PPCOperandConverter i(this, instr);
ArchOpcode opcode = ArchOpcodeField::decode(instr->opcode());
switch (opcode) {
case kArchCallCodeObject: {
v8::internal::Assembler::BlockTrampolinePoolScope block_trampoline_pool(
tasm());
if (HasRegisterInput(instr, 0)) {
Register reg = i.InputRegister(0);
DCHECK_IMPLIES(
instr->HasCallDescriptorFlag(CallDescriptor::kFixedTargetRegister),
reg == kJavaScriptCallCodeStartRegister);
__ CallCodeObject(reg);
} else {
__ Call(i.InputCode(0), RelocInfo::CODE_TARGET);
}
RecordCallPosition(instr);
DCHECK_EQ(LeaveRC, i.OutputRCBit());
frame_access_state()->ClearSPDelta();
break;
}
case kArchCallBuiltinPointer: {
DCHECK(!instr->InputAt(0)->IsImmediate());
Register builtin_index = i.InputRegister(0);
__ CallBuiltinByIndex(builtin_index);
RecordCallPosition(instr);
frame_access_state()->ClearSPDelta();
break;
}
case kArchCallWasmFunction: {
// We must not share code targets for calls to builtins for wasm code, as
// they might need to be patched individually.
if (instr->InputAt(0)->IsImmediate()) {
Constant constant = i.ToConstant(instr->InputAt(0));
#ifdef V8_TARGET_ARCH_PPC64
Address wasm_code = static_cast<Address>(constant.ToInt64());
#else
Address wasm_code = static_cast<Address>(constant.ToInt32());
#endif
__ Call(wasm_code, constant.rmode());
} else {
__ Call(i.InputRegister(0));
}
RecordCallPosition(instr);
DCHECK_EQ(LeaveRC, i.OutputRCBit());
frame_access_state()->ClearSPDelta();
break;
}
case kArchTailCallCodeObjectFromJSFunction:
case kArchTailCallCodeObject: {
if (opcode == kArchTailCallCodeObjectFromJSFunction) {
AssemblePopArgumentsAdaptorFrame(kJavaScriptCallArgCountRegister,
i.TempRegister(0), i.TempRegister(1),
i.TempRegister(2));
}
if (HasRegisterInput(instr, 0)) {
Register reg = i.InputRegister(0);
DCHECK_IMPLIES(
instr->HasCallDescriptorFlag(CallDescriptor::kFixedTargetRegister),
reg == kJavaScriptCallCodeStartRegister);
__ JumpCodeObject(reg);
} else {
// We cannot use the constant pool to load the target since
// we've already restored the caller's frame.
ConstantPoolUnavailableScope constant_pool_unavailable(tasm());
__ Jump(i.InputCode(0), RelocInfo::CODE_TARGET);
}
DCHECK_EQ(LeaveRC, i.OutputRCBit());
frame_access_state()->ClearSPDelta();
frame_access_state()->SetFrameAccessToDefault();
break;
}
case kArchTailCallWasm: {
// We must not share code targets for calls to builtins for wasm code, as
// they might need to be patched individually.
if (instr->InputAt(0)->IsImmediate()) {
Constant constant = i.ToConstant(instr->InputAt(0));
#ifdef V8_TARGET_ARCH_PPC64
Address wasm_code = static_cast<Address>(constant.ToInt64());
#else
Address wasm_code = static_cast<Address>(constant.ToInt32());
#endif
__ Jump(wasm_code, constant.rmode());
} else {
__ Jump(i.InputRegister(0));
}
DCHECK_EQ(LeaveRC, i.OutputRCBit());
frame_access_state()->ClearSPDelta();
frame_access_state()->SetFrameAccessToDefault();
break;
}
case kArchTailCallAddress: {
CHECK(!instr->InputAt(0)->IsImmediate());
Register reg = i.InputRegister(0);
DCHECK_IMPLIES(
instr->HasCallDescriptorFlag(CallDescriptor::kFixedTargetRegister),
reg == kJavaScriptCallCodeStartRegister);
__ Jump(reg);
frame_access_state()->ClearSPDelta();
frame_access_state()->SetFrameAccessToDefault();
break;
}
case kArchCallJSFunction: {
v8::internal::Assembler::BlockTrampolinePoolScope block_trampoline_pool(
tasm());
Register func = i.InputRegister(0);
if (FLAG_debug_code) {
// Check the function's context matches the context argument.
__ LoadTaggedPointerField(
kScratchReg, FieldMemOperand(func, JSFunction::kContextOffset));
__ cmp(cp, kScratchReg);
__ Assert(eq, AbortReason::kWrongFunctionContext);
}
static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch");
__ LoadTaggedPointerField(r5,
FieldMemOperand(func, JSFunction::kCodeOffset));
__ CallCodeObject(r5);
RecordCallPosition(instr);
DCHECK_EQ(LeaveRC, i.OutputRCBit());
frame_access_state()->ClearSPDelta();
break;
}
case kArchPrepareCallCFunction: {
int const num_parameters = MiscField::decode(instr->opcode());
__ PrepareCallCFunction(num_parameters, kScratchReg);
// Frame alignment requires using FP-relative frame addressing.
frame_access_state()->SetFrameAccessToFP();
break;
}
case kArchSaveCallerRegisters: {
fp_mode_ =
static_cast<SaveFPRegsMode>(MiscField::decode(instr->opcode()));
DCHECK(fp_mode_ == kDontSaveFPRegs || fp_mode_ == kSaveFPRegs);
// kReturnRegister0 should have been saved before entering the stub.
int bytes = __ PushCallerSaved(fp_mode_, kReturnRegister0);
DCHECK(IsAligned(bytes, kSystemPointerSize));
DCHECK_EQ(0, frame_access_state()->sp_delta());
frame_access_state()->IncreaseSPDelta(bytes / kSystemPointerSize);
DCHECK(!caller_registers_saved_);
caller_registers_saved_ = true;
break;
}
case kArchRestoreCallerRegisters: {
DCHECK(fp_mode_ ==
static_cast<SaveFPRegsMode>(MiscField::decode(instr->opcode())));
DCHECK(fp_mode_ == kDontSaveFPRegs || fp_mode_ == kSaveFPRegs);
// Don't overwrite the returned value.
int bytes = __ PopCallerSaved(fp_mode_, kReturnRegister0);
frame_access_state()->IncreaseSPDelta(-(bytes / kSystemPointerSize));
DCHECK_EQ(0, frame_access_state()->sp_delta());
DCHECK(caller_registers_saved_);
caller_registers_saved_ = false;
break;
}
case kArchPrepareTailCall:
AssemblePrepareTailCall();
break;
case kArchComment:
#ifdef V8_TARGET_ARCH_PPC64
__ RecordComment(reinterpret_cast<const char*>(i.InputInt64(0)));
#else
__ RecordComment(reinterpret_cast<const char*>(i.InputInt32(0)));
#endif
break;
case kArchCallCFunction: {
int misc_field = MiscField::decode(instr->opcode());
int num_parameters = misc_field;
bool has_function_descriptor = false;
Label start_call;
bool isWasmCapiFunction =
linkage()->GetIncomingDescriptor()->IsWasmCapiFunction();
int offset = (FLAG_enable_embedded_constant_pool ? 20 : 23) * kInstrSize;
#if ABI_USES_FUNCTION_DESCRIPTORS
// AIX/PPC64BE Linux uses a function descriptor
int kNumParametersMask = kHasFunctionDescriptorBitMask - 1;
num_parameters = kNumParametersMask & misc_field;
has_function_descriptor =
(misc_field & kHasFunctionDescriptorBitMask) != 0;
// AIX may emit 2 extra Load instructions under CallCFunctionHelper
// due to having function descriptor.
if (has_function_descriptor) {
offset += 2 * kInstrSize;
}
#endif
if (isWasmCapiFunction) {
__ mflr(r0);
__ bind(&start_call);
__ LoadPC(kScratchReg);
__ addi(kScratchReg, kScratchReg, Operand(offset));
__ StoreP(kScratchReg,
MemOperand(fp, WasmExitFrameConstants::kCallingPCOffset));
__ mtlr(r0);
}
if (instr->InputAt(0)->IsImmediate()) {
ExternalReference ref = i.InputExternalReference(0);
__ CallCFunction(ref, num_parameters, has_function_descriptor);
} else {
Register func = i.InputRegister(0);
__ CallCFunction(func, num_parameters, has_function_descriptor);
}
// TODO(miladfar): In the above block, kScratchReg must be populated with
// the strictly-correct PC, which is the return address at this spot. The
// offset is set to 36 (9 * kInstrSize) on pLinux and 44 on AIX, which is
// counted from where we are binding to the label and ends at this spot.
// If failed, replace it with the correct offset suggested. More info on
// f5ab7d3.
if (isWasmCapiFunction) {
CHECK_EQ(offset, __ SizeOfCodeGeneratedSince(&start_call));
RecordSafepoint(instr->reference_map(), Safepoint::kNoLazyDeopt);
}
frame_access_state()->SetFrameAccessToDefault();
// Ideally, we should decrement SP delta to match the change of stack
// pointer in CallCFunction. However, for certain architectures (e.g.
// ARM), there may be more strict alignment requirement, causing old SP
// to be saved on the stack. In those cases, we can not calculate the SP
// delta statically.
frame_access_state()->ClearSPDelta();
if (caller_registers_saved_) {
// Need to re-sync SP delta introduced in kArchSaveCallerRegisters.
// Here, we assume the sequence to be:
// kArchSaveCallerRegisters;
// kArchCallCFunction;
// kArchRestoreCallerRegisters;
int bytes =
__ RequiredStackSizeForCallerSaved(fp_mode_, kReturnRegister0);
frame_access_state()->IncreaseSPDelta(bytes / kSystemPointerSize);
}
break;
}
case kArchJmp:
AssembleArchJump(i.InputRpo(0));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kArchBinarySearchSwitch:
AssembleArchBinarySearchSwitch(instr);
break;
case kArchTableSwitch:
AssembleArchTableSwitch(instr);
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kArchAbortCSAAssert:
DCHECK(i.InputRegister(0) == r4);
{
// We don't actually want to generate a pile of code for this, so just
// claim there is a stack frame, without generating one.
FrameScope scope(tasm(), StackFrame::NONE);
__ Call(
isolate()->builtins()->builtin_handle(Builtins::kAbortCSAAssert),
RelocInfo::CODE_TARGET);
}
__ stop();
break;
case kArchDebugBreak:
__ DebugBreak();
break;
case kArchNop:
case kArchThrowTerminator:
// don't emit code for nops.
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kArchDeoptimize: {
DeoptimizationExit* exit =
BuildTranslation(instr, -1, 0, OutputFrameStateCombine::Ignore());
__ b(exit->label());
break;
}
case kArchRet:
AssembleReturn(instr->InputAt(0));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kArchFramePointer:
__ mr(i.OutputRegister(), fp);
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kArchParentFramePointer:
if (frame_access_state()->has_frame()) {
__ LoadP(i.OutputRegister(), MemOperand(fp, 0));
} else {
__ mr(i.OutputRegister(), fp);
}
break;
case kArchStackPointerGreaterThan: {
// Potentially apply an offset to the current stack pointer before the
// comparison to consider the size difference of an optimized frame versus
// the contained unoptimized frames.
Register lhs_register = sp;
uint32_t offset;
if (ShouldApplyOffsetToStackCheck(instr, &offset)) {
lhs_register = i.TempRegister(0);
if (is_int16(offset)) {
__ subi(lhs_register, sp, Operand(offset));
} else {
__ mov(kScratchReg, Operand(offset));
__ sub(lhs_register, sp, kScratchReg);
}
}
constexpr size_t kValueIndex = 0;
DCHECK(instr->InputAt(kValueIndex)->IsRegister());
__ cmpl(lhs_register, i.InputRegister(kValueIndex), cr0);
break;
}
case kArchStackCheckOffset:
__ LoadSmiLiteral(i.OutputRegister(),
Smi::FromInt(GetStackCheckOffset()));
break;
case kArchTruncateDoubleToI:
__ TruncateDoubleToI(isolate(), zone(), i.OutputRegister(),
i.InputDoubleRegister(0), DetermineStubCallMode());
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kArchStoreWithWriteBarrier: {
RecordWriteMode mode =
static_cast<RecordWriteMode>(MiscField::decode(instr->opcode()));
Register object = i.InputRegister(0);
Register value = i.InputRegister(2);
Register scratch0 = i.TempRegister(0);
Register scratch1 = i.TempRegister(1);
OutOfLineRecordWrite* ool;
AddressingMode addressing_mode =
AddressingModeField::decode(instr->opcode());
if (addressing_mode == kMode_MRI) {
int32_t offset = i.InputInt32(1);
ool = zone()->New<OutOfLineRecordWrite>(
this, object, offset, value, scratch0, scratch1, mode,
DetermineStubCallMode(), &unwinding_info_writer_);
__ StoreTaggedField(value, MemOperand(object, offset), r0);
} else {
DCHECK_EQ(kMode_MRR, addressing_mode);
Register offset(i.InputRegister(1));
ool = zone()->New<OutOfLineRecordWrite>(
this, object, offset, value, scratch0, scratch1, mode,
DetermineStubCallMode(), &unwinding_info_writer_);
__ StoreTaggedFieldX(value, MemOperand(object, offset), r0);
}
__ CheckPageFlag(object, scratch0,
MemoryChunk::kPointersFromHereAreInterestingMask, ne,
ool->entry());
__ bind(ool->exit());
break;
}
case kArchStackSlot: {
FrameOffset offset =
frame_access_state()->GetFrameOffset(i.InputInt32(0));
__ addi(i.OutputRegister(), offset.from_stack_pointer() ? sp : fp,
Operand(offset.offset()));
break;
}
case kArchWordPoisonOnSpeculation:
__ and_(i.OutputRegister(), i.InputRegister(0),
kSpeculationPoisonRegister);
break;
case kPPC_Peek: {
int reverse_slot = i.InputInt32(0);
int offset =
FrameSlotToFPOffset(frame()->GetTotalFrameSlotCount() - reverse_slot);
if (instr->OutputAt(0)->IsFPRegister()) {
LocationOperand* op = LocationOperand::cast(instr->OutputAt(0));
if (op->representation() == MachineRepresentation::kFloat64) {
__ LoadDouble(i.OutputDoubleRegister(), MemOperand(fp, offset), r0);
} else if (op->representation() == MachineRepresentation::kFloat32) {
__ LoadFloat32(i.OutputFloatRegister(), MemOperand(fp, offset), r0);
} else {
DCHECK_EQ(MachineRepresentation::kSimd128, op->representation());
__ mov(ip, Operand(offset));
__ LoadSimd128(i.OutputSimd128Register(), MemOperand(fp, ip), r0,
kScratchDoubleReg);
}
} else {
__ LoadP(i.OutputRegister(), MemOperand(fp, offset), r0);
}
break;
}
case kPPC_Sync: {
__ sync();
break;
}
case kPPC_And:
if (HasRegisterInput(instr, 1)) {
__ and_(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1),
i.OutputRCBit());
} else {
__ andi(i.OutputRegister(), i.InputRegister(0), i.InputImmediate(1));
}
break;
case kPPC_AndComplement:
__ andc(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1),
i.OutputRCBit());
break;
case kPPC_Or:
if (HasRegisterInput(instr, 1)) {
__ orx(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1),
i.OutputRCBit());
} else {
__ ori(i.OutputRegister(), i.InputRegister(0), i.InputImmediate(1));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
}
break;
case kPPC_OrComplement:
__ orc(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1),
i.OutputRCBit());
break;
case kPPC_Xor:
if (HasRegisterInput(instr, 1)) {
__ xor_(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1),
i.OutputRCBit());
} else {
__ xori(i.OutputRegister(), i.InputRegister(0), i.InputImmediate(1));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
}
break;
case kPPC_ShiftLeft32:
ASSEMBLE_BINOP_RC(slw, slwi);
break;
#if V8_TARGET_ARCH_PPC64
case kPPC_ShiftLeft64:
ASSEMBLE_BINOP_RC(sld, sldi);
break;
#endif
case kPPC_ShiftRight32:
ASSEMBLE_BINOP_RC(srw, srwi);
break;
#if V8_TARGET_ARCH_PPC64
case kPPC_ShiftRight64:
ASSEMBLE_BINOP_RC(srd, srdi);
break;
#endif
case kPPC_ShiftRightAlg32:
ASSEMBLE_BINOP_INT_RC(sraw, srawi);
break;
#if V8_TARGET_ARCH_PPC64
case kPPC_ShiftRightAlg64:
ASSEMBLE_BINOP_INT_RC(srad, sradi);
break;
#endif
#if !V8_TARGET_ARCH_PPC64
case kPPC_AddPair:
// i.InputRegister(0) ... left low word.
// i.InputRegister(1) ... left high word.
// i.InputRegister(2) ... right low word.
// i.InputRegister(3) ... right high word.
__ addc(i.OutputRegister(0), i.InputRegister(0), i.InputRegister(2));
__ adde(i.OutputRegister(1), i.InputRegister(1), i.InputRegister(3));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kPPC_SubPair:
// i.InputRegister(0) ... left low word.
// i.InputRegister(1) ... left high word.
// i.InputRegister(2) ... right low word.
// i.InputRegister(3) ... right high word.
__ subc(i.OutputRegister(0), i.InputRegister(0), i.InputRegister(2));
__ sube(i.OutputRegister(1), i.InputRegister(1), i.InputRegister(3));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kPPC_MulPair:
// i.InputRegister(0) ... left low word.
// i.InputRegister(1) ... left high word.
// i.InputRegister(2) ... right low word.
// i.InputRegister(3) ... right high word.
__ mullw(i.TempRegister(0), i.InputRegister(0), i.InputRegister(3));
__ mullw(i.TempRegister(1), i.InputRegister(2), i.InputRegister(1));
__ add(i.TempRegister(0), i.TempRegister(0), i.TempRegister(1));
__ mullw(i.OutputRegister(0), i.InputRegister(0), i.InputRegister(2));
__ mulhwu(i.OutputRegister(1), i.InputRegister(0), i.InputRegister(2));
__ add(i.OutputRegister(1), i.OutputRegister(1), i.TempRegister(0));
break;
case kPPC_ShiftLeftPair: {
Register second_output =
instr->OutputCount() >= 2 ? i.OutputRegister(1) : i.TempRegister(0);
if (instr->InputAt(2)->IsImmediate()) {
__ ShiftLeftPair(i.OutputRegister(0), second_output, i.InputRegister(0),
i.InputRegister(1), i.InputInt32(2));
} else {
__ ShiftLeftPair(i.OutputRegister(0), second_output, i.InputRegister(0),
i.InputRegister(1), kScratchReg, i.InputRegister(2));
}
break;
}
case kPPC_ShiftRightPair: {
Register second_output =
instr->OutputCount() >= 2 ? i.OutputRegister(1) : i.TempRegister(0);
if (instr->InputAt(2)->IsImmediate()) {
__ ShiftRightPair(i.OutputRegister(0), second_output,
i.InputRegister(0), i.InputRegister(1),
i.InputInt32(2));
} else {
__ ShiftRightPair(i.OutputRegister(0), second_output,
i.InputRegister(0), i.InputRegister(1), kScratchReg,
i.InputRegister(2));
}
break;
}
case kPPC_ShiftRightAlgPair: {
Register second_output =
instr->OutputCount() >= 2 ? i.OutputRegister(1) : i.TempRegister(0);
if (instr->InputAt(2)->IsImmediate()) {
__ ShiftRightAlgPair(i.OutputRegister(0), second_output,
i.InputRegister(0), i.InputRegister(1),
i.InputInt32(2));
} else {
__ ShiftRightAlgPair(i.OutputRegister(0), second_output,
i.InputRegister(0), i.InputRegister(1),
kScratchReg, i.InputRegister(2));
}
break;
}
#endif
case kPPC_RotRight32:
if (HasRegisterInput(instr, 1)) {
__ subfic(kScratchReg, i.InputRegister(1), Operand(32));
__ rotlw(i.OutputRegister(), i.InputRegister(0), kScratchReg,
i.OutputRCBit());
} else {
int sh = i.InputInt32(1);
__ rotrwi(i.OutputRegister(), i.InputRegister(0), sh, i.OutputRCBit());
}
break;
#if V8_TARGET_ARCH_PPC64
case kPPC_RotRight64:
if (HasRegisterInput(instr, 1)) {
__ subfic(kScratchReg, i.InputRegister(1), Operand(64));
__ rotld(i.OutputRegister(), i.InputRegister(0), kScratchReg,
i.OutputRCBit());
} else {
int sh = i.InputInt32(1);
__ rotrdi(i.OutputRegister(), i.InputRegister(0), sh, i.OutputRCBit());
}
break;
#endif
case kPPC_Not:
__ notx(i.OutputRegister(), i.InputRegister(0), i.OutputRCBit());
break;
case kPPC_RotLeftAndMask32:
__ rlwinm(i.OutputRegister(), i.InputRegister(0), i.InputInt32(1),
31 - i.InputInt32(2), 31 - i.InputInt32(3), i.OutputRCBit());
break;
#if V8_TARGET_ARCH_PPC64
case kPPC_RotLeftAndClear64:
__ rldic(i.OutputRegister(), i.InputRegister(0), i.InputInt32(1),
63 - i.InputInt32(2), i.OutputRCBit());
break;
case kPPC_RotLeftAndClearLeft64:
__ rldicl(i.OutputRegister(), i.InputRegister(0), i.InputInt32(1),
63 - i.InputInt32(2), i.OutputRCBit());
break;
case kPPC_RotLeftAndClearRight64:
__ rldicr(i.OutputRegister(), i.InputRegister(0), i.InputInt32(1),
63 - i.InputInt32(2), i.OutputRCBit());
break;
#endif
case kPPC_Add32:
#if V8_TARGET_ARCH_PPC64
if (FlagsModeField::decode(instr->opcode()) != kFlags_none) {
ASSEMBLE_ADD_WITH_OVERFLOW();
} else {
#endif
if (HasRegisterInput(instr, 1)) {
__ add(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1),
LeaveOE, i.OutputRCBit());
} else {
__ addi(i.OutputRegister(), i.InputRegister(0), i.InputImmediate(1));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
}
__ extsw(i.OutputRegister(), i.OutputRegister());
#if V8_TARGET_ARCH_PPC64
}
#endif
break;
#if V8_TARGET_ARCH_PPC64
case kPPC_Add64:
if (FlagsModeField::decode(instr->opcode()) != kFlags_none) {
ASSEMBLE_ADD_WITH_OVERFLOW();
} else {
if (HasRegisterInput(instr, 1)) {
__ add(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1),
LeaveOE, i.OutputRCBit());
} else {
__ addi(i.OutputRegister(), i.InputRegister(0), i.InputImmediate(1));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
}
}
break;
#endif
case kPPC_AddWithOverflow32:
ASSEMBLE_ADD_WITH_OVERFLOW32();
break;
case kPPC_AddDouble:
ASSEMBLE_FLOAT_BINOP_RC(fadd, MiscField::decode(instr->opcode()));
break;
case kPPC_Sub:
#if V8_TARGET_ARCH_PPC64
if (FlagsModeField::decode(instr->opcode()) != kFlags_none) {
ASSEMBLE_SUB_WITH_OVERFLOW();
} else {
#endif
if (HasRegisterInput(instr, 1)) {
__ sub(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1),
LeaveOE, i.OutputRCBit());
} else {
if (is_int16(i.InputImmediate(1).immediate())) {
__ subi(i.OutputRegister(), i.InputRegister(0),
i.InputImmediate(1));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
} else {
__ mov(kScratchReg, i.InputImmediate(1));
__ sub(i.OutputRegister(), i.InputRegister(0), kScratchReg, LeaveOE,
i.OutputRCBit());
}
}
#if V8_TARGET_ARCH_PPC64
}
#endif
break;
case kPPC_SubWithOverflow32:
ASSEMBLE_SUB_WITH_OVERFLOW32();
break;
case kPPC_SubDouble:
ASSEMBLE_FLOAT_BINOP_RC(fsub, MiscField::decode(instr->opcode()));
break;
case kPPC_Mul32:
__ mullw(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1),
LeaveOE, i.OutputRCBit());
break;
#if V8_TARGET_ARCH_PPC64
case kPPC_Mul64:
__ mulld(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1),
LeaveOE, i.OutputRCBit());
break;
#endif
case kPPC_Mul32WithHigh32:
if (i.OutputRegister(0) == i.InputRegister(0) ||
i.OutputRegister(0) == i.InputRegister(1) ||
i.OutputRegister(1) == i.InputRegister(0) ||
i.OutputRegister(1) == i.InputRegister(1)) {
__ mullw(kScratchReg, i.InputRegister(0), i.InputRegister(1)); // low
__ mulhw(i.OutputRegister(1), i.InputRegister(0),
i.InputRegister(1)); // high
__ mr(i.OutputRegister(0), kScratchReg);
} else {
__ mullw(i.OutputRegister(0), i.InputRegister(0),
i.InputRegister(1)); // low
__ mulhw(i.OutputRegister(1), i.InputRegister(0),
i.InputRegister(1)); // high
}
break;
case kPPC_MulHigh32:
__ mulhw(r0, i.InputRegister(0), i.InputRegister(1), i.OutputRCBit());
// High 32 bits are undefined and need to be cleared.
__ clrldi(i.OutputRegister(), r0, Operand(32));
break;
case kPPC_MulHighU32:
__ mulhwu(r0, i.InputRegister(0), i.InputRegister(1), i.OutputRCBit());
// High 32 bits are undefined and need to be cleared.
__ clrldi(i.OutputRegister(), r0, Operand(32));
break;
case kPPC_MulDouble:
ASSEMBLE_FLOAT_BINOP_RC(fmul, MiscField::decode(instr->opcode()));
break;
case kPPC_Div32:
__ divw(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
#if V8_TARGET_ARCH_PPC64
case kPPC_Div64:
__ divd(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
#endif
case kPPC_DivU32:
__ divwu(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
#if V8_TARGET_ARCH_PPC64
case kPPC_DivU64:
__ divdu(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
#endif
case kPPC_DivDouble:
ASSEMBLE_FLOAT_BINOP_RC(fdiv, MiscField::decode(instr->opcode()));
break;
case kPPC_Mod32:
if (CpuFeatures::IsSupported(MODULO)) {
__ modsw(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1));
} else {
ASSEMBLE_MODULO(divw, mullw);
}
break;
#if V8_TARGET_ARCH_PPC64
case kPPC_Mod64:
if (CpuFeatures::IsSupported(MODULO)) {
__ modsd(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1));
} else {
ASSEMBLE_MODULO(divd, mulld);
}
break;
#endif
case kPPC_ModU32:
if (CpuFeatures::IsSupported(MODULO)) {
__ moduw(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1));
} else {
ASSEMBLE_MODULO(divwu, mullw);
}
break;
#if V8_TARGET_ARCH_PPC64
case kPPC_ModU64:
if (CpuFeatures::IsSupported(MODULO)) {
__ modud(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1));
} else {
ASSEMBLE_MODULO(divdu, mulld);
}
break;
#endif
case kPPC_ModDouble:
// TODO(bmeurer): We should really get rid of this special instruction,
// and generate a CallAddress instruction instead.
ASSEMBLE_FLOAT_MODULO();
break;
case kIeee754Float64Acos:
ASSEMBLE_IEEE754_UNOP(acos);
break;
case kIeee754Float64Acosh:
ASSEMBLE_IEEE754_UNOP(acosh);
break;
case kIeee754Float64Asin:
ASSEMBLE_IEEE754_UNOP(asin);
break;
case kIeee754Float64Asinh:
ASSEMBLE_IEEE754_UNOP(asinh);
break;
case kIeee754Float64Atan:
ASSEMBLE_IEEE754_UNOP(atan);
break;
case kIeee754Float64Atan2:
ASSEMBLE_IEEE754_BINOP(atan2);
break;
case kIeee754Float64Atanh:
ASSEMBLE_IEEE754_UNOP(atanh);
break;
case kIeee754Float64Tan:
ASSEMBLE_IEEE754_UNOP(tan);
break;
case kIeee754Float64Tanh:
ASSEMBLE_IEEE754_UNOP(tanh);
break;
case kIeee754Float64Cbrt:
ASSEMBLE_IEEE754_UNOP(cbrt);
break;
case kIeee754Float64Sin:
ASSEMBLE_IEEE754_UNOP(sin);
break;
case kIeee754Float64Sinh:
ASSEMBLE_IEEE754_UNOP(sinh);
break;
case kIeee754Float64Cos:
ASSEMBLE_IEEE754_UNOP(cos);
break;
case kIeee754Float64Cosh:
ASSEMBLE_IEEE754_UNOP(cosh);
break;
case kIeee754Float64Exp:
ASSEMBLE_IEEE754_UNOP(exp);
break;
case kIeee754Float64Expm1:
ASSEMBLE_IEEE754_UNOP(expm1);
break;
case kIeee754Float64Log:
ASSEMBLE_IEEE754_UNOP(log);
break;
case kIeee754Float64Log1p:
ASSEMBLE_IEEE754_UNOP(log1p);
break;
case kIeee754Float64Log2:
ASSEMBLE_IEEE754_UNOP(log2);
break;
case kIeee754Float64Log10:
ASSEMBLE_IEEE754_UNOP(log10);
break;
case kIeee754Float64Pow:
ASSEMBLE_IEEE754_BINOP(pow);
break;
case kPPC_Neg:
__ neg(i.OutputRegister(), i.InputRegister(0), LeaveOE, i.OutputRCBit());
break;
case kPPC_MaxDouble:
ASSEMBLE_FLOAT_MAX();
break;
case kPPC_MinDouble:
ASSEMBLE_FLOAT_MIN();
break;
case kPPC_AbsDouble:
ASSEMBLE_FLOAT_UNOP_RC(fabs, 0);
break;
case kPPC_SqrtDouble:
ASSEMBLE_FLOAT_UNOP_RC(fsqrt, MiscField::decode(instr->opcode()));
break;
case kPPC_FloorDouble:
ASSEMBLE_FLOAT_UNOP_RC(frim, MiscField::decode(instr->opcode()));
break;
case kPPC_CeilDouble:
ASSEMBLE_FLOAT_UNOP_RC(frip, MiscField::decode(instr->opcode()));
break;
case kPPC_TruncateDouble:
ASSEMBLE_FLOAT_UNOP_RC(friz, MiscField::decode(instr->opcode()));
break;
case kPPC_RoundDouble:
ASSEMBLE_FLOAT_UNOP_RC(frin, MiscField::decode(instr->opcode()));
break;
case kPPC_NegDouble:
ASSEMBLE_FLOAT_UNOP_RC(fneg, 0);
break;
case kPPC_Cntlz32:
__ cntlzw(i.OutputRegister(), i.InputRegister(0));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
#if V8_TARGET_ARCH_PPC64
case kPPC_Cntlz64:
__ cntlzd(i.OutputRegister(), i.InputRegister(0));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
#endif
case kPPC_Popcnt32:
__ popcntw(i.OutputRegister(), i.InputRegister(0));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
#if V8_TARGET_ARCH_PPC64
case kPPC_Popcnt64:
__ popcntd(i.OutputRegister(), i.InputRegister(0));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
#endif
case kPPC_Cmp32:
ASSEMBLE_COMPARE(cmpw, cmplw);
break;
#if V8_TARGET_ARCH_PPC64
case kPPC_Cmp64:
ASSEMBLE_COMPARE(cmp, cmpl);
break;
#endif
case kPPC_CmpDouble:
ASSEMBLE_FLOAT_COMPARE(fcmpu);
break;
case kPPC_Tst32:
if (HasRegisterInput(instr, 1)) {
__ and_(r0, i.InputRegister(0), i.InputRegister(1), i.OutputRCBit());
} else {
__ andi(r0, i.InputRegister(0), i.InputImmediate(1));
}
#if V8_TARGET_ARCH_PPC64
__ extsw(r0, r0, i.OutputRCBit());
#endif
DCHECK_EQ(SetRC, i.OutputRCBit());
break;
#if V8_TARGET_ARCH_PPC64
case kPPC_Tst64:
if (HasRegisterInput(instr, 1)) {
__ and_(r0, i.InputRegister(0), i.InputRegister(1), i.OutputRCBit());
} else {
__ andi(r0, i.InputRegister(0), i.InputImmediate(1));
}
DCHECK_EQ(SetRC, i.OutputRCBit());
break;
#endif
case kPPC_Float64SilenceNaN: {
DoubleRegister value = i.InputDoubleRegister(0);
DoubleRegister result = i.OutputDoubleRegister();
__ CanonicalizeNaN(result, value);
break;
}
case kPPC_Push:
if (instr->InputAt(0)->IsFPRegister()) {
LocationOperand* op = LocationOperand::cast(instr->InputAt(0));
switch (op->representation()) {
case MachineRepresentation::kFloat32:
__ StoreSingleU(i.InputDoubleRegister(0),
MemOperand(sp, -kSystemPointerSize), r0);
frame_access_state()->IncreaseSPDelta(1);
break;
case MachineRepresentation::kFloat64:
__ StoreDoubleU(i.InputDoubleRegister(0),
MemOperand(sp, -kDoubleSize), r0);
frame_access_state()->IncreaseSPDelta(kDoubleSize /
kSystemPointerSize);
break;
case MachineRepresentation::kSimd128: {
__ addi(sp, sp, Operand(-kSimd128Size));
__ StoreSimd128(i.InputDoubleRegister(0), MemOperand(r0, sp), r0,
kScratchDoubleReg);
frame_access_state()->IncreaseSPDelta(kSimd128Size /
kSystemPointerSize);
break;
}
default:
UNREACHABLE();
break;
}
} else {
__ StorePU(i.InputRegister(0), MemOperand(sp, -kSystemPointerSize), r0);
frame_access_state()->IncreaseSPDelta(1);
}
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kPPC_PushFrame: {
int num_slots = i.InputInt32(1);
if (instr->InputAt(0)->IsFPRegister()) {
LocationOperand* op = LocationOperand::cast(instr->InputAt(0));
if (op->representation() == MachineRepresentation::kFloat64) {
__ StoreDoubleU(i.InputDoubleRegister(0),
MemOperand(sp, -num_slots * kSystemPointerSize), r0);
} else {
DCHECK_EQ(MachineRepresentation::kFloat32, op->representation());
__ StoreSingleU(i.InputDoubleRegister(0),
MemOperand(sp, -num_slots * kSystemPointerSize), r0);
}
} else {
__ StorePU(i.InputRegister(0),
MemOperand(sp, -num_slots * kSystemPointerSize), r0);
}
break;
}
case kPPC_StoreToStackSlot: {
int slot = i.InputInt32(1);
if (instr->InputAt(0)->IsFPRegister()) {
LocationOperand* op = LocationOperand::cast(instr->InputAt(0));
if (op->representation() == MachineRepresentation::kFloat64) {
__ StoreDouble(i.InputDoubleRegister(0),
MemOperand(sp, slot * kSystemPointerSize), r0);
} else if (op->representation() == MachineRepresentation::kFloat32) {
__ StoreSingle(i.InputDoubleRegister(0),
MemOperand(sp, slot * kSystemPointerSize), r0);
} else {
DCHECK_EQ(MachineRepresentation::kSimd128, op->representation());
__ mov(ip, Operand(slot * kSystemPointerSize));
__ StoreSimd128(i.InputDoubleRegister(0), MemOperand(ip, sp), r0,
kScratchDoubleReg);
}
} else {
__ StoreP(i.InputRegister(0), MemOperand(sp, slot * kSystemPointerSize),
r0);
}
break;
}
case kPPC_ExtendSignWord8:
__ extsb(i.OutputRegister(), i.InputRegister(0));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kPPC_ExtendSignWord16:
__ extsh(i.OutputRegister(), i.InputRegister(0));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
#if V8_TARGET_ARCH_PPC64
case kPPC_ExtendSignWord32:
__ extsw(i.OutputRegister(), i.InputRegister(0));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kPPC_Uint32ToUint64:
// Zero extend
__ clrldi(i.OutputRegister(), i.InputRegister(0), Operand(32));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kPPC_Int64ToInt32:
__ extsw(i.OutputRegister(), i.InputRegister(0));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kPPC_Int64ToFloat32:
__ ConvertInt64ToFloat(i.InputRegister(0), i.OutputDoubleRegister());
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kPPC_Int64ToDouble:
__ ConvertInt64ToDouble(i.InputRegister(0), i.OutputDoubleRegister());
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kPPC_Uint64ToFloat32:
__ ConvertUnsignedInt64ToFloat(i.InputRegister(0),
i.OutputDoubleRegister());
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kPPC_Uint64ToDouble:
__ ConvertUnsignedInt64ToDouble(i.InputRegister(0),
i.OutputDoubleRegister());
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
#endif
case kPPC_Int32ToFloat32:
__ ConvertIntToFloat(i.InputRegister(0), i.OutputDoubleRegister());
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kPPC_Int32ToDouble:
__ ConvertIntToDouble(i.InputRegister(0), i.OutputDoubleRegister());
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kPPC_Uint32ToFloat32:
__ ConvertUnsignedIntToFloat(i.InputRegister(0),
i.OutputDoubleRegister());
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kPPC_Uint32ToDouble:
__ ConvertUnsignedIntToDouble(i.InputRegister(0),
i.OutputDoubleRegister());
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kPPC_Float32ToInt32: {
bool set_overflow_to_min_i32 = MiscField::decode(instr->opcode());
if (set_overflow_to_min_i32) {
__ mtfsb0(VXCVI); // clear FPSCR:VXCVI bit
}
__ fctiwz(kScratchDoubleReg, i.InputDoubleRegister(0));
__ MovDoubleLowToInt(i.OutputRegister(), kScratchDoubleReg);
if (set_overflow_to_min_i32) {
// Avoid INT32_MAX as an overflow indicator and use INT32_MIN instead,
// because INT32_MIN allows easier out-of-bounds detection.
CRegister cr = cr7;
int crbit = v8::internal::Assembler::encode_crbit(
cr, static_cast<CRBit>(VXCVI % CRWIDTH));
__ mcrfs(cr, VXCVI); // extract FPSCR field containing VXCVI into cr7
__ li(kScratchReg, Operand(1));
__ sldi(kScratchReg, kScratchReg, Operand(31)); // generate INT32_MIN.
__ isel(i.OutputRegister(0), kScratchReg, i.OutputRegister(0), crbit);
}
break;
}
case kPPC_Float32ToUint32: {
bool set_overflow_to_min_u32 = MiscField::decode(instr->opcode());
if (set_overflow_to_min_u32) {
__ mtfsb0(VXCVI); // clear FPSCR:VXCVI bit
}
__ fctiwuz(kScratchDoubleReg, i.InputDoubleRegister(0));
__ MovDoubleLowToInt(i.OutputRegister(), kScratchDoubleReg);
if (set_overflow_to_min_u32) {
// Avoid UINT32_MAX as an overflow indicator and use 0 instead,
// because 0 allows easier out-of-bounds detection.
CRegister cr = cr7;
int crbit = v8::internal::Assembler::encode_crbit(
cr, static_cast<CRBit>(VXCVI % CRWIDTH));
__ mcrfs(cr, VXCVI); // extract FPSCR field containing VXCVI into cr7
__ li(kScratchReg, Operand::Zero());
__ isel(i.OutputRegister(0), kScratchReg, i.OutputRegister(0), crbit);
}
break;
}
case kPPC_DoubleToInt32:
case kPPC_DoubleToUint32:
case kPPC_DoubleToInt64: {
#if V8_TARGET_ARCH_PPC64
bool check_conversion =
(opcode == kPPC_DoubleToInt64 && i.OutputCount() > 1);
if (check_conversion) {
__ mtfsb0(VXCVI); // clear FPSCR:VXCVI bit
}
#endif
__ ConvertDoubleToInt64(i.InputDoubleRegister(0),
#if !V8_TARGET_ARCH_PPC64
kScratchReg,
#endif
i.OutputRegister(0), kScratchDoubleReg);
#if V8_TARGET_ARCH_PPC64
CRegister cr = cr7;
int crbit = v8::internal::Assembler::encode_crbit(
cr, static_cast<CRBit>(VXCVI % CRWIDTH));
__ mcrfs(cr, VXCVI); // extract FPSCR field containing VXCVI into cr7
// Handle conversion failures (such as overflow).
if (CpuFeatures::IsSupported(ISELECT)) {
if (check_conversion) {
__ li(i.OutputRegister(1), Operand(1));
__ isel(i.OutputRegister(1), r0, i.OutputRegister(1), crbit);
} else {
__ isel(i.OutputRegister(0), r0, i.OutputRegister(0), crbit);
}
} else {
if (check_conversion) {
__ li(i.OutputRegister(1), Operand::Zero());
__ bc(v8::internal::kInstrSize * 2, BT, crbit);
__ li(i.OutputRegister(1), Operand(1));
} else {
__ mr(ip, i.OutputRegister(0));
__ li(i.OutputRegister(0), Operand::Zero());
__ bc(v8::internal::kInstrSize * 2, BT, crbit);
__ mr(i.OutputRegister(0), ip);
}
}
#endif
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
}
#if V8_TARGET_ARCH_PPC64
case kPPC_DoubleToUint64: {
bool check_conversion = (i.OutputCount() > 1);
if (check_conversion) {
__ mtfsb0(VXCVI); // clear FPSCR:VXCVI bit
}
__ ConvertDoubleToUnsignedInt64(i.InputDoubleRegister(0),
i.OutputRegister(0), kScratchDoubleReg);
if (check_conversion) {
// Set 2nd output to zero if conversion fails.
CRegister cr = cr7;
int crbit = v8::internal::Assembler::encode_crbit(
cr, static_cast<CRBit>(VXCVI % CRWIDTH));
__ mcrfs(cr, VXCVI); // extract FPSCR field containing VXCVI into cr7
if (CpuFeatures::IsSupported(ISELECT)) {
__ li(i.OutputRegister(1), Operand(1));
__ isel(i.OutputRegister(1), r0, i.OutputRegister(1), crbit);
} else {
__ li(i.OutputRegister(1), Operand::Zero());
__ bc(v8::internal::kInstrSize * 2, BT, crbit);
__ li(i.OutputRegister(1), Operand(1));
}
}
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
}
#endif
case kPPC_DoubleToFloat32:
ASSEMBLE_FLOAT_UNOP_RC(frsp, 0);
break;
case kPPC_Float32ToDouble:
// Nothing to do.
__ Move(i.OutputDoubleRegister(), i.InputDoubleRegister(0));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kPPC_DoubleExtractLowWord32:
__ MovDoubleLowToInt(i.OutputRegister(), i.InputDoubleRegister(0));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kPPC_DoubleExtractHighWord32:
__ MovDoubleHighToInt(i.OutputRegister(), i.InputDoubleRegister(0));
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kPPC_DoubleInsertLowWord32:
__ InsertDoubleLow(i.OutputDoubleRegister(), i.InputRegister(1), r0);
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kPPC_DoubleInsertHighWord32:
__ InsertDoubleHigh(i.OutputDoubleRegister(), i.InputRegister(1), r0);
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kPPC_DoubleConstruct:
#if V8_TARGET_ARCH_PPC64
__ MovInt64ComponentsToDouble(i.OutputDoubleRegister(),
i.InputRegister(0), i.InputRegister(1), r0);
#else
__ MovInt64ToDouble(i.OutputDoubleRegister(), i.InputRegister(0),
i.InputRegister(1));
#endif
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
case kPPC_BitcastFloat32ToInt32:
__ MovFloatToInt(i.OutputRegister(), i.InputDoubleRegister(0));
break;
case kPPC_BitcastInt32ToFloat32:
__ MovIntToFloat(i.OutputDoubleRegister(), i.InputRegister(0));
break;
#if V8_TARGET_ARCH_PPC64
case kPPC_BitcastDoubleToInt64:
__ MovDoubleToInt64(i.OutputRegister(), i.InputDoubleRegister(0));
break;
case kPPC_BitcastInt64ToDouble:
__ MovInt64ToDouble(i.OutputDoubleRegister(), i.InputRegister(0));
break;
#endif
case kPPC_LoadWordU8:
ASSEMBLE_LOAD_INTEGER(lbz, lbzx);
EmitWordLoadPoisoningIfNeeded(this, instr, i);
break;
case kPPC_LoadWordS8:
ASSEMBLE_LOAD_INTEGER(lbz, lbzx);
__ extsb(i.OutputRegister(), i.OutputRegister());
EmitWordLoadPoisoningIfNeeded(this, instr, i);
break;
case kPPC_LoadWordU16:
ASSEMBLE_LOAD_INTEGER(lhz, lhzx);
EmitWordLoadPoisoningIfNeeded(this, instr, i);
break;
case kPPC_LoadWordS16:
ASSEMBLE_LOAD_INTEGER(lha, lhax);
EmitWordLoadPoisoningIfNeeded(this, instr, i);
break;
case kPPC_LoadWordU32:
ASSEMBLE_LOAD_INTEGER(lwz, lwzx);
EmitWordLoadPoisoningIfNeeded(this, instr, i);
break;
case kPPC_LoadWordS32:
ASSEMBLE_LOAD_INTEGER(lwa, lwax);
EmitWordLoadPoisoningIfNeeded(this, instr, i);
break;
#if V8_TARGET_ARCH_PPC64
case kPPC_LoadWord64:
ASSEMBLE_LOAD_INTEGER(ld, ldx);
EmitWordLoadPoisoningIfNeeded(this, instr, i);
break;
#endif
case kPPC_LoadFloat32:
ASSEMBLE_LOAD_FLOAT(lfs, lfsx);
break;
case kPPC_LoadDouble:
ASSEMBLE_LOAD_FLOAT(lfd, lfdx);
break;
case kPPC_LoadSimd128: {
Simd128Register result = i.OutputSimd128Register();
AddressingMode mode = kMode_None;
MemOperand operand = i.MemoryOperand(&mode);
bool is_atomic = i.InputInt32(2);
// lvx only supports MRR.
DCHECK_EQ(mode, kMode_MRR);
__ LoadSimd128(result, operand, r0, kScratchDoubleReg);
if (is_atomic) __ lwsync();
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
}
case kPPC_StoreWord8:
ASSEMBLE_STORE_INTEGER(stb, stbx);
break;
case kPPC_StoreWord16:
ASSEMBLE_STORE_INTEGER(sth, sthx);
break;
case kPPC_StoreWord32:
ASSEMBLE_STORE_INTEGER(stw, stwx);
break;
#if V8_TARGET_ARCH_PPC64
case kPPC_StoreWord64:
ASSEMBLE_STORE_INTEGER(std, stdx);
break;
#endif
case kPPC_StoreFloat32:
ASSEMBLE_STORE_FLOAT(stfs, stfsx);
break;
case kPPC_StoreDouble:
ASSEMBLE_STORE_FLOAT(stfd, stfdx);
break;
case kPPC_StoreSimd128: {
size_t index = 0;
AddressingMode mode = kMode_None;
MemOperand operand = i.MemoryOperand(&mode, &index);
Simd128Register value = i.InputSimd128Register(index);
bool is_atomic = i.InputInt32(3);
if (is_atomic) __ lwsync();
// stvx only supports MRR.
DCHECK_EQ(mode, kMode_MRR);
__ StoreSimd128(value, operand, r0, kScratchDoubleReg);
if (is_atomic) __ sync();
DCHECK_EQ(LeaveRC, i.OutputRCBit());
break;
}
case kWord32AtomicLoadInt8:
case kPPC_AtomicLoadUint8:
case kWord32AtomicLoadInt16:
case kPPC_AtomicLoadUint16:
case kPPC_AtomicLoadWord32:
case kPPC_AtomicLoadWord64:
case kPPC_AtomicStoreUint8:
case kPPC_AtomicStoreUint16:
case kPPC_AtomicStoreWord32:
case kPPC_AtomicStoreWord64:
UNREACHABLE();
case kWord32AtomicExchangeInt8:
ASSEMBLE_ATOMIC_EXCHANGE_INTEGER(lbarx, stbcx);
__ extsb(i.OutputRegister(0), i.OutputRegister(0));
break;
case kPPC_AtomicExchangeUint8:
ASSEMBLE_ATOMIC_EXCHANGE_INTEGER(lbarx, stbcx);
break;
case kWord32AtomicExchangeInt16:
ASSEMBLE_ATOMIC_EXCHANGE_INTEGER(lharx, sthcx);
__ extsh(i.OutputRegister(0), i.OutputRegister(0));
break;
case kPPC_AtomicExchangeUint16:
ASSEMBLE_ATOMIC_EXCHANGE_INTEGER(lharx, sthcx);
break;
case kPPC_AtomicExchangeWord32:
ASSEMBLE_ATOMIC_EXCHANGE_INTEGER(lwarx, stwcx);
break;
case kPPC_AtomicExchangeWord64:
ASSEMBLE_ATOMIC_EXCHANGE_INTEGER(ldarx, stdcx);
break;
case kWord32AtomicCompareExchangeInt8:
ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_SIGN_EXT(cmp, lbarx, stbcx, extsb);
break;
case kPPC_AtomicCompareExchangeUint8:
ASSEMBLE_ATOMIC_COMPARE_EXCHANGE(cmp, lbarx, stbcx, ZeroExtByte);
break;
case kWord32AtomicCompareExchangeInt16:
ASSEMBLE_ATOMIC_COMPARE_EXCHANGE_SIGN_EXT(cmp, lharx, sthcx, extsh);
break;
case kPPC_AtomicCompareExchangeUint16:
ASSEMBLE_ATOMIC_COMPARE_EXCHANGE(cmp, lharx, sthcx, ZeroExtHalfWord);
break;
case kPPC_AtomicCompareExchangeWord32:
ASSEMBLE_ATOMIC_COMPARE_EXCHANGE(cmpw, lwarx, stwcx, ZeroExtWord32);
break;
case kPPC_AtomicCompareExchangeWord64:
ASSEMBLE_ATOMIC_COMPARE_EXCHANGE(cmp, ldarx, stdcx, mr);
break;
#define ATOMIC_BINOP_CASE(op, inst) \
case kPPC_Atomic##op##Int8: \
ASSEMBLE_ATOMIC_BINOP_SIGN_EXT(inst, lbarx, stbcx, extsb); \
break; \
case kPPC_Atomic##op##Uint8: \
ASSEMBLE_ATOMIC_BINOP(inst, lbarx, stbcx); \
break; \
case kPPC_Atomic##op##Int16: \
ASSEMBLE_ATOMIC_BINOP_SIGN_EXT(inst, lharx, sthcx, extsh); \
break; \
case kPPC_Atomic##op##Uint16: \
ASSEMBLE_ATOMIC_BINOP(inst, lharx, sthcx); \
break; \
case kPPC_Atomic##op##Int32: \
ASSEMBLE_ATOMIC_BINOP_SIGN_EXT(inst, lwarx, stwcx, extsw); \
break; \
case kPPC_Atomic##op##Uint32: \
ASSEMBLE_ATOMIC_BINOP(inst, lwarx, stwcx); \
break; \
case kPPC_Atomic##op##Int64: \
case kPPC_Atomic##op##Uint64: \
ASSEMBLE_ATOMIC_BINOP(inst, ldarx, stdcx); \
break;
ATOMIC_BINOP_CASE(Add, add)
ATOMIC_BINOP_CASE(Sub, sub)
ATOMIC_BINOP_CASE(And, and_)
ATOMIC_BINOP_CASE(Or, orx)
ATOMIC_BINOP_CASE(Xor, xor_)
#undef ATOMIC_BINOP_CASE
case kPPC_ByteRev32: {
Register input = i.InputRegister(0);
Register output = i.OutputRegister();
Register temp1 = r0;
__ rotlwi(temp1, input, 8);
__ rlwimi(temp1, input, 24, 0, 7);
__ rlwimi(temp1, input, 24, 16, 23);
__ extsw(output, temp1);
break;
}
#ifdef V8_TARGET_ARCH_PPC64
case kPPC_ByteRev64: {
Register input = i.InputRegister(0);
Register output = i.OutputRegister();
Register temp1 = r0;
Register temp2 = kScratchReg;
Register temp3 = i.TempRegister(0);
__ rldicl(temp1, input, 32, 32);
__ rotlwi(temp2, input, 8);
__ rlwimi(temp2, input, 24, 0, 7);
__ rotlwi(temp3, temp1, 8);
__ rlwimi(temp2, input, 24, 16, 23);
__ rlwimi(temp3, temp1, 24, 0, 7);
__ rlwimi(temp3, temp1, 24, 16, 23);
__ rldicr(temp2, temp2, 32, 31);
__ orx(output, temp2, temp3);
break;
}
#endif // V8_TARGET_ARCH_PPC64
case kPPC_F64x2Splat: {
Simd128Register dst = i.OutputSimd128Register();
__ MovDoubleToInt64(ip, i.InputDoubleRegister(0));
// Need to maintain 16 byte alignment for lvx.
__ mr(kScratchReg, sp);
__ ClearRightImm(
sp, sp,
Operand(base::bits::WhichPowerOfTwo(16))); // equivalent to &= -16
__ addi(sp, sp, Operand(-16));
__ StoreP(ip, MemOperand(sp, 0));
__ StoreP(ip, MemOperand(sp, 8));
__ lvx(dst, MemOperand(r0, sp));
__ mr(sp, kScratchReg);
break;
}
case kPPC_F32x4Splat: {
Simd128Register dst = i.OutputSimd128Register();
__ MovFloatToInt(kScratchReg, i.InputDoubleRegister(0));
__ mtvsrd(dst, kScratchReg);
__ vspltw(dst, dst, Operand(1));
break;
}
case kPPC_I64x2Splat: {
Register src = i.InputRegister(0);
Simd128Register dst = i.OutputSimd128Register();
// Need to maintain 16 byte alignment for lvx.
__ mr(kScratchReg, sp);
__ ClearRightImm(
sp, sp,
Operand(base::bits::WhichPowerOfTwo(16))); // equivalent to &= -16
__ addi(sp, sp, Operand(-16));
__ StoreP(src, MemOperand(sp, 0));
__ StoreP(src, MemOperand(sp, 8));
__ lvx(dst, MemOperand(r0, sp));
__ mr(sp, kScratchReg);
break;
}
case kPPC_I32x4Splat: {
Simd128Register dst = i.OutputSimd128Register();
__ mtvsrd(dst, i.InputRegister(0));
__ vspltw(dst, dst, Operand(1));
break;
}
case kPPC_I16x8Splat: {
Simd128Register dst = i.OutputSimd128Register();
__ mtvsrd(dst, i.InputRegister(0));
__ vsplth(dst, dst, Operand(3));
break;
}
case kPPC_I8x16Splat: {
Simd128Register dst = i.OutputSimd128Register();
__ mtvsrd(dst, i.InputRegister(0));
__ vspltb(dst, dst, Operand(7));
break;
}
case kPPC_F64x2ExtractLane: {
constexpr int lane_width_in_bytes = 8;
__ vextractd(kScratchDoubleReg, i.InputSimd128Register(0),
Operand((1 - i.InputInt8(1)) * lane_width_in_bytes));
__ mfvsrd(kScratchReg, kScratchDoubleReg);
__ MovInt64ToDouble(i.OutputDoubleRegister(), kScratchReg);
break;
}
case kPPC_F32x4ExtractLane: {
constexpr int lane_width_in_bytes = 4;
__ vextractuw(kScratchDoubleReg, i.InputSimd128Register(0),
Operand((3 - i.InputInt8(1)) * lane_width_in_bytes));
__ mfvsrd(kScratchReg, kScratchDoubleReg);
__ MovIntToFloat(i.OutputDoubleRegister(), kScratchReg);
break;
}
case kPPC_I64x2ExtractLane: {
constexpr int lane_width_in_bytes = 8;
__ vextractd(kScratchDoubleReg, i.InputSimd128Register(0),
Operand((1 - i.InputInt8(1)) * lane_width_in_bytes));
__ mfvsrd(i.OutputRegister(), kScratchDoubleReg);
break;
}
case kPPC_I32x4ExtractLane: {
constexpr int lane_width_in_bytes = 4;
__ vextractuw(kScratchDoubleReg, i.InputSimd128Register(0),
Operand((3 - i.InputInt8(1)) * lane_width_in_bytes));
__ mfvsrd(i.OutputRegister(), kScratchDoubleReg);
break;
}
case kPPC_I16x8ExtractLaneU: {
constexpr int lane_width_in_bytes = 2;
__ vextractuh(kScratchDoubleReg, i.InputSimd128Register(0),
Operand((7 - i.InputInt8(1)) * lane_width_in_bytes));
__ mfvsrd(i.OutputRegister(), kScratchDoubleReg);
break;
}
case kPPC_I16x8ExtractLaneS: {
constexpr int lane_width_in_bytes = 2;
__ vextractuh(kScratchDoubleReg, i.InputSimd128Register(0),
Operand((7 - i.InputInt8(1)) * lane_width_in_bytes));
__ mfvsrd(kScratchReg, kScratchDoubleReg);
__ extsh(i.OutputRegister(), kScratchReg);
break;
}
case kPPC_I8x16ExtractLaneU: {
__ vextractub(kScratchDoubleReg, i.InputSimd128Register(0),
Operand(15 - i.InputInt8(1)));
__ mfvsrd(i.OutputRegister(), kScratchDoubleReg);
break;
}
case kPPC_I8x16ExtractLaneS: {
__ vextractub(kScratchDoubleReg, i.InputSimd128Register(0),
Operand(15 - i.InputInt8(1)));
__ mfvsrd(kScratchReg, kScratchDoubleReg);
__ extsb(i.OutputRegister(), kScratchReg);
break;
}
case kPPC_F64x2ReplaceLane: {
DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0));
constexpr int lane_width_in_bytes = 8;
Simd128Register dst = i.OutputSimd128Register();
__ MovDoubleToInt64(r0, i.InputDoubleRegister(2));
__ mtvsrd(kScratchDoubleReg, r0);
__ vinsertd(dst, kScratchDoubleReg,
Operand((1 - i.InputInt8(1)) * lane_width_in_bytes));
break;
}
case kPPC_F32x4ReplaceLane: {
DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0));
constexpr int lane_width_in_bytes = 4;
Simd128Register dst = i.OutputSimd128Register();
__ MovFloatToInt(r0, i.InputDoubleRegister(2));
__ mtvsrd(kScratchDoubleReg, r0);
__ vinsertw(dst, kScratchDoubleReg,
Operand((3 - i.InputInt8(1)) * lane_width_in_bytes));
break;
}
case kPPC_I64x2ReplaceLane: {
DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0));
constexpr int lane_width_in_bytes = 8;
Simd128Register dst = i.OutputSimd128Register();
__ mtvsrd(kScratchDoubleReg, i.InputRegister(2));
__ vinsertd(dst, kScratchDoubleReg,
Operand((1 - i.InputInt8(1)) * lane_width_in_bytes));
break;
}
case kPPC_I32x4ReplaceLane: {
DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0));
constexpr int lane_width_in_bytes = 4;
Simd128Register dst = i.OutputSimd128Register();
__ mtvsrd(kScratchDoubleReg, i.InputRegister(2));
__ vinsertw(dst, kScratchDoubleReg,
Operand((3 - i.InputInt8(1)) * lane_width_in_bytes));
break;
}
case kPPC_I16x8ReplaceLane: {
DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0));
constexpr int lane_width_in_bytes = 2;
Simd128Register dst = i.OutputSimd128Register();
__ mtvsrd(kScratchDoubleReg, i.InputRegister(2));
__ vinserth(dst, kScratchDoubleReg,
Operand((7 - i.InputInt8(1)) * lane_width_in_bytes));
break;
}
case kPPC_I8x16ReplaceLane: {
DCHECK_EQ(i.OutputSimd128Register(), i.InputSimd128Register(0));
Simd128Register dst = i.OutputSimd128Register();
__ mtvsrd(kScratchDoubleReg, i.InputRegister(2));
__ vinsertb(dst, kScratchDoubleReg, Operand(15 - i.InputInt8(1)));
break;
}
case kPPC_F64x2Add: {
__ xvadddp(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_F64x2Sub: {
__ xvsubdp(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_F64x2Mul: {
__ xvmuldp(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_F32x4Add: {
__ vaddfp(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_F32x4AddHoriz: {
Simd128Register src0 = i.InputSimd128Register(0);
Simd128Register src1 = i.InputSimd128Register(1);
Simd128Register dst = i.OutputSimd128Register();
Simd128Register tempFPReg1 = i.ToSimd128Register(instr->TempAt(0));
Simd128Register tempFPReg2 = i.ToSimd128Register(instr->TempAt(1));
constexpr int shift_bits = 32;
// generate first operand
__ vpkudum(dst, src1, src0);
// generate second operand
__ li(ip, Operand(shift_bits));
__ mtvsrd(tempFPReg2, ip);
__ vspltb(tempFPReg2, tempFPReg2, Operand(7));
__ vsro(tempFPReg1, src0, tempFPReg2);
__ vsro(tempFPReg2, src1, tempFPReg2);
__ vpkudum(kScratchDoubleReg, tempFPReg2, tempFPReg1);
// add the operands
__ vaddfp(dst, kScratchDoubleReg, dst);
break;
}
case kPPC_F32x4Sub: {
__ vsubfp(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_F32x4Mul: {
__ xvmulsp(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I64x2Add: {
__ vaddudm(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I64x2Sub: {
__ vsubudm(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I64x2Mul: {
// Need to maintain 16 byte alignment for stvx and lvx.
__ mr(kScratchReg, sp);
__ ClearRightImm(
sp, sp,
Operand(base::bits::WhichPowerOfTwo(16))); // equivalent to &= -16
__ addi(sp, sp, Operand(-32));
__ stvx(i.InputSimd128Register(0), MemOperand(r0, sp));
__ li(ip, Operand(16));
__ stvx(i.InputSimd128Register(1), MemOperand(ip, sp));
for (int i = 0; i < 2; i++) {
__ LoadP(r0, MemOperand(sp, kBitsPerByte * i));
__ LoadP(ip, MemOperand(sp, (kBitsPerByte * i) + kSimd128Size));
__ mulld(r0, r0, ip);
__ StoreP(r0, MemOperand(sp, i * kBitsPerByte));
}
__ lvx(i.OutputSimd128Register(), MemOperand(r0, sp));
__ mr(sp, kScratchReg);
break;
}
case kPPC_I32x4Add: {
__ vadduwm(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I32x4AddHoriz: {
Simd128Register src0 = i.InputSimd128Register(0);
Simd128Register src1 = i.InputSimd128Register(1);
Simd128Register dst = i.OutputSimd128Register();
__ vxor(kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg);
__ vsum2sws(dst, src0, kScratchDoubleReg);
__ vsum2sws(kScratchDoubleReg, src1, kScratchDoubleReg);
__ vpkudum(dst, kScratchDoubleReg, dst);
break;
}
case kPPC_I32x4Sub: {
__ vsubuwm(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I32x4Mul: {
__ vmuluwm(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I16x8Add: {
__ vadduhm(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I16x8AddHoriz: {
Simd128Register src0 = i.InputSimd128Register(0);
Simd128Register src1 = i.InputSimd128Register(1);
Simd128Register dst = i.OutputSimd128Register();
__ vxor(kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg);
__ vsum4shs(dst, src0, kScratchDoubleReg);
__ vsum4shs(kScratchDoubleReg, src1, kScratchDoubleReg);
__ vpkuwus(dst, kScratchDoubleReg, dst);
break;
}
case kPPC_I16x8Sub: {
__ vsubuhm(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I16x8Mul: {
__ vxor(kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg);
__ vmladduhm(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1), kScratchDoubleReg);
break;
}
case kPPC_I8x16Add: {
__ vaddubm(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I8x16Sub: {
__ vsububm(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I8x16Mul: {
__ vmuleub(kScratchDoubleReg, i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vmuloub(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vpkuhum(i.OutputSimd128Register(), kScratchDoubleReg,
i.OutputSimd128Register());
break;
}
case kPPC_I64x2MinS: {
__ vminsd(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I32x4MinS: {
__ vminsw(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I64x2MinU: {
__ vminud(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I32x4MinU: {
__ vminuw(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I16x8MinS: {
__ vminsh(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I16x8MinU: {
__ vminuh(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I8x16MinS: {
__ vminsb(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I8x16MinU: {
__ vminub(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I64x2MaxS: {
__ vmaxsd(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I32x4MaxS: {
__ vmaxsw(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I64x2MaxU: {
__ vmaxud(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I32x4MaxU: {
__ vmaxuw(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I16x8MaxS: {
__ vmaxsh(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I16x8MaxU: {
__ vmaxuh(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I8x16MaxS: {
__ vmaxsb(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I8x16MaxU: {
__ vmaxub(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_F64x2Eq: {
__ xvcmpeqdp(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_F64x2Ne: {
__ xvcmpeqdp(kScratchDoubleReg, i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vnor(i.OutputSimd128Register(), kScratchDoubleReg, kScratchDoubleReg);
break;
}
case kPPC_F64x2Le: {
__ xvcmpgedp(i.OutputSimd128Register(), i.InputSimd128Register(1),
i.InputSimd128Register(0));
break;
}
case kPPC_F64x2Lt: {
__ xvcmpgtdp(i.OutputSimd128Register(), i.InputSimd128Register(1),
i.InputSimd128Register(0));
break;
}
case kPPC_F32x4Eq: {
__ xvcmpeqsp(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I64x2Eq: {
__ vcmpequd(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I32x4Eq: {
__ vcmpequw(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I16x8Eq: {
__ vcmpequh(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I8x16Eq: {
__ vcmpequb(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_F32x4Ne: {
__ xvcmpeqsp(kScratchDoubleReg, i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vnor(i.OutputSimd128Register(), kScratchDoubleReg, kScratchDoubleReg);
break;
}
case kPPC_I64x2Ne: {
__ vcmpequd(kScratchDoubleReg, i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vnor(i.OutputSimd128Register(), kScratchDoubleReg, kScratchDoubleReg);
break;
}
case kPPC_I32x4Ne: {
__ vcmpequw(kScratchDoubleReg, i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vnor(i.OutputSimd128Register(), kScratchDoubleReg, kScratchDoubleReg);
break;
}
case kPPC_I16x8Ne: {
__ vcmpequh(kScratchDoubleReg, i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vnor(i.OutputSimd128Register(), kScratchDoubleReg, kScratchDoubleReg);
break;
}
case kPPC_I8x16Ne: {
__ vcmpequb(kScratchDoubleReg, i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vnor(i.OutputSimd128Register(), kScratchDoubleReg, kScratchDoubleReg);
break;
}
case kPPC_F32x4Lt: {
__ xvcmpgtsp(i.OutputSimd128Register(), i.InputSimd128Register(1),
i.InputSimd128Register(0));
break;
}
case kPPC_F32x4Le: {
__ xvcmpgesp(i.OutputSimd128Register(), i.InputSimd128Register(1),
i.InputSimd128Register(0));
break;
}
case kPPC_I64x2GtS: {
__ vcmpgtsd(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I32x4GtS: {
__ vcmpgtsw(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I64x2GeS: {
__ vcmpequd(kScratchDoubleReg, i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vcmpgtsd(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vor(i.OutputSimd128Register(), i.OutputSimd128Register(),
kScratchDoubleReg);
break;
}
case kPPC_I32x4GeS: {
__ vcmpequw(kScratchDoubleReg, i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vcmpgtsw(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vor(i.OutputSimd128Register(), i.OutputSimd128Register(),
kScratchDoubleReg);
break;
}
case kPPC_I64x2GtU: {
__ vcmpgtud(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I32x4GtU: {
__ vcmpgtuw(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I64x2GeU: {
__ vcmpequd(kScratchDoubleReg, i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vcmpgtud(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vor(i.OutputSimd128Register(), i.OutputSimd128Register(),
kScratchDoubleReg);
break;
}
case kPPC_I32x4GeU: {
__ vcmpequw(kScratchDoubleReg, i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vcmpgtuw(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vor(i.OutputSimd128Register(), i.OutputSimd128Register(),
kScratchDoubleReg);
break;
}
case kPPC_I16x8GtS: {
__ vcmpgtsh(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I16x8GeS: {
__ vcmpequh(kScratchDoubleReg, i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vcmpgtsh(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vor(i.OutputSimd128Register(), i.OutputSimd128Register(),
kScratchDoubleReg);
break;
}
case kPPC_I16x8GtU: {
__ vcmpgtuh(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I16x8GeU: {
__ vcmpequh(kScratchDoubleReg, i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vcmpgtuh(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vor(i.OutputSimd128Register(), i.OutputSimd128Register(),
kScratchDoubleReg);
break;
}
case kPPC_I8x16GtS: {
__ vcmpgtsb(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I8x16GeS: {
__ vcmpequb(kScratchDoubleReg, i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vcmpgtsb(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vor(i.OutputSimd128Register(), i.OutputSimd128Register(),
kScratchDoubleReg);
break;
}
case kPPC_I8x16GtU: {
__ vcmpgtub(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I8x16GeU: {
__ vcmpequb(kScratchDoubleReg, i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vcmpgtub(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
__ vor(i.OutputSimd128Register(), i.OutputSimd128Register(),
kScratchDoubleReg);
break;
}
#define VECTOR_SHIFT(op) \
{ \
__ mtvsrd(kScratchDoubleReg, i.InputRegister(1)); \
__ vspltb(kScratchDoubleReg, kScratchDoubleReg, Operand(7)); \
__ op(i.OutputSimd128Register(), i.InputSimd128Register(0), \
kScratchDoubleReg); \
}
case kPPC_I64x2Shl: {
VECTOR_SHIFT(vsld)
break;
}
case kPPC_I64x2ShrS: {
VECTOR_SHIFT(vsrad)
break;
}
case kPPC_I64x2ShrU: {
VECTOR_SHIFT(vsrd)
break;
}
case kPPC_I32x4Shl: {
VECTOR_SHIFT(vslw)
break;
}
case kPPC_I32x4ShrS: {
VECTOR_SHIFT(vsraw)
break;
}
case kPPC_I32x4ShrU: {
VECTOR_SHIFT(vsrw)
break;
}
case kPPC_I16x8Shl: {
VECTOR_SHIFT(vslh)
break;
}
case kPPC_I16x8ShrS: {
VECTOR_SHIFT(vsrah)
break;
}
case kPPC_I16x8ShrU: {
VECTOR_SHIFT(vsrh)
break;
}
case kPPC_I8x16Shl: {
VECTOR_SHIFT(vslb)
break;
}
case kPPC_I8x16ShrS: {
VECTOR_SHIFT(vsrab)
break;
}
case kPPC_I8x16ShrU: {
VECTOR_SHIFT(vsrb)
break;
}
#undef VECTOR_SHIFT
case kPPC_S128And: {
Simd128Register dst = i.OutputSimd128Register();
Simd128Register src = i.InputSimd128Register(1);
__ vand(dst, i.InputSimd128Register(0), src);
break;
}
case kPPC_S128Or: {
Simd128Register dst = i.OutputSimd128Register();
Simd128Register src = i.InputSimd128Register(1);
__ vor(dst, i.InputSimd128Register(0), src);
break;
}
case kPPC_S128Xor: {
Simd128Register dst = i.OutputSimd128Register();
Simd128Register src = i.InputSimd128Register(1);
__ vxor(dst, i.InputSimd128Register(0), src);
break;
}
case kPPC_S128Zero: {
Simd128Register dst = i.OutputSimd128Register();
__ vxor(dst, dst, dst);
break;
}
case kPPC_S128Not: {
Simd128Register dst = i.OutputSimd128Register();
Simd128Register src = i.InputSimd128Register(0);
__ vnor(dst, src, src);
break;
}
case kPPC_S128Select: {
Simd128Register dst = i.OutputSimd128Register();
Simd128Register mask = i.InputSimd128Register(0);
Simd128Register src1 = i.InputSimd128Register(1);
Simd128Register src2 = i.InputSimd128Register(2);
__ vsel(dst, src2, src1, mask);
break;
}
case kPPC_F64x2Abs: {
__ xvabsdp(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_F64x2Neg: {
__ xvnegdp(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_F64x2Sqrt: {
__ xvsqrtdp(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_F32x4Abs: {
__ xvabssp(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_F32x4Neg: {
__ xvnegsp(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_F32x4RecipApprox: {
__ xvresp(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_F32x4RecipSqrtApprox: {
__ xvrsqrtesp(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_F32x4Sqrt: {
__ xvsqrtsp(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_I64x2Neg: {
Simd128Register tempFPReg1 = i.ToSimd128Register(instr->TempAt(0));
__ li(ip, Operand(1));
// Need to maintain 16 byte alignment for lvx.
__ mr(kScratchReg, sp);
__ ClearRightImm(
sp, sp,
Operand(base::bits::WhichPowerOfTwo(16))); // equivalent to &= -16
__ addi(sp, sp, Operand(-16));
__ StoreP(ip, MemOperand(sp, 0));
__ StoreP(ip, MemOperand(sp, 8));
__ lvx(kScratchDoubleReg, MemOperand(r0, sp));
__ mr(sp, kScratchReg);
// Perform negation.
__ vnor(tempFPReg1, i.InputSimd128Register(0), i.InputSimd128Register(0));
__ vaddudm(i.OutputSimd128Register(), tempFPReg1, kScratchDoubleReg);
break;
}
case kPPC_I32x4Neg: {
Simd128Register tempFPReg1 = i.ToSimd128Register(instr->TempAt(0));
__ li(ip, Operand(1));
__ mtvsrd(kScratchDoubleReg, ip);
__ vspltw(kScratchDoubleReg, kScratchDoubleReg, Operand(1));
__ vnor(tempFPReg1, i.InputSimd128Register(0), i.InputSimd128Register(0));
__ vadduwm(i.OutputSimd128Register(), kScratchDoubleReg, tempFPReg1);
break;
}
case kPPC_I32x4Abs: {
Simd128Register tempFPReg1 = i.ToSimd128Register(instr->TempAt(0));
Simd128Register src = i.InputSimd128Register(0);
constexpr int shift_bits = 31;
__ li(ip, Operand(shift_bits));
__ mtvsrd(kScratchDoubleReg, ip);
__ vspltb(kScratchDoubleReg, kScratchDoubleReg, Operand(7));
__ vsraw(kScratchDoubleReg, src, kScratchDoubleReg);
__ vxor(tempFPReg1, src, kScratchDoubleReg);
__ vsubuwm(i.OutputSimd128Register(), tempFPReg1, kScratchDoubleReg);
break;
}
case kPPC_I16x8Neg: {
Simd128Register tempFPReg1 = i.ToSimd128Register(instr->TempAt(0));
__ li(ip, Operand(1));
__ mtvsrd(kScratchDoubleReg, ip);
__ vsplth(kScratchDoubleReg, kScratchDoubleReg, Operand(3));
__ vnor(tempFPReg1, i.InputSimd128Register(0), i.InputSimd128Register(0));
__ vadduhm(i.OutputSimd128Register(), kScratchDoubleReg, tempFPReg1);
break;
}
case kPPC_I16x8Abs: {
Simd128Register tempFPReg1 = i.ToSimd128Register(instr->TempAt(0));
Simd128Register src = i.InputSimd128Register(0);
constexpr int shift_bits = 15;
__ li(ip, Operand(shift_bits));
__ mtvsrd(kScratchDoubleReg, ip);
__ vspltb(kScratchDoubleReg, kScratchDoubleReg, Operand(7));
__ vsrah(kScratchDoubleReg, src, kScratchDoubleReg);
__ vxor(tempFPReg1, src, kScratchDoubleReg);
__ vsubuhm(i.OutputSimd128Register(), tempFPReg1, kScratchDoubleReg);
break;
}
case kPPC_I8x16Neg: {
Simd128Register tempFPReg1 = i.ToSimd128Register(instr->TempAt(0));
__ li(ip, Operand(1));
__ mtvsrd(kScratchDoubleReg, ip);
__ vspltb(kScratchDoubleReg, kScratchDoubleReg, Operand(7));
__ vnor(tempFPReg1, i.InputSimd128Register(0), i.InputSimd128Register(0));
__ vaddubm(i.OutputSimd128Register(), kScratchDoubleReg, tempFPReg1);
break;
}
case kPPC_I8x16Abs: {
Simd128Register tempFPReg1 = i.ToSimd128Register(instr->TempAt(0));
Simd128Register src = i.InputSimd128Register(0);
constexpr int shift_bits = 7;
__ li(ip, Operand(shift_bits));
__ mtvsrd(kScratchDoubleReg, ip);
__ vspltb(kScratchDoubleReg, kScratchDoubleReg, Operand(7));
__ vsrab(kScratchDoubleReg, src, kScratchDoubleReg);
__ vxor(tempFPReg1, src, kScratchDoubleReg);
__ vsububm(i.OutputSimd128Register(), tempFPReg1, kScratchDoubleReg);
break;
}
case kPPC_V64x2AnyTrue:
case kPPC_V32x4AnyTrue:
case kPPC_V16x8AnyTrue:
case kPPC_V8x16AnyTrue: {
Simd128Register src = i.InputSimd128Register(0);
Register dst = i.OutputRegister();
constexpr int bit_number = 24;
__ li(r0, Operand(0));
__ li(ip, Operand(-1));
// Check if both lanes are 0, if so then return false.
__ vxor(kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg);
__ vcmpequd(kScratchDoubleReg, src, kScratchDoubleReg, SetRC);
__ isel(dst, r0, ip, bit_number);
break;
}
#define SIMD_ALL_TRUE(opcode) \
Simd128Register src = i.InputSimd128Register(0); \
Register dst = i.OutputRegister(); \
constexpr int bit_number = 24; \
__ li(r0, Operand(0)); \
__ li(ip, Operand(-1)); \
/* Check if all lanes > 0, if not then return false.*/ \
__ vxor(kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg); \
__ opcode(kScratchDoubleReg, src, kScratchDoubleReg, SetRC); \
__ isel(dst, ip, r0, bit_number);
case kPPC_V64x2AllTrue: {
SIMD_ALL_TRUE(vcmpgtud)
break;
}
case kPPC_V32x4AllTrue: {
SIMD_ALL_TRUE(vcmpgtuw)
break;
}
case kPPC_V16x8AllTrue: {
SIMD_ALL_TRUE(vcmpgtuh)
break;
}
case kPPC_V8x16AllTrue: {
SIMD_ALL_TRUE(vcmpgtub)
break;
}
#undef SIMD_ALL_TRUE
case kPPC_I32x4SConvertF32x4: {
Simd128Register src = i.InputSimd128Register(0);
// NaN to 0
__ vor(kScratchDoubleReg, src, src);
__ xvcmpeqsp(kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg);
__ vand(kScratchDoubleReg, src, kScratchDoubleReg);
__ xvcvspsxws(i.OutputSimd128Register(), kScratchDoubleReg);
break;
}
case kPPC_I32x4UConvertF32x4: {
__ xvcvspuxws(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_F32x4SConvertI32x4: {
__ xvcvsxwsp(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_F32x4UConvertI32x4: {
__ xvcvuxwsp(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_I32x4SConvertI16x8Low: {
__ vupklsh(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_I32x4SConvertI16x8High: {
__ vupkhsh(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_I32x4UConvertI16x8Low: {
__ vupklsh(i.OutputSimd128Register(), i.InputSimd128Register(0));
// Zero extend.
__ mov(ip, Operand(0xFFFF));
__ mtvsrd(kScratchDoubleReg, ip);
__ vspltw(kScratchDoubleReg, kScratchDoubleReg, Operand(1));
__ vand(i.OutputSimd128Register(), kScratchDoubleReg,
i.OutputSimd128Register());
break;
}
case kPPC_I32x4UConvertI16x8High: {
__ vupkhsh(i.OutputSimd128Register(), i.InputSimd128Register(0));
// Zero extend.
__ mov(ip, Operand(0xFFFF));
__ mtvsrd(kScratchDoubleReg, ip);
__ vspltw(kScratchDoubleReg, kScratchDoubleReg, Operand(1));
__ vand(i.OutputSimd128Register(), kScratchDoubleReg,
i.OutputSimd128Register());
break;
}
case kPPC_I16x8SConvertI8x16Low: {
__ vupklsb(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_I16x8SConvertI8x16High: {
__ vupkhsb(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_I16x8UConvertI8x16Low: {
__ vupklsb(i.OutputSimd128Register(), i.InputSimd128Register(0));
// Zero extend.
__ li(ip, Operand(0xFF));
__ mtvsrd(kScratchDoubleReg, ip);
__ vsplth(kScratchDoubleReg, kScratchDoubleReg, Operand(3));
__ vand(i.OutputSimd128Register(), kScratchDoubleReg,
i.OutputSimd128Register());
break;
}
case kPPC_I16x8UConvertI8x16High: {
__ vupkhsb(i.OutputSimd128Register(), i.InputSimd128Register(0));
// Zero extend.
__ li(ip, Operand(0xFF));
__ mtvsrd(kScratchDoubleReg, ip);
__ vsplth(kScratchDoubleReg, kScratchDoubleReg, Operand(3));
__ vand(i.OutputSimd128Register(), kScratchDoubleReg,
i.OutputSimd128Register());
break;
}
case kPPC_I16x8SConvertI32x4: {
__ vpkswss(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I16x8UConvertI32x4: {
__ vpkswus(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I8x16SConvertI16x8: {
__ vpkshss(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I8x16UConvertI16x8: {
__ vpkshus(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I8x16Shuffle: {
Simd128Register dst = i.OutputSimd128Register(),
src0 = i.InputSimd128Register(0),
src1 = i.InputSimd128Register(1);
__ mov(r0, Operand(make_uint64(i.InputUint32(3), i.InputUint32(2))));
__ mov(ip, Operand(make_uint64(i.InputUint32(5), i.InputUint32(4))));
// Need to maintain 16 byte alignment for lvx.
__ mr(kScratchReg, sp);
__ ClearRightImm(
sp, sp,
Operand(base::bits::WhichPowerOfTwo(16))); // equivalent to &= -16
__ addi(sp, sp, Operand(-16));
__ StoreP(r0, MemOperand(sp, 0));
__ StoreP(ip, MemOperand(sp, 8));
__ lvx(kScratchDoubleReg, MemOperand(r0, sp));
__ mr(sp, kScratchReg);
__ vperm(dst, src0, src1, kScratchDoubleReg);
break;
}
case kPPC_I16x8AddSatS: {
__ vaddshs(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I16x8SubSatS: {
__ vsubshs(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I16x8AddSatU: {
__ vadduhs(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I16x8SubSatU: {
__ vsubuhs(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I8x16AddSatS: {
__ vaddsbs(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I8x16SubSatS: {
__ vsubsbs(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I8x16AddSatU: {
__ vaddubs(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I8x16SubSatU: {
__ vsububs(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I8x16Swizzle: {
Simd128Register dst = i.OutputSimd128Register(),
src0 = i.InputSimd128Register(0),
src1 = i.InputSimd128Register(1),
tempFPReg1 = i.ToSimd128Register(instr->TempAt(0)),
tempFPReg2 = i.ToSimd128Register(instr->TempAt(1));
// Saturate the indices to 5 bits. Input indices more than 31 should
// return 0.
__ xxspltib(tempFPReg2, Operand(31));
__ vminub(tempFPReg2, src1, tempFPReg2);
__ addi(sp, sp, Operand(-16));
__ stxvd(src0, MemOperand(r0, sp));
__ ldbrx(r0, MemOperand(r0, sp));
__ li(ip, Operand(8));
__ ldbrx(ip, MemOperand(ip, sp));
__ stdx(ip, MemOperand(r0, sp));
__ li(ip, Operand(8));
__ stdx(r0, MemOperand(ip, sp));
__ lxvd(kScratchDoubleReg, MemOperand(r0, sp));
__ addi(sp, sp, Operand(16));
__ vxor(tempFPReg1, tempFPReg1, tempFPReg1);
__ vperm(dst, kScratchDoubleReg, tempFPReg1, tempFPReg2);
break;
}
case kPPC_F64x2Qfma: {
Simd128Register src0 = i.InputSimd128Register(0);
Simd128Register src1 = i.InputSimd128Register(1);
Simd128Register src2 = i.InputSimd128Register(2);
Simd128Register dst = i.OutputSimd128Register();
__ vor(kScratchDoubleReg, src1, src1);
__ xvmaddmdp(kScratchDoubleReg, src2, src0);
__ vor(dst, kScratchDoubleReg, kScratchDoubleReg);
break;
}
case kPPC_F64x2Qfms: {
Simd128Register src0 = i.InputSimd128Register(0);
Simd128Register src1 = i.InputSimd128Register(1);
Simd128Register src2 = i.InputSimd128Register(2);
Simd128Register dst = i.OutputSimd128Register();
__ vor(kScratchDoubleReg, src1, src1);
__ xvnmsubmdp(kScratchDoubleReg, src2, src0);
__ vor(dst, kScratchDoubleReg, kScratchDoubleReg);
break;
}
case kPPC_F32x4Qfma: {
Simd128Register src0 = i.InputSimd128Register(0);
Simd128Register src1 = i.InputSimd128Register(1);
Simd128Register src2 = i.InputSimd128Register(2);
Simd128Register dst = i.OutputSimd128Register();
__ vor(kScratchDoubleReg, src1, src1);
__ xvmaddmsp(kScratchDoubleReg, src2, src0);
__ vor(dst, kScratchDoubleReg, kScratchDoubleReg);
break;
}
case kPPC_F32x4Qfms: {
Simd128Register src0 = i.InputSimd128Register(0);
Simd128Register src1 = i.InputSimd128Register(1);
Simd128Register src2 = i.InputSimd128Register(2);
Simd128Register dst = i.OutputSimd128Register();
__ vor(kScratchDoubleReg, src1, src1);
__ xvnmsubmsp(kScratchDoubleReg, src2, src0);
__ vor(dst, kScratchDoubleReg, kScratchDoubleReg);
break;
}
case kPPC_I16x8RoundingAverageU: {
__ vavguh(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_I8x16RoundingAverageU: {
__ vavgub(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_S128AndNot: {
Simd128Register dst = i.OutputSimd128Register();
Simd128Register src = i.InputSimd128Register(0);
__ vandc(dst, src, i.InputSimd128Register(1));
break;
}
case kPPC_F64x2Div: {
__ xvdivdp(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
#define F64X2_MIN_MAX_NAN(result) \
Simd128Register tempFPReg1 = i.ToSimd128Register(instr->TempAt(0)); \
__ xvcmpeqdp(tempFPReg1, i.InputSimd128Register(0), \
i.InputSimd128Register(0)); \
__ vsel(result, i.InputSimd128Register(0), result, tempFPReg1); \
__ xvcmpeqdp(tempFPReg1, i.InputSimd128Register(1), \
i.InputSimd128Register(1)); \
__ vsel(i.OutputSimd128Register(), i.InputSimd128Register(1), result, \
tempFPReg1);
case kPPC_F64x2Min: {
__ xvmindp(kScratchDoubleReg, i.InputSimd128Register(0),
i.InputSimd128Register(1));
// We need to check if an input is NAN and preserve it.
F64X2_MIN_MAX_NAN(kScratchDoubleReg)
break;
}
case kPPC_F64x2Max: {
__ xvmaxdp(kScratchDoubleReg, i.InputSimd128Register(0),
i.InputSimd128Register(1));
// We need to check if an input is NAN and preserve it.
F64X2_MIN_MAX_NAN(kScratchDoubleReg)
break;
}
#undef F64X2_MIN_MAX_NAN
case kPPC_F32x4Div: {
__ xvdivsp(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_F32x4Min: {
__ vminfp(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_F32x4Max: {
__ vmaxfp(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1));
break;
}
case kPPC_F64x2Ceil: {
__ xvrdpip(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_F64x2Floor: {
__ xvrdpim(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_F64x2Trunc: {
__ xvrdpiz(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_F64x2NearestInt: {
__ xvrdpi(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_F32x4Ceil: {
__ xvrspip(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_F32x4Floor: {
__ xvrspim(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_F32x4Trunc: {
__ xvrspiz(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_F32x4NearestInt: {
__ xvrspi(i.OutputSimd128Register(), i.InputSimd128Register(0));
break;
}
case kPPC_I32x4BitMask: {
__ mov(kScratchReg,
Operand(0x8080808000204060)); // Select 0 for the high bits.
__ mtvsrd(kScratchDoubleReg, kScratchReg);
__ vbpermq(kScratchDoubleReg, i.InputSimd128Register(0),
kScratchDoubleReg);
__ vextractub(kScratchDoubleReg, kScratchDoubleReg, Operand(6));
__ mfvsrd(i.OutputRegister(), kScratchDoubleReg);
break;
}
case kPPC_I16x8BitMask: {
__ mov(kScratchReg, Operand(0x10203040506070));
__ mtvsrd(kScratchDoubleReg, kScratchReg);
__ vbpermq(kScratchDoubleReg, i.InputSimd128Register(0),
kScratchDoubleReg);
__ vextractub(kScratchDoubleReg, kScratchDoubleReg, Operand(6));
__ mfvsrd(i.OutputRegister(), kScratchDoubleReg);
break;
}
case kPPC_I8x16BitMask: {
Register temp = i.ToRegister(instr->TempAt(0));
__ mov(temp, Operand(0x8101820283038));
__ mov(ip, Operand(0x4048505860687078));
__ mtvsrdd(kScratchDoubleReg, temp, ip);
__ vbpermq(kScratchDoubleReg, i.InputSimd128Register(0),
kScratchDoubleReg);
__ vextractuh(kScratchDoubleReg, kScratchDoubleReg, Operand(6));
__ mfvsrd(i.OutputRegister(), kScratchDoubleReg);
break;
}
case kPPC_I32x4DotI16x8S: {
__ vxor(kScratchDoubleReg, kScratchDoubleReg, kScratchDoubleReg);
__ vmsumshm(i.OutputSimd128Register(), i.InputSimd128Register(0),
i.InputSimd128Register(1), kScratchDoubleReg);
break;
}
case kPPC_StoreCompressTagged: {
ASSEMBLE_STORE_INTEGER(StoreTaggedField, StoreTaggedFieldX);
break;
}
case kPPC_LoadDecompressTaggedSigned: {
CHECK(instr->HasOutput());
ASSEMBLE_LOAD_INTEGER(lwz, lwzx);
break;
}
case kPPC_LoadDecompressTaggedPointer: {
CHECK(instr->HasOutput());
ASSEMBLE_LOAD_INTEGER(lwz, lwzx);
__ add(i.OutputRegister(), i.OutputRegister(), kRootRegister);
break;
}
case kPPC_LoadDecompressAnyTagged: {
CHECK(instr->HasOutput());
ASSEMBLE_LOAD_INTEGER(lwz, lwzx);
__ add(i.OutputRegister(), i.OutputRegister(), kRootRegister);
break;
}
default:
UNREACHABLE();
}
return kSuccess;
} // NOLINT(readability/fn_size)
// Assembles branches after an instruction.
void CodeGenerator::AssembleArchBranch(Instruction* instr, BranchInfo* branch) {
PPCOperandConverter i(this, instr);
Label* tlabel = branch->true_label;
Label* flabel = branch->false_label;
ArchOpcode op = instr->arch_opcode();
FlagsCondition condition = branch->condition;
CRegister cr = cr0;
Condition cond = FlagsConditionToCondition(condition, op);
if (op == kPPC_CmpDouble) {
// check for unordered if necessary
if (cond == le) {
__ bunordered(flabel, cr);
// Unnecessary for eq/lt since only FU bit will be set.
} else if (cond == gt) {
__ bunordered(tlabel, cr);
// Unnecessary for ne/ge since only FU bit will be set.
}
}
__ b(cond, tlabel, cr);
if (!branch->fallthru) __ b(flabel); // no fallthru to flabel.
}
void CodeGenerator::AssembleBranchPoisoning(FlagsCondition condition,
Instruction* instr) {
// TODO(John) Handle float comparisons (kUnordered[Not]Equal).
if (condition == kUnorderedEqual || condition == kUnorderedNotEqual ||
condition == kOverflow || condition == kNotOverflow) {
return;
}
ArchOpcode op = instr->arch_opcode();
condition = NegateFlagsCondition(condition);
__ li(kScratchReg, Operand::Zero());
__ isel(FlagsConditionToCondition(condition, op), kSpeculationPoisonRegister,
kScratchReg, kSpeculationPoisonRegister, cr0);
}
void CodeGenerator::AssembleArchDeoptBranch(Instruction* instr,
BranchInfo* branch) {
AssembleArchBranch(instr, branch);
}
void CodeGenerator::AssembleArchJump(RpoNumber target) {
if (!IsNextInAssemblyOrder(target)) __ b(GetLabel(target));
}
void CodeGenerator::AssembleArchTrap(Instruction* instr,
FlagsCondition condition) {
class OutOfLineTrap final : public OutOfLineCode {
public:
OutOfLineTrap(CodeGenerator* gen, Instruction* instr)
: OutOfLineCode(gen), instr_(instr), gen_(gen) {}
void Generate() final {
PPCOperandConverter i(gen_, instr_);
TrapId trap_id =
static_cast<TrapId>(i.InputInt32(instr_->InputCount() - 1));
GenerateCallToTrap(trap_id);
}
private:
void GenerateCallToTrap(TrapId trap_id) {
if (trap_id == TrapId::kInvalid) {
// We cannot test calls to the runtime in cctest/test-run-wasm.
// Therefore we emit a call to C here instead of a call to the runtime.
// We use the context register as the scratch register, because we do
// not have a context here.
__ PrepareCallCFunction(0, 0, cp);
__ CallCFunction(
ExternalReference::wasm_call_trap_callback_for_testing(), 0);
__ LeaveFrame(StackFrame::WASM);
auto call_descriptor = gen_->linkage()->GetIncomingDescriptor();
int pop_count =
static_cast<int>(call_descriptor->StackParameterCount());
__ Drop(pop_count);
__ Ret();
} else {
gen_->AssembleSourcePosition(instr_);
// A direct call to a wasm runtime stub defined in this module.
// Just encode the stub index. This will be patched when the code
// is added to the native module and copied into wasm code space.
__ Call(static_cast<Address>(trap_id), RelocInfo::WASM_STUB_CALL);
ReferenceMap* reference_map =
gen_->zone()->New<ReferenceMap>(gen_->zone());
gen_->RecordSafepoint(reference_map, Safepoint::kNoLazyDeopt);
if (FLAG_debug_code) {
__ stop();
}
}
}
Instruction* instr_;
CodeGenerator* gen_;
};
auto ool = zone()->New<OutOfLineTrap>(this, instr);
Label* tlabel = ool->entry();
Label end;
ArchOpcode op = instr->arch_opcode();
CRegister cr = cr0;
Condition cond = FlagsConditionToCondition(condition, op);
if (op == kPPC_CmpDouble) {
// check for unordered if necessary
if (cond == le) {
__ bunordered(&end, cr);
// Unnecessary for eq/lt since only FU bit will be set.
} else if (cond == gt) {
__ bunordered(tlabel, cr);
// Unnecessary for ne/ge since only FU bit will be set.
}
}
__ b(cond, tlabel, cr);
__ bind(&end);
}
// Assembles boolean materializations after an instruction.
void CodeGenerator::AssembleArchBoolean(Instruction* instr,
FlagsCondition condition) {
PPCOperandConverter i(this, instr);
Label done;
ArchOpcode op = instr->arch_opcode();
CRegister cr = cr0;
int reg_value = -1;
// Materialize a full 32-bit 1 or 0 value. The result register is always the
// last output of the instruction.
DCHECK_NE(0u, instr->OutputCount());
Register reg = i.OutputRegister(instr->OutputCount() - 1);
Condition cond = FlagsConditionToCondition(condition, op);
if (op == kPPC_CmpDouble) {
// check for unordered if necessary
if (cond == le) {
reg_value = 0;
__ li(reg, Operand::Zero());
__ bunordered(&done, cr);
} else if (cond == gt) {
reg_value = 1;
__ li(reg, Operand(1));
__ bunordered(&done, cr);
}
// Unnecessary for eq/lt & ne/ge since only FU bit will be set.
}
if (CpuFeatures::IsSupported(ISELECT)) {
switch (cond) {
case eq:
case lt:
case gt:
if (reg_value != 1) __ li(reg, Operand(1));
__ li(kScratchReg, Operand::Zero());
__ isel(cond, reg, reg, kScratchReg, cr);
break;
case ne:
case ge:
case le:
if (reg_value != 1) __ li(reg, Operand(1));
// r0 implies logical zero in this form
__ isel(NegateCondition(cond), reg, r0, reg, cr);
break;
default:
UNREACHABLE();
break;
}
} else {
if (reg_value != 0) __ li(reg, Operand::Zero());
__ b(NegateCondition(cond), &done, cr);
__ li(reg, Operand(1));
}
__ bind(&done);
}
void CodeGenerator::AssembleArchBinarySearchSwitch(Instruction* instr) {
PPCOperandConverter i(this, instr);
Register input = i.InputRegister(0);
std::vector<std::pair<int32_t, Label*>> cases;
for (size_t index = 2; index < instr->InputCount(); index += 2) {
cases.push_back({i.InputInt32(index + 0), GetLabel(i.InputRpo(index + 1))});
}
AssembleArchBinarySearchSwitchRange(input, i.InputRpo(1), cases.data(),
cases.data() + cases.size());
}
void CodeGenerator::AssembleArchTableSwitch(Instruction* instr) {
PPCOperandConverter i(this, instr);
Register input = i.InputRegister(0);
int32_t const case_count = static_cast<int32_t>(instr->InputCount() - 2);
Label** cases = zone()->NewArray<Label*>(case_count);
for (int32_t index = 0; index < case_count; ++index) {
cases[index] = GetLabel(i.InputRpo(index + 2));
}
Label* const table = AddJumpTable(cases, case_count);
__ Cmpli(input, Operand(case_count), r0);
__ bge(GetLabel(i.InputRpo(1)));
__ mov_label_addr(kScratchReg, table);
__ ShiftLeftImm(r0, input, Operand(kSystemPointerSizeLog2));
__ LoadPX(kScratchReg, MemOperand(kScratchReg, r0));
__ Jump(kScratchReg);
}
void CodeGenerator::FinishFrame(Frame* frame) {
auto call_descriptor = linkage()->GetIncomingDescriptor();
const RegList double_saves = call_descriptor->CalleeSavedFPRegisters();
// Save callee-saved Double registers.
if (double_saves != 0) {
frame->AlignSavedCalleeRegisterSlots();
DCHECK_EQ(kNumCalleeSavedDoubles,
base::bits::CountPopulation(double_saves));
frame->AllocateSavedCalleeRegisterSlots(kNumCalleeSavedDoubles *
(kDoubleSize / kSystemPointerSize));
}
// Save callee-saved registers.
const RegList saves = FLAG_enable_embedded_constant_pool
? call_descriptor->CalleeSavedRegisters() &
~kConstantPoolRegister.bit()
: call_descriptor->CalleeSavedRegisters();
if (saves != 0) {
// register save area does not include the fp or constant pool pointer.
const int num_saves =
kNumCalleeSaved - 1 - (FLAG_enable_embedded_constant_pool ? 1 : 0);
DCHECK(num_saves == base::bits::CountPopulation(saves));
frame->AllocateSavedCalleeRegisterSlots(num_saves);
}
}
void CodeGenerator::AssembleConstructFrame() {
auto call_descriptor = linkage()->GetIncomingDescriptor();
if (frame_access_state()->has_frame()) {
if (call_descriptor->IsCFunctionCall()) {
if (info()->GetOutputStackFrameType() == StackFrame::C_WASM_ENTRY) {
__ StubPrologue(StackFrame::C_WASM_ENTRY);
// Reserve stack space for saving the c_entry_fp later.
__ addi(sp, sp, Operand(-kSystemPointerSize));
} else {
__ mflr(r0);
if (FLAG_enable_embedded_constant_pool) {
__ Push(r0, fp, kConstantPoolRegister);
// Adjust FP to point to saved FP.
__ subi(fp, sp, Operand(StandardFrameConstants::kConstantPoolOffset));
} else {
__ Push(r0, fp);
__ mr(fp, sp);
}
}
} else if (call_descriptor->IsJSFunctionCall()) {
__ Prologue();
} else {
StackFrame::Type type = info()->GetOutputStackFrameType();
// TODO(mbrandy): Detect cases where ip is the entrypoint (for
// efficient intialization of the constant pool pointer register).
__ StubPrologue(type);
if (call_descriptor->IsWasmFunctionCall()) {
__ Push(kWasmInstanceRegister);
} else if (call_descriptor->IsWasmImportWrapper() ||
call_descriptor->IsWasmCapiFunction()) {
// Wasm import wrappers are passed a tuple in the place of the instance.
// Unpack the tuple into the instance and the target callable.
// This must be done here in the codegen because it cannot be expressed
// properly in the graph.
__ LoadTaggedPointerField(
kJSFunctionRegister,
FieldMemOperand(kWasmInstanceRegister, Tuple2::kValue2Offset));
__ LoadTaggedPointerField(
kWasmInstanceRegister,
FieldMemOperand(kWasmInstanceRegister, Tuple2::kValue1Offset));
__ Push(kWasmInstanceRegister);
if (call_descriptor->IsWasmCapiFunction()) {
// Reserve space for saving the PC later.
__ addi(sp, sp, Operand(-kSystemPointerSize));
}
}
}
unwinding_info_writer_.MarkFrameConstructed(__ pc_offset());
}
int required_slots =
frame()->GetTotalFrameSlotCount() - frame()->GetFixedSlotCount();
if (info()->is_osr()) {
// TurboFan OSR-compiled functions cannot be entered directly.
__ Abort(AbortReason::kShouldNotDirectlyEnterOsrFunction);
// Unoptimized code jumps directly to this entrypoint while the unoptimized
// frame is still on the stack. Optimized code uses OSR values directly from
// the unoptimized frame. Thus, all that needs to be done is to allocate the
// remaining stack slots.
if (FLAG_code_comments) __ RecordComment("-- OSR entrypoint --");
osr_pc_offset_ = __ pc_offset();
required_slots -= osr_helper()->UnoptimizedFrameSlots();
ResetSpeculationPoison();
}
const RegList saves_fp = call_descriptor->CalleeSavedFPRegisters();
const RegList saves = FLAG_enable_embedded_constant_pool
? call_descriptor->CalleeSavedRegisters() &
~kConstantPoolRegister.bit()
: call_descriptor->CalleeSavedRegisters();
if (required_slots > 0) {
if (info()->IsWasm() && required_slots > 128) {
// For WebAssembly functions with big frames we have to do the stack
// overflow check before we construct the frame. Otherwise we may not
// have enough space on the stack to call the runtime for the stack
// overflow.
Label done;
// If the frame is bigger than the stack, we throw the stack overflow
// exception unconditionally. Thereby we can avoid the integer overflow
// check in the condition code.
if ((required_slots * kSystemPointerSize) < (FLAG_stack_size * 1024)) {
Register scratch = ip;
__ LoadP(
scratch,
FieldMemOperand(kWasmInstanceRegister,
WasmInstanceObject::kRealStackLimitAddressOffset));
__ LoadP(scratch, MemOperand(scratch), r0);
__ Add(scratch, scratch, required_slots * kSystemPointerSize, r0);
__ cmpl(sp, scratch);
__ bge(&done);
}
__ Call(wasm::WasmCode::kWasmStackOverflow, RelocInfo::WASM_STUB_CALL);
// We come from WebAssembly, there are no references for the GC.
ReferenceMap* reference_map = zone()->New<ReferenceMap>(zone());
RecordSafepoint(reference_map, Safepoint::kNoLazyDeopt);
if (FLAG_debug_code) {
__ stop();
}
__ bind(&done);
}
// Skip callee-saved and return slots, which are pushed below.
required_slots -= base::bits::CountPopulation(saves);
required_slots -= frame()->GetReturnSlotCount();
required_slots -= (kDoubleSize / kSystemPointerSize) *
base::bits::CountPopulation(saves_fp);
__ Add(sp, sp, -required_slots * kSystemPointerSize, r0);
}
// Save callee-saved Double registers.
if (saves_fp != 0) {
__ MultiPushDoubles(saves_fp);
DCHECK_EQ(kNumCalleeSavedDoubles, base::bits::CountPopulation(saves_fp));
}
// Save callee-saved registers.
if (saves != 0) {
__ MultiPush(saves);
// register save area does not include the fp or constant pool pointer.
}
const int returns = frame()->GetReturnSlotCount();
if (returns != 0) {
// Create space for returns.
__ Add(sp, sp, -returns * kSystemPointerSize, r0);
}
}
void CodeGenerator::AssembleReturn(InstructionOperand* pop) {
auto call_descriptor = linkage()->GetIncomingDescriptor();
int pop_count = static_cast<int>(call_descriptor->StackParameterCount());
const int returns = frame()->GetReturnSlotCount();
if (returns != 0) {
// Create space for returns.
__ Add(sp, sp, returns * kSystemPointerSize, r0);
}
// Restore registers.
const RegList saves = FLAG_enable_embedded_constant_pool
? call_descriptor->CalleeSavedRegisters() &
~kConstantPoolRegister.bit()
: call_descriptor->CalleeSavedRegisters();
if (saves != 0) {
__ MultiPop(saves);
}
// Restore double registers.
const RegList double_saves = call_descriptor->CalleeSavedFPRegisters();
if (double_saves != 0) {
__ MultiPopDoubles(double_saves);
}
PPCOperandConverter g(this, nullptr);
unwinding_info_writer_.MarkBlockWillExit();
if (call_descriptor->IsCFunctionCall()) {
AssembleDeconstructFrame();
} else if (frame_access_state()->has_frame()) {
// Canonicalize JSFunction return sites for now unless they have an variable
// number of stack slot pops
if (pop->IsImmediate() && g.ToConstant(pop).ToInt32() == 0) {
if (return_label_.is_bound()) {
__ b(&return_label_);
return;
} else {
__ bind(&return_label_);
AssembleDeconstructFrame();
}
} else {
AssembleDeconstructFrame();
}
}
// Constant pool is unavailable since the frame has been destructed
ConstantPoolUnavailableScope constant_pool_unavailable(tasm());
if (pop->IsImmediate()) {
DCHECK(Constant::kInt32 == g.ToConstant(pop).type() ||
Constant::kInt64 == g.ToConstant(pop).type());
pop_count += g.ToConstant(pop).ToInt32();
} else {
__ Drop(g.ToRegister(pop));
}
__ Drop(pop_count);
__ Ret();
}
void CodeGenerator::FinishCode() {}
void CodeGenerator::PrepareForDeoptimizationExits(
ZoneDeque<DeoptimizationExit*>* exits) {
// __ EmitConstantPool();
}
void CodeGenerator::AssembleMove(InstructionOperand* source,
InstructionOperand* destination) {
PPCOperandConverter g(this, nullptr);
// Dispatch on the source and destination operand kinds. Not all
// combinations are possible.
if (source->IsRegister()) {
DCHECK(destination->IsRegister() || destination->IsStackSlot());
Register src = g.ToRegister(source);
if (destination->IsRegister()) {
__ Move(g.ToRegister(destination), src);
} else {
__ StoreP(src, g.ToMemOperand(destination), r0);
}
} else if (source->IsStackSlot()) {
DCHECK(destination->IsRegister() || destination->IsStackSlot());
MemOperand src = g.ToMemOperand(source);
if (destination->IsRegister()) {
__ LoadP(g.ToRegister(destination), src, r0);
} else {
Register temp = kScratchReg;
__ LoadP(temp, src, r0);
__ StoreP(temp, g.ToMemOperand(destination), r0);
}
} else if (source->IsConstant()) {
Constant src = g.ToConstant(source);
if (destination->IsRegister() || destination->IsStackSlot()) {
Register dst =
destination->IsRegister() ? g.ToRegister(destination) : kScratchReg;
switch (src.type()) {
case Constant::kInt32:
#if V8_TARGET_ARCH_PPC64
if (false) {
#else
if (RelocInfo::IsWasmReference(src.rmode())) {
#endif
__ mov(dst, Operand(src.ToInt32(), src.rmode()));
} else {
__ mov(dst, Operand(src.ToInt32()));
}
break;
case Constant::kInt64:
#if V8_TARGET_ARCH_PPC64
if (RelocInfo::IsWasmReference(src.rmode())) {
__ mov(dst, Operand(src.ToInt64(), src.rmode()));
} else {
#endif
__ mov(dst, Operand(src.ToInt64()));
#if V8_TARGET_ARCH_PPC64
}
#endif
break;
case Constant::kFloat32:
__ mov(dst, Operand::EmbeddedNumber(src.ToFloat32()));
break;
case Constant::kFloat64:
__ mov(dst, Operand::EmbeddedNumber(src.ToFloat64().value()));
break;
case Constant::kExternalReference:
__ Move(dst, src.ToExternalReference());
break;
case Constant::kDelayedStringConstant:
__ mov(dst, Operand::EmbeddedStringConstant(
src.ToDelayedStringConstant()));
break;
case Constant::kHeapObject: {
Handle<HeapObject> src_object = src.ToHeapObject();
RootIndex index;
if (IsMaterializableFromRoot(src_object, &index)) {
__ LoadRoot(dst, index);
} else {
__ Move(dst, src_object);
}
break;
}
case Constant::kCompressedHeapObject: {
Handle<HeapObject> src_object = src.ToHeapObject();
RootIndex index;
if (IsMaterializableFromRoot(src_object, &index)) {
__ LoadRoot(dst, index);
} else {
// TODO(v8:7703, jyan@ca.ibm.com): Turn into a
// COMPRESSED_EMBEDDED_OBJECT when the constant pool entry size is
// tagged size.
__ Move(dst, src_object, RelocInfo::FULL_EMBEDDED_OBJECT);
}
break;
}
case Constant::kRpoNumber:
UNREACHABLE(); // TODO(dcarney): loading RPO constants on PPC.
break;
}
if (destination->IsStackSlot()) {
__ StoreP(dst, g.ToMemOperand(destination), r0);
}
} else {
DoubleRegister dst = destination->IsFPRegister()
? g.ToDoubleRegister(destination)
: kScratchDoubleReg;
Double value;
#if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
// casting double precision snan to single precision
// converts it to qnan on ia32/x64
if (src.type() == Constant::kFloat32) {
uint32_t val = src.ToFloat32AsInt();
if ((val & 0x7F800000) == 0x7F800000) {
uint64_t dval = static_cast<uint64_t>(val);
dval = ((dval & 0xC0000000) << 32) | ((dval & 0x40000000) << 31) |
((dval & 0x40000000) << 30) | ((dval & 0x7FFFFFFF) << 29);
value = Double(dval);
} else {
value = Double(static_cast<double>(src.ToFloat32()));
}
} else {
value = Double(src.ToFloat64());
}
#else
value = src.type() == Constant::kFloat32
? Double(static_cast<double>(src.ToFloat32()))
: Double(src.ToFloat64());
#endif
__ LoadDoubleLiteral(dst, value, kScratchReg);
if (destination->IsDoubleStackSlot()) {
__ StoreDouble(dst, g.ToMemOperand(destination), r0);
} else if (destination->IsFloatStackSlot()) {
__ StoreSingle(dst, g.ToMemOperand(destination), r0);
}
}
} else if (source->IsFPRegister()) {
MachineRepresentation rep = LocationOperand::cast(source)->representation();
if (rep == MachineRepresentation::kSimd128) {
if (destination->IsSimd128Register()) {
__ vor(g.ToSimd128Register(destination), g.ToSimd128Register(source),
g.ToSimd128Register(source));
} else {
DCHECK(destination->IsSimd128StackSlot());
MemOperand dst = g.ToMemOperand(destination);
__ mov(ip, Operand(dst.offset()));
__ StoreSimd128(g.ToSimd128Register(source), MemOperand(dst.ra(), ip),
r0, kScratchDoubleReg);
}
} else {
DoubleRegister src = g.ToDoubleRegister(source);
if (destination->IsFPRegister()) {
DoubleRegister dst = g.ToDoubleRegister(destination);
__ Move(dst, src);
} else {
DCHECK(destination->IsFPStackSlot());
LocationOperand* op = LocationOperand::cast(source);
if (op->representation() == MachineRepresentation::kFloat64) {
__ StoreDouble(src, g.ToMemOperand(destination), r0);
} else {
__ StoreSingle(src, g.ToMemOperand(destination), r0);
}
}
}
} else if (source->IsFPStackSlot()) {
DCHECK(destination->IsFPRegister() || destination->IsFPStackSlot());
MemOperand src = g.ToMemOperand(source);
if (destination->IsFPRegister()) {
LocationOperand* op = LocationOperand::cast(source);
if (op->representation() == MachineRepresentation::kFloat64) {
__ LoadDouble(g.ToDoubleRegister(destination), src, r0);
} else if (op->representation() == MachineRepresentation::kFloat32) {
__ LoadSingle(g.ToDoubleRegister(destination), src, r0);
} else {
DCHECK_EQ(MachineRepresentation::kSimd128, op->representation());
MemOperand src = g.ToMemOperand(source);
__ mov(ip, Operand(src.offset()));
__ LoadSimd128(g.ToSimd128Register(destination),
MemOperand(src.ra(), ip), r0, kScratchDoubleReg);
}
} else {
LocationOperand* op = LocationOperand::cast(source);
DoubleRegister temp = kScratchDoubleReg;
if (op->representation() == MachineRepresentation::kFloat64) {
__ LoadDouble(temp, src, r0);
__ StoreDouble(temp, g.ToMemOperand(destination), r0);
} else if (op->representation() == MachineRepresentation::kFloat32) {
__ LoadSingle(temp, src, r0);
__ StoreSingle(temp, g.ToMemOperand(destination), r0);
} else {
DCHECK_EQ(MachineRepresentation::kSimd128, op->representation());
// push d0, to be used as scratch
__ addi(sp, sp, Operand(-kSimd128Size));
__ StoreSimd128(d0, MemOperand(r0, sp), r0, kScratchDoubleReg);
MemOperand src = g.ToMemOperand(source);
MemOperand dst = g.ToMemOperand(destination);
__ mov(ip, Operand(src.offset()));
__ LoadSimd128(d0, MemOperand(src.ra(), ip), r0, kScratchDoubleReg);
__ mov(ip, Operand(dst.offset()));
__ StoreSimd128(d0, MemOperand(dst.ra(), ip), r0, kScratchDoubleReg);
// restore d0
__ LoadSimd128(d0, MemOperand(r0, sp), ip, kScratchDoubleReg);
__ addi(sp, sp, Operand(kSimd128Size));
}
}
} else {
UNREACHABLE();
}
}
// Swaping contents in source and destination.
// source and destination could be:
// Register,
// FloatRegister,
// DoubleRegister,
// StackSlot,
// FloatStackSlot,
// or DoubleStackSlot
void CodeGenerator::AssembleSwap(InstructionOperand* source,
InstructionOperand* destination) {
PPCOperandConverter g(this, nullptr);
if (source->IsRegister()) {
Register src = g.ToRegister(source);
if (destination->IsRegister()) {
__ SwapP(src, g.ToRegister(destination), kScratchReg);
} else {
DCHECK(destination->IsStackSlot());
__ SwapP(src, g.ToMemOperand(destination), kScratchReg);
}
} else if (source->IsStackSlot()) {
DCHECK(destination->IsStackSlot());
__ SwapP(g.ToMemOperand(source), g.ToMemOperand(destination), kScratchReg,
r0);
} else if (source->IsFloatRegister()) {
DoubleRegister src = g.ToDoubleRegister(source);
if (destination->IsFloatRegister()) {
__ SwapFloat32(src, g.ToDoubleRegister(destination), kScratchDoubleReg);
} else {
DCHECK(destination->IsFloatStackSlot());
__ SwapFloat32(src, g.ToMemOperand(destination), kScratchDoubleReg);
}
} else if (source->IsDoubleRegister()) {
DoubleRegister src = g.ToDoubleRegister(source);
if (destination->IsDoubleRegister()) {
__ SwapDouble(src, g.ToDoubleRegister(destination), kScratchDoubleReg);
} else {
DCHECK(destination->IsDoubleStackSlot());
__ SwapDouble(src, g.ToMemOperand(destination), kScratchDoubleReg);
}
} else if (source->IsFloatStackSlot()) {
DCHECK(destination->IsFloatStackSlot());
__ SwapFloat32(g.ToMemOperand(source), g.ToMemOperand(destination),
kScratchDoubleReg, d0);
} else if (source->IsDoubleStackSlot()) {
DCHECK(destination->IsDoubleStackSlot());
__ SwapDouble(g.ToMemOperand(source), g.ToMemOperand(destination),
kScratchDoubleReg, d0);
} else if (source->IsSimd128Register()) {
Simd128Register src = g.ToSimd128Register(source);
if (destination->IsSimd128Register()) {
__ SwapSimd128(src, g.ToSimd128Register(destination), kScratchDoubleReg);
} else {
DCHECK(destination->IsSimd128StackSlot());
__ SwapSimd128(src, g.ToMemOperand(destination), kScratchDoubleReg);
}
} else if (source->IsSimd128StackSlot()) {
DCHECK(destination->IsSimd128StackSlot());
__ SwapSimd128(g.ToMemOperand(source), g.ToMemOperand(destination),
kScratchDoubleReg);
} else {
UNREACHABLE();
}
return;
}
void CodeGenerator::AssembleJumpTable(Label** targets, size_t target_count) {
for (size_t index = 0; index < target_count; ++index) {
__ emit_label_addr(targets[index]);
}
}
#undef __
} // namespace compiler
} // namespace internal
} // namespace v8