| // Copyright 2019 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/execution/arm64/simulator-arm64.h" |
| |
| #if defined(USE_SIMULATOR) |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Randomly generated example key for simulating only. |
| const Simulator::PACKey Simulator::kPACKeyIB = {0xeebb163b474e04c8, |
| 0x5267ac6fc280fb7c, 1}; |
| |
| namespace { |
| |
| uint64_t GetNibble(uint64_t in_data, int position) { |
| return (in_data >> position) & 0xf; |
| } |
| |
| uint64_t PACCellShuffle(uint64_t in_data) { |
| static int in_positions[16] = {52, 24, 44, 0, 28, 48, 4, 40, |
| 32, 12, 56, 20, 8, 36, 16, 60}; |
| uint64_t out_data = 0; |
| for (int i = 0; i < 16; ++i) { |
| out_data |= GetNibble(in_data, in_positions[i]) << (4 * i); |
| } |
| return out_data; |
| } |
| |
| uint64_t PACCellInvShuffle(uint64_t in_data) { |
| static int in_positions[16] = {12, 24, 48, 36, 56, 44, 4, 16, |
| 32, 52, 28, 8, 20, 0, 40, 60}; |
| uint64_t out_data = 0; |
| for (int i = 0; i < 16; ++i) { |
| out_data |= GetNibble(in_data, in_positions[i]) << (4 * i); |
| } |
| return out_data; |
| } |
| |
| uint64_t RotCell(uint64_t in_cell, int amount) { |
| DCHECK((amount >= 1) && (amount <= 3)); |
| |
| in_cell &= 0xf; |
| uint8_t temp = in_cell << 4 | in_cell; |
| return static_cast<uint64_t>((temp >> (4 - amount)) & 0xf); |
| } |
| |
| uint64_t PACMult(uint64_t s_input) { |
| uint8_t t0; |
| uint8_t t1; |
| uint8_t t2; |
| uint8_t t3; |
| uint64_t s_output = 0; |
| |
| for (int i = 0; i < 4; ++i) { |
| uint8_t s12 = (s_input >> (4 * (i + 12))) & 0xf; |
| uint8_t s8 = (s_input >> (4 * (i + 8))) & 0xf; |
| uint8_t s4 = (s_input >> (4 * (i + 4))) & 0xf; |
| uint8_t s0 = (s_input >> (4 * (i + 0))) & 0xf; |
| |
| t0 = RotCell(s8, 1) ^ RotCell(s4, 2) ^ RotCell(s0, 1); |
| t1 = RotCell(s12, 1) ^ RotCell(s4, 1) ^ RotCell(s0, 2); |
| t2 = RotCell(s12, 2) ^ RotCell(s8, 1) ^ RotCell(s0, 1); |
| t3 = RotCell(s12, 1) ^ RotCell(s8, 2) ^ RotCell(s4, 1); |
| |
| s_output |= static_cast<uint64_t>(t3) << (4 * (i + 0)); |
| s_output |= static_cast<uint64_t>(t2) << (4 * (i + 4)); |
| s_output |= static_cast<uint64_t>(t1) << (4 * (i + 8)); |
| s_output |= static_cast<uint64_t>(t0) << (4 * (i + 12)); |
| } |
| return s_output; |
| } |
| |
| uint64_t PACSub(uint64_t t_input) { |
| uint64_t t_output = 0; |
| uint8_t substitutions[16] = {0xb, 0x6, 0x8, 0xf, 0xc, 0x0, 0x9, 0xe, |
| 0x3, 0x7, 0x4, 0x5, 0xd, 0x2, 0x1, 0xa}; |
| for (int i = 0; i < 16; ++i) { |
| unsigned index = ((t_input >> (4 * i)) & 0xf); |
| t_output |= static_cast<uint64_t>(substitutions[index]) << (4 * i); |
| } |
| return t_output; |
| } |
| |
| uint64_t PACInvSub(uint64_t t_input) { |
| uint64_t t_output = 0; |
| uint8_t substitutions[16] = {0x5, 0xe, 0xd, 0x8, 0xa, 0xb, 0x1, 0x9, |
| 0x2, 0x6, 0xf, 0x0, 0x4, 0xc, 0x7, 0x3}; |
| for (int i = 0; i < 16; ++i) { |
| unsigned index = ((t_input >> (4 * i)) & 0xf); |
| t_output |= static_cast<uint64_t>(substitutions[index]) << (4 * i); |
| } |
| return t_output; |
| } |
| |
| uint64_t TweakCellInvRot(uint64_t in_cell) { |
| uint64_t out_cell = 0; |
| out_cell |= (in_cell & 0x7) << 1; |
| out_cell |= (in_cell & 0x1) ^ ((in_cell >> 3) & 0x1); |
| return out_cell; |
| } |
| |
| uint64_t TweakInvShuffle(uint64_t in_data) { |
| uint64_t out_data = 0; |
| out_data |= TweakCellInvRot(in_data >> 48) << 0; |
| out_data |= ((in_data >> 52) & 0xf) << 4; |
| out_data |= ((in_data >> 20) & 0xff) << 8; |
| out_data |= ((in_data >> 0) & 0xff) << 16; |
| out_data |= TweakCellInvRot(in_data >> 8) << 24; |
| out_data |= ((in_data >> 12) & 0xf) << 28; |
| out_data |= TweakCellInvRot(in_data >> 28) << 32; |
| out_data |= TweakCellInvRot(in_data >> 60) << 36; |
| out_data |= TweakCellInvRot(in_data >> 56) << 40; |
| out_data |= TweakCellInvRot(in_data >> 16) << 44; |
| out_data |= ((in_data >> 32) & 0xfff) << 48; |
| out_data |= TweakCellInvRot(in_data >> 44) << 60; |
| return out_data; |
| } |
| |
| uint64_t TweakCellRot(uint64_t in_cell) { |
| uint64_t out_cell = 0; |
| out_cell |= ((in_cell & 0x1) ^ ((in_cell >> 1) & 0x1)) << 3; |
| out_cell |= (in_cell >> 0x1) & 0x7; |
| return out_cell; |
| } |
| |
| uint64_t TweakShuffle(uint64_t in_data) { |
| uint64_t out_data = 0; |
| out_data |= ((in_data >> 16) & 0xff) << 0; |
| out_data |= TweakCellRot(in_data >> 24) << 8; |
| out_data |= ((in_data >> 28) & 0xf) << 12; |
| out_data |= TweakCellRot(in_data >> 44) << 16; |
| out_data |= ((in_data >> 8) & 0xff) << 20; |
| out_data |= TweakCellRot(in_data >> 32) << 28; |
| out_data |= ((in_data >> 48) & 0xfff) << 32; |
| out_data |= TweakCellRot(in_data >> 60) << 44; |
| out_data |= TweakCellRot(in_data >> 0) << 48; |
| out_data |= ((in_data >> 4) & 0xf) << 52; |
| out_data |= TweakCellRot(in_data >> 40) << 56; |
| out_data |= TweakCellRot(in_data >> 36) << 60; |
| return out_data; |
| } |
| |
| } // namespace |
| |
| // For a description of QARMA see: |
| // The QARMA Block Cipher Family, Roberto Avanzi, Qualcomm Product Security |
| // Initiative. |
| // The pseudocode is available in ARM DDI 0487D.b, J1-6946. |
| uint64_t Simulator::ComputePAC(uint64_t data, uint64_t context, PACKey key) { |
| uint64_t key0 = key.high; |
| uint64_t key1 = key.low; |
| const uint64_t RC[5] = {0x0000000000000000, 0x13198a2e03707344, |
| 0xa4093822299f31d0, 0x082efa98ec4e6c89, |
| 0x452821e638d01377}; |
| const uint64_t Alpha = 0xc0ac29B7c97c50dd; |
| |
| uint64_t modk0 = ((key0 & 0x1) << 63) | ((key0 >> 2) << 1) | |
| ((key0 >> 63) ^ ((key0 >> 1) & 0x1)); |
| uint64_t running_mod = context; |
| uint64_t working_val = data ^ key0; |
| uint64_t round_key; |
| for (int i = 0; i < 5; ++i) { |
| round_key = key1 ^ running_mod; |
| working_val ^= round_key; |
| working_val ^= RC[i]; |
| if (i > 0) { |
| working_val = PACCellShuffle(working_val); |
| working_val = PACMult(working_val); |
| } |
| working_val = PACSub(working_val); |
| running_mod = TweakShuffle(running_mod); |
| } |
| |
| round_key = modk0 ^ running_mod; |
| working_val ^= round_key; |
| working_val = PACCellShuffle(working_val); |
| working_val = PACMult(working_val); |
| working_val = PACSub(working_val); |
| working_val = PACCellShuffle(working_val); |
| working_val = PACMult(working_val); |
| working_val ^= key1; |
| working_val = PACCellInvShuffle(working_val); |
| working_val = PACInvSub(working_val); |
| working_val = PACMult(working_val); |
| working_val = PACCellInvShuffle(working_val); |
| working_val ^= key0; |
| working_val ^= running_mod; |
| |
| for (int i = 0; i < 5; ++i) { |
| working_val = PACInvSub(working_val); |
| if (i < 4) { |
| working_val = PACMult(working_val); |
| working_val = PACCellInvShuffle(working_val); |
| } |
| running_mod = TweakInvShuffle(running_mod); |
| round_key = key1 ^ running_mod; |
| working_val ^= RC[4 - i]; |
| working_val ^= round_key; |
| working_val ^= Alpha; |
| } |
| |
| return working_val ^ modk0; |
| } |
| |
| // The TTBR is selected by bit 63 or 55 depending on TBI for pointers without |
| // codes, but is always 55 once a PAC code is added to a pointer. For this |
| // reason, it must be calculated at the call site. |
| uint64_t Simulator::CalculatePACMask(uint64_t ptr, PointerType type, int ttbr) { |
| int bottom_pac_bit = GetBottomPACBit(ptr, ttbr); |
| int top_pac_bit = GetTopPACBit(ptr, type); |
| return unsigned_bitextract_64(top_pac_bit, bottom_pac_bit, |
| 0xffffffffffffffff & ~kTTBRMask) |
| << bottom_pac_bit; |
| } |
| |
| uint64_t Simulator::AuthPAC(uint64_t ptr, uint64_t context, PACKey key, |
| PointerType type) { |
| DCHECK((key.number == 0) || (key.number == 1)); |
| |
| uint64_t pac_mask = CalculatePACMask(ptr, type, (ptr >> 55) & 1); |
| uint64_t original_ptr = |
| ((ptr & kTTBRMask) == 0) ? (ptr & ~pac_mask) : (ptr | pac_mask); |
| |
| uint64_t pac = ComputePAC(original_ptr, context, key); |
| |
| uint64_t error_code = UINT64_C(1) << key.number; |
| if ((pac & pac_mask) == (ptr & pac_mask)) { |
| return original_ptr; |
| } else { |
| int error_lsb = GetTopPACBit(ptr, type) - 2; |
| uint64_t error_mask = UINT64_C(0x3) << error_lsb; |
| if (FLAG_sim_abort_on_bad_auth) { |
| FATAL("Pointer authentication failure."); |
| } |
| return (original_ptr & ~error_mask) | (error_code << error_lsb); |
| } |
| } |
| |
| uint64_t Simulator::AddPAC(uint64_t ptr, uint64_t context, PACKey key, |
| PointerType type) { |
| int top_pac_bit = GetTopPACBit(ptr, type); |
| |
| DCHECK(HasTBI(ptr, type)); |
| int ttbr = (ptr >> 55) & 1; |
| uint64_t pac_mask = CalculatePACMask(ptr, type, ttbr); |
| uint64_t ext_ptr = (ttbr == 0) ? (ptr & ~pac_mask) : (ptr | pac_mask); |
| |
| uint64_t pac = ComputePAC(ext_ptr, context, key); |
| |
| // If the pointer isn't all zeroes or all ones in the PAC bitfield, corrupt |
| // the resulting code. |
| if (((ptr & (pac_mask | kTTBRMask)) != 0x0) && |
| ((~ptr & (pac_mask | kTTBRMask)) != 0x0)) { |
| pac ^= UINT64_C(1) << (top_pac_bit - 1); |
| } |
| |
| uint64_t ttbr_shifted = static_cast<uint64_t>(ttbr) << 55; |
| return (pac & pac_mask) | ttbr_shifted | (ptr & ~pac_mask); |
| } |
| |
| uint64_t Simulator::StripPAC(uint64_t ptr, PointerType type) { |
| uint64_t pac_mask = CalculatePACMask(ptr, type, (ptr >> 55) & 1); |
| return ((ptr & kTTBRMask) == 0) ? (ptr & ~pac_mask) : (ptr | pac_mask); |
| } |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // USE_SIMULATOR |