| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_IA32 |
| |
| #include "src/api/api-arguments.h" |
| #include "src/base/adapters.h" |
| #include "src/codegen/code-factory.h" |
| #include "src/debug/debug.h" |
| #include "src/deoptimizer/deoptimizer.h" |
| #include "src/execution/frame-constants.h" |
| #include "src/execution/frames.h" |
| #include "src/logging/counters.h" |
| // For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop. |
| #include "src/codegen/macro-assembler-inl.h" |
| #include "src/codegen/register-configuration.h" |
| #include "src/heap/heap-inl.h" |
| #include "src/objects/cell.h" |
| #include "src/objects/foreign.h" |
| #include "src/objects/heap-number.h" |
| #include "src/objects/js-generator.h" |
| #include "src/objects/objects-inl.h" |
| #include "src/objects/smi.h" |
| #include "src/wasm/wasm-linkage.h" |
| #include "src/wasm/wasm-objects.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ ACCESS_MASM(masm) |
| |
| void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) { |
| __ Move(kJavaScriptCallExtraArg1Register, |
| Immediate(ExternalReference::Create(address))); |
| __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| static void GenerateTailCallToReturnedCode(MacroAssembler* masm, |
| Runtime::FunctionId function_id) { |
| // ----------- S t a t e ------------- |
| // -- edx : new target (preserved for callee) |
| // -- edi : target function (preserved for callee) |
| // ----------------------------------- |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Push a copy of the target function and the new target. |
| __ push(edi); |
| __ push(edx); |
| // Function is also the parameter to the runtime call. |
| __ push(edi); |
| |
| __ CallRuntime(function_id, 1); |
| __ mov(ecx, eax); |
| |
| // Restore target function and new target. |
| __ pop(edx); |
| __ pop(edi); |
| } |
| |
| static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); |
| __ JumpCodeObject(ecx); |
| } |
| |
| namespace { |
| |
| void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args, |
| Register scratch, Label* stack_overflow, |
| bool include_receiver = false) { |
| // Check the stack for overflow. We are not trying to catch |
| // interruptions (e.g. debug break and preemption) here, so the "real stack |
| // limit" is checked. |
| ExternalReference real_stack_limit = |
| ExternalReference::address_of_real_stack_limit(masm->isolate()); |
| // Compute the space that is left as a negative number in scratch. If |
| // we already overflowed, this will be a positive number. |
| __ mov(scratch, __ ExternalReferenceAsOperand(real_stack_limit, scratch)); |
| __ sub(scratch, esp); |
| // Add the size of the arguments. |
| static_assert(kSystemPointerSize == 4, |
| "The next instruction assumes kSystemPointerSize == 4"); |
| __ lea(scratch, Operand(scratch, num_args, times_system_pointer_size, 0)); |
| if (include_receiver) { |
| __ add(scratch, Immediate(kSystemPointerSize)); |
| } |
| // See if we overflowed, i.e. scratch is positive. |
| __ cmp(scratch, Immediate(0)); |
| __ j(greater, stack_overflow); // Signed comparison. |
| } |
| |
| void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax: number of arguments |
| // -- edi: constructor function |
| // -- edx: new target |
| // -- esi: context |
| // ----------------------------------- |
| |
| Label stack_overflow; |
| |
| Generate_StackOverflowCheck(masm, eax, ecx, &stack_overflow); |
| |
| // Enter a construct frame. |
| { |
| FrameScope scope(masm, StackFrame::CONSTRUCT); |
| |
| // Preserve the incoming parameters on the stack. |
| __ SmiTag(eax); |
| __ push(esi); |
| __ push(eax); |
| __ SmiUntag(eax); |
| |
| // The receiver for the builtin/api call. |
| __ PushRoot(RootIndex::kTheHoleValue); |
| |
| // Set up pointer to last argument. We are using esi as scratch register. |
| __ lea(esi, Operand(ebp, StandardFrameConstants::kCallerSPOffset)); |
| |
| // Copy arguments and receiver to the expression stack. |
| Label loop, entry; |
| __ mov(ecx, eax); |
| // ----------- S t a t e ------------- |
| // -- eax: number of arguments (untagged) |
| // -- edi: constructor function |
| // -- edx: new target |
| // -- esi: pointer to last argument |
| // -- ecx: counter |
| // -- sp[0*kSystemPointerSize]: the hole (receiver) |
| // -- sp[1*kSystemPointerSize]: number of arguments (tagged) |
| // -- sp[2*kSystemPointerSize]: context |
| // ----------------------------------- |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ push(Operand(esi, ecx, times_system_pointer_size, 0)); |
| __ bind(&entry); |
| __ dec(ecx); |
| __ j(greater_equal, &loop); |
| |
| // Call the function. |
| // eax: number of arguments (untagged) |
| // edi: constructor function |
| // edx: new target |
| ParameterCount actual(eax); |
| // Reload context from the frame. |
| __ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset)); |
| __ InvokeFunction(edi, edx, actual, CALL_FUNCTION); |
| |
| // Restore context from the frame. |
| __ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset)); |
| // Restore smi-tagged arguments count from the frame. |
| __ mov(edx, Operand(ebp, ConstructFrameConstants::kLengthOffset)); |
| // Leave construct frame. |
| } |
| |
| // Remove caller arguments from the stack and return. |
| STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); |
| __ PopReturnAddressTo(ecx); |
| __ lea(esp, Operand(esp, edx, times_half_system_pointer_size, |
| 1 * kSystemPointerSize)); // 1 ~ receiver |
| __ PushReturnAddressFrom(ecx); |
| __ ret(0); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ int3(); // This should be unreachable. |
| } |
| } |
| |
| } // namespace |
| |
| // The construct stub for ES5 constructor functions and ES6 class constructors. |
| void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax: number of arguments (untagged) |
| // -- edi: constructor function |
| // -- edx: new target |
| // -- esi: context |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| |
| // Enter a construct frame. |
| { |
| FrameScope scope(masm, StackFrame::CONSTRUCT); |
| Label post_instantiation_deopt_entry, not_create_implicit_receiver; |
| |
| // Preserve the incoming parameters on the stack. |
| __ mov(ecx, eax); |
| __ SmiTag(ecx); |
| __ Push(esi); |
| __ Push(ecx); |
| __ Push(edi); |
| __ PushRoot(RootIndex::kTheHoleValue); |
| __ Push(edx); |
| |
| // ----------- S t a t e ------------- |
| // -- sp[0*kSystemPointerSize]: new target |
| // -- sp[1*kSystemPointerSize]: padding |
| // -- edi and sp[2*kSystemPointerSize]: constructor function |
| // -- sp[3*kSystemPointerSize]: argument count |
| // -- sp[4*kSystemPointerSize]: context |
| // ----------------------------------- |
| |
| __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); |
| __ mov(eax, FieldOperand(eax, SharedFunctionInfo::kFlagsOffset)); |
| __ DecodeField<SharedFunctionInfo::FunctionKindBits>(eax); |
| __ JumpIfIsInRange(eax, kDefaultDerivedConstructor, kDerivedConstructor, |
| ecx, ¬_create_implicit_receiver, Label::kNear); |
| |
| // If not derived class constructor: Allocate the new receiver object. |
| __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1, |
| eax); |
| __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), |
| RelocInfo::CODE_TARGET); |
| __ jmp(&post_instantiation_deopt_entry, Label::kNear); |
| |
| // Else: use TheHoleValue as receiver for constructor call |
| __ bind(¬_create_implicit_receiver); |
| __ LoadRoot(eax, RootIndex::kTheHoleValue); |
| |
| // ----------- S t a t e ------------- |
| // -- eax: implicit receiver |
| // -- Slot 4 / sp[0*kSystemPointerSize]: new target |
| // -- Slot 3 / sp[1*kSystemPointerSize]: padding |
| // -- Slot 2 / sp[2*kSystemPointerSize]: constructor function |
| // -- Slot 1 / sp[3*kSystemPointerSize]: number of arguments (tagged) |
| // -- Slot 0 / sp[4*kSystemPointerSize]: context |
| // ----------------------------------- |
| // Deoptimizer enters here. |
| masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( |
| masm->pc_offset()); |
| __ bind(&post_instantiation_deopt_entry); |
| |
| // Restore new target. |
| __ Pop(edx); |
| |
| // Push the allocated receiver to the stack. We need two copies |
| // because we may have to return the original one and the calling |
| // conventions dictate that the called function pops the receiver. |
| __ Push(eax); |
| __ Push(eax); |
| |
| // ----------- S t a t e ------------- |
| // -- edx: new target |
| // -- sp[0*kSystemPointerSize]: implicit receiver |
| // -- sp[1*kSystemPointerSize]: implicit receiver |
| // -- sp[2*kSystemPointerSize]: padding |
| // -- sp[3*kSystemPointerSize]: constructor function |
| // -- sp[4*kSystemPointerSize]: number of arguments (tagged) |
| // -- sp[5*kSystemPointerSize]: context |
| // ----------------------------------- |
| |
| // Restore argument count. |
| __ mov(eax, Operand(ebp, ConstructFrameConstants::kLengthOffset)); |
| __ SmiUntag(eax); |
| |
| // Set up pointer to last argument. |
| __ lea(edi, Operand(ebp, StandardFrameConstants::kCallerSPOffset)); |
| |
| // Check if we have enough stack space to push all arguments. |
| // Argument count in eax. Clobbers ecx. |
| Label enough_stack_space, stack_overflow; |
| Generate_StackOverflowCheck(masm, eax, ecx, &stack_overflow); |
| __ jmp(&enough_stack_space); |
| |
| __ bind(&stack_overflow); |
| // Restore context from the frame. |
| __ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset)); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| // This should be unreachable. |
| __ int3(); |
| |
| __ bind(&enough_stack_space); |
| |
| // Copy arguments and receiver to the expression stack. |
| Label loop, entry; |
| __ mov(ecx, eax); |
| // ----------- S t a t e ------------- |
| // -- eax: number of arguments (untagged) |
| // -- edx: new target |
| // -- edi: pointer to last argument |
| // -- ecx: counter (tagged) |
| // -- sp[0*kSystemPointerSize]: implicit receiver |
| // -- sp[1*kSystemPointerSize]: implicit receiver |
| // -- sp[2*kSystemPointerSize]: padding |
| // -- sp[3*kSystemPointerSize]: constructor function |
| // -- sp[4*kSystemPointerSize]: number of arguments (tagged) |
| // -- sp[5*kSystemPointerSize]: context |
| // ----------------------------------- |
| __ jmp(&entry, Label::kNear); |
| __ bind(&loop); |
| __ Push(Operand(edi, ecx, times_system_pointer_size, 0)); |
| __ bind(&entry); |
| __ dec(ecx); |
| __ j(greater_equal, &loop); |
| |
| // Restore and and call the constructor function. |
| __ mov(edi, Operand(ebp, ConstructFrameConstants::kConstructorOffset)); |
| ParameterCount actual(eax); |
| __ InvokeFunction(edi, edx, actual, CALL_FUNCTION); |
| |
| // ----------- S t a t e ------------- |
| // -- eax: constructor result |
| // -- sp[0*kSystemPointerSize]: implicit receiver |
| // -- sp[1*kSystemPointerSize]: padding |
| // -- sp[2*kSystemPointerSize]: constructor function |
| // -- sp[3*kSystemPointerSize]: number of arguments |
| // -- sp[4*kSystemPointerSize]: context |
| // ----------------------------------- |
| |
| // Store offset of return address for deoptimizer. |
| masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( |
| masm->pc_offset()); |
| |
| // Restore context from the frame. |
| __ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset)); |
| |
| // If the result is an object (in the ECMA sense), we should get rid |
| // of the receiver and use the result; see ECMA-262 section 13.2.2-7 |
| // on page 74. |
| Label use_receiver, do_throw, leave_frame; |
| |
| // If the result is undefined, we jump out to using the implicit receiver. |
| __ JumpIfRoot(eax, RootIndex::kUndefinedValue, &use_receiver, Label::kNear); |
| |
| // Otherwise we do a smi check and fall through to check if the return value |
| // is a valid receiver. |
| |
| // If the result is a smi, it is *not* an object in the ECMA sense. |
| __ JumpIfSmi(eax, &use_receiver, Label::kNear); |
| |
| // If the type of the result (stored in its map) is less than |
| // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. |
| STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); |
| __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx); |
| __ j(above_equal, &leave_frame, Label::kNear); |
| __ jmp(&use_receiver, Label::kNear); |
| |
| __ bind(&do_throw); |
| __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); |
| |
| // Throw away the result of the constructor invocation and use the |
| // on-stack receiver as the result. |
| __ bind(&use_receiver); |
| __ mov(eax, Operand(esp, 0 * kSystemPointerSize)); |
| __ JumpIfRoot(eax, RootIndex::kTheHoleValue, &do_throw); |
| |
| __ bind(&leave_frame); |
| // Restore smi-tagged arguments count from the frame. |
| __ mov(edx, Operand(ebp, ConstructFrameConstants::kLengthOffset)); |
| // Leave construct frame. |
| } |
| // Remove caller arguments from the stack and return. |
| STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); |
| __ pop(ecx); |
| __ lea(esp, Operand(esp, edx, times_half_system_pointer_size, |
| 1 * kSystemPointerSize)); // 1 ~ receiver |
| __ push(ecx); |
| __ ret(0); |
| } |
| |
| void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { |
| Generate_JSBuiltinsConstructStubHelper(masm); |
| } |
| |
| void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ push(edi); |
| __ CallRuntime(Runtime::kThrowConstructedNonConstructable); |
| } |
| |
| namespace { |
| |
| // Called with the native C calling convention. The corresponding function |
| // signature is either: |
| // |
| // using JSEntryFunction = GeneratedCode<Address( |
| // Address root_register_value, Address new_target, Address target, |
| // Address receiver, intptr_t argc, Address** argv)>; |
| // or |
| // using JSEntryFunction = GeneratedCode<Address( |
| // Address root_register_value, MicrotaskQueue* microtask_queue)>; |
| void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type, |
| Builtins::Name entry_trampoline) { |
| Label invoke, handler_entry, exit; |
| Label not_outermost_js, not_outermost_js_2; |
| |
| { // NOLINT. Scope block confuses linter. |
| NoRootArrayScope uninitialized_root_register(masm); |
| |
| // Set up frame. |
| __ push(ebp); |
| __ mov(ebp, esp); |
| |
| // Push marker in two places. |
| __ push(Immediate(StackFrame::TypeToMarker(type))); |
| // Reserve a slot for the context. It is filled after the root register has |
| // been set up. |
| __ AllocateStackSpace(kSystemPointerSize); |
| // Save callee-saved registers (C calling conventions). |
| __ push(edi); |
| __ push(esi); |
| __ push(ebx); |
| |
| // Initialize the root register based on the given Isolate* argument. |
| // C calling convention. The first argument is passed on the stack. |
| __ mov(kRootRegister, |
| Operand(ebp, EntryFrameConstants::kRootRegisterValueOffset)); |
| } |
| |
| // Save copies of the top frame descriptor on the stack. |
| ExternalReference c_entry_fp = ExternalReference::Create( |
| IsolateAddressId::kCEntryFPAddress, masm->isolate()); |
| __ push(__ ExternalReferenceAsOperand(c_entry_fp, edi)); |
| |
| // Store the context address in the previously-reserved slot. |
| ExternalReference context_address = ExternalReference::Create( |
| IsolateAddressId::kContextAddress, masm->isolate()); |
| __ mov(edi, __ ExternalReferenceAsOperand(context_address, edi)); |
| static constexpr int kOffsetToContextSlot = -2 * kSystemPointerSize; |
| __ mov(Operand(ebp, kOffsetToContextSlot), edi); |
| |
| // If this is the outermost JS call, set js_entry_sp value. |
| ExternalReference js_entry_sp = ExternalReference::Create( |
| IsolateAddressId::kJSEntrySPAddress, masm->isolate()); |
| __ cmp(__ ExternalReferenceAsOperand(js_entry_sp, edi), Immediate(0)); |
| __ j(not_equal, ¬_outermost_js, Label::kNear); |
| __ mov(__ ExternalReferenceAsOperand(js_entry_sp, edi), ebp); |
| __ push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
| __ jmp(&invoke, Label::kNear); |
| __ bind(¬_outermost_js); |
| __ push(Immediate(StackFrame::INNER_JSENTRY_FRAME)); |
| |
| // Jump to a faked try block that does the invoke, with a faked catch |
| // block that sets the pending exception. |
| __ jmp(&invoke); |
| __ bind(&handler_entry); |
| |
| // Store the current pc as the handler offset. It's used later to create the |
| // handler table. |
| masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos()); |
| |
| // Caught exception: Store result (exception) in the pending exception |
| // field in the JSEnv and return a failure sentinel. |
| ExternalReference pending_exception = ExternalReference::Create( |
| IsolateAddressId::kPendingExceptionAddress, masm->isolate()); |
| __ mov(__ ExternalReferenceAsOperand(pending_exception, edi), eax); |
| __ Move(eax, masm->isolate()->factory()->exception()); |
| __ jmp(&exit); |
| |
| // Invoke: Link this frame into the handler chain. |
| __ bind(&invoke); |
| __ PushStackHandler(edi); |
| |
| // Invoke the function by calling through JS entry trampoline builtin and |
| // pop the faked function when we return. |
| Handle<Code> trampoline_code = |
| masm->isolate()->builtins()->builtin_handle(entry_trampoline); |
| __ Call(trampoline_code, RelocInfo::CODE_TARGET); |
| |
| // Unlink this frame from the handler chain. |
| __ PopStackHandler(edi); |
| |
| __ bind(&exit); |
| |
| // Check if the current stack frame is marked as the outermost JS frame. |
| __ pop(edi); |
| __ cmp(edi, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
| __ j(not_equal, ¬_outermost_js_2); |
| __ mov(__ ExternalReferenceAsOperand(js_entry_sp, edi), Immediate(0)); |
| __ bind(¬_outermost_js_2); |
| |
| // Restore the top frame descriptor from the stack. |
| __ pop(__ ExternalReferenceAsOperand(c_entry_fp, edi)); |
| |
| // Restore callee-saved registers (C calling conventions). |
| __ pop(ebx); |
| __ pop(esi); |
| __ pop(edi); |
| __ add(esp, Immediate(2 * kSystemPointerSize)); // remove markers |
| |
| // Restore frame pointer and return. |
| __ pop(ebp); |
| __ ret(0); |
| } |
| |
| } // namespace |
| |
| void Builtins::Generate_JSEntry(MacroAssembler* masm) { |
| Generate_JSEntryVariant(masm, StackFrame::ENTRY, |
| Builtins::kJSEntryTrampoline); |
| } |
| |
| void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) { |
| Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY, |
| Builtins::kJSConstructEntryTrampoline); |
| } |
| |
| void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) { |
| Generate_JSEntryVariant(masm, StackFrame::ENTRY, |
| Builtins::kRunMicrotasksTrampoline); |
| } |
| |
| static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, |
| bool is_construct) { |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| |
| const Register scratch1 = edx; |
| const Register scratch2 = edi; |
| |
| // Setup the context (we need to use the caller context from the isolate). |
| ExternalReference context_address = ExternalReference::Create( |
| IsolateAddressId::kContextAddress, masm->isolate()); |
| __ mov(esi, __ ExternalReferenceAsOperand(context_address, scratch1)); |
| |
| // Load the previous frame pointer (edx) to access C arguments |
| __ mov(scratch1, Operand(ebp, 0)); |
| |
| // Push the function and the receiver onto the stack. |
| __ push(Operand(scratch1, EntryFrameConstants::kFunctionArgOffset)); |
| __ push(Operand(scratch1, EntryFrameConstants::kReceiverArgOffset)); |
| |
| // Load the number of arguments and setup pointer to the arguments. |
| __ mov(eax, Operand(scratch1, EntryFrameConstants::kArgcOffset)); |
| __ mov(scratch1, Operand(scratch1, EntryFrameConstants::kArgvOffset)); |
| |
| // Check if we have enough stack space to push all arguments. |
| // Argument count in eax. Clobbers ecx. |
| Label enough_stack_space, stack_overflow; |
| Generate_StackOverflowCheck(masm, eax, ecx, &stack_overflow); |
| __ jmp(&enough_stack_space); |
| |
| __ bind(&stack_overflow); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| // This should be unreachable. |
| __ int3(); |
| |
| __ bind(&enough_stack_space); |
| |
| // Copy arguments to the stack in a loop. |
| Label loop, entry; |
| __ Move(ecx, Immediate(0)); |
| __ jmp(&entry, Label::kNear); |
| __ bind(&loop); |
| // Push the parameter from argv. |
| __ mov(scratch2, Operand(scratch1, ecx, times_system_pointer_size, 0)); |
| __ push(Operand(scratch2, 0)); // dereference handle |
| __ inc(ecx); |
| __ bind(&entry); |
| __ cmp(ecx, eax); |
| __ j(not_equal, &loop); |
| |
| // Load the previous frame pointer (ebx) to access C arguments |
| __ mov(scratch2, Operand(ebp, 0)); |
| |
| // Get the new.target and function from the frame. |
| __ mov(edx, Operand(scratch2, EntryFrameConstants::kNewTargetArgOffset)); |
| __ mov(edi, Operand(scratch2, EntryFrameConstants::kFunctionArgOffset)); |
| |
| // Invoke the code. |
| Handle<Code> builtin = is_construct |
| ? BUILTIN_CODE(masm->isolate(), Construct) |
| : masm->isolate()->builtins()->Call(); |
| __ Call(builtin, RelocInfo::CODE_TARGET); |
| |
| // Exit the internal frame. Notice that this also removes the empty. |
| // context and the function left on the stack by the code |
| // invocation. |
| } |
| __ ret(0); |
| } |
| |
| void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, false); |
| } |
| |
| void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, true); |
| } |
| |
| void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) { |
| // This expects two C++ function parameters passed by Invoke() in |
| // execution.cc. |
| // r1: microtask_queue |
| __ mov(RunMicrotasksDescriptor::MicrotaskQueueRegister(), |
| Operand(ebp, EntryFrameConstants::kMicrotaskQueueArgOffset)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET); |
| } |
| |
| static void GetSharedFunctionInfoBytecode(MacroAssembler* masm, |
| Register sfi_data, |
| Register scratch1) { |
| Label done; |
| |
| __ CmpObjectType(sfi_data, INTERPRETER_DATA_TYPE, scratch1); |
| __ j(not_equal, &done, Label::kNear); |
| __ mov(sfi_data, |
| FieldOperand(sfi_data, InterpreterData::kBytecodeArrayOffset)); |
| |
| __ bind(&done); |
| } |
| |
| // static |
| void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax : the value to pass to the generator |
| // -- edx : the JSGeneratorObject to resume |
| // -- esp[0] : return address |
| // ----------------------------------- |
| __ AssertGeneratorObject(edx); |
| |
| // Store input value into generator object. |
| __ mov(FieldOperand(edx, JSGeneratorObject::kInputOrDebugPosOffset), eax); |
| __ RecordWriteField(edx, JSGeneratorObject::kInputOrDebugPosOffset, eax, ecx, |
| kDontSaveFPRegs); |
| |
| // Load suspended function and context. |
| __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset)); |
| __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); |
| |
| // Flood function if we are stepping. |
| Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; |
| Label stepping_prepared; |
| ExternalReference debug_hook = |
| ExternalReference::debug_hook_on_function_call_address(masm->isolate()); |
| __ cmpb(__ ExternalReferenceAsOperand(debug_hook, ecx), Immediate(0)); |
| __ j(not_equal, &prepare_step_in_if_stepping); |
| |
| // Flood function if we need to continue stepping in the suspended generator. |
| ExternalReference debug_suspended_generator = |
| ExternalReference::debug_suspended_generator_address(masm->isolate()); |
| __ cmp(edx, __ ExternalReferenceAsOperand(debug_suspended_generator, ecx)); |
| __ j(equal, &prepare_step_in_suspended_generator); |
| __ bind(&stepping_prepared); |
| |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack limit". |
| Label stack_overflow; |
| __ CompareRealStackLimit(esp); |
| __ j(below, &stack_overflow); |
| |
| // Pop return address. |
| __ PopReturnAddressTo(eax); |
| |
| // Push receiver. |
| __ Push(FieldOperand(edx, JSGeneratorObject::kReceiverOffset)); |
| |
| // ----------- S t a t e ------------- |
| // -- eax : return address |
| // -- edx : the JSGeneratorObject to resume |
| // -- edi : generator function |
| // -- esi : generator context |
| // -- esp[0] : generator receiver |
| // ----------------------------------- |
| |
| { |
| __ movd(xmm0, ebx); |
| |
| // Copy the function arguments from the generator object's register file. |
| __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); |
| __ movzx_w(ecx, FieldOperand( |
| ecx, SharedFunctionInfo::kFormalParameterCountOffset)); |
| __ mov(ebx, |
| FieldOperand(edx, JSGeneratorObject::kParametersAndRegistersOffset)); |
| { |
| Label done_loop, loop; |
| __ Set(edi, 0); |
| |
| __ bind(&loop); |
| __ cmp(edi, ecx); |
| __ j(greater_equal, &done_loop); |
| __ Push(FieldOperand(ebx, edi, times_system_pointer_size, |
| FixedArray::kHeaderSize)); |
| __ add(edi, Immediate(1)); |
| __ jmp(&loop); |
| |
| __ bind(&done_loop); |
| } |
| |
| // Restore registers. |
| __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset)); |
| __ movd(ebx, xmm0); |
| } |
| |
| // Underlying function needs to have bytecode available. |
| if (FLAG_debug_code) { |
| __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); |
| __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kFunctionDataOffset)); |
| __ Push(eax); |
| GetSharedFunctionInfoBytecode(masm, ecx, eax); |
| __ Pop(eax); |
| __ CmpObjectType(ecx, BYTECODE_ARRAY_TYPE, ecx); |
| __ Assert(equal, AbortReason::kMissingBytecodeArray); |
| } |
| |
| // Resume (Ignition/TurboFan) generator object. |
| { |
| __ PushReturnAddressFrom(eax); |
| __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); |
| __ movzx_w(eax, FieldOperand( |
| eax, SharedFunctionInfo::kFormalParameterCountOffset)); |
| // We abuse new.target both to indicate that this is a resume call and to |
| // pass in the generator object. In ordinary calls, new.target is always |
| // undefined because generator functions are non-constructable. |
| static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); |
| __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset)); |
| __ JumpCodeObject(ecx); |
| } |
| |
| __ bind(&prepare_step_in_if_stepping); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Push(edx); |
| __ Push(edi); |
| // Push hole as receiver since we do not use it for stepping. |
| __ PushRoot(RootIndex::kTheHoleValue); |
| __ CallRuntime(Runtime::kDebugOnFunctionCall); |
| __ Pop(edx); |
| __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset)); |
| } |
| __ jmp(&stepping_prepared); |
| |
| __ bind(&prepare_step_in_suspended_generator); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Push(edx); |
| __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); |
| __ Pop(edx); |
| __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset)); |
| } |
| __ jmp(&stepping_prepared); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ int3(); // This should be unreachable. |
| } |
| } |
| |
| static void ReplaceClosureCodeWithOptimizedCode(MacroAssembler* masm, |
| Register optimized_code, |
| Register closure, |
| Register scratch1, |
| Register scratch2) { |
| // Store the optimized code in the closure. |
| __ mov(FieldOperand(closure, JSFunction::kCodeOffset), optimized_code); |
| __ mov(scratch1, optimized_code); // Write barrier clobbers scratch1 below. |
| __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2, |
| kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
| } |
| |
| static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1, |
| Register scratch2) { |
| Register args_count = scratch1; |
| Register return_pc = scratch2; |
| |
| // Get the arguments + receiver count. |
| __ mov(args_count, |
| Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ mov(args_count, |
| FieldOperand(args_count, BytecodeArray::kParameterSizeOffset)); |
| |
| // Leave the frame (also dropping the register file). |
| __ leave(); |
| |
| // Drop receiver + arguments. |
| __ pop(return_pc); |
| __ add(esp, args_count); |
| __ push(return_pc); |
| } |
| |
| // Tail-call |function_id| if |smi_entry| == |marker| |
| static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm, |
| Register smi_entry, |
| OptimizationMarker marker, |
| Runtime::FunctionId function_id) { |
| Label no_match; |
| __ cmp(smi_entry, Immediate(Smi::FromEnum(marker))); |
| __ j(not_equal, &no_match, Label::kNear); |
| GenerateTailCallToReturnedCode(masm, function_id); |
| __ bind(&no_match); |
| } |
| |
| static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm, |
| Register scratch) { |
| // ----------- S t a t e ------------- |
| // -- edx : new target (preserved for callee if needed, and caller) |
| // -- edi : target function (preserved for callee if needed, and caller) |
| // -- ecx : feedback vector (also used as scratch, value is not preserved) |
| // ----------------------------------- |
| DCHECK(!AreAliased(edx, edi, scratch)); |
| |
| Label optimized_code_slot_is_weak_ref, fallthrough; |
| |
| Register closure = edi; |
| // Scratch contains feedback_vector. |
| Register feedback_vector = scratch; |
| |
| // Load the optimized code from the feedback vector and re-use the register. |
| Register optimized_code_entry = scratch; |
| __ mov(optimized_code_entry, |
| FieldOperand(feedback_vector, |
| FeedbackVector::kOptimizedCodeWeakOrSmiOffset)); |
| |
| // Check if the code entry is a Smi. If yes, we interpret it as an |
| // optimisation marker. Otherwise, interpret it as a weak reference to a code |
| // object. |
| __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref); |
| |
| { |
| // Optimized code slot is an optimization marker. |
| |
| // Fall through if no optimization trigger. |
| __ cmp(optimized_code_entry, |
| Immediate(Smi::FromEnum(OptimizationMarker::kNone))); |
| __ j(equal, &fallthrough); |
| |
| // TODO(v8:8394): The logging of first execution will break if |
| // feedback vectors are not allocated. We need to find a different way of |
| // logging these events if required. |
| TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, |
| OptimizationMarker::kLogFirstExecution, |
| Runtime::kFunctionFirstExecution); |
| TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, |
| OptimizationMarker::kCompileOptimized, |
| Runtime::kCompileOptimized_NotConcurrent); |
| TailCallRuntimeIfMarkerEquals( |
| masm, optimized_code_entry, |
| OptimizationMarker::kCompileOptimizedConcurrent, |
| Runtime::kCompileOptimized_Concurrent); |
| |
| { |
| // Otherwise, the marker is InOptimizationQueue, so fall through hoping |
| // that an interrupt will eventually update the slot with optimized code. |
| if (FLAG_debug_code) { |
| __ cmp( |
| optimized_code_entry, |
| Immediate(Smi::FromEnum(OptimizationMarker::kInOptimizationQueue))); |
| __ Assert(equal, AbortReason::kExpectedOptimizationSentinel); |
| } |
| __ jmp(&fallthrough); |
| } |
| } |
| |
| { |
| // Optimized code slot is a weak reference. |
| __ bind(&optimized_code_slot_is_weak_ref); |
| |
| __ LoadWeakValue(optimized_code_entry, &fallthrough); |
| |
| __ push(edx); |
| |
| // Check if the optimized code is marked for deopt. If it is, bailout to a |
| // given label. |
| Label found_deoptimized_code; |
| __ mov(eax, |
| FieldOperand(optimized_code_entry, Code::kCodeDataContainerOffset)); |
| __ test(FieldOperand(eax, CodeDataContainer::kKindSpecificFlagsOffset), |
| Immediate(1 << Code::kMarkedForDeoptimizationBit)); |
| __ j(not_zero, &found_deoptimized_code); |
| |
| // Optimized code is good, get it into the closure and link the closure into |
| // the optimized functions list, then tail call the optimized code. |
| ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure, |
| edx, eax); |
| static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); |
| __ LoadCodeObjectEntry(ecx, optimized_code_entry); |
| __ pop(edx); |
| __ jmp(ecx); |
| |
| // Optimized code slot contains deoptimized code, evict it and re-enter the |
| // closure's code. |
| __ bind(&found_deoptimized_code); |
| __ pop(edx); |
| GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot); |
| } |
| |
| // Fall-through if the optimized code cell is clear and there is no |
| // optimization marker. |
| __ bind(&fallthrough); |
| } |
| |
| // Advance the current bytecode offset. This simulates what all bytecode |
| // handlers do upon completion of the underlying operation. Will bail out to a |
| // label if the bytecode (without prefix) is a return bytecode. |
| static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm, |
| Register bytecode_array, |
| Register bytecode_offset, |
| Register scratch1, Register scratch2, |
| Label* if_return) { |
| Register bytecode_size_table = scratch1; |
| Register bytecode = scratch2; |
| DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table, |
| bytecode)); |
| __ Move(bytecode_size_table, |
| Immediate(ExternalReference::bytecode_size_table_address())); |
| |
| // Load the current bytecode. |
| __ movzx_b(bytecode, Operand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, times_1, 0)); |
| |
| // Check if the bytecode is a Wide or ExtraWide prefix bytecode. |
| Label process_bytecode, extra_wide; |
| STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide)); |
| STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide)); |
| STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide)); |
| STATIC_ASSERT(3 == |
| static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide)); |
| __ cmp(bytecode, Immediate(0x3)); |
| __ j(above, &process_bytecode, Label::kNear); |
| __ test(bytecode, Immediate(0x1)); |
| __ j(not_equal, &extra_wide, Label::kNear); |
| |
| // Load the next bytecode and update table to the wide scaled table. |
| __ inc(bytecode_offset); |
| __ movzx_b(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0)); |
| __ add(bytecode_size_table, |
| Immediate(kIntSize * interpreter::Bytecodes::kBytecodeCount)); |
| __ jmp(&process_bytecode, Label::kNear); |
| |
| __ bind(&extra_wide); |
| // Load the next bytecode and update table to the extra wide scaled table. |
| __ inc(bytecode_offset); |
| __ movzx_b(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0)); |
| __ add(bytecode_size_table, |
| Immediate(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount)); |
| |
| __ bind(&process_bytecode); |
| |
| // Bailout to the return label if this is a return bytecode. |
| #define JUMP_IF_EQUAL(NAME) \ |
| __ cmp(bytecode, \ |
| Immediate(static_cast<int>(interpreter::Bytecode::k##NAME))); \ |
| __ j(equal, if_return); |
| RETURN_BYTECODE_LIST(JUMP_IF_EQUAL) |
| #undef JUMP_IF_EQUAL |
| |
| // Otherwise, load the size of the current bytecode and advance the offset. |
| __ add(bytecode_offset, |
| Operand(bytecode_size_table, bytecode, times_int_size, 0)); |
| } |
| |
| // Generate code for entering a JS function with the interpreter. |
| // On entry to the function the receiver and arguments have been pushed on the |
| // stack left to right. The actual argument count matches the formal parameter |
| // count expected by the function. |
| // |
| // The live registers are: |
| // o edi: the JS function object being called |
| // o edx: the incoming new target or generator object |
| // o esi: our context |
| // o ebp: the caller's frame pointer |
| // o esp: stack pointer (pointing to return address) |
| // |
| // The function builds an interpreter frame. See InterpreterFrameConstants in |
| // frames.h for its layout. |
| void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { |
| Register closure = edi; |
| |
| // The bytecode array could have been flushed from the shared function info, |
| // if so, call into CompileLazy. |
| Label compile_lazy; |
| __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); |
| __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kFunctionDataOffset)); |
| GetSharedFunctionInfoBytecode(masm, ecx, eax); |
| __ CmpObjectType(ecx, BYTECODE_ARRAY_TYPE, eax); |
| __ j(not_equal, &compile_lazy); |
| |
| Register feedback_vector = ecx; |
| Label push_stack_frame; |
| // Load feedback vector and check if it is valid. If valid, check for |
| // optimized code and update invocation count. Otherwise, setup the stack |
| // frame. |
| __ mov(feedback_vector, |
| FieldOperand(closure, JSFunction::kFeedbackCellOffset)); |
| __ mov(feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset)); |
| __ mov(eax, FieldOperand(feedback_vector, HeapObject::kMapOffset)); |
| __ CmpInstanceType(eax, FEEDBACK_VECTOR_TYPE); |
| __ j(not_equal, &push_stack_frame); |
| |
| // Read off the optimized code slot in the closure's feedback vector, and if |
| // there is optimized code or an optimization marker, call that instead. |
| MaybeTailCallOptimizedCodeSlot(masm, ecx); |
| |
| // Load the feedback vector and increment the invocation count. |
| __ mov(feedback_vector, |
| FieldOperand(closure, JSFunction::kFeedbackCellOffset)); |
| __ mov(feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset)); |
| __ inc(FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset)); |
| |
| // Open a frame scope to indicate that there is a frame on the stack. The |
| // MANUAL indicates that the scope shouldn't actually generate code to set |
| // up the frame (that is done below). |
| __ bind(&push_stack_frame); |
| FrameScope frame_scope(masm, StackFrame::MANUAL); |
| __ push(ebp); // Caller's frame pointer. |
| __ mov(ebp, esp); |
| __ push(esi); // Callee's context. |
| __ push(edi); // Callee's JS function. |
| |
| // Get the bytecode array from the function object and load it into |
| // kInterpreterBytecodeArrayRegister. |
| __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); |
| __ mov(kInterpreterBytecodeArrayRegister, |
| FieldOperand(eax, SharedFunctionInfo::kFunctionDataOffset)); |
| GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, eax); |
| |
| // Check function data field is actually a BytecodeArray object. |
| if (FLAG_debug_code) { |
| __ AssertNotSmi(kInterpreterBytecodeArrayRegister); |
| __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, |
| eax); |
| __ Assert( |
| equal, |
| AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); |
| } |
| |
| // Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are |
| // 8-bit fields next to each other, so we could just optimize by writing a |
| // 16-bit. These static asserts guard our assumption is valid. |
| STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset == |
| BytecodeArray::kOsrNestingLevelOffset + kCharSize); |
| STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0); |
| __ mov_w(FieldOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kOsrNestingLevelOffset), |
| Immediate(0)); |
| |
| // Push bytecode array. |
| __ push(kInterpreterBytecodeArrayRegister); |
| // Push Smi tagged initial bytecode array offset. |
| __ push(Immediate(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag))); |
| |
| // Allocate the local and temporary register file on the stack. |
| { |
| // Load frame size from the BytecodeArray object. |
| Register frame_size = ecx; |
| __ mov(frame_size, FieldOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kFrameSizeOffset)); |
| |
| // Do a stack check to ensure we don't go over the limit. |
| Label ok; |
| __ mov(eax, esp); |
| __ sub(eax, frame_size); |
| __ CompareRealStackLimit(eax); |
| __ j(above_equal, &ok); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ bind(&ok); |
| |
| // If ok, push undefined as the initial value for all register file entries. |
| Label loop_header; |
| Label loop_check; |
| __ Move(eax, masm->isolate()->factory()->undefined_value()); |
| __ jmp(&loop_check); |
| __ bind(&loop_header); |
| // TODO(rmcilroy): Consider doing more than one push per loop iteration. |
| __ push(eax); |
| // Continue loop if not done. |
| __ bind(&loop_check); |
| __ sub(frame_size, Immediate(kSystemPointerSize)); |
| __ j(greater_equal, &loop_header); |
| } |
| |
| // If the bytecode array has a valid incoming new target or generator object |
| // register, initialize it with incoming value which was passed in edx. |
| Label no_incoming_new_target_or_generator_register; |
| __ mov(eax, FieldOperand( |
| kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); |
| __ test(eax, eax); |
| __ j(zero, &no_incoming_new_target_or_generator_register); |
| __ mov(Operand(ebp, eax, times_system_pointer_size, 0), edx); |
| __ bind(&no_incoming_new_target_or_generator_register); |
| |
| // Load accumulator and bytecode offset into registers. |
| __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); |
| __ mov(kInterpreterBytecodeOffsetRegister, |
| Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag)); |
| |
| // Load the dispatch table into a register and dispatch to the bytecode |
| // handler at the current bytecode offset. |
| Label do_dispatch; |
| __ bind(&do_dispatch); |
| __ Move(kInterpreterDispatchTableRegister, |
| Immediate(ExternalReference::interpreter_dispatch_table_address( |
| masm->isolate()))); |
| __ movzx_b(ecx, Operand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, times_1, 0)); |
| __ mov(kJavaScriptCallCodeStartRegister, |
| Operand(kInterpreterDispatchTableRegister, ecx, |
| times_system_pointer_size, 0)); |
| __ call(kJavaScriptCallCodeStartRegister); |
| masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); |
| |
| // Any returns to the entry trampoline are either due to the return bytecode |
| // or the interpreter tail calling a builtin and then a dispatch. |
| |
| // Get bytecode array and bytecode offset from the stack frame. |
| __ mov(kInterpreterBytecodeArrayRegister, |
| Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ mov(kInterpreterBytecodeOffsetRegister, |
| Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister); |
| |
| // Either return, or advance to the next bytecode and dispatch. |
| Label do_return; |
| AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, ecx, |
| kInterpreterDispatchTableRegister, &do_return); |
| __ jmp(&do_dispatch); |
| |
| __ bind(&do_return); |
| // The return value is in eax. |
| LeaveInterpreterFrame(masm, edx, ecx); |
| __ ret(0); |
| |
| __ bind(&compile_lazy); |
| GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); |
| __ int3(); // Should not return. |
| } |
| |
| |
| static void Generate_InterpreterPushArgs(MacroAssembler* masm, |
| Register array_limit, |
| Register start_address) { |
| // ----------- S t a t e ------------- |
| // -- start_address : Pointer to the last argument in the args array. |
| // -- array_limit : Pointer to one before the first argument in the |
| // args array. |
| // ----------------------------------- |
| Label loop_header, loop_check; |
| __ jmp(&loop_check); |
| __ bind(&loop_header); |
| __ Push(Operand(start_address, 0)); |
| __ sub(start_address, Immediate(kSystemPointerSize)); |
| __ bind(&loop_check); |
| __ cmp(start_address, array_limit); |
| __ j(greater, &loop_header, Label::kNear); |
| } |
| |
| // static |
| void Builtins::Generate_InterpreterPushArgsThenCallImpl( |
| MacroAssembler* masm, ConvertReceiverMode receiver_mode, |
| InterpreterPushArgsMode mode) { |
| DCHECK(mode != InterpreterPushArgsMode::kArrayFunction); |
| // ----------- S t a t e ------------- |
| // -- eax : the number of arguments (not including the receiver) |
| // -- ecx : the address of the first argument to be pushed. Subsequent |
| // arguments should be consecutive above this, in the same order as |
| // they are to be pushed onto the stack. |
| // -- edi : the target to call (can be any Object). |
| // ----------------------------------- |
| |
| const Register scratch = edx; |
| const Register argv = ecx; |
| |
| Label stack_overflow; |
| // Add a stack check before pushing the arguments. |
| Generate_StackOverflowCheck(masm, eax, scratch, &stack_overflow, true); |
| |
| __ movd(xmm0, eax); // Spill number of arguments. |
| |
| // Compute the expected number of arguments. |
| __ mov(scratch, eax); |
| __ add(scratch, Immediate(1)); // Add one for receiver. |
| |
| // Pop return address to allow tail-call after pushing arguments. |
| __ PopReturnAddressTo(eax); |
| |
| // Push "undefined" as the receiver arg if we need to. |
| if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { |
| __ PushRoot(RootIndex::kUndefinedValue); |
| __ sub(scratch, Immediate(1)); // Subtract one for receiver. |
| } |
| |
| // Find the address of the last argument. |
| __ shl(scratch, kSystemPointerSizeLog2); |
| __ neg(scratch); |
| __ add(scratch, argv); |
| Generate_InterpreterPushArgs(masm, scratch, argv); |
| |
| // Call the target. |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| __ Pop(ecx); // Pass the spread in a register |
| __ PushReturnAddressFrom(eax); |
| __ movd(eax, xmm0); // Restore number of arguments. |
| __ sub(eax, Immediate(1)); // Subtract one for spread |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), |
| RelocInfo::CODE_TARGET); |
| } else { |
| __ PushReturnAddressFrom(eax); |
| __ movd(eax, xmm0); // Restore number of arguments. |
| __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| __ bind(&stack_overflow); |
| { |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| |
| // This should be unreachable. |
| __ int3(); |
| } |
| } |
| |
| namespace { |
| |
| // This function modifies start_addr, and only reads the contents of num_args |
| // register. scratch1 and scratch2 are used as temporary registers. |
| void Generate_InterpreterPushZeroAndArgsAndReturnAddress( |
| MacroAssembler* masm, Register num_args, Register start_addr, |
| Register scratch1, Register scratch2, int num_slots_to_move, |
| Label* stack_overflow) { |
| // We have to move return address and the temporary registers above it |
| // before we can copy arguments onto the stack. To achieve this: |
| // Step 1: Increment the stack pointer by num_args + 1 (for receiver). |
| // Step 2: Move the return address and values around it to the top of stack. |
| // Step 3: Copy the arguments into the correct locations. |
| // current stack =====> required stack layout |
| // | | | return addr | (2) <-- esp (1) |
| // | | | addtl. slot | |
| // | | | arg N | (3) |
| // | | | .... | |
| // | | | arg 1 | |
| // | return addr | <-- esp | arg 0 | |
| // | addtl. slot | | receiver slot | |
| |
| // Check for stack overflow before we increment the stack pointer. |
| Generate_StackOverflowCheck(masm, num_args, scratch1, stack_overflow, true); |
| |
| // Step 1 - Update the stack pointer. |
| |
| __ lea(scratch1, |
| Operand(num_args, times_system_pointer_size, kSystemPointerSize)); |
| __ AllocateStackSpace(scratch1); |
| |
| // Step 2 move return_address and slots around it to the correct locations. |
| // Move from top to bottom, otherwise we may overwrite when num_args = 0 or 1, |
| // basically when the source and destination overlap. We at least need one |
| // extra slot for receiver, so no extra checks are required to avoid copy. |
| for (int i = 0; i < num_slots_to_move + 1; i++) { |
| __ mov(scratch1, Operand(esp, num_args, times_system_pointer_size, |
| (i + 1) * kSystemPointerSize)); |
| __ mov(Operand(esp, i * kSystemPointerSize), scratch1); |
| } |
| |
| // Step 3 copy arguments to correct locations. |
| // Slot meant for receiver contains return address. Reset it so that |
| // we will not incorrectly interpret return address as an object. |
| __ mov(Operand(esp, num_args, times_system_pointer_size, |
| (num_slots_to_move + 1) * kSystemPointerSize), |
| Immediate(0)); |
| __ mov(scratch1, num_args); |
| |
| Label loop_header, loop_check; |
| __ jmp(&loop_check); |
| __ bind(&loop_header); |
| __ mov(scratch2, Operand(start_addr, 0)); |
| __ mov(Operand(esp, scratch1, times_system_pointer_size, |
| num_slots_to_move * kSystemPointerSize), |
| scratch2); |
| __ sub(start_addr, Immediate(kSystemPointerSize)); |
| __ sub(scratch1, Immediate(1)); |
| __ bind(&loop_check); |
| __ cmp(scratch1, Immediate(0)); |
| __ j(greater, &loop_header, Label::kNear); |
| } |
| |
| } // end anonymous namespace |
| |
| // static |
| void Builtins::Generate_InterpreterPushArgsThenConstructImpl( |
| MacroAssembler* masm, InterpreterPushArgsMode mode) { |
| // ----------- S t a t e ------------- |
| // -- eax : the number of arguments (not including the receiver) |
| // -- ecx : the address of the first argument to be pushed. Subsequent |
| // arguments should be consecutive above this, in the same order |
| // as they are to be pushed onto the stack. |
| // -- esp[0] : return address |
| // -- esp[4] : allocation site feedback (if available or undefined) |
| // -- esp[8] : the new target |
| // -- esp[12] : the constructor |
| // ----------------------------------- |
| |
| Label stack_overflow; |
| |
| // Push arguments and move return address and stack spill slots to the top of |
| // stack. The eax register is readonly. The ecx register will be modified. edx |
| // and edi are used as scratch registers. |
| Generate_InterpreterPushZeroAndArgsAndReturnAddress( |
| masm, eax, ecx, edx, edi, |
| InterpreterPushArgsThenConstructDescriptor::kStackArgumentsCount, |
| &stack_overflow); |
| |
| // Call the appropriate constructor. eax and ecx already contain intended |
| // values, remaining registers still need to be initialized from the stack. |
| |
| if (mode == InterpreterPushArgsMode::kArrayFunction) { |
| // Tail call to the array construct stub (still in the caller context at |
| // this point). |
| |
| __ movd(xmm0, eax); // Spill number of arguments. |
| __ PopReturnAddressTo(eax); |
| __ Pop(kJavaScriptCallExtraArg1Register); |
| __ Pop(kJavaScriptCallNewTargetRegister); |
| __ Pop(kJavaScriptCallTargetRegister); |
| __ PushReturnAddressFrom(eax); |
| |
| __ AssertFunction(kJavaScriptCallTargetRegister); |
| __ AssertUndefinedOrAllocationSite(kJavaScriptCallExtraArg1Register, eax); |
| |
| __ movd(eax, xmm0); // Reload number of arguments. |
| __ Jump(BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl), |
| RelocInfo::CODE_TARGET); |
| } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| __ movd(xmm0, eax); // Spill number of arguments. |
| __ PopReturnAddressTo(eax); |
| __ Drop(1); // The allocation site is unused. |
| __ Pop(kJavaScriptCallNewTargetRegister); |
| __ Pop(kJavaScriptCallTargetRegister); |
| __ Pop(ecx); // Pop the spread (i.e. the first argument), overwriting ecx. |
| __ PushReturnAddressFrom(eax); |
| __ movd(eax, xmm0); // Reload number of arguments. |
| __ sub(eax, Immediate(1)); // The actual argc thus decrements by one. |
| |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), |
| RelocInfo::CODE_TARGET); |
| } else { |
| DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); |
| __ PopReturnAddressTo(ecx); |
| __ Drop(1); // The allocation site is unused. |
| __ Pop(kJavaScriptCallNewTargetRegister); |
| __ Pop(kJavaScriptCallTargetRegister); |
| __ PushReturnAddressFrom(ecx); |
| |
| __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); |
| } |
| |
| __ bind(&stack_overflow); |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| __ int3(); |
| } |
| |
| static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { |
| // Set the return address to the correct point in the interpreter entry |
| // trampoline. |
| Label builtin_trampoline, trampoline_loaded; |
| Smi interpreter_entry_return_pc_offset( |
| masm->isolate()->heap()->interpreter_entry_return_pc_offset()); |
| DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero); |
| |
| static constexpr Register scratch = ecx; |
| |
| // If the SFI function_data is an InterpreterData, the function will have a |
| // custom copy of the interpreter entry trampoline for profiling. If so, |
| // get the custom trampoline, otherwise grab the entry address of the global |
| // trampoline. |
| __ mov(scratch, Operand(ebp, StandardFrameConstants::kFunctionOffset)); |
| __ mov(scratch, FieldOperand(scratch, JSFunction::kSharedFunctionInfoOffset)); |
| __ mov(scratch, |
| FieldOperand(scratch, SharedFunctionInfo::kFunctionDataOffset)); |
| __ Push(eax); |
| __ CmpObjectType(scratch, INTERPRETER_DATA_TYPE, eax); |
| __ j(not_equal, &builtin_trampoline, Label::kNear); |
| |
| __ mov(scratch, |
| FieldOperand(scratch, InterpreterData::kInterpreterTrampolineOffset)); |
| __ add(scratch, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| __ jmp(&trampoline_loaded, Label::kNear); |
| |
| __ bind(&builtin_trampoline); |
| __ mov(scratch, |
| __ ExternalReferenceAsOperand( |
| ExternalReference:: |
| address_of_interpreter_entry_trampoline_instruction_start( |
| masm->isolate()), |
| scratch)); |
| |
| __ bind(&trampoline_loaded); |
| __ Pop(eax); |
| __ add(scratch, Immediate(interpreter_entry_return_pc_offset.value())); |
| __ push(scratch); |
| |
| // Initialize the dispatch table register. |
| __ Move(kInterpreterDispatchTableRegister, |
| Immediate(ExternalReference::interpreter_dispatch_table_address( |
| masm->isolate()))); |
| |
| // Get the bytecode array pointer from the frame. |
| __ mov(kInterpreterBytecodeArrayRegister, |
| Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| |
| if (FLAG_debug_code) { |
| // Check function data field is actually a BytecodeArray object. |
| __ AssertNotSmi(kInterpreterBytecodeArrayRegister); |
| __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, |
| scratch); |
| __ Assert( |
| equal, |
| AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); |
| } |
| |
| // Get the target bytecode offset from the frame. |
| __ mov(kInterpreterBytecodeOffsetRegister, |
| Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister); |
| |
| // Dispatch to the target bytecode. |
| __ movzx_b(scratch, Operand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, times_1, 0)); |
| __ mov(kJavaScriptCallCodeStartRegister, |
| Operand(kInterpreterDispatchTableRegister, scratch, |
| times_system_pointer_size, 0)); |
| __ jmp(kJavaScriptCallCodeStartRegister); |
| } |
| |
| void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { |
| // Get bytecode array and bytecode offset from the stack frame. |
| __ mov(kInterpreterBytecodeArrayRegister, |
| Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ mov(kInterpreterBytecodeOffsetRegister, |
| Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister); |
| |
| // Advance to the next bytecode. |
| Label if_return; |
| AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, ecx, esi, |
| &if_return); |
| |
| // Convert new bytecode offset to a Smi and save in the stackframe. |
| __ mov(ecx, kInterpreterBytecodeOffsetRegister); |
| __ SmiTag(ecx); |
| __ mov(Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp), ecx); |
| |
| Generate_InterpreterEnterBytecode(masm); |
| |
| // We should never take the if_return path. |
| __ bind(&if_return); |
| __ Abort(AbortReason::kInvalidBytecodeAdvance); |
| } |
| |
| void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { |
| Generate_InterpreterEnterBytecode(masm); |
| } |
| |
| void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax : argument count (preserved for callee) |
| // -- edx : new target (preserved for callee) |
| // -- edi : target function (preserved for callee) |
| // ----------------------------------- |
| Label failed; |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Preserve argument count for later compare. |
| __ mov(ecx, eax); |
| // Push the number of arguments to the callee. |
| __ SmiTag(eax); |
| __ push(eax); |
| // Push a copy of the target function and the new target. |
| __ push(edi); |
| __ push(edx); |
| |
| // The function. |
| __ push(edi); |
| // Copy arguments from caller (stdlib, foreign, heap). |
| Label args_done; |
| for (int j = 0; j < 4; ++j) { |
| Label over; |
| if (j < 3) { |
| __ cmp(ecx, Immediate(j)); |
| __ j(not_equal, &over, Label::kNear); |
| } |
| for (int i = j - 1; i >= 0; --i) { |
| __ Push(Operand(ebp, StandardFrameConstants::kCallerSPOffset + |
| i * kSystemPointerSize)); |
| } |
| for (int i = 0; i < 3 - j; ++i) { |
| __ PushRoot(RootIndex::kUndefinedValue); |
| } |
| if (j < 3) { |
| __ jmp(&args_done, Label::kNear); |
| __ bind(&over); |
| } |
| } |
| __ bind(&args_done); |
| |
| // Call runtime, on success unwind frame, and parent frame. |
| __ CallRuntime(Runtime::kInstantiateAsmJs, 4); |
| // A smi 0 is returned on failure, an object on success. |
| __ JumpIfSmi(eax, &failed, Label::kNear); |
| |
| __ Drop(2); |
| __ Pop(ecx); |
| __ SmiUntag(ecx); |
| scope.GenerateLeaveFrame(); |
| |
| __ PopReturnAddressTo(edx); |
| __ inc(ecx); |
| __ lea(esp, Operand(esp, ecx, times_system_pointer_size, 0)); |
| __ PushReturnAddressFrom(edx); |
| __ ret(0); |
| |
| __ bind(&failed); |
| // Restore target function and new target. |
| __ pop(edx); |
| __ pop(edi); |
| __ pop(eax); |
| __ SmiUntag(eax); |
| } |
| // On failure, tail call back to regular js by re-calling the function |
| // which has be reset to the compile lazy builtin. |
| static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); |
| __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset)); |
| __ JumpCodeObject(ecx); |
| } |
| |
| namespace { |
| void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, |
| bool java_script_builtin, |
| bool with_result) { |
| const RegisterConfiguration* config(RegisterConfiguration::Default()); |
| int allocatable_register_count = config->num_allocatable_general_registers(); |
| if (with_result) { |
| // Overwrite the hole inserted by the deoptimizer with the return value from |
| // the LAZY deopt point. |
| __ mov(Operand(esp, config->num_allocatable_general_registers() * |
| kSystemPointerSize + |
| BuiltinContinuationFrameConstants::kFixedFrameSize), |
| eax); |
| } |
| |
| // Replace the builtin index Smi on the stack with the start address of the |
| // builtin loaded from the builtins table. The ret below will return to this |
| // address. |
| int offset_to_builtin_index = allocatable_register_count * kSystemPointerSize; |
| __ mov(eax, Operand(esp, offset_to_builtin_index)); |
| __ LoadEntryFromBuiltinIndex(eax); |
| __ mov(Operand(esp, offset_to_builtin_index), eax); |
| |
| for (int i = allocatable_register_count - 1; i >= 0; --i) { |
| int code = config->GetAllocatableGeneralCode(i); |
| __ pop(Register::from_code(code)); |
| if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { |
| __ SmiUntag(Register::from_code(code)); |
| } |
| } |
| __ mov( |
| ebp, |
| Operand(esp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); |
| const int offsetToPC = |
| BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp - |
| kSystemPointerSize; |
| __ pop(Operand(esp, offsetToPC)); |
| __ Drop(offsetToPC / kSystemPointerSize); |
| __ ret(0); |
| } |
| } // namespace |
| |
| void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, false, false); |
| } |
| |
| void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( |
| MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, false, true); |
| } |
| |
| void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, true, false); |
| } |
| |
| void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( |
| MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, true, true); |
| } |
| |
| void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kNotifyDeoptimized); |
| // Tear down internal frame. |
| } |
| |
| DCHECK_EQ(kInterpreterAccumulatorRegister.code(), eax.code()); |
| __ mov(eax, Operand(esp, 1 * kSystemPointerSize)); |
| __ ret(1 * kSystemPointerSize); // Remove eax. |
| } |
| |
| // static |
| void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax : argc |
| // -- esp[0] : return address |
| // -- esp[4] : argArray |
| // -- esp[8] : thisArg |
| // -- esp[12] : receiver |
| // ----------------------------------- |
| |
| // 1. Load receiver into xmm0, argArray into edx (if present), remove all |
| // arguments from the stack (including the receiver), and push thisArg (if |
| // present) instead. |
| { |
| Label no_arg_array, no_this_arg; |
| // Spill receiver to allow the usage of edi as a scratch register. |
| __ movd(xmm0, |
| Operand(esp, eax, times_system_pointer_size, kSystemPointerSize)); |
| |
| __ LoadRoot(edx, RootIndex::kUndefinedValue); |
| __ mov(edi, edx); |
| __ test(eax, eax); |
| __ j(zero, &no_this_arg, Label::kNear); |
| { |
| __ mov(edi, Operand(esp, eax, times_system_pointer_size, 0)); |
| __ cmp(eax, Immediate(1)); |
| __ j(equal, &no_arg_array, Label::kNear); |
| __ mov(edx, |
| Operand(esp, eax, times_system_pointer_size, -kSystemPointerSize)); |
| __ bind(&no_arg_array); |
| } |
| __ bind(&no_this_arg); |
| __ PopReturnAddressTo(ecx); |
| __ lea(esp, |
| Operand(esp, eax, times_system_pointer_size, kSystemPointerSize)); |
| __ Push(edi); |
| __ PushReturnAddressFrom(ecx); |
| |
| // Restore receiver to edi. |
| __ movd(edi, xmm0); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- edx : argArray |
| // -- edi : receiver |
| // -- esp[0] : return address |
| // -- esp[4] : thisArg |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for callable receiver here, |
| // since that's the first thing the Call/CallWithArrayLike builtins |
| // will do. |
| |
| // 3. Tail call with no arguments if argArray is null or undefined. |
| Label no_arguments; |
| __ JumpIfRoot(edx, RootIndex::kNullValue, &no_arguments, Label::kNear); |
| __ JumpIfRoot(edx, RootIndex::kUndefinedValue, &no_arguments, Label::kNear); |
| |
| // 4a. Apply the receiver to the given argArray. |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| |
| // 4b. The argArray is either null or undefined, so we tail call without any |
| // arguments to the receiver. |
| __ bind(&no_arguments); |
| { |
| __ Set(eax, 0); |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { |
| // Stack Layout: |
| // esp[0] : Return address |
| // esp[8] : Argument n |
| // esp[16] : Argument n-1 |
| // ... |
| // esp[8 * n] : Argument 1 |
| // esp[8 * (n + 1)] : Receiver (callable to call) |
| // |
| // eax contains the number of arguments, n, not counting the receiver. |
| // |
| // 1. Make sure we have at least one argument. |
| { |
| Label done; |
| __ test(eax, eax); |
| __ j(not_zero, &done, Label::kNear); |
| __ PopReturnAddressTo(edx); |
| __ PushRoot(RootIndex::kUndefinedValue); |
| __ PushReturnAddressFrom(edx); |
| __ inc(eax); |
| __ bind(&done); |
| } |
| |
| // 2. Get the callable to call (passed as receiver) from the stack. |
| __ mov(edi, Operand(esp, eax, times_system_pointer_size, kSystemPointerSize)); |
| |
| // 3. Shift arguments and return address one slot down on the stack |
| // (overwriting the original receiver). Adjust argument count to make |
| // the original first argument the new receiver. |
| { |
| Label loop; |
| __ mov(ecx, eax); |
| __ bind(&loop); |
| __ mov(edx, Operand(esp, ecx, times_system_pointer_size, 0)); |
| __ mov(Operand(esp, ecx, times_system_pointer_size, kSystemPointerSize), |
| edx); |
| __ dec(ecx); |
| __ j(not_sign, &loop); // While non-negative (to copy return address). |
| __ pop(edx); // Discard copy of return address. |
| __ dec(eax); // One fewer argument (first argument is new receiver). |
| } |
| |
| // 4. Call the callable. |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ReflectApply(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax : argc |
| // -- esp[0] : return address |
| // -- esp[4] : argumentsList |
| // -- esp[8] : thisArgument |
| // -- esp[12] : target |
| // -- esp[16] : receiver |
| // ----------------------------------- |
| |
| // 1. Load target into edi (if present), argumentsList into edx (if present), |
| // remove all arguments from the stack (including the receiver), and push |
| // thisArgument (if present) instead. |
| { |
| Label done; |
| __ LoadRoot(edi, RootIndex::kUndefinedValue); |
| __ mov(edx, edi); |
| __ mov(ecx, edi); |
| __ cmp(eax, Immediate(1)); |
| __ j(below, &done, Label::kNear); |
| __ mov(edi, Operand(esp, eax, times_system_pointer_size, |
| -0 * kSystemPointerSize)); |
| __ j(equal, &done, Label::kNear); |
| __ mov(ecx, Operand(esp, eax, times_system_pointer_size, |
| -1 * kSystemPointerSize)); |
| __ cmp(eax, Immediate(3)); |
| __ j(below, &done, Label::kNear); |
| __ mov(edx, Operand(esp, eax, times_system_pointer_size, |
| -2 * kSystemPointerSize)); |
| __ bind(&done); |
| |
| // Spill argumentsList to use edx as a scratch register. |
| __ movd(xmm0, edx); |
| |
| __ PopReturnAddressTo(edx); |
| __ lea(esp, |
| Operand(esp, eax, times_system_pointer_size, kSystemPointerSize)); |
| __ Push(ecx); |
| __ PushReturnAddressFrom(edx); |
| |
| // Restore argumentsList. |
| __ movd(edx, xmm0); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- edx : argumentsList |
| // -- edi : target |
| // -- esp[0] : return address |
| // -- esp[4] : thisArgument |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for callable target here, |
| // since that's the first thing the Call/CallWithArrayLike builtins |
| // will do. |
| |
| // 3. Apply the target to the given argumentsList. |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax : argc |
| // -- esp[0] : return address |
| // -- esp[4] : new.target (optional) |
| // -- esp[8] : argumentsList |
| // -- esp[12] : target |
| // -- esp[16] : receiver |
| // ----------------------------------- |
| |
| // 1. Load target into edi (if present), argumentsList into ecx (if present), |
| // new.target into edx (if present, otherwise use target), remove all |
| // arguments from the stack (including the receiver), and push thisArgument |
| // (if present) instead. |
| { |
| Label done; |
| __ LoadRoot(edi, RootIndex::kUndefinedValue); |
| __ mov(edx, edi); |
| __ mov(ecx, edi); |
| __ cmp(eax, Immediate(1)); |
| __ j(below, &done, Label::kNear); |
| __ mov(edi, Operand(esp, eax, times_system_pointer_size, |
| -0 * kSystemPointerSize)); |
| __ mov(edx, edi); |
| __ j(equal, &done, Label::kNear); |
| __ mov(ecx, Operand(esp, eax, times_system_pointer_size, |
| -1 * kSystemPointerSize)); |
| __ cmp(eax, Immediate(3)); |
| __ j(below, &done, Label::kNear); |
| __ mov(edx, Operand(esp, eax, times_system_pointer_size, |
| -2 * kSystemPointerSize)); |
| __ bind(&done); |
| |
| // Spill argumentsList to use ecx as a scratch register. |
| __ movd(xmm0, ecx); |
| |
| __ PopReturnAddressTo(ecx); |
| __ lea(esp, |
| Operand(esp, eax, times_system_pointer_size, kSystemPointerSize)); |
| __ PushRoot(RootIndex::kUndefinedValue); |
| __ PushReturnAddressFrom(ecx); |
| |
| // Restore argumentsList. |
| __ movd(ecx, xmm0); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- ecx : argumentsList |
| // -- edx : new.target |
| // -- edi : target |
| // -- esp[0] : return address |
| // -- esp[4] : receiver (undefined) |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for constructor target here, |
| // since that's the first thing the Construct/ConstructWithArrayLike |
| // builtins will do. |
| |
| // 3. We don't need to check explicitly for constructor new.target here, |
| // since that's the second thing the Construct/ConstructWithArrayLike |
| // builtins will do. |
| |
| // 4. Construct the target with the given new.target and argumentsList. |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax : argc |
| // -- esp[0] : return address |
| // -- esp[4] : last argument |
| // ----------------------------------- |
| |
| if (FLAG_debug_code) { |
| // Initial map for the builtin InternalArray function should be a map. |
| __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a nullptr and a Smi. |
| __ test(ecx, Immediate(kSmiTagMask)); |
| __ Assert(not_zero, |
| AbortReason::kUnexpectedInitialMapForInternalArrayFunction); |
| __ CmpObjectType(ecx, MAP_TYPE, ecx); |
| __ Assert(equal, |
| AbortReason::kUnexpectedInitialMapForInternalArrayFunction); |
| } |
| |
| // Run the native code for the InternalArray function called as a normal |
| // function. |
| __ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { |
| __ push(ebp); |
| __ mov(ebp, esp); |
| |
| // Store the arguments adaptor context sentinel. |
| __ push(Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); |
| |
| // Push the function on the stack. |
| __ push(edi); |
| |
| // Preserve the number of arguments on the stack. Must preserve eax, |
| // ebx and ecx because these registers are used when copying the |
| // arguments and the receiver. |
| STATIC_ASSERT(kSmiTagSize == 1); |
| __ lea(edi, Operand(eax, eax, times_1, kSmiTag)); |
| __ push(edi); |
| |
| __ Push(Immediate(0)); // Padding. |
| } |
| |
| static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { |
| // Retrieve the number of arguments from the stack. |
| __ mov(edi, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| |
| // Leave the frame. |
| __ leave(); |
| |
| // Remove caller arguments from the stack. |
| STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); |
| __ PopReturnAddressTo(ecx); |
| __ lea(esp, Operand(esp, edi, times_half_system_pointer_size, |
| 1 * kSystemPointerSize)); // 1 ~ receiver |
| __ PushReturnAddressFrom(ecx); |
| } |
| |
| // static |
| void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, |
| Handle<Code> code) { |
| // ----------- S t a t e ------------- |
| // -- edi : target |
| // -- esi : context for the Call / Construct builtin |
| // -- eax : number of parameters on the stack (not including the receiver) |
| // -- ecx : len (number of elements to from args) |
| // -- ecx : new.target (checked to be constructor or undefined) |
| // -- esp[4] : arguments list (a FixedArray) |
| // -- esp[0] : return address. |
| // ----------------------------------- |
| |
| // We need to preserve eax, edi, esi and ebx. |
| __ movd(xmm0, edx); |
| __ movd(xmm1, edi); |
| __ movd(xmm2, eax); |
| __ movd(xmm3, esi); // Spill the context. |
| |
| const Register kArgumentsList = esi; |
| const Register kArgumentsLength = ecx; |
| |
| __ PopReturnAddressTo(edx); |
| __ pop(kArgumentsList); |
| __ PushReturnAddressFrom(edx); |
| |
| if (masm->emit_debug_code()) { |
| // Allow kArgumentsList to be a FixedArray, or a FixedDoubleArray if |
| // kArgumentsLength == 0. |
| Label ok, fail; |
| __ AssertNotSmi(kArgumentsList); |
| __ mov(edx, FieldOperand(kArgumentsList, HeapObject::kMapOffset)); |
| __ CmpInstanceType(edx, FIXED_ARRAY_TYPE); |
| __ j(equal, &ok); |
| __ CmpInstanceType(edx, FIXED_DOUBLE_ARRAY_TYPE); |
| __ j(not_equal, &fail); |
| __ cmp(kArgumentsLength, 0); |
| __ j(equal, &ok); |
| // Fall through. |
| __ bind(&fail); |
| __ Abort(AbortReason::kOperandIsNotAFixedArray); |
| |
| __ bind(&ok); |
| } |
| |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack limit". |
| Label stack_overflow; |
| Generate_StackOverflowCheck(masm, kArgumentsLength, edx, &stack_overflow); |
| |
| // Push additional arguments onto the stack. |
| { |
| __ PopReturnAddressTo(edx); |
| __ Move(eax, Immediate(0)); |
| Label done, push, loop; |
| __ bind(&loop); |
| __ cmp(eax, kArgumentsLength); |
| __ j(equal, &done, Label::kNear); |
| // Turn the hole into undefined as we go. |
| __ mov(edi, FieldOperand(kArgumentsList, eax, times_system_pointer_size, |
| FixedArray::kHeaderSize)); |
| __ CompareRoot(edi, RootIndex::kTheHoleValue); |
| __ j(not_equal, &push, Label::kNear); |
| __ LoadRoot(edi, RootIndex::kUndefinedValue); |
| __ bind(&push); |
| __ Push(edi); |
| __ inc(eax); |
| __ jmp(&loop); |
| __ bind(&done); |
| __ PushReturnAddressFrom(edx); |
| } |
| |
| // Restore eax, edi and edx. |
| __ movd(esi, xmm3); // Restore the context. |
| __ movd(eax, xmm2); |
| __ movd(edi, xmm1); |
| __ movd(edx, xmm0); |
| |
| // Compute the actual parameter count. |
| __ add(eax, kArgumentsLength); |
| |
| // Tail-call to the actual Call or Construct builtin. |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| |
| __ bind(&stack_overflow); |
| __ movd(esi, xmm3); // Restore the context. |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| } |
| |
| // static |
| void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, |
| CallOrConstructMode mode, |
| Handle<Code> code) { |
| // ----------- S t a t e ------------- |
| // -- eax : the number of arguments (not including the receiver) |
| // -- edi : the target to call (can be any Object) |
| // -- esi : context for the Call / Construct builtin |
| // -- edx : the new target (for [[Construct]] calls) |
| // -- ecx : start index (to support rest parameters) |
| // ----------------------------------- |
| |
| __ movd(xmm0, esi); // Spill the context. |
| |
| Register scratch = esi; |
| |
| // Check if new.target has a [[Construct]] internal method. |
| if (mode == CallOrConstructMode::kConstruct) { |
| Label new_target_constructor, new_target_not_constructor; |
| __ JumpIfSmi(edx, &new_target_not_constructor, Label::kNear); |
| __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset)); |
| __ test_b(FieldOperand(scratch, Map::kBitFieldOffset), |
| Immediate(Map::IsConstructorBit::kMask)); |
| __ j(not_zero, &new_target_constructor, Label::kNear); |
| __ bind(&new_target_not_constructor); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterFrame(StackFrame::INTERNAL); |
| __ Push(edx); |
| __ movd(esi, xmm0); // Restore the context. |
| __ CallRuntime(Runtime::kThrowNotConstructor); |
| } |
| __ bind(&new_target_constructor); |
| } |
| |
| __ movd(xmm1, edx); // Preserve new.target (in case of [[Construct]]). |
| |
| // Check if we have an arguments adaptor frame below the function frame. |
| Label arguments_adaptor, arguments_done; |
| __ mov(scratch, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
| __ cmp(Operand(scratch, CommonFrameConstants::kContextOrFrameTypeOffset), |
| Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ j(equal, &arguments_adaptor, Label::kNear); |
| { |
| __ mov(edx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); |
| __ mov(edx, FieldOperand(edx, JSFunction::kSharedFunctionInfoOffset)); |
| __ movzx_w(edx, FieldOperand( |
| edx, SharedFunctionInfo::kFormalParameterCountOffset)); |
| __ mov(scratch, ebp); |
| } |
| __ jmp(&arguments_done, Label::kNear); |
| __ bind(&arguments_adaptor); |
| { |
| // Just load the length from the ArgumentsAdaptorFrame. |
| __ mov(edx, |
| Operand(scratch, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ SmiUntag(edx); |
| } |
| __ bind(&arguments_done); |
| |
| Label stack_done, stack_overflow; |
| __ sub(edx, ecx); |
| __ j(less_equal, &stack_done); |
| { |
| Generate_StackOverflowCheck(masm, edx, ecx, &stack_overflow); |
| |
| // Forward the arguments from the caller frame. |
| { |
| Label loop; |
| __ add(eax, edx); |
| __ PopReturnAddressTo(ecx); |
| __ bind(&loop); |
| { |
| __ Push(Operand(scratch, edx, times_system_pointer_size, |
| 1 * kSystemPointerSize)); |
| __ dec(edx); |
| __ j(not_zero, &loop); |
| } |
| __ PushReturnAddressFrom(ecx); |
| } |
| } |
| __ bind(&stack_done); |
| |
| __ movd(edx, xmm1); // Restore new.target (in case of [[Construct]]). |
| __ movd(esi, xmm0); // Restore the context. |
| |
| // Tail-call to the {code} handler. |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| |
| __ bind(&stack_overflow); |
| __ movd(esi, xmm0); // Restore the context. |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| } |
| |
| // static |
| void Builtins::Generate_CallFunction(MacroAssembler* masm, |
| ConvertReceiverMode mode) { |
| // ----------- S t a t e ------------- |
| // -- eax : the number of arguments (not including the receiver) |
| // -- edi : the function to call (checked to be a JSFunction) |
| // ----------------------------------- |
| __ AssertFunction(edi); |
| |
| // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) |
| // Check that the function is not a "classConstructor". |
| Label class_constructor; |
| __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); |
| __ test(FieldOperand(edx, SharedFunctionInfo::kFlagsOffset), |
| Immediate(SharedFunctionInfo::IsClassConstructorBit::kMask)); |
| __ j(not_zero, &class_constructor); |
| |
| // Enter the context of the function; ToObject has to run in the function |
| // context, and we also need to take the global proxy from the function |
| // context in case of conversion. |
| __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); |
| // We need to convert the receiver for non-native sloppy mode functions. |
| Label done_convert; |
| __ test(FieldOperand(edx, SharedFunctionInfo::kFlagsOffset), |
| Immediate(SharedFunctionInfo::IsNativeBit::kMask | |
| SharedFunctionInfo::IsStrictBit::kMask)); |
| __ j(not_zero, &done_convert); |
| { |
| // ----------- S t a t e ------------- |
| // -- eax : the number of arguments (not including the receiver) |
| // -- edx : the shared function info. |
| // -- edi : the function to call (checked to be a JSFunction) |
| // -- esi : the function context. |
| // ----------------------------------- |
| |
| if (mode == ConvertReceiverMode::kNullOrUndefined) { |
| // Patch receiver to global proxy. |
| __ LoadGlobalProxy(ecx); |
| } else { |
| Label convert_to_object, convert_receiver; |
| __ mov(ecx, |
| Operand(esp, eax, times_system_pointer_size, kSystemPointerSize)); |
| __ JumpIfSmi(ecx, &convert_to_object, Label::kNear); |
| STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); |
| __ CmpObjectType(ecx, FIRST_JS_RECEIVER_TYPE, ecx); // Clobbers ecx. |
| __ j(above_equal, &done_convert); |
| // Reload the receiver (it was clobbered by CmpObjectType). |
| __ mov(ecx, |
| Operand(esp, eax, times_system_pointer_size, kSystemPointerSize)); |
| if (mode != ConvertReceiverMode::kNotNullOrUndefined) { |
| Label convert_global_proxy; |
| __ JumpIfRoot(ecx, RootIndex::kUndefinedValue, &convert_global_proxy, |
| Label::kNear); |
| __ JumpIfNotRoot(ecx, RootIndex::kNullValue, &convert_to_object, |
| Label::kNear); |
| __ bind(&convert_global_proxy); |
| { |
| // Patch receiver to global proxy. |
| __ LoadGlobalProxy(ecx); |
| } |
| __ jmp(&convert_receiver); |
| } |
| __ bind(&convert_to_object); |
| { |
| // Convert receiver using ToObject. |
| // TODO(bmeurer): Inline the allocation here to avoid building the frame |
| // in the fast case? (fall back to AllocateInNewSpace?) |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ SmiTag(eax); |
| __ Push(eax); |
| __ Push(edi); |
| __ mov(eax, ecx); |
| __ Push(esi); |
| __ Call(BUILTIN_CODE(masm->isolate(), ToObject), |
| RelocInfo::CODE_TARGET); |
| __ Pop(esi); |
| __ mov(ecx, eax); |
| __ Pop(edi); |
| __ Pop(eax); |
| __ SmiUntag(eax); |
| } |
| __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); |
| __ bind(&convert_receiver); |
| } |
| __ mov(Operand(esp, eax, times_system_pointer_size, kSystemPointerSize), |
| ecx); |
| } |
| __ bind(&done_convert); |
| |
| // ----------- S t a t e ------------- |
| // -- eax : the number of arguments (not including the receiver) |
| // -- edx : the shared function info. |
| // -- edi : the function to call (checked to be a JSFunction) |
| // -- esi : the function context. |
| // ----------------------------------- |
| |
| __ movzx_w( |
| ecx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset)); |
| ParameterCount actual(eax); |
| ParameterCount expected(ecx); |
| __ InvokeFunctionCode(edi, no_reg, expected, actual, JUMP_FUNCTION); |
| // The function is a "classConstructor", need to raise an exception. |
| __ bind(&class_constructor); |
| { |
| FrameScope frame(masm, StackFrame::INTERNAL); |
| __ push(edi); |
| __ CallRuntime(Runtime::kThrowConstructorNonCallableError); |
| } |
| } |
| |
| namespace { |
| |
| void Generate_PushBoundArguments(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax : the number of arguments (not including the receiver) |
| // -- edx : new.target (only in case of [[Construct]]) |
| // -- edi : target (checked to be a JSBoundFunction) |
| // ----------------------------------- |
| |
| __ movd(xmm0, edx); // Spill edx. |
| |
| // Load [[BoundArguments]] into ecx and length of that into edx. |
| Label no_bound_arguments; |
| __ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset)); |
| __ mov(edx, FieldOperand(ecx, FixedArray::kLengthOffset)); |
| __ SmiUntag(edx); |
| __ test(edx, edx); |
| __ j(zero, &no_bound_arguments); |
| { |
| // ----------- S t a t e ------------- |
| // -- eax : the number of arguments (not including the receiver) |
| // -- xmm0 : new.target (only in case of [[Construct]]) |
| // -- edi : target (checked to be a JSBoundFunction) |
| // -- ecx : the [[BoundArguments]] (implemented as FixedArray) |
| // -- edx : the number of [[BoundArguments]] |
| // ----------------------------------- |
| |
| // Reserve stack space for the [[BoundArguments]]. |
| { |
| Label done; |
| __ lea(ecx, Operand(edx, times_system_pointer_size, 0)); |
| __ sub(esp, ecx); // Not Windows-friendly, but corrected below. |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack |
| // limit". |
| __ CompareRealStackLimit(esp); |
| __ j(above_equal, &done, Label::kNear); |
| // Restore the stack pointer. |
| __ lea(esp, Operand(esp, edx, times_system_pointer_size, 0)); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterFrame(StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| } |
| __ bind(&done); |
| } |
| |
| #if V8_OS_WIN |
| // Correctly allocate the stack space that was checked above. |
| { |
| Label win_done; |
| __ cmp(ecx, TurboAssemblerBase::kStackPageSize); |
| __ j(less_equal, &win_done, Label::kNear); |
| // Reset esp and walk through the range touching every page. |
| __ lea(esp, Operand(esp, edx, times_system_pointer_size, 0)); |
| __ AllocateStackSpace(ecx); |
| __ bind(&win_done); |
| } |
| #endif |
| |
| // Adjust effective number of arguments to include return address. |
| __ inc(eax); |
| |
| // Relocate arguments and return address down the stack. |
| { |
| Label loop; |
| __ Set(ecx, 0); |
| __ lea(edx, Operand(esp, edx, times_system_pointer_size, 0)); |
| __ bind(&loop); |
| __ movd(xmm1, Operand(edx, ecx, times_system_pointer_size, 0)); |
| __ movd(Operand(esp, ecx, times_system_pointer_size, 0), xmm1); |
| __ inc(ecx); |
| __ cmp(ecx, eax); |
| __ j(less, &loop); |
| } |
| |
| // Copy [[BoundArguments]] to the stack (below the arguments). |
| { |
| Label loop; |
| __ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset)); |
| __ mov(edx, FieldOperand(ecx, FixedArray::kLengthOffset)); |
| __ SmiUntag(edx); |
| __ bind(&loop); |
| __ dec(edx); |
| __ movd(xmm1, FieldOperand(ecx, edx, times_tagged_size, |
| FixedArray::kHeaderSize)); |
| __ movd(Operand(esp, eax, times_system_pointer_size, 0), xmm1); |
| __ lea(eax, Operand(eax, 1)); |
| __ j(greater, &loop); |
| } |
| |
| // Adjust effective number of arguments (eax contains the number of |
| // arguments from the call plus return address plus the number of |
| // [[BoundArguments]]), so we need to subtract one for the return address. |
| __ dec(eax); |
| } |
| |
| __ bind(&no_bound_arguments); |
| __ movd(edx, xmm0); // Reload edx. |
| } |
| |
| } // namespace |
| |
| // static |
| void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax : the number of arguments (not including the receiver) |
| // -- edi : the function to call (checked to be a JSBoundFunction) |
| // ----------------------------------- |
| __ AssertBoundFunction(edi); |
| |
| // Patch the receiver to [[BoundThis]]. |
| __ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundThisOffset)); |
| __ mov(Operand(esp, eax, times_system_pointer_size, kSystemPointerSize), ecx); |
| |
| // Push the [[BoundArguments]] onto the stack. |
| Generate_PushBoundArguments(masm); |
| |
| // Call the [[BoundTargetFunction]] via the Call builtin. |
| __ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { |
| // ----------- S t a t e ------------- |
| // -- eax : the number of arguments (not including the receiver) |
| // -- edi : the target to call (can be any Object). |
| // ----------------------------------- |
| |
| Label non_callable, non_function, non_smi, non_jsfunction, |
| non_jsboundfunction; |
| __ JumpIfSmi(edi, &non_callable); |
| __ bind(&non_smi); |
| __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); |
| __ j(not_equal, &non_jsfunction); |
| __ Jump(masm->isolate()->builtins()->CallFunction(mode), |
| RelocInfo::CODE_TARGET); |
| |
| __ bind(&non_jsfunction); |
| __ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE); |
| __ j(not_equal, &non_jsboundfunction); |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction), |
| RelocInfo::CODE_TARGET); |
| |
| // Check if target is a proxy and call CallProxy external builtin |
| __ bind(&non_jsboundfunction); |
| __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), |
| Immediate(Map::IsCallableBit::kMask)); |
| __ j(zero, &non_callable); |
| |
| // Call CallProxy external builtin |
| __ CmpInstanceType(ecx, JS_PROXY_TYPE); |
| __ j(not_equal, &non_function); |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET); |
| |
| // 2. Call to something else, which might have a [[Call]] internal method (if |
| // not we raise an exception). |
| __ bind(&non_function); |
| // Overwrite the original receiver with the (original) target. |
| __ mov(Operand(esp, eax, times_system_pointer_size, kSystemPointerSize), edi); |
| // Let the "call_as_function_delegate" take care of the rest. |
| __ LoadGlobalFunction(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, edi); |
| __ Jump(masm->isolate()->builtins()->CallFunction( |
| ConvertReceiverMode::kNotNullOrUndefined), |
| RelocInfo::CODE_TARGET); |
| |
| // 3. Call to something that is not callable. |
| __ bind(&non_callable); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Push(edi); |
| __ CallRuntime(Runtime::kThrowCalledNonCallable); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax : the number of arguments (not including the receiver) |
| // -- edx : the new target (checked to be a constructor) |
| // -- edi : the constructor to call (checked to be a JSFunction) |
| // ----------------------------------- |
| __ AssertConstructor(edi); |
| __ AssertFunction(edi); |
| |
| Label call_generic_stub; |
| |
| // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric. |
| __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); |
| __ test(FieldOperand(ecx, SharedFunctionInfo::kFlagsOffset), |
| Immediate(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); |
| __ j(zero, &call_generic_stub, Label::kNear); |
| |
| // Calling convention for function specific ConstructStubs require |
| // ecx to contain either an AllocationSite or undefined. |
| __ LoadRoot(ecx, RootIndex::kUndefinedValue); |
| __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub), |
| RelocInfo::CODE_TARGET); |
| |
| __ bind(&call_generic_stub); |
| // Calling convention for function specific ConstructStubs require |
| // ecx to contain either an AllocationSite or undefined. |
| __ LoadRoot(ecx, RootIndex::kUndefinedValue); |
| __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax : the number of arguments (not including the receiver) |
| // -- edx : the new target (checked to be a constructor) |
| // -- edi : the constructor to call (checked to be a JSBoundFunction) |
| // ----------------------------------- |
| __ AssertConstructor(edi); |
| __ AssertBoundFunction(edi); |
| |
| // Push the [[BoundArguments]] onto the stack. |
| Generate_PushBoundArguments(masm); |
| |
| // Patch new.target to [[BoundTargetFunction]] if new.target equals target. |
| { |
| Label done; |
| __ cmp(edi, edx); |
| __ j(not_equal, &done, Label::kNear); |
| __ mov(edx, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ bind(&done); |
| } |
| |
| // Construct the [[BoundTargetFunction]] via the Construct builtin. |
| __ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_Construct(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax : the number of arguments (not including the receiver) |
| // -- edx : the new target (either the same as the constructor or |
| // the JSFunction on which new was invoked initially) |
| // -- edi : the constructor to call (can be any Object) |
| // ----------------------------------- |
| |
| // Check if target is a Smi. |
| Label non_constructor, non_proxy, non_jsfunction, non_jsboundfunction; |
| __ JumpIfSmi(edi, &non_constructor); |
| |
| // Check if target has a [[Construct]] internal method. |
| __ mov(ecx, FieldOperand(edi, HeapObject::kMapOffset)); |
| __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), |
| Immediate(Map::IsConstructorBit::kMask)); |
| __ j(zero, &non_constructor); |
| |
| // Dispatch based on instance type. |
| __ CmpInstanceType(ecx, JS_FUNCTION_TYPE); |
| __ j(not_equal, &non_jsfunction); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction), |
| RelocInfo::CODE_TARGET); |
| |
| // Only dispatch to bound functions after checking whether they are |
| // constructors. |
| __ bind(&non_jsfunction); |
| __ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE); |
| __ j(not_equal, &non_jsboundfunction); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), |
| RelocInfo::CODE_TARGET); |
| |
| // Only dispatch to proxies after checking whether they are constructors. |
| __ bind(&non_jsboundfunction); |
| __ CmpInstanceType(ecx, JS_PROXY_TYPE); |
| __ j(not_equal, &non_proxy); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), |
| RelocInfo::CODE_TARGET); |
| |
| // Called Construct on an exotic Object with a [[Construct]] internal method. |
| __ bind(&non_proxy); |
| { |
| // Overwrite the original receiver with the (original) target. |
| __ mov(Operand(esp, eax, times_system_pointer_size, kSystemPointerSize), |
| edi); |
| // Let the "call_as_constructor_delegate" take care of the rest. |
| __ LoadGlobalFunction(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, edi); |
| __ Jump(masm->isolate()->builtins()->CallFunction(), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // Called Construct on an Object that doesn't have a [[Construct]] internal |
| // method. |
| __ bind(&non_constructor); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax : actual number of arguments |
| // -- ecx : expected number of arguments |
| // -- edx : new target (passed through to callee) |
| // -- edi : function (passed through to callee) |
| // ----------------------------------- |
| |
| const Register kExpectedNumberOfArgumentsRegister = ecx; |
| |
| Label invoke, dont_adapt_arguments, stack_overflow, enough, too_few; |
| __ cmp(kExpectedNumberOfArgumentsRegister, |
| SharedFunctionInfo::kDontAdaptArgumentsSentinel); |
| __ j(equal, &dont_adapt_arguments); |
| __ cmp(eax, kExpectedNumberOfArgumentsRegister); |
| __ j(less, &too_few); |
| |
| { // Enough parameters: Actual >= expected. |
| __ bind(&enough); |
| EnterArgumentsAdaptorFrame(masm); |
| // edi is used as a scratch register. It should be restored from the frame |
| // when needed. |
| Generate_StackOverflowCheck(masm, kExpectedNumberOfArgumentsRegister, edi, |
| &stack_overflow); |
| |
| // Copy receiver and all expected arguments. |
| const int offset = StandardFrameConstants::kCallerSPOffset; |
| __ lea(edi, Operand(ebp, eax, times_system_pointer_size, offset)); |
| __ mov(eax, -1); // account for receiver |
| |
| Label copy; |
| __ bind(©); |
| __ inc(eax); |
| __ push(Operand(edi, 0)); |
| __ sub(edi, Immediate(kSystemPointerSize)); |
| __ cmp(eax, kExpectedNumberOfArgumentsRegister); |
| __ j(less, ©); |
| // eax now contains the expected number of arguments. |
| __ jmp(&invoke); |
| } |
| |
| { // Too few parameters: Actual < expected. |
| __ bind(&too_few); |
| EnterArgumentsAdaptorFrame(masm); |
| // edi is used as a scratch register. It should be restored from the frame |
| // when needed. |
| Generate_StackOverflowCheck(masm, kExpectedNumberOfArgumentsRegister, edi, |
| &stack_overflow); |
| |
| // Remember expected arguments in xmm0. |
| __ movd(xmm0, kExpectedNumberOfArgumentsRegister); |
| |
| // Copy receiver and all actual arguments. |
| const int offset = StandardFrameConstants::kCallerSPOffset; |
| __ lea(edi, Operand(ebp, eax, times_system_pointer_size, offset)); |
| // ecx = expected - actual. |
| __ sub(kExpectedNumberOfArgumentsRegister, eax); |
| // eax = -actual - 1 |
| __ neg(eax); |
| __ sub(eax, Immediate(1)); |
| |
| Label copy; |
| __ bind(©); |
| __ inc(eax); |
| __ push(Operand(edi, 0)); |
| __ sub(edi, Immediate(kSystemPointerSize)); |
| __ test(eax, eax); |
| __ j(not_zero, ©); |
| |
| // Fill remaining expected arguments with undefined values. |
| Label fill; |
| __ bind(&fill); |
| __ inc(eax); |
| __ Push(Immediate(masm->isolate()->factory()->undefined_value())); |
| __ cmp(eax, kExpectedNumberOfArgumentsRegister); |
| __ j(less, &fill); |
| |
| // Restore expected arguments. |
| __ movd(eax, xmm0); |
| } |
| |
| // Call the entry point. |
| __ bind(&invoke); |
| // Restore function pointer. |
| __ mov(edi, Operand(ebp, ArgumentsAdaptorFrameConstants::kFunctionOffset)); |
| // eax : expected number of arguments |
| // edx : new target (passed through to callee) |
| // edi : function (passed through to callee) |
| static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); |
| __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset)); |
| __ CallCodeObject(ecx); |
| |
| // Store offset of return address for deoptimizer. |
| masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); |
| |
| // Leave frame and return. |
| LeaveArgumentsAdaptorFrame(masm); |
| __ ret(0); |
| |
| // ------------------------------------------- |
| // Dont adapt arguments. |
| // ------------------------------------------- |
| __ bind(&dont_adapt_arguments); |
| static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); |
| __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset)); |
| __ JumpCodeObject(ecx); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope frame(masm, StackFrame::MANUAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ int3(); |
| } |
| } |
| |
| void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { |
| // Lookup the function in the JavaScript frame. |
| __ mov(eax, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
| __ mov(eax, Operand(eax, JavaScriptFrameConstants::kFunctionOffset)); |
| |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Pass function as argument. |
| __ push(eax); |
| __ CallRuntime(Runtime::kCompileForOnStackReplacement); |
| } |
| |
| Label skip; |
| // If the code object is null, just return to the caller. |
| __ cmp(eax, Immediate(0)); |
| __ j(not_equal, &skip, Label::kNear); |
| __ ret(0); |
| |
| __ bind(&skip); |
| |
| // Drop the handler frame that is be sitting on top of the actual |
| // JavaScript frame. This is the case then OSR is triggered from bytecode. |
| __ leave(); |
| |
| // Load deoptimization data from the code object. |
| __ mov(ecx, Operand(eax, Code::kDeoptimizationDataOffset - kHeapObjectTag)); |
| |
| // Load the OSR entrypoint offset from the deoptimization data. |
| __ mov(ecx, Operand(ecx, FixedArray::OffsetOfElementAt( |
| DeoptimizationData::kOsrPcOffsetIndex) - |
| kHeapObjectTag)); |
| __ SmiUntag(ecx); |
| |
| // Compute the target address = code_obj + header_size + osr_offset |
| __ lea(eax, Operand(eax, ecx, times_1, Code::kHeaderSize - kHeapObjectTag)); |
| |
| // Overwrite the return address on the stack. |
| __ mov(Operand(esp, 0), eax); |
| |
| // And "return" to the OSR entry point of the function. |
| __ ret(0); |
| } |
| |
| void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { |
| // The function index was put in edi by the jump table trampoline. |
| // Convert to Smi for the runtime call. |
| __ SmiTag(kWasmCompileLazyFuncIndexRegister); |
| { |
| HardAbortScope hard_abort(masm); // Avoid calls to Abort. |
| FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY); |
| |
| // Save all parameter registers (see wasm-linkage.cc). They might be |
| // overwritten in the runtime call below. We don't have any callee-saved |
| // registers in wasm, so no need to store anything else. |
| static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedGpParamRegs == |
| arraysize(wasm::kGpParamRegisters), |
| "frame size mismatch"); |
| for (Register reg : wasm::kGpParamRegisters) { |
| __ Push(reg); |
| } |
| static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedFpParamRegs == |
| arraysize(wasm::kFpParamRegisters), |
| "frame size mismatch"); |
| __ AllocateStackSpace(kSimd128Size * arraysize(wasm::kFpParamRegisters)); |
| int offset = 0; |
| for (DoubleRegister reg : wasm::kFpParamRegisters) { |
| __ movdqu(Operand(esp, offset), reg); |
| offset += kSimd128Size; |
| } |
| |
| // Push the WASM instance as an explicit argument to WasmCompileLazy. |
| __ Push(kWasmInstanceRegister); |
| // Push the function index as second argument. |
| __ Push(kWasmCompileLazyFuncIndexRegister); |
| // Load the correct CEntry builtin from the instance object. |
| __ mov(ecx, FieldOperand(kWasmInstanceRegister, |
| WasmInstanceObject::kCEntryStubOffset)); |
| // Initialize the JavaScript context with 0. CEntry will use it to |
| // set the current context on the isolate. |
| __ Move(kContextRegister, Smi::zero()); |
| { |
| // At this point, ebx has been spilled to the stack but is not yet |
| // overwritten with another value. We can still use it as kRootRegister. |
| __ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, ecx); |
| } |
| // The entrypoint address is the return value. |
| __ mov(edi, kReturnRegister0); |
| |
| // Restore registers. |
| for (DoubleRegister reg : base::Reversed(wasm::kFpParamRegisters)) { |
| offset -= kSimd128Size; |
| __ movdqu(reg, Operand(esp, offset)); |
| } |
| DCHECK_EQ(0, offset); |
| __ add(esp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters))); |
| for (Register reg : base::Reversed(wasm::kGpParamRegisters)) { |
| __ Pop(reg); |
| } |
| } |
| // Finally, jump to the entrypoint. |
| __ jmp(edi); |
| } |
| |
| void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size, |
| SaveFPRegsMode save_doubles, ArgvMode argv_mode, |
| bool builtin_exit_frame) { |
| // eax: number of arguments including receiver |
| // edx: pointer to C function |
| // ebp: frame pointer (restored after C call) |
| // esp: stack pointer (restored after C call) |
| // esi: current context (C callee-saved) |
| // edi: JS function of the caller (C callee-saved) |
| // |
| // If argv_mode == kArgvInRegister: |
| // ecx: pointer to the first argument |
| |
| STATIC_ASSERT(eax == kRuntimeCallArgCountRegister); |
| STATIC_ASSERT(ecx == kRuntimeCallArgvRegister); |
| STATIC_ASSERT(edx == kRuntimeCallFunctionRegister); |
| STATIC_ASSERT(esi == kContextRegister); |
| STATIC_ASSERT(edi == kJSFunctionRegister); |
| |
| DCHECK(!AreAliased(kRuntimeCallArgCountRegister, kRuntimeCallArgvRegister, |
| kRuntimeCallFunctionRegister, kContextRegister, |
| kJSFunctionRegister, kRootRegister)); |
| |
| // Reserve space on the stack for the three arguments passed to the call. If |
| // result size is greater than can be returned in registers, also reserve |
| // space for the hidden argument for the result location, and space for the |
| // result itself. |
| int arg_stack_space = 3; |
| |
| // Enter the exit frame that transitions from JavaScript to C++. |
| if (argv_mode == kArgvInRegister) { |
| DCHECK(save_doubles == kDontSaveFPRegs); |
| DCHECK(!builtin_exit_frame); |
| __ EnterApiExitFrame(arg_stack_space, edi); |
| |
| // Move argc and argv into the correct registers. |
| __ mov(esi, ecx); |
| __ mov(edi, eax); |
| } else { |
| __ EnterExitFrame( |
| arg_stack_space, save_doubles == kSaveFPRegs, |
| builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); |
| } |
| |
| // edx: pointer to C function |
| // ebp: frame pointer (restored after C call) |
| // esp: stack pointer (restored after C call) |
| // edi: number of arguments including receiver (C callee-saved) |
| // esi: pointer to the first argument (C callee-saved) |
| |
| // Result returned in eax, or eax+edx if result size is 2. |
| |
| // Check stack alignment. |
| if (FLAG_debug_code) { |
| __ CheckStackAlignment(); |
| } |
| // Call C function. |
| __ mov(Operand(esp, 0 * kSystemPointerSize), edi); // argc. |
| __ mov(Operand(esp, 1 * kSystemPointerSize), esi); // argv. |
| __ Move(ecx, Immediate(ExternalReference::isolate_address(masm->isolate()))); |
| __ mov(Operand(esp, 2 * kSystemPointerSize), ecx); |
| __ call(kRuntimeCallFunctionRegister); |
| |
| // Result is in eax or edx:eax - do not destroy these registers! |
| |
| // Check result for exception sentinel. |
| Label exception_returned; |
| __ CompareRoot(eax, RootIndex::kException); |
| __ j(equal, &exception_returned); |
| |
| // Check that there is no pending exception, otherwise we |
| // should have returned the exception sentinel. |
| if (FLAG_debug_code) { |
| __ push(edx); |
| __ LoadRoot(edx, RootIndex::kTheHoleValue); |
| Label okay; |
| ExternalReference pending_exception_address = ExternalReference::Create( |
| IsolateAddressId::kPendingExceptionAddress, masm->isolate()); |
| __ cmp(edx, __ ExternalReferenceAsOperand(pending_exception_address, ecx)); |
| // Cannot use check here as it attempts to generate call into runtime. |
| __ j(equal, &okay, Label::kNear); |
| __ int3(); |
| __ bind(&okay); |
| __ pop(edx); |
| } |
| |
| // Exit the JavaScript to C++ exit frame. |
| __ LeaveExitFrame(save_doubles == kSaveFPRegs, argv_mode == kArgvOnStack); |
| __ ret(0); |
| |
| // Handling of exception. |
| __ bind(&exception_returned); |
| |
| ExternalReference pending_handler_context_address = ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerContextAddress, masm->isolate()); |
| ExternalReference pending_handler_entrypoint_address = |
| ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate()); |
| ExternalReference pending_handler_fp_address = ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerFPAddress, masm->isolate()); |
| ExternalReference pending_handler_sp_address = ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerSPAddress, masm->isolate()); |
| |
| // Ask the runtime for help to determine the handler. This will set eax to |
| // contain the current pending exception, don't clobber it. |
| ExternalReference find_handler = |
| ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ PrepareCallCFunction(3, eax); |
| __ mov(Operand(esp, 0 * kSystemPointerSize), Immediate(0)); // argc. |
| __ mov(Operand(esp, 1 * kSystemPointerSize), Immediate(0)); // argv. |
| __ Move(esi, |
| Immediate(ExternalReference::isolate_address(masm->isolate()))); |
| __ mov(Operand(esp, 2 * kSystemPointerSize), esi); |
| __ CallCFunction(find_handler, 3); |
| } |
| |
| // Retrieve the handler context, SP and FP. |
| __ mov(esp, __ ExternalReferenceAsOperand(pending_handler_sp_address, esi)); |
| __ mov(ebp, __ ExternalReferenceAsOperand(pending_handler_fp_address, esi)); |
| __ mov(esi, |
| __ ExternalReferenceAsOperand(pending_handler_context_address, esi)); |
| |
| // If the handler is a JS frame, restore the context to the frame. Note that |
| // the context will be set to (esi == 0) for non-JS frames. |
| Label skip; |
| __ test(esi, esi); |
| __ j(zero, &skip, Label::kNear); |
| __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi); |
| __ bind(&skip); |
| |
| // Compute the handler entry address and jump to it. |
| __ mov(edi, __ ExternalReferenceAsOperand(pending_handler_entrypoint_address, |
| edi)); |
| __ jmp(edi); |
| } |
| |
| void Builtins::Generate_DoubleToI(MacroAssembler* masm) { |
| Label check_negative, process_64_bits, done; |
| |
| // Account for return address and saved regs. |
| const int kArgumentOffset = 4 * kSystemPointerSize; |
| |
| MemOperand mantissa_operand(MemOperand(esp, kArgumentOffset)); |
| MemOperand exponent_operand( |
| MemOperand(esp, kArgumentOffset + kDoubleSize / 2)); |
| |
| // The result is returned on the stack. |
| MemOperand return_operand = mantissa_operand; |
| |
| Register scratch1 = ebx; |
| |
| // Since we must use ecx for shifts below, use some other register (eax) |
| // to calculate the result. |
| Register result_reg = eax; |
| // Save ecx if it isn't the return register and therefore volatile, or if it |
| // is the return register, then save the temp register we use in its stead for |
| // the result. |
| Register save_reg = eax; |
| __ push(ecx); |
| __ push(scratch1); |
| __ push(save_reg); |
| |
| __ mov(scratch1, mantissa_operand); |
| if (CpuFeatures::IsSupported(SSE3)) { |
| CpuFeatureScope scope(masm, SSE3); |
| // Load x87 register with heap number. |
| __ fld_d(mantissa_operand); |
| } |
| __ mov(ecx, exponent_operand); |
| |
| __ and_(ecx, HeapNumber::kExponentMask); |
| __ shr(ecx, HeapNumber::kExponentShift); |
| __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias)); |
| __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits)); |
| __ j(below, &process_64_bits); |
| |
| // Result is entirely in lower 32-bits of mantissa |
| int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize; |
| if (CpuFeatures::IsSupported(SSE3)) { |
| __ fstp(0); |
| } |
| __ sub(ecx, Immediate(delta)); |
| __ xor_(result_reg, result_reg); |
| __ cmp(ecx, Immediate(31)); |
| __ j(above, &done); |
| __ shl_cl(scratch1); |
| __ jmp(&check_negative); |
| |
| __ bind(&process_64_bits); |
| if (CpuFeatures::IsSupported(SSE3)) { |
| CpuFeatureScope scope(masm, SSE3); |
| // Reserve space for 64 bit answer. |
| __ AllocateStackSpace(kDoubleSize); // Nolint. |
| // Do conversion, which cannot fail because we checked the exponent. |
| __ fisttp_d(Operand(esp, 0)); |
| __ mov(result_reg, Operand(esp, 0)); // Load low word of answer as result |
| __ add(esp, Immediate(kDoubleSize)); |
| __ jmp(&done); |
| } else { |
| // Result must be extracted from shifted 32-bit mantissa |
| __ sub(ecx, Immediate(delta)); |
| __ neg(ecx); |
| __ mov(result_reg, exponent_operand); |
| __ and_(result_reg, |
| Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32))); |
| __ add(result_reg, |
| Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32))); |
| __ shrd_cl(scratch1, result_reg); |
| __ shr_cl(result_reg); |
| __ test(ecx, Immediate(32)); |
| __ cmov(not_equal, scratch1, result_reg); |
| } |
| |
| // If the double was negative, negate the integer result. |
| __ bind(&check_negative); |
| __ mov(result_reg, scratch1); |
| __ neg(result_reg); |
| __ cmp(exponent_operand, Immediate(0)); |
| __ cmov(greater, result_reg, scratch1); |
| |
| // Restore registers |
| __ bind(&done); |
| __ mov(return_operand, result_reg); |
| __ pop(save_reg); |
| __ pop(scratch1); |
| __ pop(ecx); |
| __ ret(0); |
| } |
| |
| void Builtins::Generate_InternalArrayConstructorImpl(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax : argc |
| // -- edi : constructor |
| // -- esp[0] : return address |
| // -- esp[4] : last argument |
| // ----------------------------------- |
| |
| if (FLAG_debug_code) { |
| // The array construct code is only set for the global and natives |
| // builtin Array functions which always have maps. |
| |
| // Initial map for the builtin Array function should be a map. |
| __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a nullptr and a Smi. |
| __ test(ecx, Immediate(kSmiTagMask)); |
| __ Assert(not_zero, AbortReason::kUnexpectedInitialMapForArrayFunction); |
| __ CmpObjectType(ecx, MAP_TYPE, ecx); |
| __ Assert(equal, AbortReason::kUnexpectedInitialMapForArrayFunction); |
| |
| // Figure out the right elements kind |
| __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // Load the map's "bit field 2" into |result|. We only need the first byte, |
| // but the following masking takes care of that anyway. |
| __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset)); |
| // Retrieve elements_kind from bit field 2. |
| __ DecodeField<Map::ElementsKindBits>(ecx); |
| |
| // Initial elements kind should be packed elements. |
| __ cmp(ecx, Immediate(PACKED_ELEMENTS)); |
| __ Assert(equal, AbortReason::kInvalidElementsKindForInternalPackedArray); |
| |
| // No arguments should be passed. |
| __ test(eax, eax); |
| __ Assert(zero, AbortReason::kWrongNumberOfArgumentsForInternalPackedArray); |
| } |
| |
| __ Jump( |
| BUILTIN_CODE(masm->isolate(), InternalArrayNoArgumentConstructor_Packed), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| namespace { |
| |
| // Generates an Operand for saving parameters after PrepareCallApiFunction. |
| Operand ApiParameterOperand(int index) { |
| return Operand(esp, index * kSystemPointerSize); |
| } |
| |
| // Prepares stack to put arguments (aligns and so on). Reserves |
| // space for return value if needed (assumes the return value is a handle). |
| // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1) |
| // etc. Saves context (esi). If space was reserved for return value then |
| // stores the pointer to the reserved slot into esi. |
| void PrepareCallApiFunction(MacroAssembler* masm, int argc, Register scratch) { |
| __ EnterApiExitFrame(argc, scratch); |
| if (__ emit_debug_code()) { |
| __ mov(esi, Immediate(bit_cast<int32_t>(kZapValue))); |
| } |
| } |
| |
| // Calls an API function. Allocates HandleScope, extracts returned value |
| // from handle and propagates exceptions. Clobbers esi, edi and |
| // caller-save registers. Restores context. On return removes |
| // stack_space * kSystemPointerSize (GCed). |
| void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address, |
| ExternalReference thunk_ref, |
| Operand thunk_last_arg, int stack_space, |
| Operand* stack_space_operand, |
| Operand return_value_operand) { |
| Isolate* isolate = masm->isolate(); |
| |
| ExternalReference next_address = |
| ExternalReference::handle_scope_next_address(isolate); |
| ExternalReference limit_address = |
| ExternalReference::handle_scope_limit_address(isolate); |
| ExternalReference level_address = |
| ExternalReference::handle_scope_level_address(isolate); |
| |
| DCHECK(edx == function_address); |
| // Allocate HandleScope in callee-save registers. |
| __ add(__ ExternalReferenceAsOperand(level_address, esi), Immediate(1)); |
| __ mov(esi, __ ExternalReferenceAsOperand(next_address, esi)); |
| __ mov(edi, __ ExternalReferenceAsOperand(limit_address, edi)); |
| |
| Label profiler_enabled, end_profiler_check; |
| __ Move(eax, Immediate(ExternalReference::is_profiling_address(isolate))); |
| __ cmpb(Operand(eax, 0), Immediate(0)); |
| __ j(not_zero, &profiler_enabled); |
| __ Move(eax, Immediate(ExternalReference::address_of_runtime_stats_flag())); |
| __ cmp(Operand(eax, 0), Immediate(0)); |
| __ j(not_zero, &profiler_enabled); |
| { |
| // Call the api function directly. |
| __ mov(eax, function_address); |
| __ jmp(&end_profiler_check); |
| } |
| __ bind(&profiler_enabled); |
| { |
| // Additional parameter is the address of the actual getter function. |
| __ mov(thunk_last_arg, function_address); |
| __ Move(eax, Immediate(thunk_ref)); |
| } |
| __ bind(&end_profiler_check);
|