| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_MIPS |
| |
| #include "src/api/api-arguments.h" |
| #include "src/codegen/code-factory.h" |
| #include "src/debug/debug.h" |
| #include "src/deoptimizer/deoptimizer.h" |
| #include "src/execution/frame-constants.h" |
| #include "src/execution/frames.h" |
| #include "src/logging/counters.h" |
| // For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop. |
| #include "src/codegen/macro-assembler-inl.h" |
| #include "src/codegen/mips/constants-mips.h" |
| #include "src/codegen/register-configuration.h" |
| #include "src/heap/heap-inl.h" |
| #include "src/objects/cell.h" |
| #include "src/objects/foreign.h" |
| #include "src/objects/heap-number.h" |
| #include "src/objects/js-generator.h" |
| #include "src/objects/objects-inl.h" |
| #include "src/objects/smi.h" |
| #include "src/runtime/runtime.h" |
| #include "src/wasm/wasm-objects.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ ACCESS_MASM(masm) |
| |
| void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) { |
| __ li(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- a0 : number of arguments |
| // -- ra : return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| if (FLAG_debug_code) { |
| // Initial map for the builtin InternalArray functions should be maps. |
| __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); |
| __ SmiTst(a2, t0); |
| __ Assert(ne, AbortReason::kUnexpectedInitialMapForInternalArrayFunction, |
| t0, Operand(zero_reg)); |
| __ GetObjectType(a2, a3, t0); |
| __ Assert(eq, AbortReason::kUnexpectedInitialMapForInternalArrayFunction, |
| t0, Operand(MAP_TYPE)); |
| } |
| |
| // Run the native code for the InternalArray function called as a normal |
| // function. |
| __ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| static void GenerateTailCallToReturnedCode(MacroAssembler* masm, |
| Runtime::FunctionId function_id) { |
| // ----------- S t a t e ------------- |
| // -- a1 : target function (preserved for callee) |
| // -- a3 : new target (preserved for callee) |
| // ----------------------------------- |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Push a copy of the target function and the new target. |
| // Push function as parameter to the runtime call. |
| __ Push(a1, a3, a1); |
| |
| __ CallRuntime(function_id, 1); |
| |
| // Restore target function and new target. |
| __ Pop(a1, a3); |
| } |
| |
| static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); |
| __ Addu(a2, v0, Code::kHeaderSize - kHeapObjectTag); |
| __ Jump(a2); |
| } |
| |
| namespace { |
| |
| void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- a0 : number of arguments |
| // -- a1 : constructor function |
| // -- a3 : new target |
| // -- cp : context |
| // -- ra : return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| |
| // Enter a construct frame. |
| { |
| FrameScope scope(masm, StackFrame::CONSTRUCT); |
| |
| // Preserve the incoming parameters on the stack. |
| __ SmiTag(a0); |
| __ Push(cp, a0); |
| __ SmiUntag(a0); |
| |
| // The receiver for the builtin/api call. |
| __ PushRoot(RootIndex::kTheHoleValue); |
| |
| // Set up pointer to last argument. |
| __ Addu(t2, fp, Operand(StandardFrameConstants::kCallerSPOffset)); |
| |
| // Copy arguments and receiver to the expression stack. |
| Label loop, entry; |
| __ mov(t3, a0); |
| // ----------- S t a t e ------------- |
| // -- a0: number of arguments (untagged) |
| // -- a3: new target |
| // -- t2: pointer to last argument |
| // -- t3: counter |
| // -- sp[0*kPointerSize]: the hole (receiver) |
| // -- sp[1*kPointerSize]: number of arguments (tagged) |
| // -- sp[2*kPointerSize]: context |
| // ----------------------------------- |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ Lsa(t0, t2, t3, kPointerSizeLog2); |
| __ lw(t1, MemOperand(t0)); |
| __ push(t1); |
| __ bind(&entry); |
| __ Addu(t3, t3, Operand(-1)); |
| __ Branch(&loop, greater_equal, t3, Operand(zero_reg)); |
| |
| // Call the function. |
| // a0: number of arguments (untagged) |
| // a1: constructor function |
| // a3: new target |
| ParameterCount actual(a0); |
| __ InvokeFunction(a1, a3, actual, CALL_FUNCTION); |
| |
| // Restore context from the frame. |
| __ lw(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); |
| // Restore smi-tagged arguments count from the frame. |
| __ lw(a1, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); |
| // Leave construct frame. |
| } |
| |
| // Remove caller arguments from the stack and return. |
| __ Lsa(sp, sp, a1, kPointerSizeLog2 - 1); |
| __ Addu(sp, sp, kPointerSize); |
| __ Ret(); |
| } |
| |
| static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args, |
| Register scratch1, Register scratch2, |
| Label* stack_overflow) { |
| // Check the stack for overflow. We are not trying to catch |
| // interruptions (e.g. debug break and preemption) here, so the "real stack |
| // limit" is checked. |
| __ LoadRoot(scratch1, RootIndex::kRealStackLimit); |
| // Make scratch1 the space we have left. The stack might already be overflowed |
| // here which will cause scratch1 to become negative. |
| __ subu(scratch1, sp, scratch1); |
| // Check if the arguments will overflow the stack. |
| __ sll(scratch2, num_args, kPointerSizeLog2); |
| // Signed comparison. |
| __ Branch(stack_overflow, le, scratch1, Operand(scratch2)); |
| } |
| |
| } // namespace |
| |
| // The construct stub for ES5 constructor functions and ES6 class constructors. |
| void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- a0: number of arguments (untagged) |
| // -- a1: constructor function |
| // -- a3: new target |
| // -- cp: context |
| // -- ra: return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| |
| // Enter a construct frame. |
| { |
| FrameScope scope(masm, StackFrame::CONSTRUCT); |
| Label post_instantiation_deopt_entry, not_create_implicit_receiver; |
| |
| // Preserve the incoming parameters on the stack. |
| __ SmiTag(a0); |
| __ Push(cp, a0, a1); |
| __ PushRoot(RootIndex::kTheHoleValue); |
| __ Push(a3); |
| |
| // ----------- S t a t e ------------- |
| // -- sp[0*kPointerSize]: new target |
| // -- sp[1*kPointerSize]: padding |
| // -- a1 and sp[2*kPointerSize]: constructor function |
| // -- sp[3*kPointerSize]: number of arguments (tagged) |
| // -- sp[4*kPointerSize]: context |
| // ----------------------------------- |
| |
| __ lw(t2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); |
| __ lw(t2, FieldMemOperand(t2, SharedFunctionInfo::kFlagsOffset)); |
| __ DecodeField<SharedFunctionInfo::FunctionKindBits>(t2); |
| __ JumpIfIsInRange(t2, kDefaultDerivedConstructor, kDerivedConstructor, |
| ¬_create_implicit_receiver); |
| |
| // If not derived class constructor: Allocate the new receiver object. |
| __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1, |
| t2, t3); |
| __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), |
| RelocInfo::CODE_TARGET); |
| __ Branch(&post_instantiation_deopt_entry); |
| |
| // Else: use TheHoleValue as receiver for constructor call |
| __ bind(¬_create_implicit_receiver); |
| __ LoadRoot(v0, RootIndex::kTheHoleValue); |
| |
| // ----------- S t a t e ------------- |
| // -- v0: receiver |
| // -- Slot 4 / sp[0*kPointerSize]: new target |
| // -- Slot 3 / sp[1*kPointerSize]: padding |
| // -- Slot 2 / sp[2*kPointerSize]: constructor function |
| // -- Slot 1 / sp[3*kPointerSize]: number of arguments (tagged) |
| // -- Slot 0 / sp[4*kPointerSize]: context |
| // ----------------------------------- |
| // Deoptimizer enters here. |
| masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( |
| masm->pc_offset()); |
| __ bind(&post_instantiation_deopt_entry); |
| |
| // Restore new target. |
| __ Pop(a3); |
| // Push the allocated receiver to the stack. We need two copies |
| // because we may have to return the original one and the calling |
| // conventions dictate that the called function pops the receiver. |
| __ Push(v0, v0); |
| |
| // ----------- S t a t e ------------- |
| // -- r3: new target |
| // -- sp[0*kPointerSize]: implicit receiver |
| // -- sp[1*kPointerSize]: implicit receiver |
| // -- sp[2*kPointerSize]: padding |
| // -- sp[3*kPointerSize]: constructor function |
| // -- sp[4*kPointerSize]: number of arguments (tagged) |
| // -- sp[5*kPointerSize]: context |
| // ----------------------------------- |
| |
| // Restore constructor function and argument count. |
| __ lw(a1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset)); |
| __ lw(a0, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); |
| __ SmiUntag(a0); |
| |
| // Set up pointer to last argument. |
| __ Addu(t2, fp, Operand(StandardFrameConstants::kCallerSPOffset)); |
| |
| Label enough_stack_space, stack_overflow; |
| Generate_StackOverflowCheck(masm, a0, t0, t1, &stack_overflow); |
| __ Branch(&enough_stack_space); |
| |
| __ bind(&stack_overflow); |
| // Restore the context from the frame. |
| __ lw(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| // Unreachable code. |
| __ break_(0xCC); |
| |
| __ bind(&enough_stack_space); |
| |
| // Copy arguments and receiver to the expression stack. |
| Label loop, entry; |
| __ mov(t3, a0); |
| // ----------- S t a t e ------------- |
| // -- a0: number of arguments (untagged) |
| // -- a3: new target |
| // -- t2: pointer to last argument |
| // -- t3: counter |
| // -- sp[0*kPointerSize]: implicit receiver |
| // -- sp[1*kPointerSize]: implicit receiver |
| // -- sp[2*kPointerSize]: padding |
| // -- a1 and sp[3*kPointerSize]: constructor function |
| // -- sp[4*kPointerSize]: number of arguments (tagged) |
| // -- sp[5*kPointerSize]: context |
| // ----------------------------------- |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ Lsa(t0, t2, t3, kPointerSizeLog2); |
| __ lw(t1, MemOperand(t0)); |
| __ push(t1); |
| __ bind(&entry); |
| __ Addu(t3, t3, Operand(-1)); |
| __ Branch(&loop, greater_equal, t3, Operand(zero_reg)); |
| |
| // Call the function. |
| ParameterCount actual(a0); |
| __ InvokeFunction(a1, a3, actual, CALL_FUNCTION); |
| |
| // ----------- S t a t e ------------- |
| // -- v0: constructor result |
| // -- sp[0*kPointerSize]: implicit receiver |
| // -- sp[1*kPointerSize]: padding |
| // -- sp[2*kPointerSize]: constructor function |
| // -- sp[3*kPointerSize]: number of arguments |
| // -- sp[4*kPointerSize]: context |
| // ----------------------------------- |
| |
| // Store offset of return address for deoptimizer. |
| masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( |
| masm->pc_offset()); |
| |
| // Restore the context from the frame. |
| __ lw(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); |
| |
| // If the result is an object (in the ECMA sense), we should get rid |
| // of the receiver and use the result; see ECMA-262 section 13.2.2-7 |
| // on page 74. |
| Label use_receiver, do_throw, leave_frame; |
| |
| // If the result is undefined, we jump out to using the implicit receiver. |
| __ JumpIfRoot(v0, RootIndex::kUndefinedValue, &use_receiver); |
| |
| // Otherwise we do a smi check and fall through to check if the return value |
| // is a valid receiver. |
| |
| // If the result is a smi, it is *not* an object in the ECMA sense. |
| __ JumpIfSmi(v0, &use_receiver); |
| |
| // If the type of the result (stored in its map) is less than |
| // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. |
| __ GetObjectType(v0, t2, t2); |
| STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); |
| __ Branch(&leave_frame, greater_equal, t2, Operand(FIRST_JS_RECEIVER_TYPE)); |
| __ Branch(&use_receiver); |
| |
| __ bind(&do_throw); |
| __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); |
| |
| // Throw away the result of the constructor invocation and use the |
| // on-stack receiver as the result. |
| __ bind(&use_receiver); |
| __ lw(v0, MemOperand(sp, 0 * kPointerSize)); |
| __ JumpIfRoot(v0, RootIndex::kTheHoleValue, &do_throw); |
| |
| __ bind(&leave_frame); |
| // Restore smi-tagged arguments count from the frame. |
| __ lw(a1, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); |
| // Leave construct frame. |
| } |
| // Remove caller arguments from the stack and return. |
| __ Lsa(sp, sp, a1, kPointerSizeLog2 - kSmiTagSize); |
| __ Addu(sp, sp, kPointerSize); |
| __ Ret(); |
| } |
| |
| void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { |
| Generate_JSBuiltinsConstructStubHelper(masm); |
| } |
| |
| void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Push(a1); |
| __ CallRuntime(Runtime::kThrowConstructedNonConstructable); |
| } |
| |
| // Clobbers scratch1 and scratch2; preserves all other registers. |
| static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc, |
| Register scratch1, Register scratch2) { |
| // Check the stack for overflow. We are not trying to catch |
| // interruptions (e.g. debug break and preemption) here, so the "real stack |
| // limit" is checked. |
| Label okay; |
| __ LoadRoot(scratch1, RootIndex::kRealStackLimit); |
| // Make a2 the space we have left. The stack might already be overflowed |
| // here which will cause a2 to become negative. |
| __ Subu(scratch1, sp, scratch1); |
| // Check if the arguments will overflow the stack. |
| __ sll(scratch2, argc, kPointerSizeLog2); |
| // Signed comparison. |
| __ Branch(&okay, gt, scratch1, Operand(scratch2)); |
| |
| // Out of stack space. |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| |
| __ bind(&okay); |
| } |
| |
| namespace { |
| |
| // Used by JSEntryTrampoline to refer C++ parameter to JSEntryVariant. |
| constexpr int kPushedStackSpace = |
| kCArgsSlotsSize + (kNumCalleeSaved + 1) * kPointerSize + |
| kNumCalleeSavedFPU * kDoubleSize + 4 * kPointerSize + |
| EntryFrameConstants::kCallerFPOffset; |
| |
| // Called with the native C calling convention. The corresponding function |
| // signature is either: |
| // |
| // using JSEntryFunction = GeneratedCode<Address( |
| // Address root_register_value, Address new_target, Address target, |
| // Address receiver, intptr_t argc, Address** argv)>; |
| // or |
| // using JSEntryFunction = GeneratedCode<Address( |
| // Address root_register_value, MicrotaskQueue* microtask_queue)>; |
| // |
| // Passes through a0, a1, a2, a3 and stack to JSEntryTrampoline. |
| void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type, |
| Builtins::Name entry_trampoline) { |
| Label invoke, handler_entry, exit; |
| |
| int pushed_stack_space = kCArgsSlotsSize; |
| { |
| NoRootArrayScope no_root_array(masm); |
| |
| // Registers: |
| // a0: root_register_value |
| |
| // Save callee saved registers on the stack. |
| __ MultiPush(kCalleeSaved | ra.bit()); |
| pushed_stack_space += |
| kNumCalleeSaved * kPointerSize + kPointerSize /* ra */; |
| |
| // Save callee-saved FPU registers. |
| __ MultiPushFPU(kCalleeSavedFPU); |
| pushed_stack_space += kNumCalleeSavedFPU * kDoubleSize; |
| |
| // Set up the reserved register for 0.0. |
| __ Move(kDoubleRegZero, 0.0); |
| |
| // Initialize the root register. |
| // C calling convention. The first argument is passed in a0. |
| __ mov(kRootRegister, a0); |
| } |
| |
| // We build an EntryFrame. |
| __ li(t3, Operand(-1)); // Push a bad frame pointer to fail if it is used. |
| __ li(t2, Operand(StackFrame::TypeToMarker(type))); |
| __ li(t1, Operand(StackFrame::TypeToMarker(type))); |
| __ li(t0, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, |
| masm->isolate())); |
| __ lw(t0, MemOperand(t0)); |
| __ Push(t3, t2, t1, t0); |
| pushed_stack_space += 4 * kPointerSize; |
| |
| // Set up frame pointer for the frame to be pushed. |
| __ addiu(fp, sp, -EntryFrameConstants::kCallerFPOffset); |
| pushed_stack_space += EntryFrameConstants::kCallerFPOffset; |
| |
| // Registers: |
| // a0: root_register_value |
| // |
| // Stack: |
| // caller fp | |
| // function slot | entry frame |
| // context slot | |
| // bad fp (0xFF...F) | |
| // callee saved registers + ra |
| // 4 args slots |
| |
| // If this is the outermost JS call, set js_entry_sp value. |
| Label non_outermost_js; |
| ExternalReference js_entry_sp = ExternalReference::Create( |
| IsolateAddressId::kJSEntrySPAddress, masm->isolate()); |
| __ li(t1, js_entry_sp); |
| __ lw(t2, MemOperand(t1)); |
| __ Branch(&non_outermost_js, ne, t2, Operand(zero_reg)); |
| __ sw(fp, MemOperand(t1)); |
| __ li(t0, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
| Label cont; |
| __ b(&cont); |
| __ nop(); // Branch delay slot nop. |
| __ bind(&non_outermost_js); |
| __ li(t0, Operand(StackFrame::INNER_JSENTRY_FRAME)); |
| __ bind(&cont); |
| __ push(t0); |
| |
| // Jump to a faked try block that does the invoke, with a faked catch |
| // block that sets the pending exception. |
| __ jmp(&invoke); |
| __ bind(&handler_entry); |
| |
| // Store the current pc as the handler offset. It's used later to create the |
| // handler table. |
| masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos()); |
| |
| // Caught exception: Store result (exception) in the pending exception |
| // field in the JSEnv and return a failure sentinel. Coming in here the |
| // fp will be invalid because the PushStackHandler below sets it to 0 to |
| // signal the existence of the JSEntry frame. |
| __ li(t0, ExternalReference::Create( |
| IsolateAddressId::kPendingExceptionAddress, masm->isolate())); |
| __ sw(v0, MemOperand(t0)); // We come back from 'invoke'. result is in v0. |
| __ LoadRoot(v0, RootIndex::kException); |
| __ b(&exit); // b exposes branch delay slot. |
| __ nop(); // Branch delay slot nop. |
| |
| // Invoke: Link this frame into the handler chain. |
| __ bind(&invoke); |
| __ PushStackHandler(); |
| // If an exception not caught by another handler occurs, this handler |
| // returns control to the code after the bal(&invoke) above, which |
| // restores all kCalleeSaved registers (including cp and fp) to their |
| // saved values before returning a failure to C. |
| // |
| // Preserve a1, a2 and a3 passed by C++ and pass them to the trampoline. |
| // |
| // Stack: |
| // handler frame |
| // entry frame |
| // callee saved registers + ra |
| // 4 args slots |
| // |
| // Invoke the function by calling through JS entry trampoline builtin and |
| // pop the faked function when we return. |
| Handle<Code> trampoline_code = |
| masm->isolate()->builtins()->builtin_handle(entry_trampoline); |
| DCHECK_EQ(kPushedStackSpace, pushed_stack_space); |
| __ Call(trampoline_code, RelocInfo::CODE_TARGET); |
| |
| // Unlink this frame from the handler chain. |
| __ PopStackHandler(); |
| |
| __ bind(&exit); // v0 holds result |
| // Check if the current stack frame is marked as the outermost JS frame. |
| Label non_outermost_js_2; |
| __ pop(t1); |
| __ Branch(&non_outermost_js_2, ne, t1, |
| Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
| __ li(t1, ExternalReference(js_entry_sp)); |
| __ sw(zero_reg, MemOperand(t1)); |
| __ bind(&non_outermost_js_2); |
| |
| // Restore the top frame descriptors from the stack. |
| __ pop(t1); |
| __ li(t0, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, |
| masm->isolate())); |
| __ sw(t1, MemOperand(t0)); |
| |
| // Reset the stack to the callee saved registers. |
| __ addiu(sp, sp, -EntryFrameConstants::kCallerFPOffset); |
| |
| // Restore callee-saved fpu registers. |
| __ MultiPopFPU(kCalleeSavedFPU); |
| |
| // Restore callee saved registers from the stack. |
| __ MultiPop(kCalleeSaved | ra.bit()); |
| // Return. |
| __ Jump(ra); |
| } |
| |
| } // namespace |
| |
| void Builtins::Generate_JSEntry(MacroAssembler* masm) { |
| Generate_JSEntryVariant(masm, StackFrame::ENTRY, |
| Builtins::kJSEntryTrampoline); |
| } |
| |
| void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) { |
| Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY, |
| Builtins::kJSConstructEntryTrampoline); |
| } |
| |
| void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) { |
| Generate_JSEntryVariant(masm, StackFrame::ENTRY, |
| Builtins::kRunMicrotasksTrampoline); |
| } |
| |
| static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, |
| bool is_construct) { |
| // ----------- S t a t e ------------- |
| // -- a0: root_register_value (unused) |
| // -- a1: new.target |
| // -- a2: function |
| // -- a3: receiver_pointer |
| // -- [fp + kPushedStackSpace + 0 * kPointerSize]: argc |
| // -- [fp + kPushedStackSpace + 1 * kPointerSize]: argv |
| // ----------------------------------- |
| |
| // Enter an internal frame. |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| |
| // Setup the context (we need to use the caller context from the isolate). |
| ExternalReference context_address = ExternalReference::Create( |
| IsolateAddressId::kContextAddress, masm->isolate()); |
| __ li(cp, context_address); |
| __ lw(cp, MemOperand(cp)); |
| |
| // Push the function and the receiver onto the stack. |
| __ Push(a2, a3); |
| |
| __ mov(a3, a1); |
| __ mov(a1, a2); |
| |
| __ lw(s0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ lw(a0, |
| MemOperand(s0, kPushedStackSpace + EntryFrameConstants::kArgcOffset)); |
| __ lw(s0, |
| MemOperand(s0, kPushedStackSpace + EntryFrameConstants::kArgvOffset)); |
| |
| // a0: argc |
| // a1: function |
| // a3: new.target |
| // s0: argv |
| |
| // Check if we have enough stack space to push all arguments. |
| // Clobbers a2 and t0. |
| Generate_CheckStackOverflow(masm, a0, a2, t0); |
| |
| // Copy arguments to the stack in a loop. |
| // a0: argc |
| // s0: argv, i.e. points to first arg |
| Label loop, entry; |
| __ Lsa(t2, s0, a0, kPointerSizeLog2); |
| __ b(&entry); |
| __ nop(); // Branch delay slot nop. |
| // t2 points past last arg. |
| __ bind(&loop); |
| __ lw(t0, MemOperand(s0)); // Read next parameter. |
| __ addiu(s0, s0, kPointerSize); |
| __ lw(t0, MemOperand(t0)); // Dereference handle. |
| __ push(t0); // Push parameter. |
| __ bind(&entry); |
| __ Branch(&loop, ne, s0, Operand(t2)); |
| |
| // a0: argc |
| // a1: function |
| // a3: new.target |
| |
| // Initialize all JavaScript callee-saved registers, since they will be seen |
| // by the garbage collector as part of handlers. |
| __ LoadRoot(t0, RootIndex::kUndefinedValue); |
| __ mov(s0, t0); |
| __ mov(s1, t0); |
| __ mov(s2, t0); |
| __ mov(s3, t0); |
| __ mov(s4, t0); |
| __ mov(s5, t0); |
| // s6 holds the root address. Do not clobber. |
| // s7 is cp. Do not init. |
| |
| // Invoke the code. |
| Handle<Code> builtin = is_construct |
| ? BUILTIN_CODE(masm->isolate(), Construct) |
| : masm->isolate()->builtins()->Call(); |
| __ Call(builtin, RelocInfo::CODE_TARGET); |
| |
| // Leave internal frame. |
| } |
| |
| __ Jump(ra); |
| } |
| |
| void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, false); |
| } |
| |
| void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, true); |
| } |
| |
| void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) { |
| // a1: microtask_queue |
| __ mov(RunMicrotasksDescriptor::MicrotaskQueueRegister(), a1); |
| __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET); |
| } |
| |
| static void GetSharedFunctionInfoBytecode(MacroAssembler* masm, |
| Register sfi_data, |
| Register scratch1) { |
| Label done; |
| |
| __ GetObjectType(sfi_data, scratch1, scratch1); |
| __ Branch(&done, ne, scratch1, Operand(INTERPRETER_DATA_TYPE)); |
| __ lw(sfi_data, |
| FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset)); |
| |
| __ bind(&done); |
| } |
| |
| // static |
| void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- v0 : the value to pass to the generator |
| // -- a1 : the JSGeneratorObject to resume |
| // -- ra : return address |
| // ----------------------------------- |
| |
| __ AssertGeneratorObject(a1); |
| |
| // Store input value into generator object. |
| __ sw(v0, FieldMemOperand(a1, JSGeneratorObject::kInputOrDebugPosOffset)); |
| __ RecordWriteField(a1, JSGeneratorObject::kInputOrDebugPosOffset, v0, a3, |
| kRAHasNotBeenSaved, kDontSaveFPRegs); |
| |
| // Load suspended function and context. |
| __ lw(t0, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); |
| __ lw(cp, FieldMemOperand(t0, JSFunction::kContextOffset)); |
| |
| // Flood function if we are stepping. |
| Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; |
| Label stepping_prepared; |
| ExternalReference debug_hook = |
| ExternalReference::debug_hook_on_function_call_address(masm->isolate()); |
| __ li(t1, debug_hook); |
| __ lb(t1, MemOperand(t1)); |
| __ Branch(&prepare_step_in_if_stepping, ne, t1, Operand(zero_reg)); |
| |
| // Flood function if we need to continue stepping in the suspended generator. |
| ExternalReference debug_suspended_generator = |
| ExternalReference::debug_suspended_generator_address(masm->isolate()); |
| __ li(t1, debug_suspended_generator); |
| __ lw(t1, MemOperand(t1)); |
| __ Branch(&prepare_step_in_suspended_generator, eq, a1, Operand(t1)); |
| __ bind(&stepping_prepared); |
| |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack limit". |
| Label stack_overflow; |
| __ LoadRoot(kScratchReg, RootIndex::kRealStackLimit); |
| __ Branch(&stack_overflow, lo, sp, Operand(kScratchReg)); |
| |
| // Push receiver. |
| __ lw(t1, FieldMemOperand(a1, JSGeneratorObject::kReceiverOffset)); |
| __ Push(t1); |
| |
| // ----------- S t a t e ------------- |
| // -- a1 : the JSGeneratorObject to resume |
| // -- t0 : generator function |
| // -- cp : generator context |
| // -- ra : return address |
| // -- sp[0] : generator receiver |
| // ----------------------------------- |
| |
| // Copy the function arguments from the generator object's register file. |
| |
| __ lw(a3, FieldMemOperand(t0, JSFunction::kSharedFunctionInfoOffset)); |
| __ lhu(a3, |
| FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset)); |
| __ lw(t1, |
| FieldMemOperand(a1, JSGeneratorObject::kParametersAndRegistersOffset)); |
| { |
| Label done_loop, loop; |
| __ Move(t2, zero_reg); |
| __ bind(&loop); |
| __ Subu(a3, a3, Operand(1)); |
| __ Branch(&done_loop, lt, a3, Operand(zero_reg)); |
| __ Lsa(kScratchReg, t1, t2, kPointerSizeLog2); |
| __ lw(kScratchReg, FieldMemOperand(kScratchReg, FixedArray::kHeaderSize)); |
| __ Push(kScratchReg); |
| __ Addu(t2, t2, Operand(1)); |
| __ Branch(&loop); |
| __ bind(&done_loop); |
| } |
| |
| // Underlying function needs to have bytecode available. |
| if (FLAG_debug_code) { |
| __ lw(a3, FieldMemOperand(t0, JSFunction::kSharedFunctionInfoOffset)); |
| __ lw(a3, FieldMemOperand(a3, SharedFunctionInfo::kFunctionDataOffset)); |
| GetSharedFunctionInfoBytecode(masm, a3, a0); |
| __ GetObjectType(a3, a3, a3); |
| __ Assert(eq, AbortReason::kMissingBytecodeArray, a3, |
| Operand(BYTECODE_ARRAY_TYPE)); |
| } |
| |
| // Resume (Ignition/TurboFan) generator object. |
| { |
| __ lw(a0, FieldMemOperand(t0, JSFunction::kSharedFunctionInfoOffset)); |
| __ lhu(a0, FieldMemOperand( |
| a0, SharedFunctionInfo::kFormalParameterCountOffset)); |
| // We abuse new.target both to indicate that this is a resume call and to |
| // pass in the generator object. In ordinary calls, new.target is always |
| // undefined because generator functions are non-constructable. |
| __ Move(a3, a1); |
| __ Move(a1, t0); |
| static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); |
| __ lw(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); |
| __ Addu(a2, a2, Code::kHeaderSize - kHeapObjectTag); |
| __ Jump(a2); |
| } |
| |
| __ bind(&prepare_step_in_if_stepping); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Push(a1, t0); |
| // Push hole as receiver since we do not use it for stepping. |
| __ PushRoot(RootIndex::kTheHoleValue); |
| __ CallRuntime(Runtime::kDebugOnFunctionCall); |
| __ Pop(a1); |
| } |
| __ Branch(USE_DELAY_SLOT, &stepping_prepared); |
| __ lw(t0, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); |
| |
| __ bind(&prepare_step_in_suspended_generator); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Push(a1); |
| __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); |
| __ Pop(a1); |
| } |
| __ Branch(USE_DELAY_SLOT, &stepping_prepared); |
| __ lw(t0, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ break_(0xCC); // This should be unreachable. |
| } |
| } |
| |
| static void ReplaceClosureCodeWithOptimizedCode( |
| MacroAssembler* masm, Register optimized_code, Register closure, |
| Register scratch1, Register scratch2, Register scratch3) { |
| // Store code entry in the closure. |
| __ sw(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset)); |
| __ mov(scratch1, optimized_code); // Write barrier clobbers scratch1 below. |
| __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2, |
| kRAHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, |
| OMIT_SMI_CHECK); |
| } |
| |
| static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) { |
| Register args_count = scratch; |
| |
| // Get the arguments + receiver count. |
| __ lw(args_count, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ lw(args_count, |
| FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset)); |
| |
| // Leave the frame (also dropping the register file). |
| __ LeaveFrame(StackFrame::INTERPRETED); |
| |
| // Drop receiver + arguments. |
| __ Addu(sp, sp, args_count); |
| } |
| |
| // Tail-call |function_id| if |smi_entry| == |marker| |
| static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm, |
| Register smi_entry, |
| OptimizationMarker marker, |
| Runtime::FunctionId function_id) { |
| Label no_match; |
| __ Branch(&no_match, ne, smi_entry, Operand(Smi::FromEnum(marker))); |
| GenerateTailCallToReturnedCode(masm, function_id); |
| __ bind(&no_match); |
| } |
| |
| static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm, |
| Register feedback_vector, |
| Register scratch1, Register scratch2, |
| Register scratch3) { |
| // ----------- S t a t e ------------- |
| // -- a3 : new target (preserved for callee if needed, and caller) |
| // -- a1 : target function (preserved for callee if needed, and caller) |
| // -- feedback vector (preserved for caller if needed) |
| // ----------------------------------- |
| DCHECK(!AreAliased(feedback_vector, a1, a3, scratch1, scratch2, scratch3)); |
| |
| Label optimized_code_slot_is_weak_ref, fallthrough; |
| |
| Register closure = a1; |
| Register optimized_code_entry = scratch1; |
| |
| __ lw(optimized_code_entry, |
| FieldMemOperand(feedback_vector, |
| FeedbackVector::kOptimizedCodeWeakOrSmiOffset)); |
| |
| // Check if the code entry is a Smi. If yes, we interpret it as an |
| // optimisation marker. Otherwise, interpret it as a weak cell to a code |
| // object. |
| __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref); |
| |
| { |
| // Optimized code slot is a Smi optimization marker. |
| |
| // Fall through if no optimization trigger. |
| __ Branch(&fallthrough, eq, optimized_code_entry, |
| Operand(Smi::FromEnum(OptimizationMarker::kNone))); |
| |
| TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, |
| OptimizationMarker::kLogFirstExecution, |
| Runtime::kFunctionFirstExecution); |
| TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, |
| OptimizationMarker::kCompileOptimized, |
| Runtime::kCompileOptimized_NotConcurrent); |
| TailCallRuntimeIfMarkerEquals( |
| masm, optimized_code_entry, |
| OptimizationMarker::kCompileOptimizedConcurrent, |
| Runtime::kCompileOptimized_Concurrent); |
| |
| { |
| // Otherwise, the marker is InOptimizationQueue, so fall through hoping |
| // that an interrupt will eventually update the slot with optimized code. |
| if (FLAG_debug_code) { |
| __ Assert( |
| eq, AbortReason::kExpectedOptimizationSentinel, |
| optimized_code_entry, |
| Operand(Smi::FromEnum(OptimizationMarker::kInOptimizationQueue))); |
| } |
| __ jmp(&fallthrough); |
| } |
| } |
| |
| { |
| // Optimized code slot is a weak reference. |
| __ bind(&optimized_code_slot_is_weak_ref); |
| |
| __ LoadWeakValue(optimized_code_entry, optimized_code_entry, &fallthrough); |
| |
| // Check if the optimized code is marked for deopt. If it is, call the |
| // runtime to clear it. |
| Label found_deoptimized_code; |
| __ lw(scratch2, FieldMemOperand(optimized_code_entry, |
| Code::kCodeDataContainerOffset)); |
| __ lw(scratch2, FieldMemOperand( |
| scratch2, CodeDataContainer::kKindSpecificFlagsOffset)); |
| __ And(scratch2, scratch2, Operand(1 << Code::kMarkedForDeoptimizationBit)); |
| __ Branch(&found_deoptimized_code, ne, scratch2, Operand(zero_reg)); |
| |
| // Optimized code is good, get it into the closure and link the closure into |
| // the optimized functions list, then tail call the optimized code. |
| // The feedback vector is no longer used, so re-use it as a scratch |
| // register. |
| ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure, |
| scratch2, scratch3, feedback_vector); |
| static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); |
| __ Addu(a2, optimized_code_entry, Code::kHeaderSize - kHeapObjectTag); |
| __ Jump(a2); |
| |
| // Optimized code slot contains deoptimized code, evict it and re-enter the |
| // losure's code. |
| __ bind(&found_deoptimized_code); |
| GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot); |
| } |
| |
| // Fall-through if the optimized code cell is clear and there is no |
| // optimization marker. |
| __ bind(&fallthrough); |
| } |
| |
| // Advance the current bytecode offset. This simulates what all bytecode |
| // handlers do upon completion of the underlying operation. Will bail out to a |
| // label if the bytecode (without prefix) is a return bytecode. |
| static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm, |
| Register bytecode_array, |
| Register bytecode_offset, |
| Register bytecode, Register scratch1, |
| Register scratch2, Label* if_return) { |
| Register bytecode_size_table = scratch1; |
| DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table, |
| bytecode)); |
| |
| __ li(bytecode_size_table, ExternalReference::bytecode_size_table_address()); |
| |
| // Check if the bytecode is a Wide or ExtraWide prefix bytecode. |
| Label process_bytecode, extra_wide; |
| STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide)); |
| STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide)); |
| STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide)); |
| STATIC_ASSERT(3 == |
| static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide)); |
| __ Branch(&process_bytecode, hi, bytecode, Operand(3)); |
| __ And(scratch2, bytecode, Operand(1)); |
| __ Branch(&extra_wide, ne, scratch2, Operand(zero_reg)); |
| |
| // Load the next bytecode and update table to the wide scaled table. |
| __ Addu(bytecode_offset, bytecode_offset, Operand(1)); |
| __ Addu(scratch2, bytecode_array, bytecode_offset); |
| __ lbu(bytecode, MemOperand(scratch2)); |
| __ Addu(bytecode_size_table, bytecode_size_table, |
| Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount)); |
| __ jmp(&process_bytecode); |
| |
| __ bind(&extra_wide); |
| // Load the next bytecode and update table to the extra wide scaled table. |
| __ Addu(bytecode_offset, bytecode_offset, Operand(1)); |
| __ Addu(scratch2, bytecode_array, bytecode_offset); |
| __ lbu(bytecode, MemOperand(scratch2)); |
| __ Addu(bytecode_size_table, bytecode_size_table, |
| Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount)); |
| |
| __ bind(&process_bytecode); |
| |
| // Bailout to the return label if this is a return bytecode. |
| #define JUMP_IF_EQUAL(NAME) \ |
| __ Branch(if_return, eq, bytecode, \ |
| Operand(static_cast<int>(interpreter::Bytecode::k##NAME))); |
| RETURN_BYTECODE_LIST(JUMP_IF_EQUAL) |
| #undef JUMP_IF_EQUAL |
| |
| // Otherwise, load the size of the current bytecode and advance the offset. |
| __ Lsa(scratch2, bytecode_size_table, bytecode, 2); |
| __ lw(scratch2, MemOperand(scratch2)); |
| __ Addu(bytecode_offset, bytecode_offset, scratch2); |
| } |
| |
| // Generate code for entering a JS function with the interpreter. |
| // On entry to the function the receiver and arguments have been pushed on the |
| // stack left to right. The actual argument count matches the formal parameter |
| // count expected by the function. |
| // |
| // The live registers are: |
| // o a1: the JS function object being called. |
| // o a3: the incoming new target or generator object |
| // o cp: our context |
| // o fp: the caller's frame pointer |
| // o sp: stack pointer |
| // o ra: return address |
| // |
| // The function builds an interpreter frame. See InterpreterFrameConstants in |
| // frames.h for its layout. |
| void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { |
| Register closure = a1; |
| Register feedback_vector = a2; |
| |
| // Get the bytecode array from the function object and load it into |
| // kInterpreterBytecodeArrayRegister. |
| __ lw(a0, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); |
| __ lw(kInterpreterBytecodeArrayRegister, |
| FieldMemOperand(a0, SharedFunctionInfo::kFunctionDataOffset)); |
| GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, t0); |
| |
| // The bytecode array could have been flushed from the shared function info, |
| // if so, call into CompileLazy. |
| Label compile_lazy; |
| __ GetObjectType(kInterpreterBytecodeArrayRegister, a0, a0); |
| __ Branch(&compile_lazy, ne, a0, Operand(BYTECODE_ARRAY_TYPE)); |
| |
| // Load the feedback vector from the closure. |
| __ lw(feedback_vector, |
| FieldMemOperand(closure, JSFunction::kFeedbackCellOffset)); |
| __ lw(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset)); |
| |
| Label push_stack_frame; |
| // Check if feedback vector is valid. If valid, check for optimized code |
| // and update invocation count. Otherwise, setup the stack frame. |
| __ lw(t0, FieldMemOperand(feedback_vector, HeapObject::kMapOffset)); |
| __ lhu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset)); |
| __ Branch(&push_stack_frame, ne, t0, Operand(FEEDBACK_VECTOR_TYPE)); |
| |
| // Read off the optimized code slot in the feedback vector, and if there |
| // is optimized code or an optimization marker, call that instead. |
| MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, t0, t3, t1); |
| |
| // Increment invocation count for the function. |
| __ lw(t0, FieldMemOperand(feedback_vector, |
| FeedbackVector::kInvocationCountOffset)); |
| __ Addu(t0, t0, Operand(1)); |
| __ sw(t0, FieldMemOperand(feedback_vector, |
| FeedbackVector::kInvocationCountOffset)); |
| |
| // Open a frame scope to indicate that there is a frame on the stack. The |
| // MANUAL indicates that the scope shouldn't actually generate code to set up |
| // the frame (that is done below). |
| __ bind(&push_stack_frame); |
| FrameScope frame_scope(masm, StackFrame::MANUAL); |
| __ PushStandardFrame(closure); |
| |
| // Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are |
| // 8-bit fields next to each other, so we could just optimize by writing a |
| // 16-bit. These static asserts guard our assumption is valid. |
| STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset == |
| BytecodeArray::kOsrNestingLevelOffset + kCharSize); |
| STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0); |
| __ sh(zero_reg, FieldMemOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kOsrNestingLevelOffset)); |
| |
| // Load initial bytecode offset. |
| __ li(kInterpreterBytecodeOffsetRegister, |
| Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); |
| |
| // Push bytecode array and Smi tagged bytecode array offset. |
| __ SmiTag(t0, kInterpreterBytecodeOffsetRegister); |
| __ Push(kInterpreterBytecodeArrayRegister, t0); |
| |
| // Allocate the local and temporary register file on the stack. |
| { |
| // Load frame size from the BytecodeArray object. |
| __ lw(t0, FieldMemOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kFrameSizeOffset)); |
| |
| // Do a stack check to ensure we don't go over the limit. |
| Label ok; |
| __ Subu(t1, sp, Operand(t0)); |
| __ LoadRoot(a2, RootIndex::kRealStackLimit); |
| __ Branch(&ok, hs, t1, Operand(a2)); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ bind(&ok); |
| |
| // If ok, push undefined as the initial value for all register file entries. |
| Label loop_header; |
| Label loop_check; |
| __ LoadRoot(t1, RootIndex::kUndefinedValue); |
| __ Branch(&loop_check); |
| __ bind(&loop_header); |
| // TODO(rmcilroy): Consider doing more than one push per loop iteration. |
| __ push(t1); |
| // Continue loop if not done. |
| __ bind(&loop_check); |
| __ Subu(t0, t0, Operand(kPointerSize)); |
| __ Branch(&loop_header, ge, t0, Operand(zero_reg)); |
| } |
| |
| // If the bytecode array has a valid incoming new target or generator object |
| // register, initialize it with incoming value which was passed in r3. |
| Label no_incoming_new_target_or_generator_register; |
| __ lw(t1, FieldMemOperand( |
| kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); |
| __ Branch(&no_incoming_new_target_or_generator_register, eq, t1, |
| Operand(zero_reg)); |
| __ Lsa(t1, fp, t1, kPointerSizeLog2); |
| __ sw(a3, MemOperand(t1)); |
| __ bind(&no_incoming_new_target_or_generator_register); |
| |
| // Load accumulator with undefined. |
| __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); |
| |
| // Load the dispatch table into a register and dispatch to the bytecode |
| // handler at the current bytecode offset. |
| Label do_dispatch; |
| __ bind(&do_dispatch); |
| __ li(kInterpreterDispatchTableRegister, |
| ExternalReference::interpreter_dispatch_table_address(masm->isolate())); |
| __ Addu(a0, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister); |
| __ lbu(t3, MemOperand(a0)); |
| __ Lsa(kScratchReg, kInterpreterDispatchTableRegister, t3, kPointerSizeLog2); |
| __ lw(kJavaScriptCallCodeStartRegister, MemOperand(kScratchReg)); |
| __ Call(kJavaScriptCallCodeStartRegister); |
| masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); |
| |
| // Any returns to the entry trampoline are either due to the return bytecode |
| // or the interpreter tail calling a builtin and then a dispatch. |
| |
| // Get bytecode array and bytecode offset from the stack frame. |
| __ lw(kInterpreterBytecodeArrayRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ lw(kInterpreterBytecodeOffsetRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister); |
| // Either return, or advance to the next bytecode and dispatch. |
| Label do_return; |
| __ Addu(a1, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister); |
| __ lbu(a1, MemOperand(a1)); |
| AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, a1, a2, a3, |
| &do_return); |
| __ jmp(&do_dispatch); |
| |
| __ bind(&do_return); |
| // The return value is in v0. |
| LeaveInterpreterFrame(masm, t0); |
| __ Jump(ra); |
| |
| __ bind(&compile_lazy); |
| GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); |
| // Unreachable code. |
| __ break_(0xCC); |
| } |
| |
| static void Generate_InterpreterPushArgs(MacroAssembler* masm, |
| Register num_args, Register index, |
| Register scratch, Register scratch2) { |
| // Find the address of the last argument. |
| __ mov(scratch2, num_args); |
| __ sll(scratch2, scratch2, kPointerSizeLog2); |
| __ Subu(scratch2, index, Operand(scratch2)); |
| |
| // Push the arguments. |
| Label loop_header, loop_check; |
| __ Branch(&loop_check); |
| __ bind(&loop_header); |
| __ lw(scratch, MemOperand(index)); |
| __ Addu(index, index, Operand(-kPointerSize)); |
| __ push(scratch); |
| __ bind(&loop_check); |
| __ Branch(&loop_header, gt, index, Operand(scratch2)); |
| } |
| |
| // static |
| void Builtins::Generate_InterpreterPushArgsThenCallImpl( |
| MacroAssembler* masm, ConvertReceiverMode receiver_mode, |
| InterpreterPushArgsMode mode) { |
| DCHECK(mode != InterpreterPushArgsMode::kArrayFunction); |
| // ----------- S t a t e ------------- |
| // -- a0 : the number of arguments (not including the receiver) |
| // -- a2 : the address of the first argument to be pushed. Subsequent |
| // arguments should be consecutive above this, in the same order as |
| // they are to be pushed onto the stack. |
| // -- a1 : the target to call (can be any Object). |
| // ----------------------------------- |
| Label stack_overflow; |
| |
| __ Addu(t0, a0, Operand(1)); // Add one for receiver. |
| |
| Generate_StackOverflowCheck(masm, t0, t4, t1, &stack_overflow); |
| |
| // Push "undefined" as the receiver arg if we need to. |
| if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { |
| __ PushRoot(RootIndex::kUndefinedValue); |
| __ mov(t0, a0); // No receiver. |
| } |
| |
| // This function modifies a2, t4 and t1. |
| Generate_InterpreterPushArgs(masm, t0, a2, t4, t1); |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| __ Pop(a2); // Pass the spread in a register |
| __ Subu(a0, a0, Operand(1)); // Subtract one for spread |
| } |
| |
| // Call the target. |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), |
| RelocInfo::CODE_TARGET); |
| } else { |
| __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| __ bind(&stack_overflow); |
| { |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| // Unreachable code. |
| __ break_(0xCC); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_InterpreterPushArgsThenConstructImpl( |
| MacroAssembler* masm, InterpreterPushArgsMode mode) { |
| // ----------- S t a t e ------------- |
| // -- a0 : argument count (not including receiver) |
| // -- a3 : new target |
| // -- a1 : constructor to call |
| // -- a2 : allocation site feedback if available, undefined otherwise. |
| // -- t4 : address of the first argument |
| // ----------------------------------- |
| Label stack_overflow; |
| |
| // Push a slot for the receiver. |
| __ push(zero_reg); |
| |
| Generate_StackOverflowCheck(masm, a0, t1, t0, &stack_overflow); |
| |
| // This function modified t4, t1 and t0. |
| Generate_InterpreterPushArgs(masm, a0, t4, t1, t0); |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| __ Pop(a2); // Pass the spread in a register |
| __ Subu(a0, a0, Operand(1)); // Subtract one for spread |
| } else { |
| __ AssertUndefinedOrAllocationSite(a2, t0); |
| } |
| |
| if (mode == InterpreterPushArgsMode::kArrayFunction) { |
| __ AssertFunction(a1); |
| |
| // Tail call to the array construct stub (still in the caller |
| // context at this point). |
| __ Jump(BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl), |
| RelocInfo::CODE_TARGET); |
| } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // Call the constructor with a0, a1, and a3 unmodified. |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), |
| RelocInfo::CODE_TARGET); |
| } else { |
| DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); |
| // Call the constructor with a0, a1, and a3 unmodified. |
| __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); |
| } |
| |
| __ bind(&stack_overflow); |
| { |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| // Unreachable code. |
| __ break_(0xCC); |
| } |
| } |
| |
| static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { |
| // Set the return address to the correct point in the interpreter entry |
| // trampoline. |
| Label builtin_trampoline, trampoline_loaded; |
| Smi interpreter_entry_return_pc_offset( |
| masm->isolate()->heap()->interpreter_entry_return_pc_offset()); |
| DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero()); |
| |
| // If the SFI function_data is an InterpreterData, the function will have a |
| // custom copy of the interpreter entry trampoline for profiling. If so, |
| // get the custom trampoline, otherwise grab the entry address of the global |
| // trampoline. |
| __ lw(t0, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); |
| __ lw(t0, FieldMemOperand(t0, JSFunction::kSharedFunctionInfoOffset)); |
| __ lw(t0, FieldMemOperand(t0, SharedFunctionInfo::kFunctionDataOffset)); |
| __ GetObjectType(t0, kInterpreterDispatchTableRegister, |
| kInterpreterDispatchTableRegister); |
| __ Branch(&builtin_trampoline, ne, kInterpreterDispatchTableRegister, |
| Operand(INTERPRETER_DATA_TYPE)); |
| |
| __ lw(t0, FieldMemOperand(t0, InterpreterData::kInterpreterTrampolineOffset)); |
| __ Addu(t0, t0, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ Branch(&trampoline_loaded); |
| |
| __ bind(&builtin_trampoline); |
| __ li(t0, ExternalReference:: |
| address_of_interpreter_entry_trampoline_instruction_start( |
| masm->isolate())); |
| __ lw(t0, MemOperand(t0)); |
| |
| __ bind(&trampoline_loaded); |
| __ Addu(ra, t0, Operand(interpreter_entry_return_pc_offset.value())); |
| |
| // Initialize the dispatch table register. |
| __ li(kInterpreterDispatchTableRegister, |
| ExternalReference::interpreter_dispatch_table_address(masm->isolate())); |
| |
| // Get the bytecode array pointer from the frame. |
| __ lw(kInterpreterBytecodeArrayRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| |
| if (FLAG_debug_code) { |
| // Check function data field is actually a BytecodeArray object. |
| __ SmiTst(kInterpreterBytecodeArrayRegister, kScratchReg); |
| __ Assert(ne, |
| AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, |
| kScratchReg, Operand(zero_reg)); |
| __ GetObjectType(kInterpreterBytecodeArrayRegister, a1, a1); |
| __ Assert(eq, |
| AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, |
| a1, Operand(BYTECODE_ARRAY_TYPE)); |
| } |
| |
| // Get the target bytecode offset from the frame. |
| __ lw(kInterpreterBytecodeOffsetRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister); |
| |
| // Dispatch to the target bytecode. |
| __ Addu(a1, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister); |
| __ lbu(t3, MemOperand(a1)); |
| __ Lsa(a1, kInterpreterDispatchTableRegister, t3, kPointerSizeLog2); |
| __ lw(kJavaScriptCallCodeStartRegister, MemOperand(a1)); |
| __ Jump(kJavaScriptCallCodeStartRegister); |
| } |
| |
| void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { |
| // Advance the current bytecode offset stored within the given interpreter |
| // stack frame. This simulates what all bytecode handlers do upon completion |
| // of the underlying operation. |
| __ lw(kInterpreterBytecodeArrayRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ lw(kInterpreterBytecodeOffsetRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister); |
| |
| // Load the current bytecode. |
| __ Addu(a1, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister); |
| __ lbu(a1, MemOperand(a1)); |
| |
| // Advance to the next bytecode. |
| Label if_return; |
| AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, a1, a2, a3, |
| &if_return); |
| |
| // Convert new bytecode offset to a Smi and save in the stackframe. |
| __ SmiTag(a2, kInterpreterBytecodeOffsetRegister); |
| __ sw(a2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| |
| Generate_InterpreterEnterBytecode(masm); |
| |
| // We should never take the if_return path. |
| __ bind(&if_return); |
| __ Abort(AbortReason::kInvalidBytecodeAdvance); |
| } |
| |
| void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { |
| Generate_InterpreterEnterBytecode(masm); |
| } |
| |
| void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- a0 : argument count (preserved for callee) |
| // -- a1 : new target (preserved for callee) |
| // -- a3 : target function (preserved for callee) |
| // ----------------------------------- |
| Label failed; |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Preserve argument count for later compare. |
| __ Move(t4, a0); |
| // Push a copy of the target function and the new target. |
| // Push function as parameter to the runtime call. |
| __ SmiTag(a0); |
| __ Push(a0, a1, a3, a1); |
| |
| // Copy arguments from caller (stdlib, foreign, heap). |
| Label args_done; |
| for (int j = 0; j < 4; ++j) { |
| Label over; |
| if (j < 3) { |
| __ Branch(&over, ne, t4, Operand(j)); |
| } |
| for (int i = j - 1; i >= 0; --i) { |
| __ lw(t4, MemOperand(fp, StandardFrameConstants::kCallerSPOffset + |
| i * kPointerSize)); |
| __ push(t4); |
| } |
| for (int i = 0; i < 3 - j; ++i) { |
| __ PushRoot(RootIndex::kUndefinedValue); |
| } |
| if (j < 3) { |
| __ jmp(&args_done); |
| __ bind(&over); |
| } |
| } |
| __ bind(&args_done); |
| |
| // Call runtime, on success unwind frame, and parent frame. |
| __ CallRuntime(Runtime::kInstantiateAsmJs, 4); |
| // A smi 0 is returned on failure, an object on success. |
| __ JumpIfSmi(v0, &failed); |
| |
| __ Drop(2); |
| __ pop(t4); |
| __ SmiUntag(t4); |
| scope.GenerateLeaveFrame(); |
| |
| __ Addu(t4, t4, Operand(1)); |
| __ Lsa(sp, sp, t4, kPointerSizeLog2); |
| __ Ret(); |
| |
| __ bind(&failed); |
| // Restore target function and new target. |
| __ Pop(a0, a1, a3); |
| __ SmiUntag(a0); |
| } |
| // On failure, tail call back to regular js by re-calling the function |
| // which has be reset to the compile lazy builtin. |
| static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); |
| __ lw(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); |
| __ Addu(a2, a2, Code::kHeaderSize - kHeapObjectTag); |
| __ Jump(a2); |
| } |
| |
| namespace { |
| void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, |
| bool java_script_builtin, |
| bool with_result) { |
| const RegisterConfiguration* config(RegisterConfiguration::Default()); |
| int allocatable_register_count = config->num_allocatable_general_registers(); |
| if (with_result) { |
| // Overwrite the hole inserted by the deoptimizer with the return value from |
| // the LAZY deopt point. |
| __ sw(v0, |
| MemOperand( |
| sp, config->num_allocatable_general_registers() * kPointerSize + |
| BuiltinContinuationFrameConstants::kFixedFrameSize)); |
| } |
| for (int i = allocatable_register_count - 1; i >= 0; --i) { |
| int code = config->GetAllocatableGeneralCode(i); |
| __ Pop(Register::from_code(code)); |
| if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { |
| __ SmiUntag(Register::from_code(code)); |
| } |
| } |
| __ lw(fp, MemOperand( |
| sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); |
| // Load builtin index (stored as a Smi) and use it to get the builtin start |
| // address from the builtins table. |
| __ Pop(t0); |
| __ Addu(sp, sp, |
| Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); |
| __ Pop(ra); |
| __ LoadEntryFromBuiltinIndex(t0); |
| __ Jump(t0); |
| } |
| } // namespace |
| |
| void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, false, false); |
| } |
| |
| void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( |
| MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, false, true); |
| } |
| |
| void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, true, false); |
| } |
| |
| void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( |
| MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, true, true); |
| } |
| |
| void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kNotifyDeoptimized); |
| } |
| |
| DCHECK_EQ(kInterpreterAccumulatorRegister.code(), v0.code()); |
| __ lw(v0, MemOperand(sp, 0 * kPointerSize)); |
| __ Ret(USE_DELAY_SLOT); |
| // Safe to fill delay slot Addu will emit one instruction. |
| __ Addu(sp, sp, Operand(1 * kPointerSize)); // Remove accumulator. |
| } |
| |
| void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { |
| // Lookup the function in the JavaScript frame. |
| __ lw(a0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ lw(a0, MemOperand(a0, JavaScriptFrameConstants::kFunctionOffset)); |
| |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Pass function as argument. |
| __ push(a0); |
| __ CallRuntime(Runtime::kCompileForOnStackReplacement); |
| } |
| |
| // If the code object is null, just return to the caller. |
| __ Ret(eq, v0, Operand(Smi::zero())); |
| |
| // Drop the handler frame that is be sitting on top of the actual |
| // JavaScript frame. This is the case then OSR is triggered from bytecode. |
| __ LeaveFrame(StackFrame::STUB); |
| |
| // Load deoptimization data from the code object. |
| // <deopt_data> = <code>[#deoptimization_data_offset] |
| __ lw(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag)); |
| |
| // Load the OSR entrypoint offset from the deoptimization data. |
| // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset] |
| __ lw(a1, MemOperand(a1, FixedArray::OffsetOfElementAt( |
| DeoptimizationData::kOsrPcOffsetIndex) - |
| kHeapObjectTag)); |
| __ SmiUntag(a1); |
| |
| // Compute the target address = code_obj + header_size + osr_offset |
| // <entry_addr> = <code_obj> + #header_size + <osr_offset> |
| __ Addu(v0, v0, a1); |
| __ addiu(ra, v0, Code::kHeaderSize - kHeapObjectTag); |
| |
| // And "return" to the OSR entry point of the function. |
| __ Ret(); |
| } |
| |
| // static |
| void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- a0 : argc |
| // -- sp[0] : argArray |
| // -- sp[4] : thisArg |
| // -- sp[8] : receiver |
| // ----------------------------------- |
| |
| // 1. Load receiver into a1, argArray into a0 (if present), remove all |
| // arguments from the stack (including the receiver), and push thisArg (if |
| // present) instead. |
| { |
| Label no_arg; |
| Register scratch = t0; |
| __ LoadRoot(a2, RootIndex::kUndefinedValue); |
| __ mov(a3, a2); |
| // Lsa() cannot be used hare as scratch value used later. |
| __ sll(scratch, a0, kPointerSizeLog2); |
| __ Addu(a0, sp, Operand(scratch)); |
| __ lw(a1, MemOperand(a0)); // receiver |
| __ Subu(a0, a0, Operand(kPointerSize)); |
| __ Branch(&no_arg, lt, a0, Operand(sp)); |
| __ lw(a2, MemOperand(a0)); // thisArg |
| __ Subu(a0, a0, Operand(kPointerSize)); |
| __ Branch(&no_arg, lt, a0, Operand(sp)); |
| __ lw(a3, MemOperand(a0)); // argArray |
| __ bind(&no_arg); |
| __ Addu(sp, sp, Operand(scratch)); |
| __ sw(a2, MemOperand(sp)); |
| __ mov(a2, a3); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- a2 : argArray |
| // -- a1 : receiver |
| // -- sp[0] : thisArg |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for callable receiver here, |
| // since that's the first thing the Call/CallWithArrayLike builtins |
| // will do. |
| |
| // 3. Tail call with no arguments if argArray is null or undefined. |
| Label no_arguments; |
| __ JumpIfRoot(a2, RootIndex::kNullValue, &no_arguments); |
| __ JumpIfRoot(a2, RootIndex::kUndefinedValue, &no_arguments); |
| |
| // 4a. Apply the receiver to the given argArray. |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| |
| // 4b. The argArray is either null or undefined, so we tail call without any |
| // arguments to the receiver. |
| __ bind(&no_arguments); |
| { |
| __ mov(a0, zero_reg); |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { |
| // 1. Make sure we have at least one argument. |
| // a0: actual number of arguments |
| { |
| Label done; |
| __ Branch(&done, ne, a0, Operand(zero_reg)); |
| __ PushRoot(RootIndex::kUndefinedValue); |
| __ Addu(a0, a0, Operand(1)); |
| __ bind(&done); |
| } |
| |
| // 2. Get the function to call (passed as receiver) from the stack. |
| // a0: actual number of arguments |
| __ Lsa(kScratchReg, sp, a0, kPointerSizeLog2); |
| __ lw(a1, MemOperand(kScratchReg)); |
| |
| // 3. Shift arguments and return address one slot down on the stack |
| // (overwriting the original receiver). Adjust argument count to make |
| // the original first argument the new receiver. |
| // a0: actual number of arguments |
| // a1: function |
| { |
| Label loop; |
| // Calculate the copy start address (destination). Copy end address is sp. |
| __ Lsa(a2, sp, a0, kPointerSizeLog2); |
| |
| __ bind(&loop); |
| __ lw(kScratchReg, MemOperand(a2, -kPointerSize)); |
| __ sw(kScratchReg, MemOperand(a2)); |
| __ Subu(a2, a2, Operand(kPointerSize)); |
| __ Branch(&loop, ne, a2, Operand(sp)); |
| // Adjust the actual number of arguments and remove the top element |
| // (which is a copy of the last argument). |
| __ Subu(a0, a0, Operand(1)); |
| __ Pop(); |
| } |
| |
| // 4. Call the callable. |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ReflectApply(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- a0 : argc |
| // -- sp[0] : argumentsList |
| // -- sp[4] : thisArgument |
| // -- sp[8] : target |
| // -- sp[12] : receiver |
| // ----------------------------------- |
| |
| // 1. Load target into a1 (if present), argumentsList into a0 (if present), |
| // remove all arguments from the stack (including the receiver), and push |
| // thisArgument (if present) instead. |
| { |
| Label no_arg; |
| Register scratch = t0; |
| __ LoadRoot(a1, RootIndex::kUndefinedValue); |
| __ mov(a2, a1); |
| __ mov(a3, a1); |
| __ sll(scratch, a0, kPointerSizeLog2); |
| __ mov(a0, scratch); |
| __ Subu(a0, a0, Operand(kPointerSize)); |
| __ Branch(&no_arg, lt, a0, Operand(zero_reg)); |
| __ Addu(a0, sp, Operand(a0)); |
| __ lw(a1, MemOperand(a0)); // target |
| __ Subu(a0, a0, Operand(kPointerSize)); |
| __ Branch(&no_arg, lt, a0, Operand(sp)); |
| __ lw(a2, MemOperand(a0)); // thisArgument |
| __ Subu(a0, a0, Operand(kPointerSize)); |
| __ Branch(&no_arg, lt, a0, Operand(sp)); |
| __ lw(a3, MemOperand(a0)); // argumentsList |
| __ bind(&no_arg); |
| __ Addu(sp, sp, Operand(scratch)); |
| __ sw(a2, MemOperand(sp)); |
| __ mov(a2, a3); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- a2 : argumentsList |
| // -- a1 : target |
| // -- sp[0] : thisArgument |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for callable target here, |
| // since that's the first thing the Call/CallWithArrayLike builtins |
| // will do. |
| |
| // 3. Apply the target to the given argumentsList. |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- a0 : argc |
| // -- sp[0] : new.target (optional) |
| // -- sp[4] : argumentsList |
| // -- sp[8] : target |
| // -- sp[12] : receiver |
| // ----------------------------------- |
| |
| // 1. Load target into a1 (if present), argumentsList into a0 (if present), |
| // new.target into a3 (if present, otherwise use target), remove all |
| // arguments from the stack (including the receiver), and push thisArgument |
| // (if present) instead. |
| { |
| Label no_arg; |
| Register scratch = t0; |
| __ LoadRoot(a1, RootIndex::kUndefinedValue); |
| __ mov(a2, a1); |
| // Lsa() cannot be used hare as scratch value used later. |
| __ sll(scratch, a0, kPointerSizeLog2); |
| __ Addu(a0, sp, Operand(scratch)); |
| __ sw(a2, MemOperand(a0)); // receiver |
| __ Subu(a0, a0, Operand(kPointerSize)); |
| __ Branch(&no_arg, lt, a0, Operand(sp)); |
| __ lw(a1, MemOperand(a0)); // target |
| __ mov(a3, a1); // new.target defaults to target |
| __ Subu(a0, a0, Operand(kPointerSize)); |
| __ Branch(&no_arg, lt, a0, Operand(sp)); |
| __ lw(a2, MemOperand(a0)); // argumentsList |
| __ Subu(a0, a0, Operand(kPointerSize)); |
| __ Branch(&no_arg, lt, a0, Operand(sp)); |
| __ lw(a3, MemOperand(a0)); // new.target |
| __ bind(&no_arg); |
| __ Addu(sp, sp, Operand(scratch)); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- a2 : argumentsList |
| // -- a3 : new.target |
| // -- a1 : target |
| // -- sp[0] : receiver (undefined) |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for constructor target here, |
| // since that's the first thing the Construct/ConstructWithArrayLike |
| // builtins will do. |
| |
| // 3. We don't need to check explicitly for constructor new.target here, |
| // since that's the second thing the Construct/ConstructWithArrayLike |
| // builtins will do. |
| |
| // 4. Construct the target with the given new.target and argumentsList. |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { |
| __ sll(a0, a0, kSmiTagSize); |
| __ li(t0, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ MultiPush(a0.bit() | a1.bit() | t0.bit() | fp.bit() | ra.bit()); |
| __ Push(Smi::zero()); // Padding. |
| __ Addu(fp, sp, |
| Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp)); |
| } |
| |
| static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- v0 : result being passed through |
| // ----------------------------------- |
| // Get the number of arguments passed (as a smi), tear down the frame and |
| // then tear down the parameters. |
| __ lw(a1, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ mov(sp, fp); |
| __ MultiPop(fp.bit() | ra.bit()); |
| __ Lsa(sp, sp, a1, kPointerSizeLog2 - kSmiTagSize); |
| // Adjust for the receiver. |
| __ Addu(sp, sp, Operand(kPointerSize)); |
| } |
| |
| // static |
| void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, |
| Handle<Code> code) { |
| // ----------- S t a t e ------------- |
| // -- a1 : target |
| // -- a0 : number of parameters on the stack (not including the receiver) |
| // -- a2 : arguments list (a FixedArray) |
| // -- t0 : len (number of elements to push from args) |
| // -- a3 : new.target (for [[Construct]]) |
| // ----------------------------------- |
| if (masm->emit_debug_code()) { |
| // Allow a2 to be a FixedArray, or a FixedDoubleArray if t0 == 0. |
| Label ok, fail; |
| __ AssertNotSmi(a2); |
| __ GetObjectType(a2, t8, t8); |
| __ Branch(&ok, eq, t8, Operand(FIXED_ARRAY_TYPE)); |
| __ Branch(&fail, ne, t8, Operand(FIXED_DOUBLE_ARRAY_TYPE)); |
| __ Branch(&ok, eq, t0, Operand(0)); |
| // Fall through. |
| __ bind(&fail); |
| __ Abort(AbortReason::kOperandIsNotAFixedArray); |
| |
| __ bind(&ok); |
| } |
| |
| // Check for stack overflow. |
| Label stack_overflow; |
| Generate_StackOverflowCheck(masm, t0, kScratchReg, t1, &stack_overflow); |
| |
| // Push arguments onto the stack (thisArgument is already on the stack). |
| { |
| __ mov(t2, zero_reg); |
| Label done, push, loop; |
| __ LoadRoot(t1, RootIndex::kTheHoleValue); |
| __ bind(&loop); |
| __ Branch(&done, eq, t2, Operand(t0)); |
| __ Lsa(kScratchReg, a2, t2, kPointerSizeLog2); |
| __ lw(kScratchReg, FieldMemOperand(kScratchReg, FixedArray::kHeaderSize)); |
| __ Branch(&push, ne, t1, Operand(kScratchReg)); |
| __ LoadRoot(kScratchReg, RootIndex::kUndefinedValue); |
| __ bind(&push); |
| __ Push(kScratchReg); |
| __ Addu(t2, t2, Operand(1)); |
| __ Branch(&loop); |
| __ bind(&done); |
| __ Addu(a0, a0, t2); |
| } |
| |
| // Tail-call to the actual Call or Construct builtin. |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| |
| __ bind(&stack_overflow); |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| } |
| |
| // static |
| void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, |
| CallOrConstructMode mode, |
| Handle<Code> code) { |
| // ----------- S t a t e ------------- |
| // -- a0 : the number of arguments (not including the receiver) |
| // -- a3 : the new.target (for [[Construct]] calls) |
| // -- a1 : the target to call (can be any Object) |
| // -- a2 : start index (to support rest parameters) |
| // ----------------------------------- |
| |
| // Check if new.target has a [[Construct]] internal method. |
| if (mode == CallOrConstructMode::kConstruct) { |
| Label new_target_constructor, new_target_not_constructor; |
| __ JumpIfSmi(a3, &new_target_not_constructor); |
| __ lw(t1, FieldMemOperand(a3, HeapObject::kMapOffset)); |
| __ lbu(t1, FieldMemOperand(t1, Map::kBitFieldOffset)); |
| __ And(t1, t1, Operand(Map::IsConstructorBit::kMask)); |
| __ Branch(&new_target_constructor, ne, t1, Operand(zero_reg)); |
| __ bind(&new_target_not_constructor); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterFrame(StackFrame::INTERNAL); |
| __ Push(a3); |
| __ CallRuntime(Runtime::kThrowNotConstructor); |
| } |
| __ bind(&new_target_constructor); |
| } |
| |
| // Check if we have an arguments adaptor frame below the function frame. |
| Label arguments_adaptor, arguments_done; |
| __ lw(t3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ lw(t2, MemOperand(t3, CommonFrameConstants::kContextOrFrameTypeOffset)); |
| __ Branch(&arguments_adaptor, eq, t2, |
| Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); |
| { |
| __ lw(t2, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
| __ lw(t2, FieldMemOperand(t2, JSFunction::kSharedFunctionInfoOffset)); |
| __ lhu(t2, FieldMemOperand( |
| t2, SharedFunctionInfo::kFormalParameterCountOffset)); |
| __ mov(t3, fp); |
| } |
| __ Branch(&arguments_done); |
| __ bind(&arguments_adaptor); |
| { |
| // Just get the length from the ArgumentsAdaptorFrame. |
| __ lw(t2, MemOperand(t3, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ SmiUntag(t2); |
| } |
| __ bind(&arguments_done); |
| |
| Label stack_done, stack_overflow; |
| __ Subu(t2, t2, a2); |
| __ Branch(&stack_done, le, t2, Operand(zero_reg)); |
| { |
| // Check for stack overflow. |
| Generate_StackOverflowCheck(masm, t2, t0, t1, &stack_overflow); |
| |
| // Forward the arguments from the caller frame. |
| { |
| Label loop; |
| __ Addu(a0, a0, t2); |
| __ bind(&loop); |
| { |
| __ Lsa(kScratchReg, t3, t2, kPointerSizeLog2); |
| __ lw(kScratchReg, MemOperand(kScratchReg, 1 * kPointerSize)); |
| __ push(kScratchReg); |
| __ Subu(t2, t2, Operand(1)); |
| __ Branch(&loop, ne, t2, Operand(zero_reg)); |
| } |
| } |
| } |
| __ Branch(&stack_done); |
| __ bind(&stack_overflow); |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| __ bind(&stack_done); |
| |
| // Tail-call to the {code} handler. |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_CallFunction(MacroAssembler* masm, |
| ConvertReceiverMode mode) { |
| // ----------- S t a t e ------------- |
| // -- a0 : the number of arguments (not including the receiver) |
| // -- a1 : the function to call (checked to be a JSFunction) |
| // ----------------------------------- |
| __ AssertFunction(a1); |
| |
| // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) |
| // Check that the function is not a "classConstructor". |
| Label class_constructor; |
| __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); |
| __ lw(a3, FieldMemOperand(a2, SharedFunctionInfo::kFlagsOffset)); |
| __ And(kScratchReg, a3, |
| Operand(SharedFunctionInfo::IsClassConstructorBit::kMask)); |
| __ Branch(&class_constructor, ne, kScratchReg, Operand(zero_reg)); |
| |
| // Enter the context of the function; ToObject has to run in the function |
| // context, and we also need to take the global proxy from the function |
| // context in case of conversion. |
| __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); |
| // We need to convert the receiver for non-native sloppy mode functions. |
| Label done_convert; |
| __ lw(a3, FieldMemOperand(a2, SharedFunctionInfo::kFlagsOffset)); |
| __ And(kScratchReg, a3, |
| Operand(SharedFunctionInfo::IsNativeBit::kMask | |
| SharedFunctionInfo::IsStrictBit::kMask)); |
| __ Branch(&done_convert, ne, kScratchReg, Operand(zero_reg)); |
| { |
| // ----------- S t a t e ------------- |
| // -- a0 : the number of arguments (not including the receiver) |
| // -- a1 : the function to call (checked to be a JSFunction) |
| // -- a2 : the shared function info. |
| // -- cp : the function context. |
| // ----------------------------------- |
| |
| if (mode == ConvertReceiverMode::kNullOrUndefined) { |
| // Patch receiver to global proxy. |
| __ LoadGlobalProxy(a3); |
| } else { |
| Label convert_to_object, convert_receiver; |
| __ Lsa(kScratchReg, sp, a0, kPointerSizeLog2); |
| __ lw(a3, MemOperand(kScratchReg)); |
| __ JumpIfSmi(a3, &convert_to_object); |
| STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); |
| __ GetObjectType(a3, t0, t0); |
| __ Branch(&done_convert, hs, t0, Operand(FIRST_JS_RECEIVER_TYPE)); |
| if (mode != ConvertReceiverMode::kNotNullOrUndefined) { |
| Label convert_global_proxy; |
| __ JumpIfRoot(a3, RootIndex::kUndefinedValue, &convert_global_proxy); |
| __ JumpIfNotRoot(a3, RootIndex::kNullValue, &convert_to_object); |
| __ bind(&convert_global_proxy); |
| { |
| // Patch receiver to global proxy. |
| __ LoadGlobalProxy(a3); |
| } |
| __ Branch(&convert_receiver); |
| } |
| __ bind(&convert_to_object); |
| { |
| // Convert receiver using ToObject. |
| // TODO(bmeurer): Inline the allocation here to avoid building the frame |
| // in the fast case? (fall back to AllocateInNewSpace?) |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ sll(a0, a0, kSmiTagSize); // Smi tagged. |
| __ Push(a0, a1); |
| __ mov(a0, a3); |
| __ Push(cp); |
| __ Call(BUILTIN_CODE(masm->isolate(), ToObject), |
| RelocInfo::CODE_TARGET); |
| __ Pop(cp); |
| __ mov(a3, v0); |
| __ Pop(a0, a1); |
| __ sra(a0, a0, kSmiTagSize); // Un-tag. |
| } |
| __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); |
| __ bind(&convert_receiver); |
| } |
| __ Lsa(kScratchReg, sp, a0, kPointerSizeLog2); |
| __ sw(a3, MemOperand(kScratchReg)); |
| } |
| __ bind(&done_convert); |
| |
| // ----------- S t a t e ------------- |
| // -- a0 : the number of arguments (not including the receiver) |
| // -- a1 : the function to call (checked to be a JSFunction) |
| // -- a2 : the shared function info. |
| // -- cp : the function context. |
| // ----------------------------------- |
| |
| __ lhu(a2, |
| FieldMemOperand(a2, SharedFunctionInfo::kFormalParameterCountOffset)); |
| ParameterCount actual(a0); |
| ParameterCount expected(a2); |
| __ InvokeFunctionCode(a1, no_reg, expected, actual, JUMP_FUNCTION); |
| |
| // The function is a "classConstructor", need to raise an exception. |
| __ bind(&class_constructor); |
| { |
| FrameScope frame(masm, StackFrame::INTERNAL); |
| __ Push(a1); |
| __ CallRuntime(Runtime::kThrowConstructorNonCallableError); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- a0 : the number of arguments (not including the receiver) |
| // -- a1 : the function to call (checked to be a JSBoundFunction) |
| // ----------------------------------- |
| __ AssertBoundFunction(a1); |
| |
| // Patch the receiver to [[BoundThis]]. |
| { |
| __ lw(kScratchReg, FieldMemOperand(a1, JSBoundFunction::kBoundThisOffset)); |
| __ Lsa(t0, sp, a0, kPointerSizeLog2); |
| __ sw(kScratchReg, MemOperand(t0)); |
| } |
| |
| // Load [[BoundArguments]] into a2 and length of that into t0. |
| __ lw(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset)); |
| __ lw(t0, FieldMemOperand(a2, FixedArray::kLengthOffset)); |
| __ SmiUntag(t0); |
| |
| // ----------- S t a t e ------------- |
| // -- a0 : the number of arguments (not including the receiver) |
| // -- a1 : the function to call (checked to be a JSBoundFunction) |
| // -- a2 : the [[BoundArguments]] (implemented as FixedArray) |
| // -- t0 : the number of [[BoundArguments]] |
| // ----------------------------------- |
| |
| // Reserve stack space for the [[BoundArguments]]. |
| { |
| Label done; |
| __ sll(t1, t0, kPointerSizeLog2); |
| __ Subu(sp, sp, Operand(t1)); |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack limit". |
| __ LoadRoot(kScratchReg, RootIndex::kRealStackLimit); |
| __ Branch(&done, hs, sp, Operand(kScratchReg)); |
| // Restore the stack pointer. |
| __ Addu(sp, sp, Operand(t1)); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterFrame(StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| } |
| __ bind(&done); |
| } |
| |
| // Relocate arguments down the stack. |
| { |
| Label loop, done_loop; |
| __ mov(t1, zero_reg); |
| __ bind(&loop); |
| __ Branch(&done_loop, gt, t1, Operand(a0)); |
| __ Lsa(t2, sp, t0, kPointerSizeLog2); |
| __ lw(kScratchReg, MemOperand(t2)); |
| __ Lsa(t2, sp, t1, kPointerSizeLog2); |
| __ sw(kScratchReg, MemOperand(t2)); |
| __ Addu(t0, t0, Operand(1)); |
| __ Addu(t1, t1, Operand(1)); |
| __ Branch(&loop); |
| __ bind(&done_loop); |
| } |
| |
| // Copy [[BoundArguments]] to the stack (below the arguments). |
| { |
| Label loop, done_loop; |
| __ lw(t0, FieldMemOperand(a2, FixedArray::kLengthOffset)); |
| __ SmiUntag(t0); |
| __ Addu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ bind(&loop); |
| __ Subu(t0, t0, Operand(1)); |
| __ Branch(&done_loop, lt, t0, Operand(zero_reg)); |
| __ Lsa(t1, a2, t0, kPointerSizeLog2); |
| __ lw(kScratchReg, MemOperand(t1)); |
| __ Lsa(t1, sp, a0, kPointerSizeLog2); |
| __ sw(kScratchReg, MemOperand(t1)); |
| __ Addu(a0, a0, Operand(1)); |
| __ Branch(&loop); |
| __ bind(&done_loop); |
| } |
| |
| // Call the [[BoundTargetFunction]] via the Call builtin. |
| __ lw(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { |
| // ----------- S t a t e ------------- |
| // -- a0 : the number of arguments (not including the receiver) |
| // -- a1 : the target to call (can be any Object). |
| // ----------------------------------- |
| |
| Label non_callable, non_function, non_smi; |
| __ JumpIfSmi(a1, &non_callable); |
| __ bind(&non_smi); |
| __ GetObjectType(a1, t1, t2); |
| __ Jump(masm->isolate()->builtins()->CallFunction(mode), |
| RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction), |
| RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE)); |
| |
| // Check if target has a [[Call]] internal method. |
| __ lbu(t1, FieldMemOperand(t1, Map::kBitFieldOffset)); |
| __ And(t1, t1, Operand(Map::IsCallableBit::kMask)); |
| __ Branch(&non_callable, eq, t1, Operand(zero_reg)); |
| |
| // Check if target is a proxy and call CallProxy external builtin |
| __ Branch(&non_function, ne, t2, Operand(JS_PROXY_TYPE)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET); |
| |
| // 2. Call to something else, which might have a [[Call]] internal method (if |
| // not we raise an exception). |
| __ bind(&non_function); |
| // Overwrite the original receiver with the (original) target. |
| __ Lsa(kScratchReg, sp, a0, kPointerSizeLog2); |
| __ sw(a1, MemOperand(kScratchReg)); |
| // Let the "call_as_function_delegate" take care of the rest. |
| __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, a1); |
| __ Jump(masm->isolate()->builtins()->CallFunction( |
| ConvertReceiverMode::kNotNullOrUndefined), |
| RelocInfo::CODE_TARGET); |
| |
| // 3. Call to something that is not callable. |
| __ bind(&non_callable); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Push(a1); |
| __ CallRuntime(Runtime::kThrowCalledNonCallable); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- a0 : the number of arguments (not including the receiver) |
| // -- a1 : the constructor to call (checked to be a JSFunction) |
| // -- a3 : the new target (checked to be a constructor) |
| // ----------------------------------- |
| __ AssertConstructor(a1); |
| __ AssertFunction(a1); |
| |
| // Calling convention for function specific ConstructStubs require |
| // a2 to contain either an AllocationSite or undefined. |
| __ LoadRoot(a2, RootIndex::kUndefinedValue); |
| |
| Label call_generic_stub; |
| |
| // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric. |
| __ lw(t0, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); |
| __ lw(t0, FieldMemOperand(t0, SharedFunctionInfo::kFlagsOffset)); |
| __ And(t0, t0, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask)); |
| __ Branch(&call_generic_stub, eq, t0, Operand(zero_reg)); |
| |
| __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub), |
| RelocInfo::CODE_TARGET); |
| |
| __ bind(&call_generic_stub); |
| __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- a0 : the number of arguments (not including the receiver) |
| // -- a1 : the function to call (checked to be a JSBoundFunction) |
| // -- a3 : the new target (checked to be a constructor) |
| // ----------------------------------- |
| __ AssertConstructor(a1); |
| __ AssertBoundFunction(a1); |
| |
| // Load [[BoundArguments]] into a2 and length of that into t0. |
| __ lw(a2, FieldMemOperand(a1, JSBoundFunction::kBoundArgumentsOffset)); |
| __ lw(t0, FieldMemOperand(a2, FixedArray::kLengthOffset)); |
| __ SmiUntag(t0); |
| |
| // ----------- S t a t e ------------- |
| // -- a0 : the number of arguments (not including the receiver) |
| // -- a1 : the function to call (checked to be a JSBoundFunction) |
| // -- a2 : the [[BoundArguments]] (implemented as FixedArray) |
| // -- a3 : the new target (checked to be a constructor) |
| // -- t0 : the number of [[BoundArguments]] |
| // ----------------------------------- |
| |
| // Reserve stack space for the [[BoundArguments]]. |
| { |
| Label done; |
| __ sll(t1, t0, kPointerSizeLog2); |
| __ Subu(sp, sp, Operand(t1)); |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack limit". |
| __ LoadRoot(kScratchReg, RootIndex::kRealStackLimit); |
| __ Branch(&done, hs, sp, Operand(kScratchReg)); |
| // Restore the stack pointer. |
| __ Addu(sp, sp, Operand(t1)); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterFrame(StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| } |
| __ bind(&done); |
| } |
| |
| // Relocate arguments down the stack. |
| { |
| Label loop, done_loop; |
| __ mov(t1, zero_reg); |
| __ bind(&loop); |
| __ Branch(&done_loop, ge, t1, Operand(a0)); |
| __ Lsa(t2, sp, t0, kPointerSizeLog2); |
| __ lw(kScratchReg, MemOperand(t2)); |
| __ Lsa(t2, sp, t1, kPointerSizeLog2); |
| __ sw(kScratchReg, MemOperand(t2)); |
| __ Addu(t0, t0, Operand(1)); |
| __ Addu(t1, t1, Operand(1)); |
| __ Branch(&loop); |
| __ bind(&done_loop); |
| } |
| |
| // Copy [[BoundArguments]] to the stack (below the arguments). |
| { |
| Label loop, done_loop; |
| __ lw(t0, FieldMemOperand(a2, FixedArray::kLengthOffset)); |
| __ SmiUntag(t0); |
| __ Addu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ bind(&loop); |
| __ Subu(t0, t0, Operand(1)); |
| __ Branch(&done_loop, lt, t0, Operand(zero_reg)); |
| __ Lsa(t1, a2, t0, kPointerSizeLog2); |
| __ lw(kScratchReg, MemOperand(t1)); |
| __ Lsa(t1, sp, a0, kPointerSizeLog2); |
| __ sw(kScratchReg, MemOperand(t1)); |
| __ Addu(a0, a0, Operand(1)); |
| __ Branch(&loop); |
| __ bind(&done_loop); |
| } |
| |
| // Patch new.target to [[BoundTargetFunction]] if new.target equals target. |
| { |
| Label skip_load; |
| __ Branch(&skip_load, ne, a1, Operand(a3)); |
| __ lw(a3, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ bind(&skip_load); |
| } |
| |
| // Construct the [[BoundTargetFunction]] via the Construct builtin. |
| __ lw(a1, FieldMemOperand(a1, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_Construct(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- a0 : the number of arguments (not including the receiver) |
| // -- a1 : the constructor to call (can be any Object) |
| // -- a3 : the new target (either the same as the constructor or |
| // the JSFunction on which new was invoked initially) |
| // ----------------------------------- |
| |
| // Check if target is a Smi. |
| Label non_constructor, non_proxy; |
| __ JumpIfSmi(a1, &non_constructor); |
| |
| // Check if target has a [[Construct]] internal method. |
| __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset)); |
| __ lbu(t3, FieldMemOperand(t1, Map::kBitFieldOffset)); |
| __ And(t3, t3, Operand(Map::IsConstructorBit::kMask)); |
| __ Branch(&non_constructor, eq, t3, Operand(zero_reg)); |
| |
| // Dispatch based on instance type. |
| __ lhu(t2, FieldMemOperand(t1, Map::kInstanceTypeOffset)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction), |
| RelocInfo::CODE_TARGET, eq, t2, Operand(JS_FUNCTION_TYPE)); |
| |
| // Only dispatch to bound functions after checking whether they are |
| // constructors. |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), |
| RelocInfo::CODE_TARGET, eq, t2, Operand(JS_BOUND_FUNCTION_TYPE)); |
| |
| // Only dispatch to proxies after checking whether they are constructors. |
| __ Branch(&non_proxy, ne, t2, Operand(JS_PROXY_TYPE)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), |
| RelocInfo::CODE_TARGET); |
| |
| // Called Construct on an exotic Object with a [[Construct]] internal method. |
| __ bind(&non_proxy); |
| { |
| // Overwrite the original receiver with the (original) target. |
| __ Lsa(kScratchReg, sp, a0, kPointerSizeLog2); |
| __ sw(a1, MemOperand(kScratchReg)); |
| // Let the "call_as_constructor_delegate" take care of the rest. |
| __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, a1); |
| __ Jump(masm->isolate()->builtins()->CallFunction(), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // Called Construct on an Object that doesn't have a [[Construct]] internal |
| // method. |
| __ bind(&non_constructor); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { |
| // State setup as expected by MacroAssembler::InvokePrologue. |
| // ----------- S t a t e ------------- |
| // -- a0: actual arguments count |
| // -- a1: function (passed through to callee) |
| // -- a2: expected arguments count |
| // -- a3: new target (passed through to callee) |
| // ----------------------------------- |
| |
| Label invoke, dont_adapt_arguments, stack_overflow; |
| |
| Label enough, too_few; |
| __ Branch(&dont_adapt_arguments, eq, a2, |
| Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); |
| // We use Uless as the number of argument should always be greater than 0. |
| __ Branch(&too_few, Uless, a0, Operand(a2)); |
| |
| { // Enough parameters: actual >= expected. |
| // a0: actual number of arguments as a smi |
| // a1: function |
| // a2: expected number of arguments |
| // a3: new target (passed through to callee) |
| __ bind(&enough); |
| EnterArgumentsAdaptorFrame(masm); |
| Generate_StackOverflowCheck(masm, a2, t1, kScratchReg, &stack_overflow); |
| |
| // Calculate copy start address into a0 and copy end address into t1. |
| __ Lsa(a0, fp, a0, kPointerSizeLog2 - kSmiTagSize); |
| // Adjust for return address and receiver. |
| __ Addu(a0, a0, Operand(2 * kPointerSize)); |
| // Compute copy end address. |
| __ sll(t1, a2, kPointerSizeLog2); |
| __ subu(t1, a0, t1); |
| |
| // Copy the arguments (including the receiver) to the new stack frame. |
| // a0: copy start address |
| // a1: function |
| // a2: expected number of arguments |
| // a3: new target (passed through to callee) |
| // t1: copy end address |
| |
| Label copy; |
| __ bind(©); |
| __ lw(t0, MemOperand(a0)); |
| __ push(t0); |
| __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(t1)); |
| __ addiu(a0, a0, -kPointerSize); // In delay slot. |
| |
| __ jmp(&invoke); |
| } |
| |
| { // Too few parameters: Actual < expected. |
| __ bind(&too_few); |
| EnterArgumentsAdaptorFrame(masm); |
| Generate_StackOverflowCheck(masm, a2, t1, kScratchReg, &stack_overflow); |
| |
| // Calculate copy start address into a0 and copy end address into t3. |
| // a0: actual number of arguments as a smi |
| // a1: function |
| // a2: expected number of arguments |
| // a3: new target (passed through to callee) |
| __ Lsa(a0, fp, a0, kPointerSizeLog2 - kSmiTagSize); |
| // Adjust for return address and receiver. |
| __ Addu(a0, a0, Operand(2 * kPointerSize)); |
| // Compute copy end address. Also adjust for return address. |
| __ Addu(t3, fp, kPointerSize); |
| |
| // Copy the arguments (including the receiver) to the new stack frame. |
| // a0: copy start address |
| // a1: function |
| // a2: expected number of arguments |
| // a3: new target (passed through to callee) |
| // t3: copy end address |
| Label copy; |
| __ bind(©); |
| __ lw(t0, MemOperand(a0)); // Adjusted above for return addr and receiver. |
| __ Subu(sp, sp, kPointerSize); |
| __ Subu(a0, a0, kPointerSize); |
| __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(t3)); |
| __ sw(t0, MemOperand(sp)); // In the delay slot. |
| |
| // Fill the remaining expected arguments with undefined. |
| // a1: function |
| // a2: expected number of arguments |
| // a3: new target (passed through to callee) |
| __ LoadRoot(t0, RootIndex::kUndefinedValue); |
| __ sll(t2, a2, kPointerSizeLog2); |
| __ Subu(t1, fp, Operand(t2)); |
| // Adjust for frame. |
| __ Subu(t1, t1, |
| Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp + |
| kPointerSize)); |
| |
| Label fill; |
| __ bind(&fill); |
| __ Subu(sp, sp, kPointerSize); |
| __ Branch(USE_DELAY_SLOT, &fill, ne, sp, Operand(t1)); |
| __ sw(t0, MemOperand(sp)); |
| } |
| |
| // Call the entry point. |
| __ bind(&invoke); |
| __ mov(a0, a2); |
| // a0 : expected number of arguments |
| // a1 : function (passed through to callee) |
| // a3 : new target (passed through to callee) |
| static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); |
| __ lw(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); |
| __ Addu(a2, a2, Code::kHeaderSize - kHeapObjectTag); |
| __ Call(a2); |
| |
| // Store offset of return address for deoptimizer. |
| masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); |
| |
| // Exit frame and return. |
| LeaveArgumentsAdaptorFrame(masm); |
| __ Ret(); |
| |
| // ------------------------------------------- |
| // Don't adapt arguments. |
| // ------------------------------------------- |
| __ bind(&dont_adapt_arguments); |
| static_assert(kJavaScriptCallCodeStartRegister == a2, "ABI mismatch"); |
| __ lw(a2, FieldMemOperand(a1, JSFunction::kCodeOffset)); |
| __ Addu(a2, a2, Code::kHeaderSize - kHeapObjectTag); |
| __ Jump(a2); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope frame(masm, StackFrame::MANUAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ break_(0xCC); |
| } |
| } |
| |
| void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { |
| // The function index was put in t0 by the jump table trampoline. |
| // Convert to Smi for the runtime call. |
| __ SmiTag(kWasmCompileLazyFuncIndexRegister); |
| { |
| HardAbortScope hard_abort(masm); // Avoid calls to Abort. |
| FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY); |
| |
| // Save all parameter registers (see wasm-linkage.cc). They might be |
| // overwritten in the runtime call below. We don't have any callee-saved |
| // registers in wasm, so no need to store anything else. |
| constexpr RegList gp_regs = Register::ListOf<a0, a1, a2, a3>(); |
| constexpr RegList fp_regs = |
| DoubleRegister::ListOf<f2, f4, f6, f8, f10, f12, f14>(); |
| __ MultiPush(gp_regs); |
| __ MultiPushFPU(fp_regs); |
| |
| // Pass instance and function index as an explicit arguments to the runtime |
| // function. |
| __ Push(kWasmInstanceRegister, kWasmCompileLazyFuncIndexRegister); |
| // Load the correct CEntry builtin from the instance object. |
| __ lw(a2, FieldMemOperand(kWasmInstanceRegister, |
| WasmInstanceObject::kCEntryStubOffset)); |
| // Initialize the JavaScript context with 0. CEntry will use it to |
| // set the current context on the isolate. |
| __ Move(kContextRegister, Smi::zero()); |
| __ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, a2); |
| |
| // Restore registers. |
| __ MultiPopFPU(fp_regs); |
| __ MultiPop(gp_regs); |
| } |
| // Finally, jump to the entrypoint. |
| __ Jump(kScratchReg, v0, 0); |
| } |
| |
| void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size, |
| SaveFPRegsMode save_doubles, ArgvMode argv_mode, |
| bool builtin_exit_frame) { |
| // Called from JavaScript; parameters are on stack as if calling JS function |
| // a0: number of arguments including receiver |
| // a1: pointer to builtin function |
| // fp: frame pointer (restored after C call) |
| // sp: stack pointer (restored as callee's sp after C call) |
| // cp: current context (C callee-saved) |
| // |
| // If argv_mode == kArgvInRegister: |
| // a2: pointer to the first argument |
| |
| if (argv_mode == kArgvInRegister) { |
| // Move argv into the correct register. |
| __ mov(s1, a2); |
| } else { |
| // Compute the argv pointer in a callee-saved register. |
| __ Lsa(s1, sp, a0, kPointerSizeLog2); |
| __ Subu(s1, s1, kPointerSize); |
| } |
| |
| // Enter the exit frame that transitions from JavaScript to C++. |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterExitFrame( |
| save_doubles == kSaveFPRegs, 0, |
| builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); |
| |
| // s0: number of arguments including receiver (C callee-saved) |
| // s1: pointer to first argument (C callee-saved) |
| // s2: pointer to builtin function (C callee-saved) |
| |
| // Prepare arguments for C routine. |
| // a0 = argc |
| __ mov(s0, a0); |
| __ mov(s2, a1); |
| |
| // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We |
| // also need to reserve the 4 argument slots on the stack. |
| |
| __ AssertStackIsAligned(); |
| |
| // a0 = argc, a1 = argv, a2 = isolate |
| __ li(a2, ExternalReference::isolate_address(masm->isolate())); |
| __ mov(a1, s1); |
| |
| __ StoreReturnAddressAndCall(s2); |
| |
| // Result returned in v0 or v1:v0 - do not destroy these registers! |
| |
| // Check result for exception sentinel. |
| Label exception_returned; |
| __ LoadRoot(t0, RootIndex::kException); |
| __ Branch(&exception_returned, eq, t0, Operand(v0)); |
| |
| // Check that there is no pending exception, otherwise we |
| // should have returned the exception sentinel. |
| if (FLAG_debug_code) { |
| Label okay; |
| ExternalReference pending_exception_address = ExternalReference::Create( |
| IsolateAddressId::kPendingExceptionAddress, masm->isolate()); |
| __ li(a2, pending_exception_address); |
| __ lw(a2, MemOperand(a2)); |
| __ LoadRoot(t0, RootIndex::kTheHoleValue); |
| // Cannot use check here as it attempts to generate call into runtime. |
| __ Branch(&okay, eq, t0, Operand(a2)); |
| __ stop(); |
| __ bind(&okay); |
| } |
| |
| // Exit C frame and return. |
| // v0:v1: result |
| // sp: stack pointer |
| // fp: frame pointer |
| Register argc = argv_mode == kArgvInRegister |
| // We don't want to pop arguments so set argc to no_reg. |
| ? no_reg |
| // s0: still holds argc (callee-saved). |
| : s0; |
| __ LeaveExitFrame(save_doubles == kSaveFPRegs, argc, EMIT_RETURN); |
| |
| // Handling of exception. |
| __ bind(&exception_returned); |
| |
| ExternalReference pending_handler_context_address = ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerContextAddress, masm->isolate()); |
| ExternalReference pending_handler_entrypoint_address = |
| ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate()); |
| ExternalReference pending_handler_fp_address = ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerFPAddress, masm->isolate()); |
| ExternalReference pending_handler_sp_address = ExternalReference::Create( |
| IsolateAddressId::kPendingHandlerSPAddress, masm->isolate()); |
| |
| // Ask the runtime for help to determine the handler. This will set v0 to |
| // contain the current pending exception, don't clobber it. |
| ExternalReference find_handler = |
| ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ PrepareCallCFunction(3, 0, a0); |
| __ mov(a0, zero_reg); |
| __ mov(a1, zero_reg); |
| __ li(a2, ExternalReference::isolate_address(masm->isolate())); |
| __ CallCFunction(find_handler, 3); |
| } |
| |
| // Retrieve the handler context, SP and FP. |
| __ li(cp, pending_handler_context_address); |
| __ lw(cp, MemOperand(cp)); |
| __ li(sp, pending_handler_sp_address); |
| __ lw(sp, MemOperand(sp)); |
| __ li(fp, pending_handler_fp_address); |
| __ lw(fp, MemOperand(fp)); |
| |
| // If the handler is a JS frame, restore the context to the frame. Note that |
| // the context will be set to (cp == 0) for non-JS frames. |
| Label zero; |
| __ Branch(&zero, eq, cp, Operand(zero_reg)); |
| __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| __ bind(&zero); |
| |
| // Reset the masking register. This is done independent of the underlying |
| // feature flag {FLAG_untrusted_code_mitigations} to make the snapshot work |
| // with both configurations. It is safe to always do this, because the |
| // underlying register is caller-saved and can be arbitrarily clobbered. |
| __ ResetSpeculationPoisonRegister(); |
| |
| // Compute the handler entry address and jump to it. |
| __ li(t9, pending_handler_entrypoint_address); |
| __ lw(t9, MemOperand(t9)); |
| __ Jump(t9); |
| } |
| |
| void Builtins::Generate_DoubleToI(MacroAssembler* masm) { |
| Label done; |
| Register result_reg = t0; |
| |
| Register scratch = GetRegisterThatIsNotOneOf(result_reg); |
| Register scratch2 = GetRegisterThatIsNotOneOf(result_reg, scratch); |
| Register scratch3 = GetRegisterThatIsNotOneOf(result_reg, scratch, scratch2); |
| DoubleRegister double_scratch = kScratchDoubleReg; |
| |
| // Account for saved regs. |
| const int kArgumentOffset = 4 * kPointerSize; |
| |
| __ Push(result_reg); |
| __ Push(scratch, scratch2, scratch3); |
| |
| // Load double input. |
| __ Ldc1(double_scratch, MemOperand(sp, kArgumentOffset)); |
| |
| // Clear cumulative exception flags and save the FCSR. |
| __ cfc1(scratch2, FCSR); |
| __ ctc1(zero_reg, FCSR); |
| |
| // Try a conversion to a signed integer. |
| __ Trunc_w_d(double_scratch, double_scratch); |
| // Move the converted value into the result register. |
| __ mfc1(scratch3, double_scratch); |
| |
| // Retrieve and restore the FCSR. |
| __ cfc1(scratch, FCSR); |
| __ ctc1(scratch2, FCSR); |
| |
| // Check for overflow and NaNs. |
| __ And( |
| scratch, scratch, |
| kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask); |
| // If we had no exceptions then set result_reg and we are done. |
| Label error; |
| __ Branch(&error, ne, scratch, Operand(zero_reg)); |
| __ Move(result_reg, scratch3); |
| __ Branch(&done); |
| __ bind(&error); |
| |
| // Load the double value and perform a manual truncation. |
| Register input_high = scratch2; |
| Register input_low = scratch3; |
| |
| __ lw(input_low, MemOperand(sp, kArgumentOffset + Register::kMantissaOffset)); |
| __ lw(input_high, |
| MemOperand(sp, kArgumentOffset + Register::kExponentOffset)); |
| |
| Label normal_exponent; |
| // Extract the biased exponent in result. |
| __ Ext(result_reg, input_high, HeapNumber::kExponentShift, |
| HeapNumber::kExponentBits); |
| |
| // Check for Infinity and NaNs, which should return 0. |
| __ Subu(scratch, result_reg, HeapNumber::kExponentMask); |
| __ Movz(result_reg, zero_reg, scratch); |
| __ Branch(&done, eq, scratch, Operand(zero_reg)); |
| |
| // Express exponent as delta to (number of mantissa bits + 31). |
| __ Subu(result_reg, result_reg, |
| Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31)); |
| |
| // If the delta is strictly positive, all bits would be shifted away, |
| // which means that we can return 0. |
| __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg)); |
| __ mov(result_reg, zero_reg); |
| __ Branch(&done); |
| |
| __ bind(&normal_exponent); |
| const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1; |
| // Calculate shift. |
| __ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits)); |
| |
| // Save the sign. |
| Register sign = result_reg; |
| result_reg = no_reg; |
| __ And(sign, input_high, Operand(HeapNumber::kSignMask)); |
| |
| // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need |
| // to check for this specific case. |
| Label high_shift_needed, high_shift_done; |
| __ Branch(&high_shift_needed, lt, scratch, Operand(32)); |
| __ mov(input_high, zero_reg); |
| __ Branch(&high_shift_done); |
| __ bind(&high_shift_needed); |
| |
| // Set the implicit 1 before the mantissa part in input_high. |
| __ Or(input_high, input_high, |
| Operand(1 << HeapNumber::kMantissaBitsInTopWord)); |
| // Shift the mantissa bits to the correct position. |
| // We don't need to clear non-mantissa bits as they will be shifted away. |
| // If they weren't, it would mean that the answer is in the 32bit range. |
| __ sllv(input_high, input_high, scratch); |
| |
| __ bind(&high_shift_done); |
| |
| // Replace the shifted bits with bits from the lower mantissa word. |
| Label pos_shift, shift_done; |
| __ li(kScratchReg, 32); |
| __ subu(scratch, kScratchReg, scratch); |
| __ Branch(&pos_shift, ge, scratch, Operand(zero_reg)); |
| |
| // Negate scratch. |
| __ Subu(scratch, zero_reg, scratch); |
| __ sllv(input_low, input_low, scratch); |
| __ Branch(&shift_done); |
| |
| __ bind(&pos_shift); |
| __ srlv(input_low, input_low, scratch); |
| |
| __ bind(&shift_done); |
| __ Or(input_high, input_high, Operand(input_low)); |
| // Restore sign if necessary. |
| __ mov(scratch, sign); |
| result_reg = sign; |
| sign = no_reg; |
| __ Subu(result_reg, zero_reg, input_high); |
| __ Movz(result_reg, input_high, scratch); |
| |
| __ bind(&done); |
| __ sw(result_reg, MemOperand(sp, kArgumentOffset)); |
| __ Pop(scratch, scratch2, scratch3); |
| __ Pop(result_reg); |
| __ Ret(); |
| } |
| |
| void Builtins::Generate_InternalArrayConstructorImpl(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- a0 : argc |
| // -- a1 : constructor |
| // -- sp[0] : return address |
| // -- sp[4] : last argument |
| // ----------------------------------- |
| |
| if (FLAG_debug_code) { |
| // The array construct code is only set for the global and natives |
| // builtin Array functions which always have maps. |
| |
| // Initial map for the builtin Array function should be a map. |
| __ lw(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a nullptr and a Smi. |
| __ SmiTst(a3, kScratchReg); |
| __ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction, |
| kScratchReg, Operand(zero_reg)); |
| __ GetObjectType(a3, a3, t0); |
| __ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction, t0, |
| Operand(MAP_TYPE)); |
| |
| // Figure out the right elements kind. |
| __ lw(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // Load the map's "bit field 2" into a3. We only need the first byte, |
| // but the following bit field extraction takes care of that anyway. |
| __ lbu(a3, FieldMemOperand(a3, Map::kBitField2Offset)); |
| // Retrieve elements_kind from bit field 2. |
| __ DecodeField<Map::ElementsKindBits>(a3); |
| |
| // Initial elements kind should be packed elements. |
| __ Assert(eq, AbortReason::kInvalidElementsKindForInternalPackedArray, a3, |
| Operand(PACKED_ELEMENTS)); |
| |
| // No arguments should be passed. |
| __ Assert(eq, AbortReason::kWrongNumberOfArgumentsForInternalPackedArray, |
| a0, Operand(0)); |
| } |
| |
| __ Jump( |
| BUILTIN_CODE(masm->isolate(), InternalArrayNoArgumentConstructor_Packed), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| namespace { |
| |
| int AddressOffset(ExternalReference ref0, ExternalReference ref1) { |
| return ref0.address() - ref1.address(); |
| } |
| |
| // Calls an API function. Allocates HandleScope, extracts returned value |
| // from handle and propagates exceptions. Restores context. stack_space |
| // - space to be unwound on exit (includes the call JS arguments space and |
| // the additional space allocated for the fast call). |
| void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address, |
| ExternalReference thunk_ref, int stack_space, |
| MemOperand* stack_space_operand, |
| MemOperand return_value_operand) { |
| Isolate* isolate = masm->isolate(); |
| ExternalReference next_address = |
| ExternalReference::handle_scope_next_address(isolate); |
| const int kNextOffset = 0; |
| const int kLimitOffset = AddressOffset( |
| ExternalReference::handle_scope_limit_address(isolate), next_address); |
| const int kLevelOffset = AddressOffset( |
| ExternalReference::handle_scope_level_address(isolate), next_address); |
| |
| DCHECK(function_address == a1 || function_address == a2); |
| |
| Label profiler_enabled, end_profiler_check; |
| __ li(t9, ExternalReference::is_profiling_address(isolate)); |
| __ lb(t9, MemOperand(t9, 0)); |
| __ Branch(&profiler_enabled, ne, t9, Operand(zero_reg)); |
| __ li(t9, ExternalReference::address_of_runtime_stats_flag()); |
| __ lw(t9, MemOperand(t9, 0)); |
| __ Branch(&profiler_enabled, ne, t9, Operand(zero_reg)); |
| { |
| // Call the api function directly. |
| __ mov(t9, function_address); |
| __ Branch(&end_profiler_check); |
| } |
| __ bind(&profiler_enabled); |
| { |
| // Additional parameter is the address of the actual callback. |
| __ li(t9, thunk_ref); |
| } |
| __ bind(&end_profiler_check); |
| |
| // Allocate HandleScope in callee-save registers. |
| __ li(s5, next_address); |
| __ lw(s0, MemOperand(s5, kNextOffset)); |
| __ lw(s1, MemOperand(s5, kLimitOffset)); |
| __ lw(s2, MemOperand(s5, kLevelOffset)); |
| __ Addu(s2, s2, Operand(1)); |
| __ sw(s2, MemOperand(s5, kLevelOffset)); |
| |
| __ StoreReturnAddressAndCall(t9); |
| |
| Label promote_scheduled_exception; |
| Label delete_allocated_handles; |
| Label leave_exit_frame; |
| Label return_value_loaded; |
| |
| // Load value from ReturnValue. |
| __ lw(v0, return_value_operand); |
| __ bind(&return_value_loaded); |
| |
| // No more valid handles (the result handle was the last one). Restore |
| // previous handle scope. |
| __ sw(s0, MemOperand(s5, kNextOffset)); |
| if (__ emit_debug_code()) { |
| __ lw(a1, MemOperand(s5, kLevelOffset)); |
| __ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall, a1, |
| Operand(s2)); |
| } |
| __ Subu(s2, s2, Operand(1)); |
| __ sw(s2, MemOperand(s5, kLevelOffset)); |
| __ lw(kScratchReg, MemOperand(s5, kLimitOffset)); |
| __ Branch(&delete_allocated_handles, ne, s1, Operand(kScratchReg)); |
| |
| // Leave the API exit frame. |
| __ bind(&leave_exit_frame); |
| |
| if (stack_space_operand == nullptr) { |
| DCHECK_NE(stack_space, 0); |
| __ li(s0, Operand(stack_space)); |
| } else { |
| DCHECK_EQ(stack_space, 0); |
| // The ExitFrame contains four MIPS argument slots after the call so this |
| // must be accounted for. |
| // TODO(jgruber): Investigate if this is needed by the direct call. |
| __ Drop(kCArgSlotCount); |
| __ lw(s0, *stack_space_operand); |
| } |
| |
| static constexpr bool kDontSaveDoubles = false; |
| static constexpr bool kRegisterContainsSlotCount = false; |
| __ LeaveExitFrame(kDontSaveDoubles, s0, NO_EMIT_RETURN, |
| kRegisterContainsSlotCount); |
| |
| // Check if the function scheduled an exception. |
| __ LoadRoot(t0, RootIndex::kTheHoleValue); |
| __ li(kScratchReg, ExternalReference::scheduled_exception_address(isolate)); |
| __ lw(t1, MemOperand(kScratchReg)); |
| __ Branch(&promote_scheduled_exception, ne, t0, Operand(t1)); |
| |
| __ Ret(); |
| |
| // Re-throw by promoting a scheduled exception. |
| __ bind(&promote_scheduled_exception); |
| __ TailCallRuntime(Runtime::kPromoteScheduledException); |
| |
| // HandleScope limit has changed. Delete allocated extensions. |
| __ bind(&delete_allocated_handles); |
| __ sw(s1, MemOperand(s5, kLimitOffset)); |
| __ mov(s0, v0); |
| __ mov(a0, v0); |
| __ PrepareCallCFunction(1, s1); |
| __ li(a0, ExternalReference::isolate_address(isolate)); |
| __ CallCFunction(ExternalReference::delete_handle_scope_extensions(), 1); |
| __ mov(v0, s0); |
| __ jmp(&leave_exit_frame); |
| } |
| |
| } // namespace |
| |
| void Builtins::Generate_CallApiCallback(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- cp : context |
| // -- a1 : api function address |
| // -- a2 : arguments count (not including the receiver) |
| // -- a3 : call data |
| // -- a0 : holder |
| // -- |
| // -- sp[0] : last argument |
| // -- ... |
| // -- sp[(argc - 1) * 4] : first argument |
| // -- sp[(argc + 0) * 4] : receiver |
| // ----------------------------------- |
| |
| Register api_function_address = a1; |
| Register argc = a2; |
| Register call_data = a3; |
| Register holder = a0; |
| Register scratch = t0; |
| Register base = t1; // For addressing MemOperands on the stack. |
| |
| DCHECK(!AreAliased(api_function_address, argc, call_data, |
| holder, scratch, base)); |
| |
| using FCA = FunctionCallbackArguments; |
| |
| STATIC_ASSERT(FCA::kArgsLength == 6); |
| STATIC_ASSERT(FCA::kNewTargetIndex == 5); |
| STATIC_ASSERT(FCA::kDataIndex == 4); |
| STATIC_ASSERT(FCA::kReturnValueOffset == 3); |
| STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); |
| STATIC_ASSERT(FCA::kIsolateIndex == 1); |
| STATIC_ASSERT(FCA::kHolderIndex == 0); |
| |
| // Set up FunctionCallbackInfo's implicit_args on the stack as follows: |
| // |
| // Target state: |
| // sp[0 * kPointerSize]: kHolder |
| // sp[1 * kPointerSize]: kIsolate |
| // sp[2 * kPointerSize]: undefined (kReturnValueDefaultValue) |
| // sp[3 * kPointerSize]: undefined (kReturnValue) |
| // sp[4 * kPointerSize]: kData |
| // sp[5 * kPointerSize]: undefined (kNewTarget) |
| |
| // Set up the base register for addressing through MemOperands. It will point |
| // at the receiver (located at sp + argc * kPointerSize). |
| __ Lsa(base, sp, argc, kPointerSizeLog2); |
| |
| // Reserve space on the stack. |
| __ Subu(sp, sp, Operand(FCA::kArgsLength * kPointerSize)); |
|