blob: dd3664743758e835366ae4072020b4ec2b14ce96 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HEAP_HEAP_INL_H_
#define V8_HEAP_HEAP_INL_H_
#include <cmath>
// Clients of this interface shouldn't depend on lots of heap internals.
// Do not include anything from src/heap other than src/heap/heap.h and its
// write barrier here!
#include "src/heap/heap-write-barrier.h"
#include "src/heap/heap.h"
#include "src/base/atomic-utils.h"
#include "src/base/platform/platform.h"
#include "src/objects/feedback-vector.h"
// TODO(mstarzinger): There is one more include to remove in order to no longer
// leak heap internals to users of this interface!
#include "src/execution/isolate-data.h"
#include "src/execution/isolate.h"
#include "src/heap/spaces-inl.h"
#include "src/objects/allocation-site-inl.h"
#include "src/objects/api-callbacks-inl.h"
#include "src/objects/cell-inl.h"
#include "src/objects/descriptor-array.h"
#include "src/objects/feedback-cell-inl.h"
#include "src/objects/literal-objects-inl.h"
#include "src/objects/objects-inl.h"
#include "src/objects/oddball.h"
#include "src/objects/property-cell.h"
#include "src/objects/scope-info.h"
#include "src/objects/script-inl.h"
#include "src/objects/slots-inl.h"
#include "src/objects/struct-inl.h"
#include "src/profiler/heap-profiler.h"
#include "src/sanitizer/msan.h"
#include "src/strings/string-hasher.h"
#include "src/zone/zone-list-inl.h"
namespace v8 {
namespace internal {
AllocationSpace AllocationResult::RetrySpace() {
DCHECK(IsRetry());
return static_cast<AllocationSpace>(Smi::ToInt(object_));
}
HeapObject AllocationResult::ToObjectChecked() {
CHECK(!IsRetry());
return HeapObject::cast(object_);
}
Isolate* Heap::isolate() {
return reinterpret_cast<Isolate*>(
reinterpret_cast<intptr_t>(this) -
reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(16)->heap()) + 16);
}
int64_t Heap::external_memory() {
return isolate()->isolate_data()->external_memory_;
}
void Heap::update_external_memory(int64_t delta) {
isolate()->isolate_data()->external_memory_ += delta;
}
void Heap::update_external_memory_concurrently_freed(intptr_t freed) {
external_memory_concurrently_freed_ += freed;
}
void Heap::account_external_memory_concurrently_freed() {
isolate()->isolate_data()->external_memory_ -=
external_memory_concurrently_freed_;
external_memory_concurrently_freed_ = 0;
}
RootsTable& Heap::roots_table() { return isolate()->roots_table(); }
#define ROOT_ACCESSOR(Type, name, CamelName) \
Type Heap::name() { \
return Type::cast(Object(roots_table()[RootIndex::k##CamelName])); \
}
MUTABLE_ROOT_LIST(ROOT_ACCESSOR)
#undef ROOT_ACCESSOR
#define ROOT_ACCESSOR(type, name, CamelName) \
void Heap::set_##name(type value) { \
/* The deserializer makes use of the fact that these common roots are */ \
/* never in new space and never on a page that is being compacted. */ \
DCHECK_IMPLIES(deserialization_complete(), \
!RootsTable::IsImmortalImmovable(RootIndex::k##CamelName)); \
DCHECK_IMPLIES(RootsTable::IsImmortalImmovable(RootIndex::k##CamelName), \
IsImmovable(HeapObject::cast(value))); \
roots_table()[RootIndex::k##CamelName] = value.ptr(); \
}
ROOT_LIST(ROOT_ACCESSOR)
#undef ROOT_ACCESSOR
void Heap::SetRootMaterializedObjects(FixedArray objects) {
roots_table()[RootIndex::kMaterializedObjects] = objects.ptr();
}
void Heap::SetRootScriptList(Object value) {
roots_table()[RootIndex::kScriptList] = value.ptr();
}
void Heap::SetRootStringTable(StringTable value) {
roots_table()[RootIndex::kStringTable] = value.ptr();
}
void Heap::SetRootNoScriptSharedFunctionInfos(Object value) {
roots_table()[RootIndex::kNoScriptSharedFunctionInfos] = value.ptr();
}
void Heap::SetMessageListeners(TemplateList value) {
roots_table()[RootIndex::kMessageListeners] = value.ptr();
}
void Heap::SetPendingOptimizeForTestBytecode(Object hash_table) {
DCHECK(hash_table.IsObjectHashTable() || hash_table.IsUndefined(isolate()));
roots_table()[RootIndex::kPendingOptimizeForTestBytecode] = hash_table.ptr();
}
PagedSpace* Heap::paged_space(int idx) {
DCHECK_NE(idx, LO_SPACE);
DCHECK_NE(idx, NEW_SPACE);
DCHECK_NE(idx, CODE_LO_SPACE);
DCHECK_NE(idx, NEW_LO_SPACE);
return static_cast<PagedSpace*>(space_[idx]);
}
Space* Heap::space(int idx) { return space_[idx]; }
Address* Heap::NewSpaceAllocationTopAddress() {
return new_space_->allocation_top_address();
}
Address* Heap::NewSpaceAllocationLimitAddress() {
return new_space_->allocation_limit_address();
}
Address* Heap::OldSpaceAllocationTopAddress() {
return old_space_->allocation_top_address();
}
Address* Heap::OldSpaceAllocationLimitAddress() {
return old_space_->allocation_limit_address();
}
void Heap::UpdateNewSpaceAllocationCounter() {
new_space_allocation_counter_ = NewSpaceAllocationCounter();
}
size_t Heap::NewSpaceAllocationCounter() {
return new_space_allocation_counter_ + new_space()->AllocatedSinceLastGC();
}
AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationType type,
AllocationAlignment alignment) {
DCHECK(AllowHandleAllocation::IsAllowed());
DCHECK(AllowHeapAllocation::IsAllowed());
DCHECK(gc_state_ == NOT_IN_GC);
#ifdef V8_ENABLE_ALLOCATION_TIMEOUT
if (FLAG_random_gc_interval > 0 || FLAG_gc_interval >= 0) {
if (!always_allocate() && Heap::allocation_timeout_-- <= 0) {
return AllocationResult::Retry();
}
}
#endif
#ifdef DEBUG
IncrementObjectCounters();
#endif
bool large_object = size_in_bytes > kMaxRegularHeapObjectSize;
HeapObject object;
AllocationResult allocation;
if (AllocationType::kYoung == type) {
if (large_object) {
if (FLAG_young_generation_large_objects) {
allocation = new_lo_space_->AllocateRaw(size_in_bytes);
} else {
// If young generation large objects are disalbed we have to tenure the
// allocation and violate the given allocation type. This could be
// dangerous. We may want to remove FLAG_young_generation_large_objects
// and avoid patching.
allocation = lo_space_->AllocateRaw(size_in_bytes);
}
} else {
allocation = new_space_->AllocateRaw(size_in_bytes, alignment);
}
} else if (AllocationType::kOld == type) {
if (large_object) {
allocation = lo_space_->AllocateRaw(size_in_bytes);
} else {
allocation = old_space_->AllocateRaw(size_in_bytes, alignment);
}
} else if (AllocationType::kCode == type) {
if (size_in_bytes <= code_space()->AreaSize() && !large_object) {
allocation = code_space_->AllocateRawUnaligned(size_in_bytes);
} else {
allocation = code_lo_space_->AllocateRaw(size_in_bytes);
}
} else if (AllocationType::kMap == type) {
allocation = map_space_->AllocateRawUnaligned(size_in_bytes);
} else if (AllocationType::kReadOnly == type) {
#ifdef V8_USE_SNAPSHOT
DCHECK(isolate_->serializer_enabled());
#endif
DCHECK(!large_object);
DCHECK(CanAllocateInReadOnlySpace());
allocation = read_only_space_->AllocateRaw(size_in_bytes, alignment);
} else {
UNREACHABLE();
}
if (allocation.To(&object)) {
if (AllocationType::kCode == type) {
// Unprotect the memory chunk of the object if it was not unprotected
// already.
UnprotectAndRegisterMemoryChunk(object);
ZapCodeObject(object.address(), size_in_bytes);
if (!large_object) {
MemoryChunk::FromHeapObject(object)
->GetCodeObjectRegistry()
->RegisterNewlyAllocatedCodeObject(object.address());
}
}
OnAllocationEvent(object, size_in_bytes);
}
return allocation;
}
void Heap::OnAllocationEvent(HeapObject object, int size_in_bytes) {
for (auto& tracker : allocation_trackers_) {
tracker->AllocationEvent(object.address(), size_in_bytes);
}
if (FLAG_verify_predictable) {
++allocations_count_;
// Advance synthetic time by making a time request.
MonotonicallyIncreasingTimeInMs();
UpdateAllocationsHash(object);
UpdateAllocationsHash(size_in_bytes);
if (allocations_count_ % FLAG_dump_allocations_digest_at_alloc == 0) {
PrintAllocationsHash();
}
} else if (FLAG_fuzzer_gc_analysis) {
++allocations_count_;
} else if (FLAG_trace_allocation_stack_interval > 0) {
++allocations_count_;
#ifndef V8_OS_STARBOARD
if (allocations_count_ % FLAG_trace_allocation_stack_interval == 0) {
isolate()->PrintStack(stdout, Isolate::kPrintStackConcise);
}
#endif
}
}
bool Heap::CanAllocateInReadOnlySpace() {
return read_only_space()->writable();
}
void Heap::UpdateAllocationsHash(HeapObject object) {
Address object_address = object.address();
MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address);
AllocationSpace allocation_space = memory_chunk->owner_identity();
STATIC_ASSERT(kSpaceTagSize + kPageSizeBits <= 32);
uint32_t value =
static_cast<uint32_t>(object_address - memory_chunk->address()) |
(static_cast<uint32_t>(allocation_space) << kPageSizeBits);
UpdateAllocationsHash(value);
}
void Heap::UpdateAllocationsHash(uint32_t value) {
uint16_t c1 = static_cast<uint16_t>(value);
uint16_t c2 = static_cast<uint16_t>(value >> 16);
raw_allocations_hash_ =
StringHasher::AddCharacterCore(raw_allocations_hash_, c1);
raw_allocations_hash_ =
StringHasher::AddCharacterCore(raw_allocations_hash_, c2);
}
void Heap::RegisterExternalString(String string) {
DCHECK(string.IsExternalString());
DCHECK(!string.IsThinString());
external_string_table_.AddString(string);
}
void Heap::FinalizeExternalString(String string) {
DCHECK(string.IsExternalString());
Page* page = Page::FromHeapObject(string);
ExternalString ext_string = ExternalString::cast(string);
page->DecrementExternalBackingStoreBytes(
ExternalBackingStoreType::kExternalString,
ext_string.ExternalPayloadSize());
ext_string.DisposeResource();
}
Address Heap::NewSpaceTop() { return new_space_->top(); }
bool Heap::InYoungGeneration(Object object) {
DCHECK(!HasWeakHeapObjectTag(object));
return object.IsHeapObject() && InYoungGeneration(HeapObject::cast(object));
}
// static
bool Heap::InYoungGeneration(MaybeObject object) {
HeapObject heap_object;
return object->GetHeapObject(&heap_object) && InYoungGeneration(heap_object);
}
// static
bool Heap::InYoungGeneration(HeapObject heap_object) {
bool result = MemoryChunk::FromHeapObject(heap_object)->InYoungGeneration();
#ifdef DEBUG
// If in the young generation, then check we're either not in the middle of
// GC or the object is in to-space.
if (result) {
// If the object is in the young generation, then it's not in RO_SPACE so
// this is safe.
Heap* heap = Heap::FromWritableHeapObject(heap_object);
DCHECK_IMPLIES(heap->gc_state_ == NOT_IN_GC, InToPage(heap_object));
}
#endif
return result;
}
// static
bool Heap::InFromPage(Object object) {
DCHECK(!HasWeakHeapObjectTag(object));
return object.IsHeapObject() && InFromPage(HeapObject::cast(object));
}
// static
bool Heap::InFromPage(MaybeObject object) {
HeapObject heap_object;
return object->GetHeapObject(&heap_object) && InFromPage(heap_object);
}
// static
bool Heap::InFromPage(HeapObject heap_object) {
return MemoryChunk::FromHeapObject(heap_object)->IsFromPage();
}
// static
bool Heap::InToPage(Object object) {
DCHECK(!HasWeakHeapObjectTag(object));
return object.IsHeapObject() && InToPage(HeapObject::cast(object));
}
// static
bool Heap::InToPage(MaybeObject object) {
HeapObject heap_object;
return object->GetHeapObject(&heap_object) && InToPage(heap_object);
}
// static
bool Heap::InToPage(HeapObject heap_object) {
return MemoryChunk::FromHeapObject(heap_object)->IsToPage();
}
bool Heap::InOldSpace(Object object) { return old_space_->Contains(object); }
// static
Heap* Heap::FromWritableHeapObject(HeapObject obj) {
MemoryChunk* chunk = MemoryChunk::FromHeapObject(obj);
// RO_SPACE can be shared between heaps, so we can't use RO_SPACE objects to
// find a heap. The exception is when the ReadOnlySpace is writeable, during
// bootstrapping, so explicitly allow this case.
SLOW_DCHECK(chunk->IsWritable());
Heap* heap = chunk->heap();
SLOW_DCHECK(heap != nullptr);
return heap;
}
bool Heap::ShouldBePromoted(Address old_address) {
Page* page = Page::FromAddress(old_address);
Address age_mark = new_space_->age_mark();
return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
(!page->ContainsLimit(age_mark) || old_address < age_mark);
}
void Heap::CopyBlock(Address dst, Address src, int byte_size) {
DCHECK(IsAligned(byte_size, kTaggedSize));
CopyTagged(dst, src, static_cast<size_t>(byte_size / kTaggedSize));
}
template <Heap::FindMementoMode mode>
AllocationMemento Heap::FindAllocationMemento(Map map, HeapObject object) {
Address object_address = object.address();
Address memento_address = object_address + object.SizeFromMap(map);
Address last_memento_word_address = memento_address + kTaggedSize;
// If the memento would be on another page, bail out immediately.
if (!Page::OnSamePage(object_address, last_memento_word_address)) {
return AllocationMemento();
}
HeapObject candidate = HeapObject::FromAddress(memento_address);
ObjectSlot candidate_map_slot = candidate.map_slot();
// This fast check may peek at an uninitialized word. However, the slow check
// below (memento_address == top) ensures that this is safe. Mark the word as
// initialized to silence MemorySanitizer warnings.
MSAN_MEMORY_IS_INITIALIZED(candidate_map_slot.address(), kTaggedSize);
if (!candidate_map_slot.contains_value(
ReadOnlyRoots(this).allocation_memento_map().ptr())) {
return AllocationMemento();
}
// Bail out if the memento is below the age mark, which can happen when
// mementos survived because a page got moved within new space.
Page* object_page = Page::FromAddress(object_address);
if (object_page->IsFlagSet(Page::NEW_SPACE_BELOW_AGE_MARK)) {
Address age_mark =
reinterpret_cast<SemiSpace*>(object_page->owner())->age_mark();
if (!object_page->Contains(age_mark)) {
return AllocationMemento();
}
// Do an exact check in the case where the age mark is on the same page.
if (object_address < age_mark) {
return AllocationMemento();
}
}
AllocationMemento memento_candidate = AllocationMemento::cast(candidate);
// Depending on what the memento is used for, we might need to perform
// additional checks.
Address top;
switch (mode) {
case Heap::kForGC:
return memento_candidate;
case Heap::kForRuntime:
if (memento_candidate.is_null()) return AllocationMemento();
// Either the object is the last object in the new space, or there is
// another object of at least word size (the header map word) following
// it, so suffices to compare ptr and top here.
top = NewSpaceTop();
DCHECK(memento_address == top ||
memento_address + HeapObject::kHeaderSize <= top ||
!Page::OnSamePage(memento_address, top - 1));
if ((memento_address != top) && memento_candidate.IsValid()) {
return memento_candidate;
}
return AllocationMemento();
default:
UNREACHABLE();
}
UNREACHABLE();
}
void Heap::UpdateAllocationSite(Map map, HeapObject object,
PretenuringFeedbackMap* pretenuring_feedback) {
DCHECK_NE(pretenuring_feedback, &global_pretenuring_feedback_);
#ifdef DEBUG
MemoryChunk* chunk = MemoryChunk::FromHeapObject(object);
DCHECK_IMPLIES(chunk->IsToPage(),
chunk->IsFlagSet(MemoryChunk::PAGE_NEW_NEW_PROMOTION));
DCHECK_IMPLIES(!chunk->InYoungGeneration(),
chunk->IsFlagSet(MemoryChunk::PAGE_NEW_OLD_PROMOTION));
#endif
if (!FLAG_allocation_site_pretenuring ||
!AllocationSite::CanTrack(map.instance_type())) {
return;
}
AllocationMemento memento_candidate =
FindAllocationMemento<kForGC>(map, object);
if (memento_candidate.is_null()) return;
// Entering cached feedback is used in the parallel case. We are not allowed
// to dereference the allocation site and rather have to postpone all checks
// till actually merging the data.
Address key = memento_candidate.GetAllocationSiteUnchecked();
(*pretenuring_feedback)[AllocationSite::unchecked_cast(Object(key))]++;
}
void Heap::ExternalStringTable::AddString(String string) {
DCHECK(string.IsExternalString());
DCHECK(!Contains(string));
if (InYoungGeneration(string)) {
young_strings_.push_back(string);
} else {
old_strings_.push_back(string);
}
}
Oddball Heap::ToBoolean(bool condition) {
ReadOnlyRoots roots(this);
return condition ? roots.true_value() : roots.false_value();
}
int Heap::NextScriptId() {
int last_id = last_script_id().value();
if (last_id == Smi::kMaxValue) last_id = v8::UnboundScript::kNoScriptId;
last_id++;
set_last_script_id(Smi::FromInt(last_id));
return last_id;
}
int Heap::NextDebuggingId() {
int last_id = last_debugging_id().value();
if (last_id == DebugInfo::DebuggingIdBits::kMax) {
last_id = DebugInfo::kNoDebuggingId;
}
last_id++;
set_last_debugging_id(Smi::FromInt(last_id));
return last_id;
}
int Heap::GetNextTemplateSerialNumber() {
int next_serial_number = next_template_serial_number().value() + 1;
set_next_template_serial_number(Smi::FromInt(next_serial_number));
return next_serial_number;
}
int Heap::MaxNumberToStringCacheSize() const {
// Compute the size of the number string cache based on the max newspace size.
// The number string cache has a minimum size based on twice the initial cache
// size to ensure that it is bigger after being made 'full size'.
size_t number_string_cache_size = max_semi_space_size_ / 512;
number_string_cache_size =
Max(static_cast<size_t>(kInitialNumberStringCacheSize * 2),
Min<size_t>(0x4000u, number_string_cache_size));
// There is a string and a number per entry so the length is twice the number
// of entries.
return static_cast<int>(number_string_cache_size * 2);
}
void Heap::IncrementExternalBackingStoreBytes(ExternalBackingStoreType type,
size_t amount) {
base::CheckedIncrement(&backing_store_bytes_, amount);
// TODO(mlippautz): Implement interrupt for global memory allocations that can
// trigger garbage collections.
}
void Heap::DecrementExternalBackingStoreBytes(ExternalBackingStoreType type,
size_t amount) {
base::CheckedDecrement(&backing_store_bytes_, amount);
}
AlwaysAllocateScope::AlwaysAllocateScope(Heap* heap) : heap_(heap) {
heap_->always_allocate_scope_count_++;
}
AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate)
: AlwaysAllocateScope(isolate->heap()) {}
AlwaysAllocateScope::~AlwaysAllocateScope() {
heap_->always_allocate_scope_count_--;
}
CodeSpaceMemoryModificationScope::CodeSpaceMemoryModificationScope(Heap* heap)
: heap_(heap) {
if (heap_->write_protect_code_memory()) {
heap_->increment_code_space_memory_modification_scope_depth();
heap_->code_space()->SetReadAndWritable();
LargePage* page = heap_->code_lo_space()->first_page();
while (page != nullptr) {
DCHECK(page->IsFlagSet(MemoryChunk::IS_EXECUTABLE));
CHECK(heap_->memory_allocator()->IsMemoryChunkExecutable(page));
page->SetReadAndWritable();
page = page->next_page();
}
}
}
CodeSpaceMemoryModificationScope::~CodeSpaceMemoryModificationScope() {
if (heap_->write_protect_code_memory()) {
heap_->decrement_code_space_memory_modification_scope_depth();
heap_->code_space()->SetDefaultCodePermissions();
LargePage* page = heap_->code_lo_space()->first_page();
while (page != nullptr) {
DCHECK(page->IsFlagSet(MemoryChunk::IS_EXECUTABLE));
CHECK(heap_->memory_allocator()->IsMemoryChunkExecutable(page));
page->SetDefaultCodePermissions();
page = page->next_page();
}
}
}
CodePageCollectionMemoryModificationScope::
CodePageCollectionMemoryModificationScope(Heap* heap)
: heap_(heap) {
if (heap_->write_protect_code_memory() &&
!heap_->code_space_memory_modification_scope_depth()) {
heap_->EnableUnprotectedMemoryChunksRegistry();
}
}
CodePageCollectionMemoryModificationScope::
~CodePageCollectionMemoryModificationScope() {
if (heap_->write_protect_code_memory() &&
!heap_->code_space_memory_modification_scope_depth()) {
heap_->ProtectUnprotectedMemoryChunks();
heap_->DisableUnprotectedMemoryChunksRegistry();
}
}
CodePageMemoryModificationScope::CodePageMemoryModificationScope(
MemoryChunk* chunk)
: chunk_(chunk),
scope_active_(chunk_->heap()->write_protect_code_memory() &&
chunk_->IsFlagSet(MemoryChunk::IS_EXECUTABLE)) {
if (scope_active_) {
DCHECK(chunk_->owner_identity() == CODE_SPACE ||
(chunk_->owner_identity() == CODE_LO_SPACE));
chunk_->SetReadAndWritable();
}
}
CodePageMemoryModificationScope::~CodePageMemoryModificationScope() {
if (scope_active_) {
chunk_->SetDefaultCodePermissions();
}
}
} // namespace internal
} // namespace v8
#endif // V8_HEAP_HEAP_INL_H_