blob: 94945ea58a88e93c40896a172c9477f013f08a1b [file] [log] [blame]
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/wasm/streaming-decoder.h"
#include "src/base/template-utils.h"
#include "src/handles/handles.h"
#include "src/objects/descriptor-array.h"
#include "src/objects/dictionary.h"
#include "src/objects/objects-inl.h"
#include "src/wasm/decoder.h"
#include "src/wasm/leb-helper.h"
#include "src/wasm/module-decoder.h"
#include "src/wasm/wasm-code-manager.h"
#include "src/wasm/wasm-limits.h"
#include "src/wasm/wasm-objects.h"
#include "src/wasm/wasm-result.h"
#define TRACE_STREAMING(...) \
do { \
if (FLAG_trace_wasm_streaming) PrintF(__VA_ARGS__); \
} while (false)
namespace v8 {
namespace internal {
namespace wasm {
void StreamingDecoder::OnBytesReceived(Vector<const uint8_t> bytes) {
if (deserializing()) {
wire_bytes_for_deserializing_.insert(wire_bytes_for_deserializing_.end(),
bytes.begin(), bytes.end());
return;
}
TRACE_STREAMING("OnBytesReceived(%zu bytes)\n", bytes.size());
size_t current = 0;
while (ok() && current < bytes.size()) {
size_t num_bytes =
state_->ReadBytes(this, bytes.SubVector(current, bytes.size()));
current += num_bytes;
module_offset_ += num_bytes;
if (state_->offset() == state_->buffer().size()) {
state_ = state_->Next(this);
}
}
total_size_ += bytes.size();
if (ok()) {
processor_->OnFinishedChunk();
}
}
size_t StreamingDecoder::DecodingState::ReadBytes(StreamingDecoder* streaming,
Vector<const uint8_t> bytes) {
Vector<uint8_t> remaining_buf = buffer() + offset();
size_t num_bytes = std::min(bytes.size(), remaining_buf.size());
TRACE_STREAMING("ReadBytes(%zu bytes)\n", num_bytes);
memcpy(remaining_buf.begin(), &bytes.first(), num_bytes);
set_offset(offset() + num_bytes);
return num_bytes;
}
void StreamingDecoder::Finish() {
TRACE_STREAMING("Finish\n");
if (!ok()) return;
if (deserializing()) {
Vector<const uint8_t> wire_bytes = VectorOf(wire_bytes_for_deserializing_);
// Try to deserialize the module from wire bytes and module bytes.
if (processor_->Deserialize(compiled_module_bytes_, wire_bytes)) return;
// Deserialization failed. Restart decoding using |wire_bytes|.
compiled_module_bytes_ = {};
DCHECK(!deserializing());
OnBytesReceived(wire_bytes);
// The decoder has received all wire bytes; fall through and finish.
}
if (!state_->is_finishing_allowed()) {
// The byte stream ended too early, we report an error.
Error("unexpected end of stream");
return;
}
OwnedVector<uint8_t> bytes = OwnedVector<uint8_t>::New(total_size_);
uint8_t* cursor = bytes.start();
{
#define BYTES(x) (x & 0xFF), (x >> 8) & 0xFF, (x >> 16) & 0xFF, (x >> 24) & 0xFF
uint8_t module_header[]{BYTES(kWasmMagic), BYTES(kWasmVersion)};
#undef BYTES
memcpy(cursor, module_header, arraysize(module_header));
cursor += arraysize(module_header);
}
for (const auto& buffer : section_buffers_) {
DCHECK_LE(cursor - bytes.start() + buffer->length(), total_size_);
memcpy(cursor, buffer->bytes().begin(), buffer->length());
cursor += buffer->length();
}
processor_->OnFinishedStream(std::move(bytes));
}
void StreamingDecoder::Abort() {
TRACE_STREAMING("Abort\n");
if (!ok()) return; // Failed already.
processor_->OnAbort();
Fail();
}
void StreamingDecoder::SetModuleCompiledCallback(
ModuleCompiledCallback callback) {
DCHECK_NULL(module_compiled_callback_);
module_compiled_callback_ = callback;
}
bool StreamingDecoder::SetCompiledModuleBytes(
Vector<const uint8_t> compiled_module_bytes) {
compiled_module_bytes_ = compiled_module_bytes;
return true;
}
namespace {
class TopTierCompiledCallback {
public:
TopTierCompiledCallback(std::weak_ptr<NativeModule> native_module,
StreamingDecoder::ModuleCompiledCallback callback)
: native_module_(std::move(native_module)),
callback_(std::move(callback)) {}
void operator()(CompilationEvent event) const {
if (event != CompilationEvent::kFinishedTopTierCompilation) return;
// If the native module is still alive, get back a shared ptr and call the
// callback.
if (std::shared_ptr<NativeModule> native_module = native_module_.lock()) {
callback_(native_module);
}
#ifdef DEBUG
DCHECK(!called_);
called_ = true;
#endif
}
private:
const std::weak_ptr<NativeModule> native_module_;
const StreamingDecoder::ModuleCompiledCallback callback_;
#ifdef DEBUG
mutable bool called_ = false;
#endif
};
} // namespace
void StreamingDecoder::NotifyNativeModuleCreated(
const std::shared_ptr<NativeModule>& native_module) {
if (!module_compiled_callback_) return;
auto* comp_state = native_module->compilation_state();
comp_state->AddCallback(TopTierCompiledCallback{
std::move(native_module), std::move(module_compiled_callback_)});
module_compiled_callback_ = {};
}
// An abstract class to share code among the states which decode VarInts. This
// class takes over the decoding of the VarInt and then calls the actual decode
// code with the decoded value.
class StreamingDecoder::DecodeVarInt32 : public DecodingState {
public:
explicit DecodeVarInt32(size_t max_value, const char* field_name)
: max_value_(max_value), field_name_(field_name) {}
Vector<uint8_t> buffer() override { return ArrayVector(byte_buffer_); }
size_t ReadBytes(StreamingDecoder* streaming,
Vector<const uint8_t> bytes) override;
std::unique_ptr<DecodingState> Next(StreamingDecoder* streaming) override;
virtual std::unique_ptr<DecodingState> NextWithValue(
StreamingDecoder* streaming) = 0;
protected:
uint8_t byte_buffer_[kMaxVarInt32Size];
// The maximum valid value decoded in this state. {Next} returns an error if
// this value is exceeded.
const size_t max_value_;
const char* const field_name_;
size_t value_ = 0;
size_t bytes_consumed_ = 0;
};
class StreamingDecoder::DecodeModuleHeader : public DecodingState {
public:
Vector<uint8_t> buffer() override { return ArrayVector(byte_buffer_); }
std::unique_ptr<DecodingState> Next(StreamingDecoder* streaming) override;
private:
// Checks if the magic bytes of the module header are correct.
void CheckHeader(Decoder* decoder);
// The size of the module header.
static constexpr size_t kModuleHeaderSize = 8;
uint8_t byte_buffer_[kModuleHeaderSize];
};
class StreamingDecoder::DecodeSectionID : public DecodingState {
public:
explicit DecodeSectionID(uint32_t module_offset)
: module_offset_(module_offset) {}
Vector<uint8_t> buffer() override { return {&id_, 1}; }
bool is_finishing_allowed() const override { return true; }
std::unique_ptr<DecodingState> Next(StreamingDecoder* streaming) override;
private:
uint8_t id_ = 0;
// The start offset of this section in the module.
const uint32_t module_offset_;
};
class StreamingDecoder::DecodeSectionLength : public DecodeVarInt32 {
public:
explicit DecodeSectionLength(uint8_t id, uint32_t module_offset)
: DecodeVarInt32(kV8MaxWasmModuleSize, "section length"),
section_id_(id),
module_offset_(module_offset) {}
std::unique_ptr<DecodingState> NextWithValue(
StreamingDecoder* streaming) override;
private:
const uint8_t section_id_;
// The start offset of this section in the module.
const uint32_t module_offset_;
};
class StreamingDecoder::DecodeSectionPayload : public DecodingState {
public:
explicit DecodeSectionPayload(SectionBuffer* section_buffer)
: section_buffer_(section_buffer) {}
Vector<uint8_t> buffer() override { return section_buffer_->payload(); }
std::unique_ptr<DecodingState> Next(StreamingDecoder* streaming) override;
private:
SectionBuffer* const section_buffer_;
};
class StreamingDecoder::DecodeNumberOfFunctions : public DecodeVarInt32 {
public:
explicit DecodeNumberOfFunctions(SectionBuffer* section_buffer)
: DecodeVarInt32(kV8MaxWasmFunctions, "functions count"),
section_buffer_(section_buffer) {}
std::unique_ptr<DecodingState> NextWithValue(
StreamingDecoder* streaming) override;
private:
SectionBuffer* const section_buffer_;
};
class StreamingDecoder::DecodeFunctionLength : public DecodeVarInt32 {
public:
explicit DecodeFunctionLength(SectionBuffer* section_buffer,
size_t buffer_offset,
size_t num_remaining_functions)
: DecodeVarInt32(kV8MaxWasmFunctionSize, "body size"),
section_buffer_(section_buffer),
buffer_offset_(buffer_offset),
// We are reading a new function, so one function less is remaining.
num_remaining_functions_(num_remaining_functions - 1) {
DCHECK_GT(num_remaining_functions, 0);
}
std::unique_ptr<DecodingState> NextWithValue(
StreamingDecoder* streaming) override;
private:
SectionBuffer* const section_buffer_;
const size_t buffer_offset_;
const size_t num_remaining_functions_;
};
class StreamingDecoder::DecodeFunctionBody : public DecodingState {
public:
explicit DecodeFunctionBody(SectionBuffer* section_buffer,
size_t buffer_offset, size_t function_body_length,
size_t num_remaining_functions,
uint32_t module_offset)
: section_buffer_(section_buffer),
buffer_offset_(buffer_offset),
function_body_length_(function_body_length),
num_remaining_functions_(num_remaining_functions),
module_offset_(module_offset) {}
Vector<uint8_t> buffer() override {
Vector<uint8_t> remaining_buffer =
section_buffer_->bytes() + buffer_offset_;
return remaining_buffer.SubVector(0, function_body_length_);
}
std::unique_ptr<DecodingState> Next(StreamingDecoder* streaming) override;
private:
SectionBuffer* const section_buffer_;
const size_t buffer_offset_;
const size_t function_body_length_;
const size_t num_remaining_functions_;
const uint32_t module_offset_;
};
size_t StreamingDecoder::DecodeVarInt32::ReadBytes(
StreamingDecoder* streaming, Vector<const uint8_t> bytes) {
Vector<uint8_t> buf = buffer();
Vector<uint8_t> remaining_buf = buf + offset();
size_t new_bytes = std::min(bytes.size(), remaining_buf.size());
TRACE_STREAMING("ReadBytes of a VarInt\n");
memcpy(remaining_buf.begin(), &bytes.first(), new_bytes);
buf.Truncate(offset() + new_bytes);
Decoder decoder(buf,
streaming->module_offset() - static_cast<uint32_t>(offset()));
value_ = decoder.consume_u32v(field_name_);
// The number of bytes we actually needed to read.
DCHECK_GT(decoder.pc(), buffer().begin());
bytes_consumed_ = static_cast<size_t>(decoder.pc() - buf.begin());
TRACE_STREAMING(" ==> %zu bytes consumed\n", bytes_consumed_);
if (decoder.failed()) {
if (new_bytes == remaining_buf.size()) {
// We only report an error if we read all bytes.
streaming->Error(decoder.error());
}
set_offset(offset() + new_bytes);
return new_bytes;
}
// We read all the bytes we needed.
DCHECK_GT(bytes_consumed_, offset());
new_bytes = bytes_consumed_ - offset();
// Set the offset to the buffer size to signal that we are at the end of this
// section.
set_offset(buffer().size());
return new_bytes;
}
std::unique_ptr<StreamingDecoder::DecodingState>
StreamingDecoder::DecodeVarInt32::Next(StreamingDecoder* streaming) {
if (!streaming->ok()) return nullptr;
if (value_ > max_value_) {
std::ostringstream oss;
oss << "function size > maximum function size: " << value_ << " < "
<< max_value_;
return streaming->Error(oss.str());
}
return NextWithValue(streaming);
}
std::unique_ptr<StreamingDecoder::DecodingState>
StreamingDecoder::DecodeModuleHeader::Next(StreamingDecoder* streaming) {
TRACE_STREAMING("DecodeModuleHeader\n");
streaming->ProcessModuleHeader();
if (!streaming->ok()) return nullptr;
return base::make_unique<DecodeSectionID>(streaming->module_offset());
}
std::unique_ptr<StreamingDecoder::DecodingState>
StreamingDecoder::DecodeSectionID::Next(StreamingDecoder* streaming) {
TRACE_STREAMING("DecodeSectionID: %s section\n",
SectionName(static_cast<SectionCode>(id_)));
return base::make_unique<DecodeSectionLength>(id_, module_offset_);
}
std::unique_ptr<StreamingDecoder::DecodingState>
StreamingDecoder::DecodeSectionLength::NextWithValue(
StreamingDecoder* streaming) {
TRACE_STREAMING("DecodeSectionLength(%zu)\n", value_);
SectionBuffer* buf =
streaming->CreateNewBuffer(module_offset_, section_id_, value_,
buffer().SubVector(0, bytes_consumed_));
DCHECK_NOT_NULL(buf);
if (value_ == 0) {
if (section_id_ == SectionCode::kCodeSectionCode) {
return streaming->Error("code section cannot have size 0");
}
// Process section without payload as well, to enforce section order and
// other feature checks specific to each individual section.
streaming->ProcessSection(buf);
if (!streaming->ok()) return nullptr;
// There is no payload, we go to the next section immediately.
return base::make_unique<DecodeSectionID>(streaming->module_offset_);
} else {
if (section_id_ == SectionCode::kCodeSectionCode) {
// Explicitly check for multiple code sections as module decoder never
// sees the code section and hence cannot track this section.
if (streaming->code_section_processed_) {
// TODO(mstarzinger): This error message (and other in this class) is
// different for non-streaming decoding. Bring them in sync and test.
return streaming->Error("code section can only appear once");
}
streaming->code_section_processed_ = true;
// We reached the code section. All functions of the code section are put
// into the same SectionBuffer.
return base::make_unique<DecodeNumberOfFunctions>(buf);
}
return base::make_unique<DecodeSectionPayload>(buf);
}
}
std::unique_ptr<StreamingDecoder::DecodingState>
StreamingDecoder::DecodeSectionPayload::Next(StreamingDecoder* streaming) {
TRACE_STREAMING("DecodeSectionPayload\n");
streaming->ProcessSection(section_buffer_);
if (!streaming->ok()) return nullptr;
return base::make_unique<DecodeSectionID>(streaming->module_offset());
}
std::unique_ptr<StreamingDecoder::DecodingState>
StreamingDecoder::DecodeNumberOfFunctions::NextWithValue(
StreamingDecoder* streaming) {
TRACE_STREAMING("DecodeNumberOfFunctions(%zu)\n", value_);
// Copy the bytes we read into the section buffer.
Vector<uint8_t> payload_buf = section_buffer_->payload();
if (payload_buf.size() < bytes_consumed_) {
return streaming->Error("invalid code section length");
}
memcpy(payload_buf.begin(), buffer().begin(), bytes_consumed_);
// {value} is the number of functions.
if (value_ == 0) {
if (payload_buf.size() != bytes_consumed_) {
return streaming->Error("not all code section bytes were used");
}
return base::make_unique<DecodeSectionID>(streaming->module_offset());
}
DCHECK_GE(kMaxInt, value_);
streaming->StartCodeSection(static_cast<int>(value_),
streaming->section_buffers_.back());
if (!streaming->ok()) return nullptr;
return base::make_unique<DecodeFunctionLength>(
section_buffer_, section_buffer_->payload_offset() + bytes_consumed_,
value_);
}
std::unique_ptr<StreamingDecoder::DecodingState>
StreamingDecoder::DecodeFunctionLength::NextWithValue(
StreamingDecoder* streaming) {
TRACE_STREAMING("DecodeFunctionLength(%zu)\n", value_);
// Copy the bytes we consumed into the section buffer.
Vector<uint8_t> fun_length_buffer = section_buffer_->bytes() + buffer_offset_;
if (fun_length_buffer.size() < bytes_consumed_) {
return streaming->Error("read past code section end");
}
memcpy(fun_length_buffer.begin(), buffer().begin(), bytes_consumed_);
// {value} is the length of the function.
if (value_ == 0) return streaming->Error("invalid function length (0)");
if (buffer_offset_ + bytes_consumed_ + value_ > section_buffer_->length()) {
return streaming->Error("not enough code section bytes");
}
return base::make_unique<DecodeFunctionBody>(
section_buffer_, buffer_offset_ + bytes_consumed_, value_,
num_remaining_functions_, streaming->module_offset());
}
std::unique_ptr<StreamingDecoder::DecodingState>
StreamingDecoder::DecodeFunctionBody::Next(StreamingDecoder* streaming) {
TRACE_STREAMING("DecodeFunctionBody\n");
streaming->ProcessFunctionBody(buffer(), module_offset_);
if (!streaming->ok()) return nullptr;
size_t end_offset = buffer_offset_ + function_body_length_;
if (num_remaining_functions_ > 0) {
return base::make_unique<DecodeFunctionLength>(section_buffer_, end_offset,
num_remaining_functions_);
}
// We just read the last function body. Continue with the next section.
if (end_offset != section_buffer_->length()) {
return streaming->Error("not all code section bytes were used");
}
return base::make_unique<DecodeSectionID>(streaming->module_offset());
}
StreamingDecoder::StreamingDecoder(
std::unique_ptr<StreamingProcessor> processor)
: processor_(std::move(processor)),
// A module always starts with a module header.
state_(new DecodeModuleHeader()) {}
StreamingDecoder::SectionBuffer* StreamingDecoder::CreateNewBuffer(
uint32_t module_offset, uint8_t section_id, size_t length,
Vector<const uint8_t> length_bytes) {
// Section buffers are allocated in the same order they appear in the module,
// they will be processed and later on concatenated in that same order.
section_buffers_.emplace_back(std::make_shared<SectionBuffer>(
module_offset, section_id, length, length_bytes));
return section_buffers_.back().get();
}
} // namespace wasm
} // namespace internal
} // namespace v8
#undef TRACE_STREAMING