blob: 7d0dcfc37070e595a187483c1a08b09082272e7d [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/heap/store-buffer.h"
#include <algorithm>
#include "src/base/bits.h"
#include "src/base/macros.h"
#include "src/base/template-utils.h"
#include "src/execution/isolate.h"
#include "src/heap/incremental-marking.h"
#include "src/heap/store-buffer-inl.h"
#include "src/init/v8.h"
#include "src/logging/counters.h"
#include "src/objects/objects-inl.h"
namespace v8 {
namespace internal {
StoreBuffer::StoreBuffer(Heap* heap)
: heap_(heap), top_(nullptr), current_(0), mode_(NOT_IN_GC) {
for (int i = 0; i < kStoreBuffers; i++) {
start_[i] = nullptr;
limit_[i] = nullptr;
lazy_top_[i] = nullptr;
}
task_running_ = false;
insertion_callback = &InsertDuringRuntime;
deletion_callback = &DeleteDuringRuntime;
}
void StoreBuffer::SetUp() {
v8::PageAllocator* page_allocator = GetPlatformPageAllocator();
// Round up the requested size in order to fulfill the VirtualMemory's
// requrements on the requested size alignment. This may cause a bit of
// memory wastage if the actual CommitPageSize() will be bigger than the
// kMinExpectedOSPageSize value but this is a trade-off for keeping the
// store buffer overflow check in write barriers cheap.
const size_t requested_size = RoundUp(kStoreBufferSize * kStoreBuffers,
page_allocator->CommitPageSize());
// Allocate buffer memory aligned at least to kStoreBufferSize. This lets us
// use a bit test to detect the ends of the buffers.
STATIC_ASSERT(base::bits::IsPowerOfTwo(kStoreBufferSize));
const size_t alignment =
std::max<size_t>(kStoreBufferSize, page_allocator->AllocatePageSize());
void* hint = AlignedAddress(heap_->GetRandomMmapAddr(), alignment);
VirtualMemory reservation(page_allocator, requested_size, hint, alignment);
if (!reservation.IsReserved()) {
heap_->FatalProcessOutOfMemory("StoreBuffer::SetUp");
}
Address start = reservation.address();
const size_t allocated_size = reservation.size();
start_[0] = reinterpret_cast<Address*>(start);
limit_[0] = start_[0] + (kStoreBufferSize / kSystemPointerSize);
start_[1] = limit_[0];
limit_[1] = start_[1] + (kStoreBufferSize / kSystemPointerSize);
// Sanity check the buffers.
Address* vm_limit = reinterpret_cast<Address*>(start + allocated_size);
USE(vm_limit);
for (int i = 0; i < kStoreBuffers; i++) {
DCHECK(reinterpret_cast<Address>(start_[i]) >= reservation.address());
DCHECK(reinterpret_cast<Address>(limit_[i]) >= reservation.address());
DCHECK(start_[i] <= vm_limit);
DCHECK(limit_[i] <= vm_limit);
DCHECK_EQ(0, reinterpret_cast<Address>(limit_[i]) & kStoreBufferMask);
}
// Set RW permissions only on the pages we use.
const size_t used_size = RoundUp(requested_size, CommitPageSize());
if (!reservation.SetPermissions(start, used_size,
PageAllocator::kReadWrite)) {
heap_->FatalProcessOutOfMemory("StoreBuffer::SetUp");
}
current_ = 0;
top_ = start_[current_];
virtual_memory_ = std::move(reservation);
}
void StoreBuffer::TearDown() {
if (virtual_memory_.IsReserved()) virtual_memory_.Free();
top_ = nullptr;
for (int i = 0; i < kStoreBuffers; i++) {
start_[i] = nullptr;
limit_[i] = nullptr;
lazy_top_[i] = nullptr;
}
}
void StoreBuffer::DeleteDuringRuntime(StoreBuffer* store_buffer, Address start,
Address end) {
DCHECK(store_buffer->mode() == StoreBuffer::NOT_IN_GC);
store_buffer->InsertDeletionIntoStoreBuffer(start, end);
}
void StoreBuffer::InsertDuringRuntime(StoreBuffer* store_buffer, Address slot) {
DCHECK(store_buffer->mode() == StoreBuffer::NOT_IN_GC);
store_buffer->InsertIntoStoreBuffer(slot);
}
void StoreBuffer::DeleteDuringGarbageCollection(StoreBuffer* store_buffer,
Address start, Address end) {
UNREACHABLE();
}
void StoreBuffer::InsertDuringGarbageCollection(StoreBuffer* store_buffer,
Address slot) {
DCHECK(store_buffer->mode() != StoreBuffer::NOT_IN_GC);
RememberedSet<OLD_TO_NEW>::Insert(Page::FromAddress(slot), slot);
}
void StoreBuffer::SetMode(StoreBufferMode mode) {
mode_ = mode;
if (mode == NOT_IN_GC) {
insertion_callback = &InsertDuringRuntime;
deletion_callback = &DeleteDuringRuntime;
} else {
insertion_callback = &InsertDuringGarbageCollection;
deletion_callback = &DeleteDuringGarbageCollection;
}
}
int StoreBuffer::StoreBufferOverflow(Isolate* isolate) {
isolate->heap()->store_buffer()->FlipStoreBuffers();
isolate->counters()->store_buffer_overflows()->Increment();
// Called by RecordWriteCodeStubAssembler, which doesnt accept void type
return 0;
}
void StoreBuffer::FlipStoreBuffers() {
base::MutexGuard guard(&mutex_);
int other = (current_ + 1) % kStoreBuffers;
MoveEntriesToRememberedSet(other);
lazy_top_[current_] = top_;
current_ = other;
top_ = start_[current_];
if (!task_running_ && FLAG_concurrent_store_buffer) {
task_running_ = true;
V8::GetCurrentPlatform()->CallOnWorkerThread(
base::make_unique<Task>(heap_->isolate(), this));
}
}
void StoreBuffer::MoveEntriesToRememberedSet(int index) {
if (!lazy_top_[index]) return;
DCHECK_GE(index, 0);
DCHECK_LT(index, kStoreBuffers);
Address last_inserted_addr = kNullAddress;
MemoryChunk* chunk = nullptr;
for (Address* current = start_[index]; current < lazy_top_[index];
current++) {
Address addr = *current;
if (chunk == nullptr ||
MemoryChunk::BaseAddress(addr) != chunk->address()) {
chunk = MemoryChunk::FromAnyPointerAddress(addr);
}
if (IsDeletionAddress(addr)) {
last_inserted_addr = kNullAddress;
current++;
Address end = *current;
DCHECK(!IsDeletionAddress(end));
addr = UnmarkDeletionAddress(addr);
if (end) {
RememberedSet<OLD_TO_NEW>::RemoveRange(chunk, addr, end,
SlotSet::PREFREE_EMPTY_BUCKETS);
} else {
RememberedSet<OLD_TO_NEW>::Remove(chunk, addr);
}
} else {
DCHECK(!IsDeletionAddress(addr));
if (addr != last_inserted_addr) {
RememberedSet<OLD_TO_NEW>::Insert(chunk, addr);
last_inserted_addr = addr;
}
}
}
lazy_top_[index] = nullptr;
}
void StoreBuffer::MoveAllEntriesToRememberedSet() {
base::MutexGuard guard(&mutex_);
int other = (current_ + 1) % kStoreBuffers;
MoveEntriesToRememberedSet(other);
lazy_top_[current_] = top_;
MoveEntriesToRememberedSet(current_);
top_ = start_[current_];
}
void StoreBuffer::ConcurrentlyProcessStoreBuffer() {
base::MutexGuard guard(&mutex_);
int other = (current_ + 1) % kStoreBuffers;
MoveEntriesToRememberedSet(other);
task_running_ = false;
}
} // namespace internal
} // namespace v8