blob: bd46bc3aa45817ddbe9d81ba8c60e193ac058730 [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// A simple interpreter for the Irregexp byte code.
#include "src/regexp/regexp-interpreter.h"
#include "src/ast/ast.h"
#include "src/base/small-vector.h"
#include "src/objects/objects-inl.h"
#include "src/regexp/regexp-bytecodes.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/regexp/regexp.h"
#include "src/strings/unicode.h"
#include "src/utils/utils.h"
#ifdef V8_INTL_SUPPORT
#include "unicode/uchar.h"
#endif // V8_INTL_SUPPORT
#if defined(V8_OS_STARBOARD)
#include "src/poems.h"
#endif
namespace v8 {
namespace internal {
static bool BackRefMatchesNoCase(Isolate* isolate, int from, int current,
int len, Vector<const uc16> subject,
bool unicode) {
Address offset_a =
reinterpret_cast<Address>(const_cast<uc16*>(&subject.at(from)));
Address offset_b =
reinterpret_cast<Address>(const_cast<uc16*>(&subject.at(current)));
size_t length = len * kUC16Size;
return RegExpMacroAssembler::CaseInsensitiveCompareUC16(
offset_a, offset_b, length, unicode ? nullptr : isolate) == 1;
}
static bool BackRefMatchesNoCase(Isolate* isolate, int from, int current,
int len, Vector<const uint8_t> subject,
bool unicode) {
// For Latin1 characters the unicode flag makes no difference.
for (int i = 0; i < len; i++) {
unsigned int old_char = subject[from++];
unsigned int new_char = subject[current++];
if (old_char == new_char) continue;
// Convert both characters to lower case.
old_char |= 0x20;
new_char |= 0x20;
if (old_char != new_char) return false;
// Not letters in the ASCII range and Latin-1 range.
if (!(old_char - 'a' <= 'z' - 'a') &&
!(old_char - 224 <= 254 - 224 && old_char != 247)) {
return false;
}
}
return true;
}
#ifdef DEBUG
static void TraceInterpreter(const byte* code_base, const byte* pc,
int stack_depth, int current_position,
uint32_t current_char, int bytecode_length,
const char* bytecode_name) {
if (FLAG_trace_regexp_bytecodes) {
bool printable = (current_char < 127 && current_char >= 32);
const char* format =
printable
? "pc = %02x, sp = %d, curpos = %d, curchar = %08x (%c), bc = %s"
: "pc = %02x, sp = %d, curpos = %d, curchar = %08x .%c., bc = %s";
PrintF(format, pc - code_base, stack_depth, current_position, current_char,
printable ? current_char : '.', bytecode_name);
for (int i = 0; i < bytecode_length; i++) {
printf(", %02x", pc[i]);
}
printf(" ");
for (int i = 1; i < bytecode_length; i++) {
unsigned char b = pc[i];
if (b < 127 && b >= 32) {
printf("%c", b);
} else {
printf(".");
}
}
printf("\n");
}
}
#define BYTECODE(name) \
case BC_##name: \
TraceInterpreter(code_base, pc, backtrack_stack.sp(), current, \
current_char, BC_##name##_LENGTH, #name);
#else
#define BYTECODE(name) case BC_##name:
#endif
static int32_t Load32Aligned(const byte* pc) {
DCHECK_EQ(0, reinterpret_cast<intptr_t>(pc) & 3);
return *reinterpret_cast<const int32_t*>(pc);
}
static int32_t Load16Aligned(const byte* pc) {
DCHECK_EQ(0, reinterpret_cast<intptr_t>(pc) & 1);
return *reinterpret_cast<const uint16_t*>(pc);
}
// A simple abstraction over the backtracking stack used by the interpreter.
//
// Despite the name 'backtracking' stack, it's actually used as a generic stack
// that stores both program counters (= offsets into the bytecode) and generic
// integer values.
class BacktrackStack {
public:
BacktrackStack() = default;
void push(int v) { data_.emplace_back(v); }
int peek() const {
DCHECK(!data_.empty());
return data_.back();
}
int pop() {
int v = peek();
data_.pop_back();
return v;
}
// The 'sp' is the index of the first empty element in the stack.
int sp() const { return static_cast<int>(data_.size()); }
void set_sp(int new_sp) {
DCHECK_LE(new_sp, sp());
data_.resize_no_init(new_sp);
}
private:
// Semi-arbitrary. Should be large enough for common cases to remain in the
// static stack-allocated backing store, but small enough not to waste space.
static constexpr int kStaticCapacity = 64;
base::SmallVector<int, kStaticCapacity> data_;
DISALLOW_COPY_AND_ASSIGN(BacktrackStack);
};
namespace {
IrregexpInterpreter::Result StackOverflow(Isolate* isolate) {
// We abort interpreter execution after the stack overflow is thrown, and thus
// allow allocation here despite the outer DisallowHeapAllocationScope.
AllowHeapAllocation yes_gc;
isolate->StackOverflow();
return IrregexpInterpreter::EXCEPTION;
}
// Runs all pending interrupts. Callers must update unhandlified object
// references after this function completes.
IrregexpInterpreter::Result HandleInterrupts(Isolate* isolate,
Handle<String> subject_string) {
DisallowHeapAllocation no_gc;
StackLimitCheck check(isolate);
if (check.JsHasOverflowed()) {
return StackOverflow(isolate); // A real stack overflow.
}
// Handle interrupts if any exist.
if (check.InterruptRequested()) {
const bool was_one_byte =
String::IsOneByteRepresentationUnderneath(*subject_string);
Object result;
{
AllowHeapAllocation yes_gc;
result = isolate->stack_guard()->HandleInterrupts();
}
if (result.IsException(isolate)) {
return IrregexpInterpreter::EXCEPTION;
}
// If we changed between a LATIN1 and a UC16 string, we need to restart
// regexp matching with the appropriate template instantiation of RawMatch.
if (String::IsOneByteRepresentationUnderneath(*subject_string) !=
was_one_byte) {
return IrregexpInterpreter::RETRY;
}
}
return IrregexpInterpreter::SUCCESS;
}
template <typename Char>
void UpdateCodeAndSubjectReferences(Isolate* isolate,
Handle<ByteArray> code_array,
Handle<String> subject_string,
const byte** code_base_out,
const byte** pc_out,
Vector<const Char>* subject_string_out) {
DisallowHeapAllocation no_gc;
if (*code_base_out != code_array->GetDataStartAddress()) {
const intptr_t pc_offset = *pc_out - *code_base_out;
DCHECK_GT(pc_offset, 0);
*code_base_out = code_array->GetDataStartAddress();
*pc_out = *code_base_out + pc_offset;
}
DCHECK(subject_string->IsFlat());
*subject_string_out = subject_string->GetCharVector<Char>(no_gc);
}
template <typename Char>
IrregexpInterpreter::Result RawMatch(Isolate* isolate,
Handle<ByteArray> code_array,
Handle<String> subject_string,
Vector<const Char> subject, int* registers,
int current, uint32_t current_char) {
DisallowHeapAllocation no_gc;
const byte* pc = code_array->GetDataStartAddress();
const byte* code_base = pc;
BacktrackStack backtrack_stack;
#ifdef DEBUG
if (FLAG_trace_regexp_bytecodes) {
PrintF("\n\nStart bytecode interpreter\n\n");
}
#endif
while (true) {
const int32_t insn = Load32Aligned(pc);
switch (insn & BYTECODE_MASK) {
BYTECODE(BREAK) { UNREACHABLE(); }
BYTECODE(PUSH_CP) {
backtrack_stack.push(current);
pc += BC_PUSH_CP_LENGTH;
break;
}
BYTECODE(PUSH_BT) {
backtrack_stack.push(Load32Aligned(pc + 4));
pc += BC_PUSH_BT_LENGTH;
break;
}
BYTECODE(PUSH_REGISTER) {
backtrack_stack.push(registers[insn >> BYTECODE_SHIFT]);
pc += BC_PUSH_REGISTER_LENGTH;
break;
}
BYTECODE(SET_REGISTER) {
registers[insn >> BYTECODE_SHIFT] = Load32Aligned(pc + 4);
pc += BC_SET_REGISTER_LENGTH;
break;
}
BYTECODE(ADVANCE_REGISTER) {
registers[insn >> BYTECODE_SHIFT] += Load32Aligned(pc + 4);
pc += BC_ADVANCE_REGISTER_LENGTH;
break;
}
BYTECODE(SET_REGISTER_TO_CP) {
registers[insn >> BYTECODE_SHIFT] = current + Load32Aligned(pc + 4);
pc += BC_SET_REGISTER_TO_CP_LENGTH;
break;
}
BYTECODE(SET_CP_TO_REGISTER) {
current = registers[insn >> BYTECODE_SHIFT];
pc += BC_SET_CP_TO_REGISTER_LENGTH;
break;
}
BYTECODE(SET_REGISTER_TO_SP) {
registers[insn >> BYTECODE_SHIFT] = backtrack_stack.sp();
pc += BC_SET_REGISTER_TO_SP_LENGTH;
break;
}
BYTECODE(SET_SP_TO_REGISTER) {
backtrack_stack.set_sp(registers[insn >> BYTECODE_SHIFT]);
pc += BC_SET_SP_TO_REGISTER_LENGTH;
break;
}
BYTECODE(POP_CP) {
current = backtrack_stack.pop();
pc += BC_POP_CP_LENGTH;
break;
}
BYTECODE(POP_BT) {
IrregexpInterpreter::Result return_code =
HandleInterrupts(isolate, subject_string);
if (return_code != IrregexpInterpreter::SUCCESS) return return_code;
UpdateCodeAndSubjectReferences(isolate, code_array, subject_string,
&code_base, &pc, &subject);
pc = code_base + backtrack_stack.pop();
break;
}
BYTECODE(POP_REGISTER) {
registers[insn >> BYTECODE_SHIFT] = backtrack_stack.pop();
pc += BC_POP_REGISTER_LENGTH;
break;
}
BYTECODE(FAIL) { return IrregexpInterpreter::FAILURE; }
BYTECODE(SUCCEED) { return IrregexpInterpreter::SUCCESS; }
BYTECODE(ADVANCE_CP) {
current += insn >> BYTECODE_SHIFT;
pc += BC_ADVANCE_CP_LENGTH;
break;
}
BYTECODE(GOTO) {
pc = code_base + Load32Aligned(pc + 4);
break;
}
BYTECODE(ADVANCE_CP_AND_GOTO) {
current += insn >> BYTECODE_SHIFT;
pc = code_base + Load32Aligned(pc + 4);
break;
}
BYTECODE(CHECK_GREEDY) {
if (current == backtrack_stack.peek()) {
backtrack_stack.pop();
pc = code_base + Load32Aligned(pc + 4);
} else {
pc += BC_CHECK_GREEDY_LENGTH;
}
break;
}
BYTECODE(LOAD_CURRENT_CHAR) {
int pos = current + (insn >> BYTECODE_SHIFT);
if (pos >= subject.length() || pos < 0) {
pc = code_base + Load32Aligned(pc + 4);
} else {
current_char = subject[pos];
pc += BC_LOAD_CURRENT_CHAR_LENGTH;
}
break;
}
BYTECODE(LOAD_CURRENT_CHAR_UNCHECKED) {
int pos = current + (insn >> BYTECODE_SHIFT);
current_char = subject[pos];
pc += BC_LOAD_CURRENT_CHAR_UNCHECKED_LENGTH;
break;
}
BYTECODE(LOAD_2_CURRENT_CHARS) {
int pos = current + (insn >> BYTECODE_SHIFT);
if (pos + 2 > subject.length() || pos < 0) {
pc = code_base + Load32Aligned(pc + 4);
} else {
Char next = subject[pos + 1];
current_char =
(subject[pos] | (next << (kBitsPerByte * sizeof(Char))));
pc += BC_LOAD_2_CURRENT_CHARS_LENGTH;
}
break;
}
BYTECODE(LOAD_2_CURRENT_CHARS_UNCHECKED) {
int pos = current + (insn >> BYTECODE_SHIFT);
Char next = subject[pos + 1];
current_char = (subject[pos] | (next << (kBitsPerByte * sizeof(Char))));
pc += BC_LOAD_2_CURRENT_CHARS_UNCHECKED_LENGTH;
break;
}
BYTECODE(LOAD_4_CURRENT_CHARS) {
DCHECK_EQ(1, sizeof(Char));
int pos = current + (insn >> BYTECODE_SHIFT);
if (pos + 4 > subject.length() || pos < 0) {
pc = code_base + Load32Aligned(pc + 4);
} else {
Char next1 = subject[pos + 1];
Char next2 = subject[pos + 2];
Char next3 = subject[pos + 3];
current_char =
(subject[pos] | (next1 << 8) | (next2 << 16) | (next3 << 24));
pc += BC_LOAD_4_CURRENT_CHARS_LENGTH;
}
break;
}
BYTECODE(LOAD_4_CURRENT_CHARS_UNCHECKED) {
DCHECK_EQ(1, sizeof(Char));
int pos = current + (insn >> BYTECODE_SHIFT);
Char next1 = subject[pos + 1];
Char next2 = subject[pos + 2];
Char next3 = subject[pos + 3];
current_char =
(subject[pos] | (next1 << 8) | (next2 << 16) | (next3 << 24));
pc += BC_LOAD_4_CURRENT_CHARS_UNCHECKED_LENGTH;
break;
}
BYTECODE(CHECK_4_CHARS) {
uint32_t c = Load32Aligned(pc + 4);
if (c == current_char) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_CHECK_4_CHARS_LENGTH;
}
break;
}
BYTECODE(CHECK_CHAR) {
uint32_t c = (insn >> BYTECODE_SHIFT);
if (c == current_char) {
pc = code_base + Load32Aligned(pc + 4);
} else {
pc += BC_CHECK_CHAR_LENGTH;
}
break;
}
BYTECODE(CHECK_NOT_4_CHARS) {
uint32_t c = Load32Aligned(pc + 4);
if (c != current_char) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_CHECK_NOT_4_CHARS_LENGTH;
}
break;
}
BYTECODE(CHECK_NOT_CHAR) {
uint32_t c = (insn >> BYTECODE_SHIFT);
if (c != current_char) {
pc = code_base + Load32Aligned(pc + 4);
} else {
pc += BC_CHECK_NOT_CHAR_LENGTH;
}
break;
}
BYTECODE(AND_CHECK_4_CHARS) {
uint32_t c = Load32Aligned(pc + 4);
if (c == (current_char & Load32Aligned(pc + 8))) {
pc = code_base + Load32Aligned(pc + 12);
} else {
pc += BC_AND_CHECK_4_CHARS_LENGTH;
}
break;
}
BYTECODE(AND_CHECK_CHAR) {
uint32_t c = (insn >> BYTECODE_SHIFT);
if (c == (current_char & Load32Aligned(pc + 4))) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_AND_CHECK_CHAR_LENGTH;
}
break;
}
BYTECODE(AND_CHECK_NOT_4_CHARS) {
uint32_t c = Load32Aligned(pc + 4);
if (c != (current_char & Load32Aligned(pc + 8))) {
pc = code_base + Load32Aligned(pc + 12);
} else {
pc += BC_AND_CHECK_NOT_4_CHARS_LENGTH;
}
break;
}
BYTECODE(AND_CHECK_NOT_CHAR) {
uint32_t c = (insn >> BYTECODE_SHIFT);
if (c != (current_char & Load32Aligned(pc + 4))) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_AND_CHECK_NOT_CHAR_LENGTH;
}
break;
}
BYTECODE(MINUS_AND_CHECK_NOT_CHAR) {
uint32_t c = (insn >> BYTECODE_SHIFT);
uint32_t minus = Load16Aligned(pc + 4);
uint32_t mask = Load16Aligned(pc + 6);
if (c != ((current_char - minus) & mask)) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_MINUS_AND_CHECK_NOT_CHAR_LENGTH;
}
break;
}
BYTECODE(CHECK_CHAR_IN_RANGE) {
uint32_t from = Load16Aligned(pc + 4);
uint32_t to = Load16Aligned(pc + 6);
if (from <= current_char && current_char <= to) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_CHECK_CHAR_IN_RANGE_LENGTH;
}
break;
}
BYTECODE(CHECK_CHAR_NOT_IN_RANGE) {
uint32_t from = Load16Aligned(pc + 4);
uint32_t to = Load16Aligned(pc + 6);
if (from > current_char || current_char > to) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_CHECK_CHAR_NOT_IN_RANGE_LENGTH;
}
break;
}
BYTECODE(CHECK_BIT_IN_TABLE) {
int mask = RegExpMacroAssembler::kTableMask;
byte b = pc[8 + ((current_char & mask) >> kBitsPerByteLog2)];
int bit = (current_char & (kBitsPerByte - 1));
if ((b & (1 << bit)) != 0) {
pc = code_base + Load32Aligned(pc + 4);
} else {
pc += BC_CHECK_BIT_IN_TABLE_LENGTH;
}
break;
}
BYTECODE(CHECK_LT) {
uint32_t limit = (insn >> BYTECODE_SHIFT);
if (current_char < limit) {
pc = code_base + Load32Aligned(pc + 4);
} else {
pc += BC_CHECK_LT_LENGTH;
}
break;
}
BYTECODE(CHECK_GT) {
uint32_t limit = (insn >> BYTECODE_SHIFT);
if (current_char > limit) {
pc = code_base + Load32Aligned(pc + 4);
} else {
pc += BC_CHECK_GT_LENGTH;
}
break;
}
BYTECODE(CHECK_REGISTER_LT) {
if (registers[insn >> BYTECODE_SHIFT] < Load32Aligned(pc + 4)) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_CHECK_REGISTER_LT_LENGTH;
}
break;
}
BYTECODE(CHECK_REGISTER_GE) {
if (registers[insn >> BYTECODE_SHIFT] >= Load32Aligned(pc + 4)) {
pc = code_base + Load32Aligned(pc + 8);
} else {
pc += BC_CHECK_REGISTER_GE_LENGTH;
}
break;
}
BYTECODE(CHECK_REGISTER_EQ_POS) {
if (registers[insn >> BYTECODE_SHIFT] == current) {
pc = code_base + Load32Aligned(pc + 4);
} else {
pc += BC_CHECK_REGISTER_EQ_POS_LENGTH;
}
break;
}
BYTECODE(CHECK_NOT_REGS_EQUAL) {
if (registers[insn >> BYTECODE_SHIFT] ==
registers[Load32Aligned(pc + 4)]) {
pc += BC_CHECK_NOT_REGS_EQUAL_LENGTH;
} else {
pc = code_base + Load32Aligned(pc + 8);
}
break;
}
BYTECODE(CHECK_NOT_BACK_REF) {
int from = registers[insn >> BYTECODE_SHIFT];
int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
if (from >= 0 && len > 0) {
if (current + len > subject.length() ||
CompareChars(&subject[from], &subject[current], len) != 0) {
pc = code_base + Load32Aligned(pc + 4);
break;
}
current += len;
}
pc += BC_CHECK_NOT_BACK_REF_LENGTH;
break;
}
BYTECODE(CHECK_NOT_BACK_REF_BACKWARD) {
int from = registers[insn >> BYTECODE_SHIFT];
int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
if (from >= 0 && len > 0) {
if (current - len < 0 ||
CompareChars(&subject[from], &subject[current - len], len) != 0) {
pc = code_base + Load32Aligned(pc + 4);
break;
}
current -= len;
}
pc += BC_CHECK_NOT_BACK_REF_BACKWARD_LENGTH;
break;
}
BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE)
V8_FALLTHROUGH;
BYTECODE(CHECK_NOT_BACK_REF_NO_CASE) {
bool unicode =
(insn & BYTECODE_MASK) == BC_CHECK_NOT_BACK_REF_NO_CASE_UNICODE;
int from = registers[insn >> BYTECODE_SHIFT];
int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
if (from >= 0 && len > 0) {
if (current + len > subject.length() ||
!BackRefMatchesNoCase(isolate, from, current, len, subject,
unicode)) {
pc = code_base + Load32Aligned(pc + 4);
break;
}
current += len;
}
pc += BC_CHECK_NOT_BACK_REF_NO_CASE_LENGTH;
break;
}
BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD)
V8_FALLTHROUGH;
BYTECODE(CHECK_NOT_BACK_REF_NO_CASE_BACKWARD) {
bool unicode = (insn & BYTECODE_MASK) ==
BC_CHECK_NOT_BACK_REF_NO_CASE_UNICODE_BACKWARD;
int from = registers[insn >> BYTECODE_SHIFT];
int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
if (from >= 0 && len > 0) {
if (current - len < 0 ||
!BackRefMatchesNoCase(isolate, from, current - len, len, subject,
unicode)) {
pc = code_base + Load32Aligned(pc + 4);
break;
}
current -= len;
}
pc += BC_CHECK_NOT_BACK_REF_NO_CASE_BACKWARD_LENGTH;
break;
}
BYTECODE(CHECK_AT_START) {
if (current == 0) {
pc = code_base + Load32Aligned(pc + 4);
} else {
pc += BC_CHECK_AT_START_LENGTH;
}
break;
}
BYTECODE(CHECK_NOT_AT_START) {
if (current + (insn >> BYTECODE_SHIFT) == 0) {
pc += BC_CHECK_NOT_AT_START_LENGTH;
} else {
pc = code_base + Load32Aligned(pc + 4);
}
break;
}
BYTECODE(SET_CURRENT_POSITION_FROM_END) {
int by = static_cast<uint32_t>(insn) >> BYTECODE_SHIFT;
if (subject.length() - current > by) {
current = subject.length() - by;
current_char = subject[current - 1];
}
pc += BC_SET_CURRENT_POSITION_FROM_END_LENGTH;
break;
}
default:
UNREACHABLE();
break;
}
}
}
#undef BYTECODE
} // namespace
// static
IrregexpInterpreter::Result IrregexpInterpreter::Match(
Isolate* isolate, Handle<ByteArray> code_array,
Handle<String> subject_string, int* registers, int start_position) {
DCHECK(subject_string->IsFlat());
// Note: Heap allocation *is* allowed in two situations:
// 1. When creating & throwing a stack overflow exception. The interpreter
// aborts afterwards, and thus possible-moved objects are never used.
// 2. When handling interrupts. We manually relocate unhandlified references
// after interrupts have run.
DisallowHeapAllocation no_gc;
uc16 previous_char = '\n';
String::FlatContent subject_content = subject_string->GetFlatContent(no_gc);
if (subject_content.IsOneByte()) {
Vector<const uint8_t> subject_vector = subject_content.ToOneByteVector();
if (start_position != 0) previous_char = subject_vector[start_position - 1];
return RawMatch(isolate, code_array, subject_string, subject_vector,
registers, start_position, previous_char);
} else {
DCHECK(subject_content.IsTwoByte());
Vector<const uc16> subject_vector = subject_content.ToUC16Vector();
if (start_position != 0) previous_char = subject_vector[start_position - 1];
return RawMatch(isolate, code_array, subject_string, subject_vector,
registers, start_position, previous_char);
}
}
} // namespace internal
} // namespace v8