blob: 939e2d175091c34f24782b87390d39758420edc7 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <utility>
#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/files/file.h"
#include "base/files/file_util.h"
#include "base/macros.h"
#include "base/metrics/field_trial.h"
#include "base/metrics/field_trial_param_associator.h"
#include "base/run_loop.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/test/metrics/histogram_tester.h"
#include "base/test/mock_entropy_provider.h"
#include "base/test/scoped_feature_list.h"
#include "base/threading/platform_thread.h"
#include "net/base/completion_once_callback.h"
#include "net/base/io_buffer.h"
#include "net/base/net_errors.h"
#include "net/base/request_priority.h"
#include "net/base/test_completion_callback.h"
#include "net/disk_cache/blockfile/backend_impl.h"
#include "net/disk_cache/blockfile/entry_impl.h"
#include "net/disk_cache/cache_util.h"
#include "net/disk_cache/disk_cache_test_base.h"
#include "net/disk_cache/disk_cache_test_util.h"
#include "net/disk_cache/memory/mem_entry_impl.h"
#include "net/disk_cache/simple/simple_backend_impl.h"
#include "net/disk_cache/simple/simple_entry_format.h"
#include "net/disk_cache/simple/simple_entry_impl.h"
#include "net/disk_cache/simple/simple_histogram_enums.h"
#include "net/disk_cache/simple/simple_synchronous_entry.h"
#include "net/disk_cache/simple/simple_test_util.h"
#include "net/disk_cache/simple/simple_util.h"
#include "net/test/gtest_util.h"
#include "starboard/memory.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
using net::test::IsError;
using net::test::IsOk;
using base::Time;
using disk_cache::ScopedEntryPtr;
// Tests that can run with different types of caches.
class DiskCacheEntryTest : public DiskCacheTestWithCache {
public:
void InternalSyncIOBackground(disk_cache::Entry* entry);
void ExternalSyncIOBackground(disk_cache::Entry* entry);
protected:
void InternalSyncIO();
void InternalAsyncIO();
void ExternalSyncIO();
void ExternalAsyncIO();
void ReleaseBuffer(int stream_index);
void StreamAccess();
void GetKey();
void GetTimes(int stream_index);
void GrowData(int stream_index);
void TruncateData(int stream_index);
void ZeroLengthIO(int stream_index);
void Buffering();
void SizeAtCreate();
void SizeChanges(int stream_index);
void ReuseEntry(int size, int stream_index);
void InvalidData(int stream_index);
void ReadWriteDestroyBuffer(int stream_index);
void DoomNormalEntry();
void DoomEntryNextToOpenEntry();
void DoomedEntry(int stream_index);
void BasicSparseIO();
void HugeSparseIO();
void GetAvailableRange();
void CouldBeSparse();
void UpdateSparseEntry();
void DoomSparseEntry();
void PartialSparseEntry();
bool SimpleCacheMakeBadChecksumEntry(const std::string& key, int data_size);
bool SimpleCacheThirdStreamFileExists(const char* key);
void SyncDoomEntry(const char* key);
void UseAfterBackendDestruction();
};
// This part of the test runs on the background thread.
void DiskCacheEntryTest::InternalSyncIOBackground(disk_cache::Entry* entry) {
const int kSize1 = 10;
scoped_refptr<net::IOBuffer> buffer1 =
base::MakeRefCounted<net::IOBuffer>(kSize1);
CacheTestFillBuffer(buffer1->data(), kSize1, false);
EXPECT_EQ(0, entry->ReadData(0, 0, buffer1.get(), kSize1,
net::CompletionOnceCallback()));
base::strlcpy(buffer1->data(), "the data", kSize1);
EXPECT_EQ(10, entry->WriteData(0, 0, buffer1.get(), kSize1,
net::CompletionOnceCallback(), false));
memset(buffer1->data(), 0, kSize1);
EXPECT_EQ(10, entry->ReadData(0, 0, buffer1.get(), kSize1,
net::CompletionOnceCallback()));
EXPECT_STREQ("the data", buffer1->data());
const int kSize2 = 5000;
const int kSize3 = 10000;
scoped_refptr<net::IOBuffer> buffer2 =
base::MakeRefCounted<net::IOBuffer>(kSize2);
scoped_refptr<net::IOBuffer> buffer3 =
base::MakeRefCounted<net::IOBuffer>(kSize3);
memset(buffer3->data(), 0, kSize3);
CacheTestFillBuffer(buffer2->data(), kSize2, false);
base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
EXPECT_EQ(5000, entry->WriteData(1, 1500, buffer2.get(), kSize2,
net::CompletionOnceCallback(), false));
memset(buffer2->data(), 0, kSize2);
EXPECT_EQ(4989, entry->ReadData(1, 1511, buffer2.get(), kSize2,
net::CompletionOnceCallback()));
EXPECT_STREQ("big data goes here", buffer2->data());
EXPECT_EQ(5000, entry->ReadData(1, 0, buffer2.get(), kSize2,
net::CompletionOnceCallback()));
EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500));
EXPECT_EQ(1500, entry->ReadData(1, 5000, buffer2.get(), kSize2,
net::CompletionOnceCallback()));
EXPECT_EQ(0, entry->ReadData(1, 6500, buffer2.get(), kSize2,
net::CompletionOnceCallback()));
EXPECT_EQ(6500, entry->ReadData(1, 0, buffer3.get(), kSize3,
net::CompletionOnceCallback()));
EXPECT_EQ(8192, entry->WriteData(1, 0, buffer3.get(), 8192,
net::CompletionOnceCallback(), false));
EXPECT_EQ(8192, entry->ReadData(1, 0, buffer3.get(), kSize3,
net::CompletionOnceCallback()));
EXPECT_EQ(8192, entry->GetDataSize(1));
// We need to delete the memory buffer on this thread.
EXPECT_EQ(
0, entry->WriteData(0, 0, NULL, 0, net::CompletionOnceCallback(), true));
EXPECT_EQ(
0, entry->WriteData(1, 0, NULL, 0, net::CompletionOnceCallback(), true));
}
// We need to support synchronous IO even though it is not a supported operation
// from the point of view of the disk cache's public interface, because we use
// it internally, not just by a few tests, but as part of the implementation
// (see sparse_control.cc, for example).
void DiskCacheEntryTest::InternalSyncIO() {
disk_cache::Entry* entry = NULL;
ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
ASSERT_TRUE(NULL != entry);
// The bulk of the test runs from within the callback, on the cache thread.
RunTaskForTest(base::Bind(&DiskCacheEntryTest::InternalSyncIOBackground,
base::Unretained(this),
entry));
entry->Doom();
entry->Close();
FlushQueueForTest();
EXPECT_EQ(0, cache_->GetEntryCount());
}
TEST_F(DiskCacheEntryTest, InternalSyncIO) {
InitCache();
InternalSyncIO();
}
TEST_F(DiskCacheEntryTest, MemoryOnlyInternalSyncIO) {
SetMemoryOnlyMode();
InitCache();
InternalSyncIO();
}
void DiskCacheEntryTest::InternalAsyncIO() {
disk_cache::Entry* entry = NULL;
ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
ASSERT_TRUE(NULL != entry);
// Avoid using internal buffers for the test. We have to write something to
// the entry and close it so that we flush the internal buffer to disk. After
// that, IO operations will be really hitting the disk. We don't care about
// the content, so just extending the entry is enough (all extensions zero-
// fill any holes).
EXPECT_EQ(0, WriteData(entry, 0, 15 * 1024, NULL, 0, false));
EXPECT_EQ(0, WriteData(entry, 1, 15 * 1024, NULL, 0, false));
entry->Close();
ASSERT_THAT(OpenEntry("the first key", &entry), IsOk());
MessageLoopHelper helper;
// Let's verify that each IO goes to the right callback object.
CallbackTest callback1(&helper, false);
CallbackTest callback2(&helper, false);
CallbackTest callback3(&helper, false);
CallbackTest callback4(&helper, false);
CallbackTest callback5(&helper, false);
CallbackTest callback6(&helper, false);
CallbackTest callback7(&helper, false);
CallbackTest callback8(&helper, false);
CallbackTest callback9(&helper, false);
CallbackTest callback10(&helper, false);
CallbackTest callback11(&helper, false);
CallbackTest callback12(&helper, false);
CallbackTest callback13(&helper, false);
const int kSize1 = 10;
const int kSize2 = 5000;
const int kSize3 = 10000;
scoped_refptr<net::IOBuffer> buffer1 =
base::MakeRefCounted<net::IOBuffer>(kSize1);
scoped_refptr<net::IOBuffer> buffer2 =
base::MakeRefCounted<net::IOBuffer>(kSize2);
scoped_refptr<net::IOBuffer> buffer3 =
base::MakeRefCounted<net::IOBuffer>(kSize3);
CacheTestFillBuffer(buffer1->data(), kSize1, false);
CacheTestFillBuffer(buffer2->data(), kSize2, false);
CacheTestFillBuffer(buffer3->data(), kSize3, false);
EXPECT_EQ(0,
entry->ReadData(
0,
15 * 1024,
buffer1.get(),
kSize1,
base::Bind(&CallbackTest::Run, base::Unretained(&callback1))));
base::strlcpy(buffer1->data(), "the data", kSize1);
int expected = 0;
int ret = entry->WriteData(
0,
0,
buffer1.get(),
kSize1,
base::Bind(&CallbackTest::Run, base::Unretained(&callback2)),
false);
EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret);
if (net::ERR_IO_PENDING == ret)
expected++;
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
memset(buffer2->data(), 0, kSize2);
ret = entry->ReadData(
0,
0,
buffer2.get(),
kSize1,
base::Bind(&CallbackTest::Run, base::Unretained(&callback3)));
EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret);
if (net::ERR_IO_PENDING == ret)
expected++;
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
EXPECT_STREQ("the data", buffer2->data());
base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
ret = entry->WriteData(
1,
1500,
buffer2.get(),
kSize2,
base::Bind(&CallbackTest::Run, base::Unretained(&callback4)),
true);
EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
if (net::ERR_IO_PENDING == ret)
expected++;
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
memset(buffer3->data(), 0, kSize3);
ret = entry->ReadData(
1,
1511,
buffer3.get(),
kSize2,
base::Bind(&CallbackTest::Run, base::Unretained(&callback5)));
EXPECT_TRUE(4989 == ret || net::ERR_IO_PENDING == ret);
if (net::ERR_IO_PENDING == ret)
expected++;
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
EXPECT_STREQ("big data goes here", buffer3->data());
ret = entry->ReadData(
1,
0,
buffer2.get(),
kSize2,
base::Bind(&CallbackTest::Run, base::Unretained(&callback6)));
EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
if (net::ERR_IO_PENDING == ret)
expected++;
memset(buffer3->data(), 0, kSize3);
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500));
ret = entry->ReadData(
1,
5000,
buffer2.get(),
kSize2,
base::Bind(&CallbackTest::Run, base::Unretained(&callback7)));
EXPECT_TRUE(1500 == ret || net::ERR_IO_PENDING == ret);
if (net::ERR_IO_PENDING == ret)
expected++;
ret = entry->ReadData(
1,
0,
buffer3.get(),
kSize3,
base::Bind(&CallbackTest::Run, base::Unretained(&callback9)));
EXPECT_TRUE(6500 == ret || net::ERR_IO_PENDING == ret);
if (net::ERR_IO_PENDING == ret)
expected++;
ret = entry->WriteData(
1,
0,
buffer3.get(),
8192,
base::Bind(&CallbackTest::Run, base::Unretained(&callback10)),
true);
EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret);
if (net::ERR_IO_PENDING == ret)
expected++;
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
ret = entry->ReadData(
1,
0,
buffer3.get(),
kSize3,
base::Bind(&CallbackTest::Run, base::Unretained(&callback11)));
EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret);
if (net::ERR_IO_PENDING == ret)
expected++;
EXPECT_EQ(8192, entry->GetDataSize(1));
ret = entry->ReadData(
0,
0,
buffer1.get(),
kSize1,
base::Bind(&CallbackTest::Run, base::Unretained(&callback12)));
EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret);
if (net::ERR_IO_PENDING == ret)
expected++;
ret = entry->ReadData(
1,
0,
buffer2.get(),
kSize2,
base::Bind(&CallbackTest::Run, base::Unretained(&callback13)));
EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
if (net::ERR_IO_PENDING == ret)
expected++;
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
EXPECT_FALSE(helper.callback_reused_error());
entry->Doom();
entry->Close();
FlushQueueForTest();
EXPECT_EQ(0, cache_->GetEntryCount());
}
TEST_F(DiskCacheEntryTest, InternalAsyncIO) {
InitCache();
InternalAsyncIO();
}
TEST_F(DiskCacheEntryTest, MemoryOnlyInternalAsyncIO) {
SetMemoryOnlyMode();
InitCache();
InternalAsyncIO();
}
// This part of the test runs on the background thread.
void DiskCacheEntryTest::ExternalSyncIOBackground(disk_cache::Entry* entry) {
const int kSize1 = 17000;
const int kSize2 = 25000;
scoped_refptr<net::IOBuffer> buffer1 =
base::MakeRefCounted<net::IOBuffer>(kSize1);
scoped_refptr<net::IOBuffer> buffer2 =
base::MakeRefCounted<net::IOBuffer>(kSize2);
CacheTestFillBuffer(buffer1->data(), kSize1, false);
CacheTestFillBuffer(buffer2->data(), kSize2, false);
base::strlcpy(buffer1->data(), "the data", kSize1);
EXPECT_EQ(17000, entry->WriteData(0, 0, buffer1.get(), kSize1,
net::CompletionOnceCallback(), false));
memset(buffer1->data(), 0, kSize1);
EXPECT_EQ(17000, entry->ReadData(0, 0, buffer1.get(), kSize1,
net::CompletionOnceCallback()));
EXPECT_STREQ("the data", buffer1->data());
base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
EXPECT_EQ(25000, entry->WriteData(1, 10000, buffer2.get(), kSize2,
net::CompletionOnceCallback(), false));
memset(buffer2->data(), 0, kSize2);
EXPECT_EQ(24989, entry->ReadData(1, 10011, buffer2.get(), kSize2,
net::CompletionOnceCallback()));
EXPECT_STREQ("big data goes here", buffer2->data());
EXPECT_EQ(25000, entry->ReadData(1, 0, buffer2.get(), kSize2,
net::CompletionOnceCallback()));
EXPECT_EQ(5000, entry->ReadData(1, 30000, buffer2.get(), kSize2,
net::CompletionOnceCallback()));
EXPECT_EQ(0, entry->ReadData(1, 35000, buffer2.get(), kSize2,
net::CompletionOnceCallback()));
EXPECT_EQ(17000, entry->ReadData(1, 0, buffer1.get(), kSize1,
net::CompletionOnceCallback()));
EXPECT_EQ(17000, entry->WriteData(1, 20000, buffer1.get(), kSize1,
net::CompletionOnceCallback(), false));
EXPECT_EQ(37000, entry->GetDataSize(1));
// We need to delete the memory buffer on this thread.
EXPECT_EQ(
0, entry->WriteData(0, 0, NULL, 0, net::CompletionOnceCallback(), true));
EXPECT_EQ(
0, entry->WriteData(1, 0, NULL, 0, net::CompletionOnceCallback(), true));
}
void DiskCacheEntryTest::ExternalSyncIO() {
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
// The bulk of the test runs from within the callback, on the cache thread.
RunTaskForTest(base::Bind(&DiskCacheEntryTest::ExternalSyncIOBackground,
base::Unretained(this),
entry));
entry->Doom();
entry->Close();
FlushQueueForTest();
EXPECT_EQ(0, cache_->GetEntryCount());
}
TEST_F(DiskCacheEntryTest, ExternalSyncIO) {
InitCache();
ExternalSyncIO();
}
TEST_F(DiskCacheEntryTest, ExternalSyncIONoBuffer) {
InitCache();
cache_impl_->SetFlags(disk_cache::kNoBuffering);
ExternalSyncIO();
}
TEST_F(DiskCacheEntryTest, MemoryOnlyExternalSyncIO) {
SetMemoryOnlyMode();
InitCache();
ExternalSyncIO();
}
void DiskCacheEntryTest::ExternalAsyncIO() {
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
int expected = 0;
MessageLoopHelper helper;
// Let's verify that each IO goes to the right callback object.
CallbackTest callback1(&helper, false);
CallbackTest callback2(&helper, false);
CallbackTest callback3(&helper, false);
CallbackTest callback4(&helper, false);
CallbackTest callback5(&helper, false);
CallbackTest callback6(&helper, false);
CallbackTest callback7(&helper, false);
CallbackTest callback8(&helper, false);
CallbackTest callback9(&helper, false);
const int kSize1 = 17000;
const int kSize2 = 25000;
const int kSize3 = 25000;
scoped_refptr<net::IOBuffer> buffer1 =
base::MakeRefCounted<net::IOBuffer>(kSize1);
scoped_refptr<net::IOBuffer> buffer2 =
base::MakeRefCounted<net::IOBuffer>(kSize2);
scoped_refptr<net::IOBuffer> buffer3 =
base::MakeRefCounted<net::IOBuffer>(kSize3);
CacheTestFillBuffer(buffer1->data(), kSize1, false);
CacheTestFillBuffer(buffer2->data(), kSize2, false);
CacheTestFillBuffer(buffer3->data(), kSize3, false);
base::strlcpy(buffer1->data(), "the data", kSize1);
int ret = entry->WriteData(
0,
0,
buffer1.get(),
kSize1,
base::Bind(&CallbackTest::Run, base::Unretained(&callback1)),
false);
EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
if (net::ERR_IO_PENDING == ret)
expected++;
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
memset(buffer2->data(), 0, kSize1);
ret = entry->ReadData(
0,
0,
buffer2.get(),
kSize1,
base::Bind(&CallbackTest::Run, base::Unretained(&callback2)));
EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
if (net::ERR_IO_PENDING == ret)
expected++;
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
EXPECT_STREQ("the data", buffer2->data());
base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
ret = entry->WriteData(
1,
10000,
buffer2.get(),
kSize2,
base::Bind(&CallbackTest::Run, base::Unretained(&callback3)),
false);
EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret);
if (net::ERR_IO_PENDING == ret)
expected++;
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
memset(buffer3->data(), 0, kSize3);
ret = entry->ReadData(
1,
10011,
buffer3.get(),
kSize3,
base::Bind(&CallbackTest::Run, base::Unretained(&callback4)));
EXPECT_TRUE(24989 == ret || net::ERR_IO_PENDING == ret);
if (net::ERR_IO_PENDING == ret)
expected++;
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
EXPECT_STREQ("big data goes here", buffer3->data());
ret = entry->ReadData(
1,
0,
buffer2.get(),
kSize2,
base::Bind(&CallbackTest::Run, base::Unretained(&callback5)));
EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret);
if (net::ERR_IO_PENDING == ret)
expected++;
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
memset(buffer3->data(), 0, kSize3);
EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 10000));
ret = entry->ReadData(
1,
30000,
buffer2.get(),
kSize2,
base::Bind(&CallbackTest::Run, base::Unretained(&callback6)));
EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
if (net::ERR_IO_PENDING == ret)
expected++;
ret = entry->ReadData(
1, 35000, buffer2.get(), kSize2,
base::Bind(&CallbackTest::Run, base::Unretained(&callback7)));
EXPECT_TRUE(0 == ret || net::ERR_IO_PENDING == ret);
if (net::ERR_IO_PENDING == ret)
expected++;
ret = entry->ReadData(
1,
0,
buffer1.get(),
kSize1,
base::Bind(&CallbackTest::Run, base::Unretained(&callback8)));
EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
if (net::ERR_IO_PENDING == ret)
expected++;
ret = entry->WriteData(
1,
20000,
buffer3.get(),
kSize1,
base::Bind(&CallbackTest::Run, base::Unretained(&callback9)),
false);
EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
if (net::ERR_IO_PENDING == ret)
expected++;
EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
EXPECT_EQ(37000, entry->GetDataSize(1));
EXPECT_FALSE(helper.callback_reused_error());
entry->Doom();
entry->Close();
FlushQueueForTest();
EXPECT_EQ(0, cache_->GetEntryCount());
}
TEST_F(DiskCacheEntryTest, ExternalAsyncIO) {
InitCache();
ExternalAsyncIO();
}
// TODO(http://crbug.com/497101): This test is flaky.
#if defined(OS_IOS)
#define MAYBE_ExternalAsyncIONoBuffer DISABLED_ExternalAsyncIONoBuffer
#else
#define MAYBE_ExternalAsyncIONoBuffer ExternalAsyncIONoBuffer
#endif
TEST_F(DiskCacheEntryTest, MAYBE_ExternalAsyncIONoBuffer) {
InitCache();
cache_impl_->SetFlags(disk_cache::kNoBuffering);
ExternalAsyncIO();
}
TEST_F(DiskCacheEntryTest, MemoryOnlyExternalAsyncIO) {
SetMemoryOnlyMode();
InitCache();
ExternalAsyncIO();
}
// Tests that IOBuffers are not referenced after IO completes.
void DiskCacheEntryTest::ReleaseBuffer(int stream_index) {
disk_cache::Entry* entry = NULL;
ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
ASSERT_TRUE(NULL != entry);
const int kBufferSize = 1024;
scoped_refptr<net::IOBuffer> buffer =
base::MakeRefCounted<net::IOBuffer>(kBufferSize);
CacheTestFillBuffer(buffer->data(), kBufferSize, false);
net::ReleaseBufferCompletionCallback cb(buffer.get());
int rv = entry->WriteData(
stream_index, 0, buffer.get(), kBufferSize, cb.callback(), false);
EXPECT_EQ(kBufferSize, cb.GetResult(rv));
entry->Close();
}
TEST_F(DiskCacheEntryTest, ReleaseBuffer) {
InitCache();
cache_impl_->SetFlags(disk_cache::kNoBuffering);
ReleaseBuffer(0);
}
TEST_F(DiskCacheEntryTest, MemoryOnlyReleaseBuffer) {
SetMemoryOnlyMode();
InitCache();
ReleaseBuffer(0);
}
void DiskCacheEntryTest::StreamAccess() {
disk_cache::Entry* entry = NULL;
ASSERT_THAT(CreateEntry("the first key", &entry), IsOk());
ASSERT_TRUE(NULL != entry);
const int kBufferSize = 1024;
const int kNumStreams = 3;
scoped_refptr<net::IOBuffer> reference_buffers[kNumStreams];
for (int i = 0; i < kNumStreams; i++) {
reference_buffers[i] = base::MakeRefCounted<net::IOBuffer>(kBufferSize);
CacheTestFillBuffer(reference_buffers[i]->data(), kBufferSize, false);
}
scoped_refptr<net::IOBuffer> buffer1 =
base::MakeRefCounted<net::IOBuffer>(kBufferSize);
for (int i = 0; i < kNumStreams; i++) {
EXPECT_EQ(
kBufferSize,
WriteData(entry, i, 0, reference_buffers[i].get(), kBufferSize, false));
memset(buffer1->data(), 0, kBufferSize);
EXPECT_EQ(kBufferSize, ReadData(entry, i, 0, buffer1.get(), kBufferSize));
EXPECT_EQ(0, memcmp(reference_buffers[i]->data(), buffer1->data(),
kBufferSize));
}
EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
ReadData(entry, kNumStreams, 0, buffer1.get(), kBufferSize));
entry->Close();
// Open the entry and read it in chunks, including a read past the end.
ASSERT_THAT(OpenEntry("the first key", &entry), IsOk());
ASSERT_TRUE(NULL != entry);
const int kReadBufferSize = 600;
const int kFinalReadSize = kBufferSize - kReadBufferSize;
static_assert(kFinalReadSize < kReadBufferSize,
"should be exactly two reads");
scoped_refptr<net::IOBuffer> buffer2 =
base::MakeRefCounted<net::IOBuffer>(kReadBufferSize);
for (int i = 0; i < kNumStreams; i++) {
memset(buffer2->data(), 0, kReadBufferSize);
EXPECT_EQ(kReadBufferSize,
ReadData(entry, i, 0, buffer2.get(), kReadBufferSize));
EXPECT_EQ(0, memcmp(reference_buffers[i]->data(), buffer2->data(),
kReadBufferSize));
memset(buffer2->data(), 0, kReadBufferSize);
EXPECT_EQ(
kFinalReadSize,
ReadData(entry, i, kReadBufferSize, buffer2.get(), kReadBufferSize));
EXPECT_EQ(0, memcmp(reference_buffers[i]->data() + kReadBufferSize,
buffer2->data(), kFinalReadSize));
}
entry->Close();
}
TEST_F(DiskCacheEntryTest, StreamAccess) {
InitCache();
StreamAccess();
}
TEST_F(DiskCacheEntryTest, MemoryOnlyStreamAccess) {
SetMemoryOnlyMode();
InitCache();
StreamAccess();
}
void DiskCacheEntryTest::GetKey() {
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
EXPECT_EQ(key, entry->GetKey()) << "short key";
entry->Close();
int seed = static_cast<int>(Time::Now().ToInternalValue());
srand(seed);
char key_buffer[20000];
CacheTestFillBuffer(key_buffer, 3000, true);
key_buffer[1000] = '\0';
key = key_buffer;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
EXPECT_TRUE(key == entry->GetKey()) << "1000 bytes key";
entry->Close();
key_buffer[1000] = 'p';
key_buffer[3000] = '\0';
key = key_buffer;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
EXPECT_TRUE(key == entry->GetKey()) << "medium size key";
entry->Close();
CacheTestFillBuffer(key_buffer, sizeof(key_buffer), true);
key_buffer[19999] = '\0';
key = key_buffer;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
EXPECT_TRUE(key == entry->GetKey()) << "long key";
entry->Close();
CacheTestFillBuffer(key_buffer, 0x4000, true);
key_buffer[0x4000] = '\0';
key = key_buffer;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
EXPECT_TRUE(key == entry->GetKey()) << "16KB key";
entry->Close();
}
TEST_F(DiskCacheEntryTest, GetKey) {
InitCache();
GetKey();
}
TEST_F(DiskCacheEntryTest, MemoryOnlyGetKey) {
SetMemoryOnlyMode();
InitCache();
GetKey();
}
void DiskCacheEntryTest::GetTimes(int stream_index) {
std::string key("the first key");
disk_cache::Entry* entry;
Time t1 = Time::Now();
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
EXPECT_TRUE(entry->GetLastModified() >= t1);
EXPECT_TRUE(entry->GetLastModified() == entry->GetLastUsed());
AddDelay();
Time t2 = Time::Now();
EXPECT_TRUE(t2 > t1);
EXPECT_EQ(0, WriteData(entry, stream_index, 200, NULL, 0, false));
if (type_ == net::APP_CACHE) {
EXPECT_TRUE(entry->GetLastModified() < t2);
} else {
EXPECT_TRUE(entry->GetLastModified() >= t2);
}
EXPECT_TRUE(entry->GetLastModified() == entry->GetLastUsed());
AddDelay();
Time t3 = Time::Now();
EXPECT_TRUE(t3 > t2);
const int kSize = 200;
scoped_refptr<net::IOBuffer> buffer =
base::MakeRefCounted<net::IOBuffer>(kSize);
EXPECT_EQ(kSize, ReadData(entry, stream_index, 0, buffer.get(), kSize));
if (type_ == net::APP_CACHE) {
EXPECT_TRUE(entry->GetLastUsed() < t2);
EXPECT_TRUE(entry->GetLastModified() < t2);
} else if (type_ == net::SHADER_CACHE) {
EXPECT_TRUE(entry->GetLastUsed() < t3);
EXPECT_TRUE(entry->GetLastModified() < t3);
} else {
EXPECT_TRUE(entry->GetLastUsed() >= t3);
EXPECT_TRUE(entry->GetLastModified() < t3);
}
entry->Close();
}
TEST_F(DiskCacheEntryTest, GetTimes) {
InitCache();
GetTimes(0);
}
TEST_F(DiskCacheEntryTest, MemoryOnlyGetTimes) {
SetMemoryOnlyMode();
InitCache();
GetTimes(0);
}
TEST_F(DiskCacheEntryTest, AppCacheGetTimes) {
SetCacheType(net::APP_CACHE);
InitCache();
GetTimes(0);
}
TEST_F(DiskCacheEntryTest, ShaderCacheGetTimes) {
SetCacheType(net::SHADER_CACHE);
InitCache();
GetTimes(0);
}
void DiskCacheEntryTest::GrowData(int stream_index) {
std::string key1("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key1, &entry), IsOk());
const int kSize = 20000;
scoped_refptr<net::IOBuffer> buffer1 =
base::MakeRefCounted<net::IOBuffer>(kSize);
scoped_refptr<net::IOBuffer> buffer2 =
base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buffer1->data(), kSize, false);
memset(buffer2->data(), 0, kSize);
base::strlcpy(buffer1->data(), "the data", kSize);
EXPECT_EQ(10, WriteData(entry, stream_index, 0, buffer1.get(), 10, false));
EXPECT_EQ(10, ReadData(entry, stream_index, 0, buffer2.get(), 10));
EXPECT_STREQ("the data", buffer2->data());
EXPECT_EQ(10, entry->GetDataSize(stream_index));
EXPECT_EQ(2000,
WriteData(entry, stream_index, 0, buffer1.get(), 2000, false));
EXPECT_EQ(2000, entry->GetDataSize(stream_index));
EXPECT_EQ(2000, ReadData(entry, stream_index, 0, buffer2.get(), 2000));
EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000));
EXPECT_EQ(20000,
WriteData(entry, stream_index, 0, buffer1.get(), kSize, false));
EXPECT_EQ(20000, entry->GetDataSize(stream_index));
EXPECT_EQ(20000, ReadData(entry, stream_index, 0, buffer2.get(), kSize));
EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize));
entry->Close();
memset(buffer2->data(), 0, kSize);
std::string key2("Second key");
ASSERT_THAT(CreateEntry(key2, &entry), IsOk());
EXPECT_EQ(10, WriteData(entry, stream_index, 0, buffer1.get(), 10, false));
EXPECT_EQ(10, entry->GetDataSize(stream_index));
entry->Close();
// Go from an internal address to a bigger block size.
ASSERT_THAT(OpenEntry(key2, &entry), IsOk());
EXPECT_EQ(2000,
WriteData(entry, stream_index, 0, buffer1.get(), 2000, false));
EXPECT_EQ(2000, entry->GetDataSize(stream_index));
EXPECT_EQ(2000, ReadData(entry, stream_index, 0, buffer2.get(), 2000));
EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000));
entry->Close();
memset(buffer2->data(), 0, kSize);
// Go from an internal address to an external one.
ASSERT_THAT(OpenEntry(key2, &entry), IsOk());
EXPECT_EQ(20000,
WriteData(entry, stream_index, 0, buffer1.get(), kSize, false));
EXPECT_EQ(20000, entry->GetDataSize(stream_index));
EXPECT_EQ(20000, ReadData(entry, stream_index, 0, buffer2.get(), kSize));
EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize));
entry->Close();
// Double check the size from disk.
ASSERT_THAT(OpenEntry(key2, &entry), IsOk());
EXPECT_EQ(20000, entry->GetDataSize(stream_index));
// Now extend the entry without actual data.
EXPECT_EQ(0, WriteData(entry, stream_index, 45500, buffer1.get(), 0, false));
entry->Close();
// And check again from disk.
ASSERT_THAT(OpenEntry(key2, &entry), IsOk());
EXPECT_EQ(45500, entry->GetDataSize(stream_index));
entry->Close();
}
TEST_F(DiskCacheEntryTest, GrowData) {
InitCache();
GrowData(0);
}
TEST_F(DiskCacheEntryTest, GrowDataNoBuffer) {
InitCache();
cache_impl_->SetFlags(disk_cache::kNoBuffering);
GrowData(0);
}
TEST_F(DiskCacheEntryTest, MemoryOnlyGrowData) {
SetMemoryOnlyMode();
InitCache();
GrowData(0);
}
void DiskCacheEntryTest::TruncateData(int stream_index) {
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
const int kSize1 = 20000;
const int kSize2 = 20000;
scoped_refptr<net::IOBuffer> buffer1 =
base::MakeRefCounted<net::IOBuffer>(kSize1);
scoped_refptr<net::IOBuffer> buffer2 =
base::MakeRefCounted<net::IOBuffer>(kSize2);
CacheTestFillBuffer(buffer1->data(), kSize1, false);
memset(buffer2->data(), 0, kSize2);
// Simple truncation:
EXPECT_EQ(200, WriteData(entry, stream_index, 0, buffer1.get(), 200, false));
EXPECT_EQ(200, entry->GetDataSize(stream_index));
EXPECT_EQ(100, WriteData(entry, stream_index, 0, buffer1.get(), 100, false));
EXPECT_EQ(200, entry->GetDataSize(stream_index));
EXPECT_EQ(100, WriteData(entry, stream_index, 0, buffer1.get(), 100, true));
EXPECT_EQ(100, entry->GetDataSize(stream_index));
EXPECT_EQ(0, WriteData(entry, stream_index, 50, buffer1.get(), 0, true));
EXPECT_EQ(50, entry->GetDataSize(stream_index));
EXPECT_EQ(0, WriteData(entry, stream_index, 0, buffer1.get(), 0, true));
EXPECT_EQ(0, entry->GetDataSize(stream_index));
entry->Close();
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
// Go to an external file.
EXPECT_EQ(20000,
WriteData(entry, stream_index, 0, buffer1.get(), 20000, true));
EXPECT_EQ(20000, entry->GetDataSize(stream_index));
EXPECT_EQ(20000, ReadData(entry, stream_index, 0, buffer2.get(), 20000));
EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 20000));
memset(buffer2->data(), 0, kSize2);
// External file truncation
EXPECT_EQ(18000,
WriteData(entry, stream_index, 0, buffer1.get(), 18000, false));
EXPECT_EQ(20000, entry->GetDataSize(stream_index));
EXPECT_EQ(18000,
WriteData(entry, stream_index, 0, buffer1.get(), 18000, true));
EXPECT_EQ(18000, entry->GetDataSize(stream_index));
EXPECT_EQ(0, WriteData(entry, stream_index, 17500, buffer1.get(), 0, true));
EXPECT_EQ(17500, entry->GetDataSize(stream_index));
// And back to an internal block.
EXPECT_EQ(600,
WriteData(entry, stream_index, 1000, buffer1.get(), 600, true));
EXPECT_EQ(1600, entry->GetDataSize(stream_index));
EXPECT_EQ(600, ReadData(entry, stream_index, 1000, buffer2.get(), 600));
EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 600));
EXPECT_EQ(1000, ReadData(entry, stream_index, 0, buffer2.get(), 1000));
EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 1000))
<< "Preserves previous data";
// Go from external file to zero length.
EXPECT_EQ(20000,
WriteData(entry, stream_index, 0, buffer1.get(), 20000, true));
EXPECT_EQ(20000, entry->GetDataSize(stream_index));
EXPECT_EQ(0, WriteData(entry, stream_index, 0, buffer1.get(), 0, true));
EXPECT_EQ(0, entry->GetDataSize(stream_index));
entry->Close();
}
TEST_F(DiskCacheEntryTest, TruncateData) {
InitCache();
TruncateData(0);
}
TEST_F(DiskCacheEntryTest, TruncateDataNoBuffer) {
InitCache();
cache_impl_->SetFlags(disk_cache::kNoBuffering);
TruncateData(0);
}
TEST_F(DiskCacheEntryTest, MemoryOnlyTruncateData) {
SetMemoryOnlyMode();
InitCache();
TruncateData(0);
}
void DiskCacheEntryTest::ZeroLengthIO(int stream_index) {
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
EXPECT_EQ(0, ReadData(entry, stream_index, 0, NULL, 0));
EXPECT_EQ(0, WriteData(entry, stream_index, 0, NULL, 0, false));
// This write should extend the entry.
EXPECT_EQ(0, WriteData(entry, stream_index, 1000, NULL, 0, false));
EXPECT_EQ(0, ReadData(entry, stream_index, 500, NULL, 0));
EXPECT_EQ(0, ReadData(entry, stream_index, 2000, NULL, 0));
EXPECT_EQ(1000, entry->GetDataSize(stream_index));
EXPECT_EQ(0, WriteData(entry, stream_index, 100000, NULL, 0, true));
EXPECT_EQ(0, ReadData(entry, stream_index, 50000, NULL, 0));
EXPECT_EQ(100000, entry->GetDataSize(stream_index));
// Let's verify the actual content.
const int kSize = 20;
const char zeros[kSize] = {};
scoped_refptr<net::IOBuffer> buffer =
base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buffer->data(), kSize, false);
EXPECT_EQ(kSize, ReadData(entry, stream_index, 500, buffer.get(), kSize));
EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize));
CacheTestFillBuffer(buffer->data(), kSize, false);
EXPECT_EQ(kSize, ReadData(entry, stream_index, 5000, buffer.get(), kSize));
EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize));
CacheTestFillBuffer(buffer->data(), kSize, false);
EXPECT_EQ(kSize, ReadData(entry, stream_index, 50000, buffer.get(), kSize));
EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize));
entry->Close();
}
TEST_F(DiskCacheEntryTest, ZeroLengthIO) {
InitCache();
ZeroLengthIO(0);
}
TEST_F(DiskCacheEntryTest, ZeroLengthIONoBuffer) {
InitCache();
cache_impl_->SetFlags(disk_cache::kNoBuffering);
ZeroLengthIO(0);
}
TEST_F(DiskCacheEntryTest, MemoryOnlyZeroLengthIO) {
SetMemoryOnlyMode();
InitCache();
ZeroLengthIO(0);
}
// Tests that we handle the content correctly when buffering, a feature of the
// standard cache that permits fast responses to certain reads.
void DiskCacheEntryTest::Buffering() {
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
const int kSize = 200;
scoped_refptr<net::IOBuffer> buffer1 =
base::MakeRefCounted<net::IOBuffer>(kSize);
scoped_refptr<net::IOBuffer> buffer2 =
base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buffer1->data(), kSize, true);
CacheTestFillBuffer(buffer2->data(), kSize, true);
EXPECT_EQ(kSize, WriteData(entry, 1, 0, buffer1.get(), kSize, false));
entry->Close();
// Write a little more and read what we wrote before.
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
EXPECT_EQ(kSize, WriteData(entry, 1, 5000, buffer1.get(), kSize, false));
EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2.get(), kSize));
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
// Now go to an external file.
EXPECT_EQ(kSize, WriteData(entry, 1, 18000, buffer1.get(), kSize, false));
entry->Close();
// Write something else and verify old data.
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
EXPECT_EQ(kSize, WriteData(entry, 1, 10000, buffer1.get(), kSize, false));
CacheTestFillBuffer(buffer2->data(), kSize, true);
EXPECT_EQ(kSize, ReadData(entry, 1, 5000, buffer2.get(), kSize));
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
CacheTestFillBuffer(buffer2->data(), kSize, true);
EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2.get(), kSize));
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
CacheTestFillBuffer(buffer2->data(), kSize, true);
EXPECT_EQ(kSize, ReadData(entry, 1, 18000, buffer2.get(), kSize));
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
// Extend the file some more.
EXPECT_EQ(kSize, WriteData(entry, 1, 23000, buffer1.get(), kSize, false));
entry->Close();
// And now make sure that we can deal with data in both places (ram/disk).
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
EXPECT_EQ(kSize, WriteData(entry, 1, 17000, buffer1.get(), kSize, false));
// We should not overwrite the data at 18000 with this.
EXPECT_EQ(kSize, WriteData(entry, 1, 19000, buffer1.get(), kSize, false));
CacheTestFillBuffer(buffer2->data(), kSize, true);
EXPECT_EQ(kSize, ReadData(entry, 1, 18000, buffer2.get(), kSize));
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
CacheTestFillBuffer(buffer2->data(), kSize, true);
EXPECT_EQ(kSize, ReadData(entry, 1, 17000, buffer2.get(), kSize));
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
EXPECT_EQ(kSize, WriteData(entry, 1, 22900, buffer1.get(), kSize, false));
CacheTestFillBuffer(buffer2->data(), kSize, true);
EXPECT_EQ(100, ReadData(entry, 1, 23000, buffer2.get(), kSize));
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + 100, 100));
CacheTestFillBuffer(buffer2->data(), kSize, true);
EXPECT_EQ(100, ReadData(entry, 1, 23100, buffer2.get(), kSize));
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + 100, 100));
// Extend the file again and read before without closing the entry.
EXPECT_EQ(kSize, WriteData(entry, 1, 25000, buffer1.get(), kSize, false));
EXPECT_EQ(kSize, WriteData(entry, 1, 45000, buffer1.get(), kSize, false));
CacheTestFillBuffer(buffer2->data(), kSize, true);
EXPECT_EQ(kSize, ReadData(entry, 1, 25000, buffer2.get(), kSize));
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
CacheTestFillBuffer(buffer2->data(), kSize, true);
EXPECT_EQ(kSize, ReadData(entry, 1, 45000, buffer2.get(), kSize));
EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize));
entry->Close();
}
TEST_F(DiskCacheEntryTest, Buffering) {
InitCache();
Buffering();
}
TEST_F(DiskCacheEntryTest, BufferingNoBuffer) {
InitCache();
cache_impl_->SetFlags(disk_cache::kNoBuffering);
Buffering();
}
// Checks that entries are zero length when created.
void DiskCacheEntryTest::SizeAtCreate() {
const char key[] = "the first key";
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
const int kNumStreams = 3;
for (int i = 0; i < kNumStreams; ++i)
EXPECT_EQ(0, entry->GetDataSize(i));
entry->Close();
}
TEST_F(DiskCacheEntryTest, SizeAtCreate) {
InitCache();
SizeAtCreate();
}
TEST_F(DiskCacheEntryTest, MemoryOnlySizeAtCreate) {
SetMemoryOnlyMode();
InitCache();
SizeAtCreate();
}
// Some extra tests to make sure that buffering works properly when changing
// the entry size.
void DiskCacheEntryTest::SizeChanges(int stream_index) {
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
const int kSize = 200;
const char zeros[kSize] = {};
scoped_refptr<net::IOBuffer> buffer1 =
base::MakeRefCounted<net::IOBuffer>(kSize);
scoped_refptr<net::IOBuffer> buffer2 =
base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buffer1->data(), kSize, true);
CacheTestFillBuffer(buffer2->data(), kSize, true);
EXPECT_EQ(kSize,
WriteData(entry, stream_index, 0, buffer1.get(), kSize, true));
EXPECT_EQ(kSize,
WriteData(entry, stream_index, 17000, buffer1.get(), kSize, true));
EXPECT_EQ(kSize,
WriteData(entry, stream_index, 23000, buffer1.get(), kSize, true));
entry->Close();
// Extend the file and read between the old size and the new write.
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
EXPECT_EQ(23000 + kSize, entry->GetDataSize(stream_index));
EXPECT_EQ(kSize,
WriteData(entry, stream_index, 25000, buffer1.get(), kSize, true));
EXPECT_EQ(25000 + kSize, entry->GetDataSize(stream_index));
EXPECT_EQ(kSize, ReadData(entry, stream_index, 24000, buffer2.get(), kSize));
EXPECT_TRUE(!memcmp(buffer2->data(), zeros, kSize));
// Read at the end of the old file size.
EXPECT_EQ(
kSize,
ReadData(entry, stream_index, 23000 + kSize - 35, buffer2.get(), kSize));
EXPECT_TRUE(
!memcmp(buffer2->data(), buffer1->data() + kSize - 35, 35));
// Read slightly before the last write.
CacheTestFillBuffer(buffer2->data(), kSize, true);
EXPECT_EQ(kSize, ReadData(entry, stream_index, 24900, buffer2.get(), kSize));
EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
EXPECT_TRUE(
!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
// Extend the entry a little more.
EXPECT_EQ(kSize,
WriteData(entry, stream_index, 26000, buffer1.get(), kSize, true));
EXPECT_EQ(26000 + kSize, entry->GetDataSize(stream_index));
CacheTestFillBuffer(buffer2->data(), kSize, true);
EXPECT_EQ(kSize, ReadData(entry, stream_index, 25900, buffer2.get(), kSize));
EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
EXPECT_TRUE(
!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
// And now reduce the size.
EXPECT_EQ(kSize,
WriteData(entry, stream_index, 25000, buffer1.get(), kSize, true));
EXPECT_EQ(25000 + kSize, entry->GetDataSize(stream_index));
EXPECT_EQ(
28,
ReadData(entry, stream_index, 25000 + kSize - 28, buffer2.get(), kSize));
EXPECT_TRUE(
!memcmp(buffer2->data(), buffer1->data() + kSize - 28, 28));
// Reduce the size with a buffer that is not extending the size.
EXPECT_EQ(kSize,
WriteData(entry, stream_index, 24000, buffer1.get(), kSize, false));
EXPECT_EQ(25000 + kSize, entry->GetDataSize(stream_index));
EXPECT_EQ(kSize,
WriteData(entry, stream_index, 24500, buffer1.get(), kSize, true));
EXPECT_EQ(24500 + kSize, entry->GetDataSize(stream_index));
EXPECT_EQ(kSize, ReadData(entry, stream_index, 23900, buffer2.get(), kSize));
EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
EXPECT_TRUE(
!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
// And now reduce the size below the old size.
EXPECT_EQ(kSize,
WriteData(entry, stream_index, 19000, buffer1.get(), kSize, true));
EXPECT_EQ(19000 + kSize, entry->GetDataSize(stream_index));
EXPECT_EQ(kSize, ReadData(entry, stream_index, 18900, buffer2.get(), kSize));
EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100));
EXPECT_TRUE(
!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100));
// Verify that the actual file is truncated.
entry->Close();
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
EXPECT_EQ(19000 + kSize, entry->GetDataSize(stream_index));
// Extend the newly opened file with a zero length write, expect zero fill.
EXPECT_EQ(
0,
WriteData(entry, stream_index, 20000 + kSize, buffer1.get(), 0, false));
EXPECT_EQ(kSize,
ReadData(entry, stream_index, 19000 + kSize, buffer1.get(), kSize));
EXPECT_EQ(0, memcmp(buffer1->data(), zeros, kSize));
entry->Close();
}
TEST_F(DiskCacheEntryTest, SizeChanges) {
InitCache();
SizeChanges(1);
}
TEST_F(DiskCacheEntryTest, SizeChangesNoBuffer) {
InitCache();
cache_impl_->SetFlags(disk_cache::kNoBuffering);
SizeChanges(1);
}
// Write more than the total cache capacity but to a single entry. |size| is the
// amount of bytes to write each time.
void DiskCacheEntryTest::ReuseEntry(int size, int stream_index) {
std::string key1("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key1, &entry), IsOk());
entry->Close();
std::string key2("the second key");
ASSERT_THAT(CreateEntry(key2, &entry), IsOk());
scoped_refptr<net::IOBuffer> buffer =
base::MakeRefCounted<net::IOBuffer>(size);
CacheTestFillBuffer(buffer->data(), size, false);
for (int i = 0; i < 15; i++) {
EXPECT_EQ(0, WriteData(entry, stream_index, 0, buffer.get(), 0, true));
EXPECT_EQ(size,
WriteData(entry, stream_index, 0, buffer.get(), size, false));
entry->Close();
ASSERT_THAT(OpenEntry(key2, &entry), IsOk());
}
entry->Close();
ASSERT_EQ(net::OK, OpenEntry(key1, &entry)) << "have not evicted this entry";
entry->Close();
}
TEST_F(DiskCacheEntryTest, ReuseExternalEntry) {
SetMaxSize(200 * 1024);
InitCache();
ReuseEntry(20 * 1024, 0);
}
TEST_F(DiskCacheEntryTest, MemoryOnlyReuseExternalEntry) {
SetMemoryOnlyMode();
SetMaxSize(200 * 1024);
InitCache();
ReuseEntry(20 * 1024, 0);
}
TEST_F(DiskCacheEntryTest, ReuseInternalEntry) {
SetMaxSize(100 * 1024);
InitCache();
ReuseEntry(10 * 1024, 0);
}
TEST_F(DiskCacheEntryTest, MemoryOnlyReuseInternalEntry) {
SetMemoryOnlyMode();
SetMaxSize(100 * 1024);
InitCache();
ReuseEntry(10 * 1024, 0);
}
// Reading somewhere that was not written should return zeros.
void DiskCacheEntryTest::InvalidData(int stream_index) {
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
const int kSize1 = 20000;
const int kSize2 = 20000;
const int kSize3 = 20000;
scoped_refptr<net::IOBuffer> buffer1 =
base::MakeRefCounted<net::IOBuffer>(kSize1);
scoped_refptr<net::IOBuffer> buffer2 =
base::MakeRefCounted<net::IOBuffer>(kSize2);
scoped_refptr<net::IOBuffer> buffer3 =
base::MakeRefCounted<net::IOBuffer>(kSize3);
CacheTestFillBuffer(buffer1->data(), kSize1, false);
memset(buffer2->data(), 0, kSize2);
// Simple data grow:
EXPECT_EQ(200,
WriteData(entry, stream_index, 400, buffer1.get(), 200, false));
EXPECT_EQ(600, entry->GetDataSize(stream_index));
EXPECT_EQ(100, ReadData(entry, stream_index, 300, buffer3.get(), 100));
EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100));
entry->Close();
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
// The entry is now on disk. Load it and extend it.
EXPECT_EQ(200,
WriteData(entry, stream_index, 800, buffer1.get(), 200, false));
EXPECT_EQ(1000, entry->GetDataSize(stream_index));
EXPECT_EQ(100, ReadData(entry, stream_index, 700, buffer3.get(), 100));
EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100));
entry->Close();
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
// This time using truncate.
EXPECT_EQ(200,
WriteData(entry, stream_index, 1800, buffer1.get(), 200, true));
EXPECT_EQ(2000, entry->GetDataSize(stream_index));
EXPECT_EQ(100, ReadData(entry, stream_index, 1500, buffer3.get(), 100));
EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100));
// Go to an external file.
EXPECT_EQ(200,
WriteData(entry, stream_index, 19800, buffer1.get(), 200, false));
EXPECT_EQ(20000, entry->GetDataSize(stream_index));
EXPECT_EQ(4000, ReadData(entry, stream_index, 14000, buffer3.get(), 4000));
EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 4000));
// And back to an internal block.
EXPECT_EQ(600,
WriteData(entry, stream_index, 1000, buffer1.get(), 600, true));
EXPECT_EQ(1600, entry->GetDataSize(stream_index));
EXPECT_EQ(600, ReadData(entry, stream_index, 1000, buffer3.get(), 600));
EXPECT_TRUE(!memcmp(buffer3->data(), buffer1->data(), 600));
// Extend it again.
EXPECT_EQ(600,
WriteData(entry, stream_index, 2000, buffer1.get(), 600, false));
EXPECT_EQ(2600, entry->GetDataSize(stream_index));
EXPECT_EQ(200, ReadData(entry, stream_index, 1800, buffer3.get(), 200));
EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200));
// And again (with truncation flag).
EXPECT_EQ(600,
WriteData(entry, stream_index, 3000, buffer1.get(), 600, true));
EXPECT_EQ(3600, entry->GetDataSize(stream_index));
EXPECT_EQ(200, ReadData(entry, stream_index, 2800, buffer3.get(), 200));
EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200));
entry->Close();
}
TEST_F(DiskCacheEntryTest, InvalidData) {
InitCache();
InvalidData(0);
}
TEST_F(DiskCacheEntryTest, InvalidDataNoBuffer) {
InitCache();
cache_impl_->SetFlags(disk_cache::kNoBuffering);
InvalidData(0);
}
TEST_F(DiskCacheEntryTest, MemoryOnlyInvalidData) {
SetMemoryOnlyMode();
InitCache();
InvalidData(0);
}
// Tests that the cache preserves the buffer of an IO operation.
void DiskCacheEntryTest::ReadWriteDestroyBuffer(int stream_index) {
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
const int kSize = 200;
scoped_refptr<net::IOBuffer> buffer =
base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buffer->data(), kSize, false);
net::TestCompletionCallback cb;
EXPECT_EQ(net::ERR_IO_PENDING,
entry->WriteData(
stream_index, 0, buffer.get(), kSize, cb.callback(), false));
// Release our reference to the buffer.
buffer = NULL;
EXPECT_EQ(kSize, cb.WaitForResult());
// And now test with a Read().
buffer = base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buffer->data(), kSize, false);
EXPECT_EQ(
net::ERR_IO_PENDING,
entry->ReadData(stream_index, 0, buffer.get(), kSize, cb.callback()));
buffer = NULL;
EXPECT_EQ(kSize, cb.WaitForResult());
entry->Close();
}
TEST_F(DiskCacheEntryTest, ReadWriteDestroyBuffer) {
InitCache();
ReadWriteDestroyBuffer(0);
}
void DiskCacheEntryTest::DoomNormalEntry() {
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
entry->Doom();
entry->Close();
const int kSize = 20000;
scoped_refptr<net::IOBuffer> buffer =
base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buffer->data(), kSize, true);
buffer->data()[19999] = '\0';
key = buffer->data();
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer.get(), kSize, false));
EXPECT_EQ(20000, WriteData(entry, 1, 0, buffer.get(), kSize, false));
entry->Doom();
entry->Close();
FlushQueueForTest();
EXPECT_EQ(0, cache_->GetEntryCount());
}
TEST_F(DiskCacheEntryTest, DoomEntry) {
InitCache();
DoomNormalEntry();
}
TEST_F(DiskCacheEntryTest, MemoryOnlyDoomEntry) {
SetMemoryOnlyMode();
InitCache();
DoomNormalEntry();
}
// Tests dooming an entry that's linked to an open entry.
void DiskCacheEntryTest::DoomEntryNextToOpenEntry() {
disk_cache::Entry* entry1;
disk_cache::Entry* entry2;
ASSERT_THAT(CreateEntry("fixed", &entry1), IsOk());
entry1->Close();
ASSERT_THAT(CreateEntry("foo", &entry1), IsOk());
entry1->Close();
ASSERT_THAT(CreateEntry("bar", &entry1), IsOk());
entry1->Close();
ASSERT_THAT(OpenEntry("foo", &entry1), IsOk());
ASSERT_THAT(OpenEntry("bar", &entry2), IsOk());
entry2->Doom();
entry2->Close();
ASSERT_THAT(OpenEntry("foo", &entry2), IsOk());
entry2->Doom();
entry2->Close();
entry1->Close();
ASSERT_THAT(OpenEntry("fixed", &entry1), IsOk());
entry1->Close();
}
TEST_F(DiskCacheEntryTest, DoomEntryNextToOpenEntry) {
InitCache();
DoomEntryNextToOpenEntry();
}
TEST_F(DiskCacheEntryTest, NewEvictionDoomEntryNextToOpenEntry) {
SetNewEviction();
InitCache();
DoomEntryNextToOpenEntry();
}
TEST_F(DiskCacheEntryTest, AppCacheDoomEntryNextToOpenEntry) {
SetCacheType(net::APP_CACHE);
InitCache();
DoomEntryNextToOpenEntry();
}
// Verify that basic operations work as expected with doomed entries.
void DiskCacheEntryTest::DoomedEntry(int stream_index) {
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
entry->Doom();
FlushQueueForTest();
EXPECT_EQ(0, cache_->GetEntryCount());
Time initial = Time::Now();
AddDelay();
const int kSize1 = 2000;
const int kSize2 = 2000;
scoped_refptr<net::IOBuffer> buffer1 =
base::MakeRefCounted<net::IOBuffer>(kSize1);
scoped_refptr<net::IOBuffer> buffer2 =
base::MakeRefCounted<net::IOBuffer>(kSize2);
CacheTestFillBuffer(buffer1->data(), kSize1, false);
memset(buffer2->data(), 0, kSize2);
EXPECT_EQ(2000,
WriteData(entry, stream_index, 0, buffer1.get(), 2000, false));
EXPECT_EQ(2000, ReadData(entry, stream_index, 0, buffer2.get(), 2000));
EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kSize1));
EXPECT_EQ(key, entry->GetKey());
EXPECT_TRUE(initial < entry->GetLastModified());
EXPECT_TRUE(initial < entry->GetLastUsed());
entry->Close();
}
TEST_F(DiskCacheEntryTest, DoomedEntry) {
InitCache();
DoomedEntry(0);
}
TEST_F(DiskCacheEntryTest, MemoryOnlyDoomedEntry) {
SetMemoryOnlyMode();
InitCache();
DoomedEntry(0);
}
// Tests that we discard entries if the data is missing.
TEST_F(DiskCacheEntryTest, MissingData) {
InitCache();
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
// Write to an external file.
const int kSize = 20000;
scoped_refptr<net::IOBuffer> buffer =
base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buffer->data(), kSize, false);
EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer.get(), kSize, false));
entry->Close();
FlushQueueForTest();
disk_cache::Addr address(0x80000001);
base::FilePath name = cache_impl_->GetFileName(address);
EXPECT_TRUE(base::DeleteFile(name, false));
// Attempt to read the data.
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
EXPECT_EQ(net::ERR_FILE_NOT_FOUND,
ReadData(entry, 0, 0, buffer.get(), kSize));
entry->Close();
// The entry should be gone.
ASSERT_NE(net::OK, OpenEntry(key, &entry));
}
// Test that child entries in a memory cache backend are not visible from
// enumerations.
TEST_F(DiskCacheEntryTest, MemoryOnlyEnumerationWithSparseEntries) {
SetMemoryOnlyMode();
InitCache();
const int kSize = 4096;
scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buf->data(), kSize, false);
std::string key("the first key");
disk_cache::Entry* parent_entry;
ASSERT_THAT(CreateEntry(key, &parent_entry), IsOk());
// Writes to the parent entry.
EXPECT_EQ(kSize, parent_entry->WriteSparseData(
0, buf.get(), kSize, net::CompletionOnceCallback()));
// This write creates a child entry and writes to it.
EXPECT_EQ(kSize, parent_entry->WriteSparseData(
8192, buf.get(), kSize, net::CompletionOnceCallback()));
parent_entry->Close();
// Perform the enumerations.
std::unique_ptr<TestIterator> iter = CreateIterator();
disk_cache::Entry* entry = NULL;
int count = 0;
while (iter->OpenNextEntry(&entry) == net::OK) {
ASSERT_TRUE(entry != NULL);
++count;
disk_cache::MemEntryImpl* mem_entry =
reinterpret_cast<disk_cache::MemEntryImpl*>(entry);
EXPECT_EQ(disk_cache::MemEntryImpl::PARENT_ENTRY, mem_entry->type());
mem_entry->Close();
}
EXPECT_EQ(1, count);
}
// Writes |buf_1| to offset and reads it back as |buf_2|.
void VerifySparseIO(disk_cache::Entry* entry,
int64_t offset,
net::IOBuffer* buf_1,
int size,
net::IOBuffer* buf_2) {
net::TestCompletionCallback cb;
memset(buf_2->data(), 0, size);
int ret = entry->ReadSparseData(offset, buf_2, size, cb.callback());
EXPECT_EQ(0, cb.GetResult(ret));
ret = entry->WriteSparseData(offset, buf_1, size, cb.callback());
EXPECT_EQ(size, cb.GetResult(ret));
ret = entry->ReadSparseData(offset, buf_2, size, cb.callback());
EXPECT_EQ(size, cb.GetResult(ret));
EXPECT_EQ(0, memcmp(buf_1->data(), buf_2->data(), size));
}
// Reads |size| bytes from |entry| at |offset| and verifies that they are the
// same as the content of the provided |buffer|.
void VerifyContentSparseIO(disk_cache::Entry* entry,
int64_t offset,
char* buffer,
int size) {
net::TestCompletionCallback cb;
scoped_refptr<net::IOBuffer> buf_1 =
base::MakeRefCounted<net::IOBuffer>(size);
memset(buf_1->data(), 0, size);
int ret = entry->ReadSparseData(offset, buf_1.get(), size, cb.callback());
EXPECT_EQ(size, cb.GetResult(ret));
EXPECT_EQ(0, memcmp(buf_1->data(), buffer, size));
}
void DiskCacheEntryTest::BasicSparseIO() {
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
const int kSize = 2048;
scoped_refptr<net::IOBuffer> buf_1 =
base::MakeRefCounted<net::IOBuffer>(kSize);
scoped_refptr<net::IOBuffer> buf_2 =
base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buf_1->data(), kSize, false);
// Write at offset 0.
VerifySparseIO(entry, 0, buf_1.get(), kSize, buf_2.get());
// Write at offset 0x400000 (4 MB).
VerifySparseIO(entry, 0x400000, buf_1.get(), kSize, buf_2.get());
// Write at offset 0x800000000 (32 GB).
VerifySparseIO(entry, 0x800000000LL, buf_1.get(), kSize, buf_2.get());
entry->Close();
// Check everything again.
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
VerifyContentSparseIO(entry, 0, buf_1->data(), kSize);
VerifyContentSparseIO(entry, 0x400000, buf_1->data(), kSize);
VerifyContentSparseIO(entry, 0x800000000LL, buf_1->data(), kSize);
entry->Close();
}
TEST_F(DiskCacheEntryTest, BasicSparseIO) {
InitCache();
BasicSparseIO();
}
TEST_F(DiskCacheEntryTest, MemoryOnlyBasicSparseIO) {
SetMemoryOnlyMode();
InitCache();
BasicSparseIO();
}
void DiskCacheEntryTest::HugeSparseIO() {
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
// Write 1.2 MB so that we cover multiple entries.
const int kSize = 1200 * 1024;
scoped_refptr<net::IOBuffer> buf_1 =
base::MakeRefCounted<net::IOBuffer>(kSize);
scoped_refptr<net::IOBuffer> buf_2 =
base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buf_1->data(), kSize, false);
// Write at offset 0x20F0000 (33 MB - 64 KB).
VerifySparseIO(entry, 0x20F0000, buf_1.get(), kSize, buf_2.get());
entry->Close();
// Check it again.
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
VerifyContentSparseIO(entry, 0x20F0000, buf_1->data(), kSize);
entry->Close();
}
TEST_F(DiskCacheEntryTest, HugeSparseIO) {
InitCache();
HugeSparseIO();
}
TEST_F(DiskCacheEntryTest, MemoryOnlyHugeSparseIO) {
SetMemoryOnlyMode();
InitCache();
HugeSparseIO();
}
void DiskCacheEntryTest::GetAvailableRange() {
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
const int kSize = 16 * 1024;
scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buf->data(), kSize, false);
// Write at offset 0x20F0000 (33 MB - 64 KB), and 0x20F4400 (33 MB - 47 KB).
EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F0000, buf.get(), kSize));
EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F4400, buf.get(), kSize));
// We stop at the first empty block.
int64_t start;
net::TestCompletionCallback cb;
int rv = entry->GetAvailableRange(
0x20F0000, kSize * 2, &start, cb.callback());
EXPECT_EQ(kSize, cb.GetResult(rv));
EXPECT_EQ(0x20F0000, start);
start = 0;
rv = entry->GetAvailableRange(0, kSize, &start, cb.callback());
EXPECT_EQ(0, cb.GetResult(rv));
rv = entry->GetAvailableRange(
0x20F0000 - kSize, kSize, &start, cb.callback());
EXPECT_EQ(0, cb.GetResult(rv));
rv = entry->GetAvailableRange(0, 0x2100000, &start, cb.callback());
EXPECT_EQ(kSize, cb.GetResult(rv));
EXPECT_EQ(0x20F0000, start);
// We should be able to Read based on the results of GetAvailableRange.
start = -1;
rv = entry->GetAvailableRange(0x2100000, kSize, &start, cb.callback());
EXPECT_EQ(0, cb.GetResult(rv));
rv = entry->ReadSparseData(start, buf.get(), kSize, cb.callback());
EXPECT_EQ(0, cb.GetResult(rv));
start = 0;
rv = entry->GetAvailableRange(0x20F2000, kSize, &start, cb.callback());
EXPECT_EQ(0x2000, cb.GetResult(rv));
EXPECT_EQ(0x20F2000, start);
EXPECT_EQ(0x2000, ReadSparseData(entry, start, buf.get(), kSize));
// Make sure that we respect the |len| argument.
start = 0;
rv = entry->GetAvailableRange(
0x20F0001 - kSize, kSize, &start, cb.callback());
EXPECT_EQ(1, cb.GetResult(rv));
EXPECT_EQ(0x20F0000, start);
// Use very small ranges. Write at offset 50.
const int kTinyLen = 10;
EXPECT_EQ(kTinyLen, WriteSparseData(entry, 50, buf.get(), kTinyLen));
start = -1;
rv = entry->GetAvailableRange(kTinyLen * 2, kTinyLen, &start, cb.callback());
EXPECT_EQ(0, cb.GetResult(rv));
EXPECT_EQ(kTinyLen * 2, start);
// Get a huge range with maximum boundary
start = -1;
rv = entry->GetAvailableRange(0x2100000, std::numeric_limits<int32_t>::max(),
&start, cb.callback());
EXPECT_EQ(0, cb.GetResult(rv));
entry->Close();
}
TEST_F(DiskCacheEntryTest, GetAvailableRange) {
InitCache();
GetAvailableRange();
}
TEST_F(DiskCacheEntryTest, MemoryOnlyGetAvailableRange) {
SetMemoryOnlyMode();
InitCache();
GetAvailableRange();
}
TEST_F(DiskCacheEntryTest, GetAvailableRangeBlockFileDiscontinuous) {
// crbug.com/791056 --- blockfile problem when there is a sub-KiB write before
// a bunch of full 1KiB blocks, and a GetAvailableRange is issued to which
// both are a potentially relevant.
InitCache();
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
scoped_refptr<net::IOBuffer> buf_2k =
base::MakeRefCounted<net::IOBuffer>(2 * 1024);
CacheTestFillBuffer(buf_2k->data(), 2 * 1024, false);
const int kSmallSize = 612; // sub-1k
scoped_refptr<net::IOBuffer> buf_small =
base::MakeRefCounted<net::IOBuffer>(kSmallSize);
CacheTestFillBuffer(buf_small->data(), kSmallSize, false);
// Sets some bits for blocks representing 1K ranges [1024, 3072),
// which will be relevant for the next GetAvailableRange call.
EXPECT_EQ(2 * 1024, WriteSparseData(entry, /* offset = */ 1024, buf_2k.get(),
/* size = */ 2 * 1024));
// Now record a partial write from start of the first kb.
EXPECT_EQ(kSmallSize, WriteSparseData(entry, /* offset = */ 0,
buf_small.get(), kSmallSize));
// Try to query a range starting from that block 0.
// The cache tracks: [0, 612) [1024, 3072).
// The request is for: [812, 2059) so response should be [1024, 2059), which
// has lenth = 1035. Previously this return a negative number for rv.
int64_t start = -1;
net::TestCompletionCallback cb;
int rv = entry->GetAvailableRange(812, 1247, &start, cb.callback());
EXPECT_EQ(1035, cb.GetResult(rv));
EXPECT_EQ(1024, start);
// Now query [512, 1536). This matches both [512, 612) and [1024, 1536),
// so this should return [512, 612).
rv = entry->GetAvailableRange(512, 1024, &start, cb.callback());
EXPECT_EQ(100, cb.GetResult(rv));
EXPECT_EQ(512, start);
// Now query next portion, [612, 1636). This now just should produce
// [1024, 1636)
rv = entry->GetAvailableRange(612, 1024, &start, cb.callback());
EXPECT_EQ(612, cb.GetResult(rv));
EXPECT_EQ(1024, start);
// Do a continuous small write, this one at [3072, 3684).
// This means the cache tracks [1024, 3072) via bitmaps and [3072, 3684)
// as the last write.
EXPECT_EQ(kSmallSize, WriteSparseData(entry, /* offset = */ 3072,
buf_small.get(), kSmallSize));
// Query [2048, 4096). Should get [2048, 3684)
rv = entry->GetAvailableRange(2048, 2048, &start, cb.callback());
EXPECT_EQ(1636, cb.GetResult(rv));
EXPECT_EQ(2048, start);
// Now write at [4096, 4708). Since only one sub-kb thing is tracked, this
// now tracks [1024, 3072) via bitmaps and [4096, 4708) as the last write.
EXPECT_EQ(kSmallSize, WriteSparseData(entry, /* offset = */ 4096,
buf_small.get(), kSmallSize));
// Query [2048, 4096). Should get [2048, 3072)
rv = entry->GetAvailableRange(2048, 2048, &start, cb.callback());
EXPECT_EQ(1024, cb.GetResult(rv));
EXPECT_EQ(2048, start);
// Query 2K more after that: [3072, 5120). Should get [4096, 4708)
rv = entry->GetAvailableRange(3072, 2048, &start, cb.callback());
EXPECT_EQ(612, cb.GetResult(rv));
EXPECT_EQ(4096, start);
// Also double-check that offsets within later children are correctly
// computed.
EXPECT_EQ(kSmallSize, WriteSparseData(entry, /* offset = */ 0x200400,
buf_small.get(), kSmallSize));
rv = entry->GetAvailableRange(0x100000, 0x200000, &start, cb.callback());
EXPECT_EQ(kSmallSize, cb.GetResult(rv));
EXPECT_EQ(0x200400, start);
entry->Close();
}
// Tests that non-sequential writes that are not aligned with the minimum sparse
// data granularity (1024 bytes) do in fact result in dropped data.
TEST_F(DiskCacheEntryTest, SparseWriteDropped) {
InitCache();
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
const int kSize = 180;
scoped_refptr<net::IOBuffer> buf_1 =
base::MakeRefCounted<net::IOBuffer>(kSize);
scoped_refptr<net::IOBuffer> buf_2 =
base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buf_1->data(), kSize, false);
// Do small writes (180 bytes) that get increasingly close to a 1024-byte
// boundary. All data should be dropped until a boundary is crossed, at which
// point the data after the boundary is saved (at least for a while).
int offset = 1024 - 500;
int rv = 0;
net::TestCompletionCallback cb;
int64_t start;
for (int i = 0; i < 5; i++) {
// Check result of last GetAvailableRange.
EXPECT_EQ(0, rv);
rv = entry->WriteSparseData(offset, buf_1.get(), kSize, cb.callback());
EXPECT_EQ(kSize, cb.GetResult(rv));
rv = entry->GetAvailableRange(offset - 100, kSize, &start, cb.callback());
EXPECT_EQ(0, cb.GetResult(rv));
rv = entry->GetAvailableRange(offset, kSize, &start, cb.callback());
rv = cb.GetResult(rv);
if (!rv) {
rv = entry->ReadSparseData(offset, buf_2.get(), kSize, cb.callback());
EXPECT_EQ(0, cb.GetResult(rv));
rv = 0;
}
offset += 1024 * i + 100;
}
// The last write started 100 bytes below a bundary, so there should be 80
// bytes after the boundary.
EXPECT_EQ(80, rv);
EXPECT_EQ(1024 * 7, start);
rv = entry->ReadSparseData(start, buf_2.get(), kSize, cb.callback());
EXPECT_EQ(80, cb.GetResult(rv));
EXPECT_EQ(
0, memcmp(buf_1.get()->data() + 100, buf_2.get()->data(), 80));
// And even that part is dropped when another write changes the offset.
offset = start;
rv = entry->WriteSparseData(0, buf_1.get(), kSize, cb.callback());
EXPECT_EQ(kSize, cb.GetResult(rv));
rv = entry->GetAvailableRange(offset, kSize, &start, cb.callback());
EXPECT_EQ(0, cb.GetResult(rv));
entry->Close();
}
// Tests that small sequential writes are not dropped.
TEST_F(DiskCacheEntryTest, SparseSquentialWriteNotDropped) {
InitCache();
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
const int kSize = 180;
scoped_refptr<net::IOBuffer> buf_1 =
base::MakeRefCounted<net::IOBuffer>(kSize);
scoped_refptr<net::IOBuffer> buf_2 =
base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buf_1->data(), kSize, false);
// Any starting offset is fine as long as it is 1024-bytes aligned.
int rv = 0;
net::TestCompletionCallback cb;
int64_t start;
int64_t offset = 1024 * 11;
for (; offset < 20000; offset += kSize) {
rv = entry->WriteSparseData(offset, buf_1.get(), kSize, cb.callback());
EXPECT_EQ(kSize, cb.GetResult(rv));
rv = entry->GetAvailableRange(offset, kSize, &start, cb.callback());
EXPECT_EQ(kSize, cb.GetResult(rv));
EXPECT_EQ(offset, start);
rv = entry->ReadSparseData(offset, buf_2.get(), kSize, cb.callback());
EXPECT_EQ(kSize, cb.GetResult(rv));
EXPECT_EQ(0,
memcmp(buf_1.get()->data(), buf_2.get()->data(), kSize));
}
entry->Close();
FlushQueueForTest();
// Verify again the last write made.
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
offset -= kSize;
rv = entry->GetAvailableRange(offset, kSize, &start, cb.callback());
EXPECT_EQ(kSize, cb.GetResult(rv));
EXPECT_EQ(offset, start);
rv = entry->ReadSparseData(offset, buf_2.get(), kSize, cb.callback());
EXPECT_EQ(kSize, cb.GetResult(rv));
EXPECT_EQ(0,
memcmp(buf_1.get()->data(), buf_2.get()->data(), kSize));
entry->Close();
}
void DiskCacheEntryTest::CouldBeSparse() {
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
const int kSize = 16 * 1024;
scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buf->data(), kSize, false);
// Write at offset 0x20F0000 (33 MB - 64 KB).
EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F0000, buf.get(), kSize));
EXPECT_TRUE(entry->CouldBeSparse());
entry->Close();
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
EXPECT_TRUE(entry->CouldBeSparse());
entry->Close();
// Now verify a regular entry.
key.assign("another key");
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
EXPECT_FALSE(entry->CouldBeSparse());
EXPECT_EQ(kSize, WriteData(entry, 0, 0, buf.get(), kSize, false));
EXPECT_EQ(kSize, WriteData(entry, 1, 0, buf.get(), kSize, false));
EXPECT_EQ(kSize, WriteData(entry, 2, 0, buf.get(), kSize, false));
EXPECT_FALSE(entry->CouldBeSparse());
entry->Close();
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
EXPECT_FALSE(entry->CouldBeSparse());
entry->Close();
}
TEST_F(DiskCacheEntryTest, CouldBeSparse) {
InitCache();
CouldBeSparse();
}
TEST_F(DiskCacheEntryTest, MemoryCouldBeSparse) {
SetMemoryOnlyMode();
InitCache();
CouldBeSparse();
}
TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedSparseIO) {
SetMemoryOnlyMode();
InitCache();
const int kSize = 8192;
scoped_refptr<net::IOBuffer> buf_1 =
base::MakeRefCounted<net::IOBuffer>(kSize);
scoped_refptr<net::IOBuffer> buf_2 =
base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buf_1->data(), kSize, false);
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
// This loop writes back to back starting from offset 0 and 9000.
for (int i = 0; i < kSize; i += 1024) {
scoped_refptr<net::WrappedIOBuffer> buf_3 =
base::MakeRefCounted<net::WrappedIOBuffer>(buf_1->data() + i);
VerifySparseIO(entry, i, buf_3.get(), 1024, buf_2.get());
VerifySparseIO(entry, 9000 + i, buf_3.get(), 1024, buf_2.get());
}
// Make sure we have data written.
VerifyContentSparseIO(entry, 0, buf_1->data(), kSize);
VerifyContentSparseIO(entry, 9000, buf_1->data(), kSize);
// This tests a large write that spans 3 entries from a misaligned offset.
VerifySparseIO(entry, 20481, buf_1.get(), 8192, buf_2.get());
entry->Close();
}
TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedGetAvailableRange) {
SetMemoryOnlyMode();
InitCache();
const int kSize = 8192;
scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buf->data(), kSize, false);
disk_cache::Entry* entry;
std::string key("the first key");
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
// Writes in the middle of an entry.
EXPECT_EQ(1024, entry->WriteSparseData(0, buf.get(), 1024,
net::CompletionOnceCallback()));
EXPECT_EQ(1024, entry->WriteSparseData(5120, buf.get(), 1024,
net::CompletionOnceCallback()));
EXPECT_EQ(1024, entry->WriteSparseData(10000, buf.get(), 1024,
net::CompletionOnceCallback()));
// Writes in the middle of an entry and spans 2 child entries.
EXPECT_EQ(8192, entry->WriteSparseData(50000, buf.get(), 8192,
net::CompletionOnceCallback()));
int64_t start;
net::TestCompletionCallback cb;
// Test that we stop at a discontinuous child at the second block.
int rv = entry->GetAvailableRange(0, 10000, &start, cb.callback());
EXPECT_EQ(1024, cb.GetResult(rv));
EXPECT_EQ(0, start);
// Test that number of bytes is reported correctly when we start from the
// middle of a filled region.
rv = entry->GetAvailableRange(512, 10000, &start, cb.callback());
EXPECT_EQ(512, cb.GetResult(rv));
EXPECT_EQ(512, start);
// Test that we found bytes in the child of next block.
rv = entry->GetAvailableRange(1024, 10000, &start, cb.callback());
EXPECT_EQ(1024, cb.GetResult(rv));
EXPECT_EQ(5120, start);
// Test that the desired length is respected. It starts within a filled
// region.
rv = entry->GetAvailableRange(5500, 512, &start, cb.callback());
EXPECT_EQ(512, cb.GetResult(rv));
EXPECT_EQ(5500, start);
// Test that the desired length is respected. It starts before a filled
// region.
rv = entry->GetAvailableRange(5000, 620, &start, cb.callback());
EXPECT_EQ(500, cb.GetResult(rv));
EXPECT_EQ(5120, start);
// Test that multiple blocks are scanned.
rv = entry->GetAvailableRange(40000, 20000, &start, cb.callback());
EXPECT_EQ(8192, cb.GetResult(rv));
EXPECT_EQ(50000, start);
entry->Close();
}
void DiskCacheEntryTest::UpdateSparseEntry() {
std::string key("the first key");
disk_cache::Entry* entry1;
ASSERT_THAT(CreateEntry(key, &entry1), IsOk());
const int kSize = 2048;
scoped_refptr<net::IOBuffer> buf_1 =
base::MakeRefCounted<net::IOBuffer>(kSize);
scoped_refptr<net::IOBuffer> buf_2 =
base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buf_1->data(), kSize, false);
// Write at offset 0.
VerifySparseIO(entry1, 0, buf_1.get(), kSize, buf_2.get());
entry1->Close();
// Write at offset 2048.
ASSERT_THAT(OpenEntry(key, &entry1), IsOk());
VerifySparseIO(entry1, 2048, buf_1.get(), kSize, buf_2.get());
disk_cache::Entry* entry2;
ASSERT_THAT(CreateEntry("the second key", &entry2), IsOk());
entry1->Close();
entry2->Close();
FlushQueueForTest();
if (memory_only_ || simple_cache_mode_)
EXPECT_EQ(2, cache_->GetEntryCount());
else
EXPECT_EQ(3, cache_->GetEntryCount());
}
TEST_F(DiskCacheEntryTest, UpdateSparseEntry) {
SetCacheType(net::MEDIA_CACHE);
InitCache();
UpdateSparseEntry();
}
TEST_F(DiskCacheEntryTest, MemoryOnlyUpdateSparseEntry) {
SetMemoryOnlyMode();
SetCacheType(net::MEDIA_CACHE);
InitCache();
UpdateSparseEntry();
}
void DiskCacheEntryTest::DoomSparseEntry() {
std::string key1("the first key");
std::string key2("the second key");
disk_cache::Entry *entry1, *entry2;
ASSERT_THAT(CreateEntry(key1, &entry1), IsOk());
ASSERT_THAT(CreateEntry(key2, &entry2), IsOk());
const int kSize = 4 * 1024;
scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buf->data(), kSize, false);
int64_t offset = 1024;
// Write to a bunch of ranges.
for (int i = 0; i < 12; i++) {
EXPECT_EQ(kSize, WriteSparseData(entry1, offset, buf.get(), kSize));
// Keep the second map under the default size.
if (i < 9)
EXPECT_EQ(kSize, WriteSparseData(entry2, offset, buf.get(), kSize));
offset *= 4;
}
if (memory_only_ || simple_cache_mode_)
EXPECT_EQ(2, cache_->GetEntryCount());
else
EXPECT_EQ(15, cache_->GetEntryCount());
// Doom the first entry while it's still open.
entry1->Doom();
entry1->Close();
entry2->Close();
// Doom the second entry after it's fully saved.
EXPECT_THAT(DoomEntry(key2), IsOk());
// Make sure we do all needed work. This may fail for entry2 if between Close
// and DoomEntry the system decides to remove all traces of the file from the
// system cache so we don't see that there is pending IO.
base::RunLoop().RunUntilIdle();
if (memory_only_) {
EXPECT_EQ(0, cache_->GetEntryCount());
} else {
if (5 == cache_->GetEntryCount()) {
// Most likely we are waiting for the result of reading the sparse info
// (it's always async on Posix so it is easy to miss). Unfortunately we
// don't have any signal to watch for so we can only wait.
base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds(500));
base::RunLoop().RunUntilIdle();
}
EXPECT_EQ(0, cache_->GetEntryCount());
}
}
TEST_F(DiskCacheEntryTest, DoomSparseEntry) {
UseCurrentThread();
InitCache();
DoomSparseEntry();
}
TEST_F(DiskCacheEntryTest, MemoryOnlyDoomSparseEntry) {
SetMemoryOnlyMode();
InitCache();
DoomSparseEntry();
}
// A TestCompletionCallback wrapper that deletes the cache from within the
// callback. The way TestCompletionCallback works means that all tasks (even
// new ones) are executed by the message loop before returning to the caller so
// the only way to simulate a race is to execute what we want on the callback.
class SparseTestCompletionCallback: public net::TestCompletionCallback {
public:
explicit SparseTestCompletionCallback(
std::unique_ptr<disk_cache::Backend> cache)
: cache_(std::move(cache)) {}
private:
void SetResult(int result) override {
cache_.reset();
TestCompletionCallback::SetResult(result);
}
std::unique_ptr<disk_cache::Backend> cache_;
DISALLOW_COPY_AND_ASSIGN(SparseTestCompletionCallback);
};
// Tests that we don't crash when the backend is deleted while we are working
// deleting the sub-entries of a sparse entry.
TEST_F(DiskCacheEntryTest, DoomSparseEntry2) {
UseCurrentThread();
InitCache();
std::string key("the key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
const int kSize = 4 * 1024;
scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buf->data(), kSize, false);
int64_t offset = 1024;
// Write to a bunch of ranges.
for (int i = 0; i < 12; i++) {
EXPECT_EQ(kSize, entry->WriteSparseData(offset, buf.get(), kSize,
net::CompletionOnceCallback()));
offset *= 4;
}
EXPECT_EQ(9, cache_->GetEntryCount());
entry->Close();
disk_cache::Backend* cache = cache_.get();
SparseTestCompletionCallback cb(std::move(cache_));
int rv = cache->DoomEntry(key, net::HIGHEST, cb.callback());
EXPECT_THAT(rv, IsError(net::ERR_IO_PENDING));
EXPECT_THAT(cb.WaitForResult(), IsOk());
}
void DiskCacheEntryTest::PartialSparseEntry() {
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
// We should be able to deal with IO that is not aligned to the block size
// of a sparse entry, at least to write a big range without leaving holes.
const int kSize = 4 * 1024;
const int kSmallSize = 128;
scoped_refptr<net::IOBuffer> buf1 =
base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buf1->data(), kSize, false);
// The first write is just to extend the entry. The third write occupies
// a 1KB block partially, it may not be written internally depending on the
// implementation.
EXPECT_EQ(kSize, WriteSparseData(entry, 20000, buf1.get(), kSize));
EXPECT_EQ(kSize, WriteSparseData(entry, 500, buf1.get(), kSize));
EXPECT_EQ(kSmallSize,
WriteSparseData(entry, 1080321, buf1.get(), kSmallSize));
entry->Close();
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
scoped_refptr<net::IOBuffer> buf2 =
base::MakeRefCounted<net::IOBuffer>(kSize);
memset(buf2->data(), 0, kSize);
EXPECT_EQ(0, ReadSparseData(entry, 8000, buf2.get(), kSize));
EXPECT_EQ(500, ReadSparseData(entry, kSize, buf2.get(), kSize));
EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500));
EXPECT_EQ(0, ReadSparseData(entry, 0, buf2.get(), kSize));
// This read should not change anything.
if (memory_only_ || simple_cache_mode_)
EXPECT_EQ(96, ReadSparseData(entry, 24000, buf2.get(), kSize));
else
EXPECT_EQ(0, ReadSparseData(entry, 24000, buf2.get(), kSize));
EXPECT_EQ(500, ReadSparseData(entry, kSize, buf2.get(), kSize));
EXPECT_EQ(0, ReadSparseData(entry, 99, buf2.get(), kSize));
int rv;
int64_t start;
net::TestCompletionCallback cb;
if (memory_only_ || simple_cache_mode_) {
rv = entry->GetAvailableRange(0, 600, &start, cb.callback());
EXPECT_EQ(100, cb.GetResult(rv));
EXPECT_EQ(500, start);
} else {
rv = entry->GetAvailableRange(0, 2048, &start, cb.callback());
EXPECT_EQ(1024, cb.GetResult(rv));
EXPECT_EQ(1024, start);
}
rv = entry->GetAvailableRange(kSize, kSize, &start, cb.callback());
EXPECT_EQ(500, cb.GetResult(rv));
EXPECT_EQ(kSize, start);
rv = entry->GetAvailableRange(20 * 1024, 10000, &start, cb.callback());
if (memory_only_ || simple_cache_mode_)
EXPECT_EQ(3616, cb.GetResult(rv));
else
EXPECT_EQ(3072, cb.GetResult(rv));
EXPECT_EQ(20 * 1024, start);
// 1. Query before a filled 1KB block.
// 2. Query within a filled 1KB block.
// 3. Query beyond a filled 1KB block.
if (memory_only_ || simple_cache_mode_) {
rv = entry->GetAvailableRange(19400, kSize, &start, cb.callback());
EXPECT_EQ(3496, cb.GetResult(rv));
EXPECT_EQ(20000, start);
} else {
rv = entry->GetAvailableRange(19400, kSize, &start, cb.callback());
EXPECT_EQ(3016, cb.GetResult(rv));
EXPECT_EQ(20480, start);
}
rv = entry->GetAvailableRange(3073, kSize, &start, cb.callback());
EXPECT_EQ(1523, cb.GetResult(rv));
EXPECT_EQ(3073, start);
rv = entry->GetAvailableRange(4600, kSize, &start, cb.callback());
EXPECT_EQ(0, cb.GetResult(rv));
EXPECT_EQ(4600, start);
// Now make another write and verify that there is no hole in between.
EXPECT_EQ(kSize, WriteSparseData(entry, 500 + kSize, buf1.get(), kSize));
rv = entry->GetAvailableRange(1024, 10000, &start, cb.callback());
EXPECT_EQ(7 * 1024 + 500, cb.GetResult(rv));
EXPECT_EQ(1024, start);
EXPECT_EQ(kSize, ReadSparseData(entry, kSize, buf2.get(), kSize));
EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500));
EXPECT_EQ(0, memcmp(buf2->data() + 500, buf1->data(), kSize - 500));
entry->Close();
}
TEST_F(DiskCacheEntryTest, PartialSparseEntry) {
InitCache();
PartialSparseEntry();
}
TEST_F(DiskCacheEntryTest, MemoryPartialSparseEntry) {
SetMemoryOnlyMode();
InitCache();
PartialSparseEntry();
}
// Tests that corrupt sparse children are removed automatically.
TEST_F(DiskCacheEntryTest, CleanupSparseEntry) {
InitCache();
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
const int kSize = 4 * 1024;
scoped_refptr<net::IOBuffer> buf1 =
base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buf1->data(), kSize, false);
const int k1Meg = 1024 * 1024;
EXPECT_EQ(kSize, WriteSparseData(entry, 8192, buf1.get(), kSize));
EXPECT_EQ(kSize, WriteSparseData(entry, k1Meg + 8192, buf1.get(), kSize));
EXPECT_EQ(kSize, WriteSparseData(entry, 2 * k1Meg + 8192, buf1.get(), kSize));
entry->Close();
EXPECT_EQ(4, cache_->GetEntryCount());
std::unique_ptr<TestIterator> iter = CreateIterator();
int count = 0;
std::string child_key[2];
while (iter->OpenNextEntry(&entry) == net::OK) {
ASSERT_TRUE(entry != NULL);
// Writing to an entry will alter the LRU list and invalidate the iterator.
if (entry->GetKey() != key && count < 2)
child_key[count++] = entry->GetKey();
entry->Close();
}
for (int i = 0; i < 2; i++) {
ASSERT_THAT(OpenEntry(child_key[i], &entry), IsOk());
// Overwrite the header's magic and signature.
EXPECT_EQ(12, WriteData(entry, 2, 0, buf1.get(), 12, false));
entry->Close();
}
EXPECT_EQ(4, cache_->GetEntryCount());
ASSERT_THAT(OpenEntry(key, &entry), IsOk());
// Two children should be gone. One while reading and one while writing.
EXPECT_EQ(0, ReadSparseData(entry, 2 * k1Meg + 8192, buf1.get(), kSize));
EXPECT_EQ(kSize, WriteSparseData(entry, k1Meg + 16384, buf1.get(), kSize));
EXPECT_EQ(0, ReadSparseData(entry, k1Meg + 8192, buf1.get(), kSize));
// We never touched this one.
EXPECT_EQ(kSize, ReadSparseData(entry, 8192, buf1.get(), kSize));
entry->Close();
// We re-created one of the corrupt children.
EXPECT_EQ(3, cache_->GetEntryCount());
}
TEST_F(DiskCacheEntryTest, CancelSparseIO) {
UseCurrentThread();
InitCache();
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
const int kSize = 40 * 1024;
scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize);
CacheTestFillBuffer(buf->data(), kSize, false);
// This will open and write two "real" entries.
net::TestCompletionCallback cb1, cb2, cb3, cb4, cb5;
int rv = entry->WriteSparseData(
1024 * 1024 - 4096, buf.get(), kSize, cb1.callback());
EXPECT_THAT(rv, IsError(net::ERR_IO_PENDING));
int64_t offset = 0;
rv = entry->GetAvailableRange(offset, kSize, &offset, cb5.callback());
rv = cb5.GetResult(rv);
if (!cb1.have_result()) {
// We may or may not have finished writing to the entry. If we have not,
// we cannot start another operation at this time.
EXPECT_THAT(rv, IsError(net::ERR_CACHE_OPERATION_NOT_SUPPORTED));
}
// We cancel the pending operation, and register multiple notifications.
entry->CancelSparseIO();
EXPECT_THAT(entry->ReadyForSparseIO(cb2.callback()),
IsError(net::ERR_IO_PENDING));
EXPECT_THAT(entry->ReadyForSparseIO(cb3.callback()),
IsError(net::ERR_IO_PENDING));
entry->CancelSparseIO(); // Should be a no op at this point.
EXPECT_THAT(entry->ReadyForSparseIO(cb4.callback()),
IsError(net::ERR_IO_PENDING));
if (!cb1.have_result()) {
EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED,
entry->ReadSparseData(offset, buf.get(), kSize,
net::CompletionOnceCallback()));
EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED,
entry->WriteSparseData(offset, buf.get(), kSize,
net::CompletionOnceCallback()));
}
// Now see if we receive all notifications. Note that we should not be able
// to write everything (unless the timing of the system is really weird).
rv = cb1.WaitForResult();
EXPECT_TRUE(rv == 4096 || rv == kSize);
EXPECT_THAT(cb2.WaitForResult(), IsOk());
EXPECT_THAT(cb3.WaitForResult(), IsOk());
EXPECT_THAT(cb4.WaitForResult(), IsOk());
rv = entry->GetAvailableRange(offset, kSize, &offset, cb5.callback());
EXPECT_EQ(0, cb5.GetResult(rv));
entry->Close();
}
// Tests that we perform sanity checks on an entry's key. Note that there are
// other tests that exercise sanity checks by using saved corrupt files.
TEST_F(DiskCacheEntryTest, KeySanityCheck) {
UseCurrentThread();
InitCache();
std::string key("the first key");
disk_cache::Entry* entry;
ASSERT_THAT(CreateEntry(key, &entry), IsOk());
disk_cache::EntryImpl* entry_impl =
static_cast<disk_cache::EntryImpl*>(entry);
disk_cache::EntryStore* store = entry_impl->entry()->Data();
// We have reserved space for a short key (one block), let's say that the key
// takes more than one block, and remove the NULLs after the actual key.
store->key_len = 800;
memset(store->key + key.size(), 'k', sizeof(store->key) - key.size());
entry_impl->entry()->set_modified();
entry->Close();
// We have a corrupt entry. Now reload it. We should NOT read beyond the
// allocated buffer here.
ASSERT_NE(net::OK, OpenEntry(key, &entry));
DisableIntegrityCheck();
}
TEST_F(DiskCacheEntryTest, SimpleCacheInternalAsyncIO) {
SetSimpleCacheMode();
InitCache();
InternalAsyncIO();
}
TEST_F(DiskCacheEntryTest, SimpleCacheExternalAsyncIO) {
SetSimpleCacheMode();
InitCache();
ExternalAsyncIO();
}
TEST_F(DiskCacheEntryTest, SimpleCacheReleaseBuffer) {
SetSimpleCacheMode();
InitCache();
for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
EXPECT_THAT(DoomAllEntries(), IsOk());
ReleaseBuffer(i);
}
}
TEST_F(DiskCacheEntryTest, SimpleCacheStreamAccess) {
SetSimpleCacheMode();
InitCache();
StreamAccess();
}
TEST_F(DiskCacheEntryTest, SimpleCacheGetKey) {
SetSimpleCacheMode();
InitCache();
GetKey();
}
TEST_F(DiskCacheEntryTest, SimpleCacheGetTimes) {
SetSimpleCacheMode();
InitCache();
for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
EXPECT_THAT(DoomAllEntries(), IsOk());
GetTimes(i);
}
}
TEST_F(DiskCacheEntryTest, SimpleCacheGrowData) {
SetSimpleCacheMode();
InitCache();
for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) {
EXPECT_THAT(DoomAllEntries(), IsOk());