| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "net/base/host_resolver_impl.h" |
| |
| #include <algorithm> |
| #include <string> |
| |
| #include "base/bind.h" |
| #include "base/bind_helpers.h" |
| #include "base/memory/ref_counted.h" |
| #include "base/memory/scoped_vector.h" |
| #include "base/message_loop.h" |
| #include "base/string_util.h" |
| #include "base/stringprintf.h" |
| #include "base/synchronization/condition_variable.h" |
| #include "base/synchronization/lock.h" |
| #include "base/test/test_timeouts.h" |
| #include "base/time.h" |
| #include "net/base/address_list.h" |
| #include "net/base/host_cache.h" |
| #include "net/base/mock_host_resolver.h" |
| #include "net/base/net_errors.h" |
| #include "net/base/net_util.h" |
| #include "net/dns/dns_client.h" |
| #include "net/dns/dns_test_util.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| namespace net { |
| |
| namespace { |
| |
| const size_t kMaxJobs = 10u; |
| const size_t kMaxRetryAttempts = 4u; |
| |
| PrioritizedDispatcher::Limits DefaultLimits() { |
| PrioritizedDispatcher::Limits limits(NUM_PRIORITIES, kMaxJobs); |
| return limits; |
| } |
| |
| HostResolverImpl::ProcTaskParams DefaultParams( |
| HostResolverProc* resolver_proc) { |
| return HostResolverImpl::ProcTaskParams(resolver_proc, kMaxRetryAttempts); |
| } |
| |
| // A HostResolverProc that pushes each host mapped into a list and allows |
| // waiting for a specific number of requests. Unlike RuleBasedHostResolverProc |
| // it never calls SystemHostResolverProc. By default resolves all hostnames to |
| // "127.0.0.1". After AddRule(), it resolves only names explicitly specified. |
| class MockHostResolverProc : public HostResolverProc { |
| public: |
| struct ResolveKey { |
| ResolveKey(const std::string& hostname, AddressFamily address_family) |
| : hostname(hostname), address_family(address_family) {} |
| bool operator<(const ResolveKey& other) const { |
| return address_family < other.address_family || |
| (address_family == other.address_family && hostname < other.hostname); |
| } |
| std::string hostname; |
| AddressFamily address_family; |
| }; |
| |
| typedef std::vector<ResolveKey> CaptureList; |
| |
| MockHostResolverProc() |
| : HostResolverProc(NULL), |
| num_requests_waiting_(0), |
| num_slots_available_(0), |
| requests_waiting_(&lock_), |
| slots_available_(&lock_) { |
| } |
| |
| // Waits until |count| calls to |Resolve| are blocked. Returns false when |
| // timed out. |
| bool WaitFor(unsigned count) { |
| base::AutoLock lock(lock_); |
| base::Time start_time = base::Time::Now(); |
| while (num_requests_waiting_ < count) { |
| requests_waiting_.TimedWait(TestTimeouts::action_timeout()); |
| if (base::Time::Now() > start_time + TestTimeouts::action_timeout()) |
| return false; |
| } |
| return true; |
| } |
| |
| // Signals |count| waiting calls to |Resolve|. First come first served. |
| void SignalMultiple(unsigned count) { |
| base::AutoLock lock(lock_); |
| num_slots_available_ += count; |
| slots_available_.Broadcast(); |
| } |
| |
| // Signals all waiting calls to |Resolve|. Beware of races. |
| void SignalAll() { |
| base::AutoLock lock(lock_); |
| num_slots_available_ = num_requests_waiting_; |
| slots_available_.Broadcast(); |
| } |
| |
| void AddRule(const std::string& hostname, AddressFamily family, |
| const AddressList& result) { |
| base::AutoLock lock(lock_); |
| rules_[ResolveKey(hostname, family)] = result; |
| } |
| |
| void AddRule(const std::string& hostname, AddressFamily family, |
| const std::string& ip_list) { |
| AddressList result; |
| int rv = ParseAddressList(ip_list, "", &result); |
| DCHECK_EQ(OK, rv); |
| AddRule(hostname, family, result); |
| } |
| |
| void AddRuleForAllFamilies(const std::string& hostname, |
| const std::string& ip_list) { |
| AddressList result; |
| int rv = ParseAddressList(ip_list, "", &result); |
| DCHECK_EQ(OK, rv); |
| AddRule(hostname, ADDRESS_FAMILY_UNSPECIFIED, result); |
| AddRule(hostname, ADDRESS_FAMILY_IPV4, result); |
| AddRule(hostname, ADDRESS_FAMILY_IPV6, result); |
| } |
| |
| virtual int Resolve(const std::string& hostname, |
| AddressFamily address_family, |
| HostResolverFlags host_resolver_flags, |
| AddressList* addrlist, |
| int* os_error) override { |
| base::AutoLock lock(lock_); |
| capture_list_.push_back(ResolveKey(hostname, address_family)); |
| ++num_requests_waiting_; |
| requests_waiting_.Broadcast(); |
| while (!num_slots_available_) |
| slots_available_.Wait(); |
| DCHECK_GT(num_requests_waiting_, 0u); |
| --num_slots_available_; |
| --num_requests_waiting_; |
| if (rules_.empty()) { |
| int rv = ParseAddressList("127.0.0.1", "", addrlist); |
| DCHECK_EQ(OK, rv); |
| return OK; |
| } |
| ResolveKey key(hostname, address_family); |
| if (rules_.count(key) == 0) |
| return ERR_NAME_NOT_RESOLVED; |
| *addrlist = rules_[key]; |
| return OK; |
| } |
| |
| CaptureList GetCaptureList() const { |
| CaptureList copy; |
| { |
| base::AutoLock lock(lock_); |
| copy = capture_list_; |
| } |
| return copy; |
| } |
| |
| bool HasBlockedRequests() const { |
| base::AutoLock lock(lock_); |
| return num_requests_waiting_ > num_slots_available_; |
| } |
| |
| protected: |
| ~MockHostResolverProc() {} |
| |
| private: |
| mutable base::Lock lock_; |
| std::map<ResolveKey, AddressList> rules_; |
| CaptureList capture_list_; |
| unsigned num_requests_waiting_; |
| unsigned num_slots_available_; |
| base::ConditionVariable requests_waiting_; |
| base::ConditionVariable slots_available_; |
| |
| DISALLOW_COPY_AND_ASSIGN(MockHostResolverProc); |
| }; |
| |
| // A wrapper for requests to a HostResolver. |
| class Request { |
| public: |
| // Base class of handlers to be executed on completion of requests. |
| struct Handler { |
| virtual ~Handler() {} |
| virtual void Handle(Request* request) = 0; |
| }; |
| |
| Request(const HostResolver::RequestInfo& info, |
| size_t index, |
| HostResolver* resolver, |
| Handler* handler) |
| : info_(info), |
| index_(index), |
| resolver_(resolver), |
| handler_(handler), |
| quit_on_complete_(false), |
| result_(ERR_UNEXPECTED), |
| handle_(NULL) {} |
| |
| int Resolve() { |
| DCHECK(resolver_); |
| DCHECK(!handle_); |
| list_ = AddressList(); |
| result_ = resolver_->Resolve( |
| info_, &list_, base::Bind(&Request::OnComplete, base::Unretained(this)), |
| &handle_, BoundNetLog()); |
| if (!list_.empty()) |
| EXPECT_EQ(OK, result_); |
| return result_; |
| } |
| |
| int ResolveFromCache() { |
| DCHECK(resolver_); |
| DCHECK(!handle_); |
| return resolver_->ResolveFromCache(info_, &list_, BoundNetLog()); |
| } |
| |
| void Cancel() { |
| DCHECK(resolver_); |
| DCHECK(handle_); |
| resolver_->CancelRequest(handle_); |
| handle_ = NULL; |
| } |
| |
| const HostResolver::RequestInfo& info() const { return info_; } |
| size_t index() const { return index_; } |
| const AddressList& list() const { return list_; } |
| int result() const { return result_; } |
| bool completed() const { return result_ != ERR_IO_PENDING; } |
| bool pending() const { return handle_ != NULL; } |
| |
| bool HasAddress(const std::string& address, int port) const { |
| IPAddressNumber ip; |
| bool rv = ParseIPLiteralToNumber(address, &ip); |
| DCHECK(rv); |
| return std::find(list_.begin(), |
| list_.end(), |
| IPEndPoint(ip, port)) != list_.end(); |
| } |
| |
| // Returns the number of addresses in |list_|. |
| unsigned NumberOfAddresses() const { |
| return list_.size(); |
| } |
| |
| bool HasOneAddress(const std::string& address, int port) const { |
| return HasAddress(address, port) && (NumberOfAddresses() == 1u); |
| } |
| |
| // Returns ERR_UNEXPECTED if timed out. |
| int WaitForResult() { |
| if (completed()) |
| return result_; |
| base::CancelableClosure closure(MessageLoop::QuitClosure()); |
| MessageLoop::current()->PostDelayedTask(FROM_HERE, |
| closure.callback(), |
| TestTimeouts::action_max_timeout()); |
| quit_on_complete_ = true; |
| MessageLoop::current()->Run(); |
| bool did_quit = !quit_on_complete_; |
| quit_on_complete_ = false; |
| closure.Cancel(); |
| if (did_quit) |
| return result_; |
| else |
| return ERR_UNEXPECTED; |
| } |
| |
| private: |
| void OnComplete(int rv) { |
| EXPECT_TRUE(pending()); |
| EXPECT_EQ(ERR_IO_PENDING, result_); |
| EXPECT_NE(ERR_IO_PENDING, rv); |
| result_ = rv; |
| handle_ = NULL; |
| if (!list_.empty()) { |
| EXPECT_EQ(OK, result_); |
| EXPECT_EQ(info_.port(), list_.front().port()); |
| } |
| if (handler_) |
| handler_->Handle(this); |
| if (quit_on_complete_) { |
| MessageLoop::current()->Quit(); |
| quit_on_complete_ = false; |
| } |
| } |
| |
| HostResolver::RequestInfo info_; |
| size_t index_; |
| HostResolver* resolver_; |
| Handler* handler_; |
| bool quit_on_complete_; |
| |
| AddressList list_; |
| int result_; |
| HostResolver::RequestHandle handle_; |
| |
| DISALLOW_COPY_AND_ASSIGN(Request); |
| }; |
| |
| // Using LookupAttemptHostResolverProc simulate very long lookups, and control |
| // which attempt resolves the host. |
| class LookupAttemptHostResolverProc : public HostResolverProc { |
| public: |
| LookupAttemptHostResolverProc(HostResolverProc* previous, |
| int attempt_number_to_resolve, |
| int total_attempts) |
| : HostResolverProc(previous), |
| attempt_number_to_resolve_(attempt_number_to_resolve), |
| current_attempt_number_(0), |
| total_attempts_(total_attempts), |
| total_attempts_resolved_(0), |
| resolved_attempt_number_(0), |
| all_done_(&lock_) { |
| } |
| |
| // Test harness will wait for all attempts to finish before checking the |
| // results. |
| void WaitForAllAttemptsToFinish(const base::TimeDelta& wait_time) { |
| base::TimeTicks end_time = base::TimeTicks::Now() + wait_time; |
| { |
| base::AutoLock auto_lock(lock_); |
| while (total_attempts_resolved_ != total_attempts_ && |
| base::TimeTicks::Now() < end_time) { |
| all_done_.TimedWait(end_time - base::TimeTicks::Now()); |
| } |
| } |
| } |
| |
| // All attempts will wait for an attempt to resolve the host. |
| void WaitForAnAttemptToComplete() { |
| base::TimeDelta wait_time = base::TimeDelta::FromSeconds(60); |
| base::TimeTicks end_time = base::TimeTicks::Now() + wait_time; |
| { |
| base::AutoLock auto_lock(lock_); |
| while (resolved_attempt_number_ == 0 && base::TimeTicks::Now() < end_time) |
| all_done_.TimedWait(end_time - base::TimeTicks::Now()); |
| } |
| all_done_.Broadcast(); // Tell all waiting attempts to proceed. |
| } |
| |
| // Returns the number of attempts that have finished the Resolve() method. |
| int total_attempts_resolved() { return total_attempts_resolved_; } |
| |
| // Returns the first attempt that that has resolved the host. |
| int resolved_attempt_number() { return resolved_attempt_number_; } |
| |
| // HostResolverProc methods. |
| virtual int Resolve(const std::string& host, |
| AddressFamily address_family, |
| HostResolverFlags host_resolver_flags, |
| AddressList* addrlist, |
| int* os_error) override { |
| bool wait_for_right_attempt_to_complete = true; |
| { |
| base::AutoLock auto_lock(lock_); |
| ++current_attempt_number_; |
| if (current_attempt_number_ == attempt_number_to_resolve_) { |
| resolved_attempt_number_ = current_attempt_number_; |
| wait_for_right_attempt_to_complete = false; |
| } |
| } |
| |
| if (wait_for_right_attempt_to_complete) |
| // Wait for the attempt_number_to_resolve_ attempt to resolve. |
| WaitForAnAttemptToComplete(); |
| |
| int result = ResolveUsingPrevious(host, address_family, host_resolver_flags, |
| addrlist, os_error); |
| |
| { |
| base::AutoLock auto_lock(lock_); |
| ++total_attempts_resolved_; |
| } |
| |
| all_done_.Broadcast(); // Tell all attempts to proceed. |
| |
| // Since any negative number is considered a network error, with -1 having |
| // special meaning (ERR_IO_PENDING). We could return the attempt that has |
| // resolved the host as a negative number. For example, if attempt number 3 |
| // resolves the host, then this method returns -4. |
| if (result == OK) |
| return -1 - resolved_attempt_number_; |
| else |
| return result; |
| } |
| |
| protected: |
| virtual ~LookupAttemptHostResolverProc() {} |
| |
| private: |
| int attempt_number_to_resolve_; |
| int current_attempt_number_; // Incremented whenever Resolve is called. |
| int total_attempts_; |
| int total_attempts_resolved_; |
| int resolved_attempt_number_; |
| |
| // All attempts wait for right attempt to be resolve. |
| base::Lock lock_; |
| base::ConditionVariable all_done_; |
| }; |
| |
| } // namespace |
| |
| class HostResolverImplTest : public testing::Test { |
| public: |
| static const int kDefaultPort = 80; |
| |
| HostResolverImplTest() : proc_(new MockHostResolverProc()) {} |
| |
| protected: |
| // A Request::Handler which is a proxy to the HostResolverImplTest fixture. |
| struct Handler : public Request::Handler { |
| virtual ~Handler() {} |
| |
| // Proxy functions so that classes derived from Handler can access them. |
| Request* CreateRequest(const HostResolver::RequestInfo& info) { |
| return test->CreateRequest(info); |
| } |
| Request* CreateRequest(const std::string& hostname, int port) { |
| return test->CreateRequest(hostname, port); |
| } |
| Request* CreateRequest(const std::string& hostname) { |
| return test->CreateRequest(hostname); |
| } |
| ScopedVector<Request>& requests() { return test->requests_; } |
| |
| void DeleteResolver() { test->resolver_.reset(); } |
| |
| HostResolverImplTest* test; |
| }; |
| |
| void CreateResolver() { |
| resolver_.reset(new HostResolverImpl( |
| HostCache::CreateDefaultCache(), |
| DefaultLimits(), |
| DefaultParams(proc_), |
| NULL)); |
| } |
| |
| // This HostResolverImpl will only allow 1 outstanding resolve at a time and |
| // perform no retries. |
| void CreateSerialResolver() { |
| HostResolverImpl::ProcTaskParams params = DefaultParams(proc_); |
| params.max_retry_attempts = 0u; |
| PrioritizedDispatcher::Limits limits(NUM_PRIORITIES, 1); |
| resolver_.reset(new HostResolverImpl( |
| HostCache::CreateDefaultCache(), |
| limits, |
| params, |
| NULL)); |
| } |
| |
| // The Request will not be made until a call to |Resolve()|, and the Job will |
| // not start until released by |proc_->SignalXXX|. |
| Request* CreateRequest(const HostResolver::RequestInfo& info) { |
| Request* req = new Request(info, requests_.size(), resolver_.get(), |
| handler_.get()); |
| requests_.push_back(req); |
| return req; |
| } |
| |
| Request* CreateRequest(const std::string& hostname, |
| int port, |
| RequestPriority priority, |
| AddressFamily family) { |
| HostResolver::RequestInfo info(HostPortPair(hostname, port)); |
| info.set_priority(priority); |
| info.set_address_family(family); |
| return CreateRequest(info); |
| } |
| |
| Request* CreateRequest(const std::string& hostname, |
| int port, |
| RequestPriority priority) { |
| return CreateRequest(hostname, port, priority, ADDRESS_FAMILY_UNSPECIFIED); |
| } |
| |
| Request* CreateRequest(const std::string& hostname, int port) { |
| return CreateRequest(hostname, port, MEDIUM); |
| } |
| |
| Request* CreateRequest(const std::string& hostname) { |
| return CreateRequest(hostname, kDefaultPort); |
| } |
| |
| virtual void SetUp() override { |
| CreateResolver(); |
| } |
| |
| virtual void TearDown() override { |
| if (resolver_.get()) |
| EXPECT_EQ(0u, resolver_->num_running_jobs_for_tests()); |
| EXPECT_FALSE(proc_->HasBlockedRequests()); |
| } |
| |
| void set_handler(Handler* handler) { |
| handler_.reset(handler); |
| handler_->test = this; |
| } |
| |
| // Friendship is not inherited, so use proxies to access those. |
| size_t num_running_jobs() const { |
| DCHECK(resolver_.get()); |
| return resolver_->num_running_jobs_for_tests(); |
| } |
| |
| scoped_refptr<MockHostResolverProc> proc_; |
| scoped_ptr<HostResolverImpl> resolver_; |
| ScopedVector<Request> requests_; |
| |
| scoped_ptr<Handler> handler_; |
| }; |
| |
| TEST_F(HostResolverImplTest, AsynchronousLookup) { |
| proc_->AddRuleForAllFamilies("just.testing", "192.168.1.42"); |
| proc_->SignalMultiple(1u); |
| |
| Request* req = CreateRequest("just.testing", 80); |
| EXPECT_EQ(ERR_IO_PENDING, req->Resolve()); |
| EXPECT_EQ(OK, req->WaitForResult()); |
| |
| EXPECT_TRUE(req->HasOneAddress("192.168.1.42", 80)); |
| |
| EXPECT_EQ("just.testing", proc_->GetCaptureList()[0].hostname); |
| } |
| |
| TEST_F(HostResolverImplTest, FailedAsynchronousLookup) { |
| proc_->AddRuleForAllFamilies("", "0.0.0.0"); // Default to failures. |
| proc_->SignalMultiple(1u); |
| |
| Request* req = CreateRequest("just.testing", 80); |
| EXPECT_EQ(ERR_IO_PENDING, req->Resolve()); |
| EXPECT_EQ(ERR_NAME_NOT_RESOLVED, req->WaitForResult()); |
| |
| EXPECT_EQ("just.testing", proc_->GetCaptureList()[0].hostname); |
| |
| // Also test that the error is not cached. |
| EXPECT_EQ(ERR_DNS_CACHE_MISS, req->ResolveFromCache()); |
| } |
| |
| TEST_F(HostResolverImplTest, AbortedAsynchronousLookup) { |
| Request* req0 = CreateRequest("just.testing", 80); |
| EXPECT_EQ(ERR_IO_PENDING, req0->Resolve()); |
| |
| EXPECT_TRUE(proc_->WaitFor(1u)); |
| |
| // Resolver is destroyed while job is running on WorkerPool. |
| resolver_.reset(); |
| |
| proc_->SignalAll(); |
| |
| // To ensure there was no spurious callback, complete with a new resolver. |
| CreateResolver(); |
| Request* req1 = CreateRequest("just.testing", 80); |
| EXPECT_EQ(ERR_IO_PENDING, req1->Resolve()); |
| |
| proc_->SignalMultiple(2u); |
| |
| EXPECT_EQ(OK, req1->WaitForResult()); |
| |
| // This request was canceled. |
| EXPECT_FALSE(req0->completed()); |
| } |
| |
| TEST_F(HostResolverImplTest, NumericIPv4Address) { |
| // Stevens says dotted quads with AI_UNSPEC resolve to a single sockaddr_in. |
| Request* req = CreateRequest("127.1.2.3", 5555); |
| EXPECT_EQ(OK, req->Resolve()); |
| |
| EXPECT_TRUE(req->HasOneAddress("127.1.2.3", 5555)); |
| } |
| |
| TEST_F(HostResolverImplTest, NumericIPv6Address) { |
| // Resolve a plain IPv6 address. Don't worry about [brackets], because |
| // the caller should have removed them. |
| Request* req = CreateRequest("2001:db8::1", 5555); |
| EXPECT_EQ(OK, req->Resolve()); |
| |
| EXPECT_TRUE(req->HasOneAddress("2001:db8::1", 5555)); |
| } |
| |
| TEST_F(HostResolverImplTest, EmptyHost) { |
| Request* req = CreateRequest("", 5555); |
| EXPECT_EQ(ERR_NAME_NOT_RESOLVED, req->Resolve()); |
| } |
| |
| TEST_F(HostResolverImplTest, LongHost) { |
| Request* req = CreateRequest(std::string(4097, 'a'), 5555); |
| EXPECT_EQ(ERR_NAME_NOT_RESOLVED, req->Resolve()); |
| } |
| |
| TEST_F(HostResolverImplTest, DeDupeRequests) { |
| // Start 5 requests, duplicating hosts "a" and "b". Since the resolver_proc is |
| // blocked, these should all pile up until we signal it. |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 80)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("b", 80)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("b", 81)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 82)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("b", 83)->Resolve()); |
| |
| proc_->SignalMultiple(2u); // One for "a", one for "b". |
| |
| for (size_t i = 0; i < requests_.size(); ++i) { |
| EXPECT_EQ(OK, requests_[i]->WaitForResult()) << i; |
| } |
| } |
| |
| TEST_F(HostResolverImplTest, CancelMultipleRequests) { |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 80)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("b", 80)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("b", 81)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 82)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("b", 83)->Resolve()); |
| |
| // Cancel everything except request for ("a", 82). |
| requests_[0]->Cancel(); |
| requests_[1]->Cancel(); |
| requests_[2]->Cancel(); |
| requests_[4]->Cancel(); |
| |
| proc_->SignalMultiple(2u); // One for "a", one for "b". |
| |
| EXPECT_EQ(OK, requests_[3]->WaitForResult()); |
| } |
| |
| TEST_F(HostResolverImplTest, CanceledRequestsReleaseJobSlots) { |
| // Fill up the dispatcher and queue. |
| for (unsigned i = 0; i < kMaxJobs + 1; ++i) { |
| std::string hostname = "a_"; |
| hostname[1] = 'a' + i; |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest(hostname, 80)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest(hostname, 81)->Resolve()); |
| } |
| |
| EXPECT_TRUE(proc_->WaitFor(kMaxJobs)); |
| |
| // Cancel all but last two. |
| for (unsigned i = 0; i < requests_.size() - 2; ++i) { |
| requests_[i]->Cancel(); |
| } |
| |
| EXPECT_TRUE(proc_->WaitFor(kMaxJobs + 1)); |
| |
| proc_->SignalAll(); |
| |
| size_t num_requests = requests_.size(); |
| EXPECT_EQ(OK, requests_[num_requests - 1]->WaitForResult()); |
| EXPECT_EQ(OK, requests_[num_requests - 2]->result()); |
| } |
| |
| TEST_F(HostResolverImplTest, CancelWithinCallback) { |
| struct MyHandler : public Handler { |
| virtual void Handle(Request* req) override { |
| // Port 80 is the first request that the callback will be invoked for. |
| // While we are executing within that callback, cancel the other requests |
| // in the job and start another request. |
| if (req->index() == 0) { |
| // Once "a:80" completes, it will cancel "a:81" and "a:82". |
| requests()[1]->Cancel(); |
| requests()[2]->Cancel(); |
| } |
| } |
| }; |
| set_handler(new MyHandler()); |
| |
| for (size_t i = 0; i < 4; ++i) { |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 80 + i)->Resolve()) << i; |
| } |
| |
| proc_->SignalMultiple(2u); // One for "a". One for "finalrequest". |
| |
| EXPECT_EQ(OK, requests_[0]->WaitForResult()); |
| |
| Request* final_request = CreateRequest("finalrequest", 70); |
| EXPECT_EQ(ERR_IO_PENDING, final_request->Resolve()); |
| EXPECT_EQ(OK, final_request->WaitForResult()); |
| EXPECT_TRUE(requests_[3]->completed()); |
| } |
| |
| TEST_F(HostResolverImplTest, DeleteWithinCallback) { |
| struct MyHandler : public Handler { |
| virtual void Handle(Request* req) override { |
| EXPECT_EQ("a", req->info().hostname()); |
| EXPECT_EQ(80, req->info().port()); |
| |
| DeleteResolver(); |
| |
| // Quit after returning from OnCompleted (to give it a chance at |
| // incorrectly running the cancelled tasks). |
| MessageLoop::current()->PostTask(FROM_HERE, MessageLoop::QuitClosure()); |
| } |
| }; |
| set_handler(new MyHandler()); |
| |
| for (size_t i = 0; i < 4; ++i) { |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 80 + i)->Resolve()) << i; |
| } |
| |
| proc_->SignalMultiple(1u); // One for "a". |
| |
| // |MyHandler| will send quit message once all the requests have finished. |
| MessageLoop::current()->Run(); |
| } |
| |
| TEST_F(HostResolverImplTest, DeleteWithinAbortedCallback) { |
| struct MyHandler : public Handler { |
| virtual void Handle(Request* req) override { |
| EXPECT_EQ("a", req->info().hostname()); |
| EXPECT_EQ(80, req->info().port()); |
| |
| DeleteResolver(); |
| |
| // Quit after returning from OnCompleted (to give it a chance at |
| // incorrectly running the cancelled tasks). |
| MessageLoop::current()->PostTask(FROM_HERE, MessageLoop::QuitClosure()); |
| } |
| }; |
| set_handler(new MyHandler()); |
| |
| // This test assumes that the Jobs will be Aborted in order ["a", "b"] |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 80)->Resolve()); |
| // HostResolverImpl will be deleted before later Requests can complete. |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 81)->Resolve()); |
| // Job for 'b' will be aborted before it can complete. |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("b", 82)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("b", 83)->Resolve()); |
| |
| EXPECT_TRUE(proc_->WaitFor(1u)); |
| |
| // Triggering an IP address change. |
| NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests(); |
| |
| // |MyHandler| will send quit message once all the requests have finished. |
| MessageLoop::current()->Run(); |
| |
| EXPECT_EQ(ERR_NETWORK_CHANGED, requests_[0]->result()); |
| EXPECT_EQ(ERR_IO_PENDING, requests_[1]->result()); |
| EXPECT_EQ(ERR_IO_PENDING, requests_[2]->result()); |
| EXPECT_EQ(ERR_IO_PENDING, requests_[3]->result()); |
| // Clean up. |
| proc_->SignalMultiple(requests_.size()); |
| } |
| |
| TEST_F(HostResolverImplTest, StartWithinCallback) { |
| struct MyHandler : public Handler { |
| virtual void Handle(Request* req) override { |
| if (req->index() == 0) { |
| // On completing the first request, start another request for "a". |
| // Since caching is disabled, this will result in another async request. |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 70)->Resolve()); |
| } |
| } |
| }; |
| set_handler(new MyHandler()); |
| |
| // Turn off caching for this host resolver. |
| resolver_.reset(new HostResolverImpl( |
| scoped_ptr<HostCache>(), |
| DefaultLimits(), |
| DefaultParams(proc_), |
| NULL)); |
| |
| for (size_t i = 0; i < 4; ++i) { |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 80 + i)->Resolve()) << i; |
| } |
| |
| proc_->SignalMultiple(2u); // One for "a". One for the second "a". |
| |
| EXPECT_EQ(OK, requests_[0]->WaitForResult()); |
| ASSERT_EQ(5u, requests_.size()); |
| EXPECT_EQ(OK, requests_.back()->WaitForResult()); |
| |
| EXPECT_EQ(2u, proc_->GetCaptureList().size()); |
| } |
| |
| TEST_F(HostResolverImplTest, BypassCache) { |
| struct MyHandler : public Handler { |
| virtual void Handle(Request* req) override { |
| if (req->index() == 0) { |
| // On completing the first request, start another request for "a". |
| // Since caching is enabled, this should complete synchronously. |
| std::string hostname = req->info().hostname(); |
| EXPECT_EQ(OK, CreateRequest(hostname, 70)->Resolve()); |
| EXPECT_EQ(OK, CreateRequest(hostname, 75)->ResolveFromCache()); |
| |
| // Ok good. Now make sure that if we ask to bypass the cache, it can no |
| // longer service the request synchronously. |
| HostResolver::RequestInfo info(HostPortPair(hostname, 71)); |
| info.set_allow_cached_response(false); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest(info)->Resolve()); |
| } else if (71 == req->info().port()) { |
| // Test is done. |
| MessageLoop::current()->Quit(); |
| } else { |
| FAIL() << "Unexpected request"; |
| } |
| } |
| }; |
| set_handler(new MyHandler()); |
| |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a", 80)->Resolve()); |
| proc_->SignalMultiple(3u); // Only need two, but be generous. |
| |
| // |verifier| will send quit message once all the requests have finished. |
| MessageLoop::current()->Run(); |
| EXPECT_EQ(2u, proc_->GetCaptureList().size()); |
| } |
| |
| // Test that IP address changes flush the cache. |
| TEST_F(HostResolverImplTest, FlushCacheOnIPAddressChange) { |
| proc_->SignalMultiple(2u); // One before the flush, one after. |
| |
| Request* req = CreateRequest("host1", 70); |
| EXPECT_EQ(ERR_IO_PENDING, req->Resolve()); |
| EXPECT_EQ(OK, req->WaitForResult()); |
| |
| req = CreateRequest("host1", 75); |
| EXPECT_EQ(OK, req->Resolve()); // Should complete synchronously. |
| |
| // Flush cache by triggering an IP address change. |
| NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests(); |
| MessageLoop::current()->RunUntilIdle(); // Notification happens async. |
| |
| // Resolve "host1" again -- this time it won't be served from cache, so it |
| // will complete asynchronously. |
| req = CreateRequest("host1", 80); |
| EXPECT_EQ(ERR_IO_PENDING, req->Resolve()); |
| EXPECT_EQ(OK, req->WaitForResult()); |
| } |
| |
| // Test that IP address changes send ERR_NETWORK_CHANGED to pending requests. |
| TEST_F(HostResolverImplTest, AbortOnIPAddressChanged) { |
| Request* req = CreateRequest("host1", 70); |
| EXPECT_EQ(ERR_IO_PENDING, req->Resolve()); |
| |
| EXPECT_TRUE(proc_->WaitFor(1u)); |
| // Triggering an IP address change. |
| NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests(); |
| MessageLoop::current()->RunUntilIdle(); // Notification happens async. |
| proc_->SignalAll(); |
| |
| EXPECT_EQ(ERR_NETWORK_CHANGED, req->WaitForResult()); |
| EXPECT_EQ(0u, resolver_->GetHostCache()->size()); |
| } |
| |
| // Obey pool constraints after IP address has changed. |
| TEST_F(HostResolverImplTest, ObeyPoolConstraintsAfterIPAddressChange) { |
| // Runs at most one job at a time. |
| CreateSerialResolver(); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("a")->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("b")->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("c")->Resolve()); |
| |
| EXPECT_TRUE(proc_->WaitFor(1u)); |
| // Triggering an IP address change. |
| NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests(); |
| MessageLoop::current()->RunUntilIdle(); // Notification happens async. |
| proc_->SignalMultiple(3u); // Let the false-start go so that we can catch it. |
| |
| EXPECT_EQ(ERR_NETWORK_CHANGED, requests_[0]->WaitForResult()); |
| |
| EXPECT_EQ(1u, num_running_jobs()); |
| |
| EXPECT_FALSE(requests_[1]->completed()); |
| EXPECT_FALSE(requests_[2]->completed()); |
| |
| EXPECT_EQ(OK, requests_[2]->WaitForResult()); |
| EXPECT_EQ(OK, requests_[1]->result()); |
| } |
| |
| // Tests that a new Request made from the callback of a previously aborted one |
| // will not be aborted. |
| TEST_F(HostResolverImplTest, AbortOnlyExistingRequestsOnIPAddressChange) { |
| struct MyHandler : public Handler { |
| virtual void Handle(Request* req) override { |
| // Start new request for a different hostname to ensure that the order |
| // of jobs in HostResolverImpl is not stable. |
| std::string hostname; |
| if (req->index() == 0) |
| hostname = "zzz"; |
| else if (req->index() == 1) |
| hostname = "aaa"; |
| else if (req->index() == 2) |
| hostname = "eee"; |
| else |
| return; // A request started from within MyHandler. |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest(hostname)->Resolve()) << hostname; |
| } |
| }; |
| set_handler(new MyHandler()); |
| |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("bbb")->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("eee")->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("ccc")->Resolve()); |
| |
| // Wait until all are blocked; |
| EXPECT_TRUE(proc_->WaitFor(3u)); |
| // Trigger an IP address change. |
| NetworkChangeNotifier::NotifyObserversOfIPAddressChangeForTests(); |
| // This should abort all running jobs. |
| MessageLoop::current()->RunUntilIdle(); |
| EXPECT_EQ(ERR_NETWORK_CHANGED, requests_[0]->result()); |
| EXPECT_EQ(ERR_NETWORK_CHANGED, requests_[1]->result()); |
| EXPECT_EQ(ERR_NETWORK_CHANGED, requests_[2]->result()); |
| ASSERT_EQ(6u, requests_.size()); |
| // Unblock all calls to proc. |
| proc_->SignalMultiple(requests_.size()); |
| // Run until the re-started requests finish. |
| EXPECT_EQ(OK, requests_[3]->WaitForResult()); |
| EXPECT_EQ(OK, requests_[4]->WaitForResult()); |
| EXPECT_EQ(OK, requests_[5]->WaitForResult()); |
| // Verify that results of aborted Jobs were not cached. |
| EXPECT_EQ(6u, proc_->GetCaptureList().size()); |
| EXPECT_EQ(3u, resolver_->GetHostCache()->size()); |
| } |
| |
| // Tests that when the maximum threads is set to 1, requests are dequeued |
| // in order of priority. |
| TEST_F(HostResolverImplTest, HigherPriorityRequestsStartedFirst) { |
| CreateSerialResolver(); |
| |
| // Note that at this point the MockHostResolverProc is blocked, so any |
| // requests we make will not complete. |
| CreateRequest("req0", 80, LOW); |
| CreateRequest("req1", 80, MEDIUM); |
| CreateRequest("req2", 80, MEDIUM); |
| CreateRequest("req3", 80, LOW); |
| CreateRequest("req4", 80, HIGHEST); |
| CreateRequest("req5", 80, LOW); |
| CreateRequest("req6", 80, LOW); |
| CreateRequest("req5", 80, HIGHEST); |
| |
| for (size_t i = 0; i < requests_.size(); ++i) { |
| EXPECT_EQ(ERR_IO_PENDING, requests_[i]->Resolve()) << i; |
| } |
| |
| // Unblock the resolver thread so the requests can run. |
| proc_->SignalMultiple(requests_.size()); // More than needed. |
| |
| // Wait for all the requests to complete succesfully. |
| for (size_t i = 0; i < requests_.size(); ++i) { |
| EXPECT_EQ(OK, requests_[i]->WaitForResult()) << i; |
| } |
| |
| // Since we have restricted to a single concurrent thread in the jobpool, |
| // the requests should complete in order of priority (with the exception |
| // of the first request, which gets started right away, since there is |
| // nothing outstanding). |
| MockHostResolverProc::CaptureList capture_list = proc_->GetCaptureList(); |
| ASSERT_EQ(7u, capture_list.size()); |
| |
| EXPECT_EQ("req0", capture_list[0].hostname); |
| EXPECT_EQ("req4", capture_list[1].hostname); |
| EXPECT_EQ("req5", capture_list[2].hostname); |
| EXPECT_EQ("req1", capture_list[3].hostname); |
| EXPECT_EQ("req2", capture_list[4].hostname); |
| EXPECT_EQ("req3", capture_list[5].hostname); |
| EXPECT_EQ("req6", capture_list[6].hostname); |
| } |
| |
| // Try cancelling a job which has not started yet. |
| TEST_F(HostResolverImplTest, CancelPendingRequest) { |
| CreateSerialResolver(); |
| |
| CreateRequest("req0", 80, LOWEST); |
| CreateRequest("req1", 80, HIGHEST); // Will cancel. |
| CreateRequest("req2", 80, MEDIUM); |
| CreateRequest("req3", 80, LOW); |
| CreateRequest("req4", 80, HIGHEST); // Will cancel. |
| CreateRequest("req5", 80, LOWEST); // Will cancel. |
| CreateRequest("req6", 80, MEDIUM); |
| |
| // Start all of the requests. |
| for (size_t i = 0; i < requests_.size(); ++i) { |
| EXPECT_EQ(ERR_IO_PENDING, requests_[i]->Resolve()) << i; |
| } |
| |
| // Cancel some requests |
| requests_[1]->Cancel(); |
| requests_[4]->Cancel(); |
| requests_[5]->Cancel(); |
| |
| // Unblock the resolver thread so the requests can run. |
| proc_->SignalMultiple(requests_.size()); // More than needed. |
| |
| // Wait for all the requests to complete succesfully. |
| for (size_t i = 0; i < requests_.size(); ++i) { |
| if (!requests_[i]->pending()) |
| continue; // Don't wait for the requests we cancelled. |
| EXPECT_EQ(OK, requests_[i]->WaitForResult()) << i; |
| } |
| |
| // Verify that they called out the the resolver proc (which runs on the |
| // resolver thread) in the expected order. |
| MockHostResolverProc::CaptureList capture_list = proc_->GetCaptureList(); |
| ASSERT_EQ(4u, capture_list.size()); |
| |
| EXPECT_EQ("req0", capture_list[0].hostname); |
| EXPECT_EQ("req2", capture_list[1].hostname); |
| EXPECT_EQ("req6", capture_list[2].hostname); |
| EXPECT_EQ("req3", capture_list[3].hostname); |
| } |
| |
| // Test that when too many requests are enqueued, old ones start to be aborted. |
| TEST_F(HostResolverImplTest, QueueOverflow) { |
| CreateSerialResolver(); |
| |
| // Allow only 3 queued jobs. |
| const size_t kMaxPendingJobs = 3u; |
| resolver_->SetMaxQueuedJobs(kMaxPendingJobs); |
| |
| // Note that at this point the MockHostResolverProc is blocked, so any |
| // requests we make will not complete. |
| |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("req0", 80, LOWEST)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("req1", 80, HIGHEST)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("req2", 80, MEDIUM)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("req3", 80, MEDIUM)->Resolve()); |
| |
| // At this point, there are 3 enqueued jobs. |
| // Insertion of subsequent requests will cause evictions |
| // based on priority. |
| |
| EXPECT_EQ(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE, |
| CreateRequest("req4", 80, LOW)->Resolve()); // Evicts itself! |
| |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("req5", 80, MEDIUM)->Resolve()); |
| EXPECT_EQ(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE, requests_[2]->result()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("req6", 80, HIGHEST)->Resolve()); |
| EXPECT_EQ(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE, requests_[3]->result()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("req7", 80, MEDIUM)->Resolve()); |
| EXPECT_EQ(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE, requests_[5]->result()); |
| |
| // Unblock the resolver thread so the requests can run. |
| proc_->SignalMultiple(4u); |
| |
| // The rest should succeed. |
| EXPECT_EQ(OK, requests_[7]->WaitForResult()); |
| EXPECT_EQ(OK, requests_[0]->result()); |
| EXPECT_EQ(OK, requests_[1]->result()); |
| EXPECT_EQ(OK, requests_[6]->result()); |
| |
| // Verify that they called out the the resolver proc (which runs on the |
| // resolver thread) in the expected order. |
| MockHostResolverProc::CaptureList capture_list = proc_->GetCaptureList(); |
| ASSERT_EQ(4u, capture_list.size()); |
| |
| EXPECT_EQ("req0", capture_list[0].hostname); |
| EXPECT_EQ("req1", capture_list[1].hostname); |
| EXPECT_EQ("req6", capture_list[2].hostname); |
| EXPECT_EQ("req7", capture_list[3].hostname); |
| |
| // Verify that the evicted (incomplete) requests were not cached. |
| EXPECT_EQ(4u, resolver_->GetHostCache()->size()); |
| |
| for (size_t i = 0; i < requests_.size(); ++i) { |
| EXPECT_TRUE(requests_[i]->completed()) << i; |
| } |
| } |
| |
| // Tests that after changing the default AddressFamily to IPV4, requests |
| // with UNSPECIFIED address family map to IPV4. |
| TEST_F(HostResolverImplTest, SetDefaultAddressFamily_IPv4) { |
| CreateSerialResolver(); // To guarantee order of resolutions. |
| |
| proc_->AddRule("h1", ADDRESS_FAMILY_IPV4, "1.0.0.1"); |
| proc_->AddRule("h1", ADDRESS_FAMILY_IPV6, "::2"); |
| |
| resolver_->SetDefaultAddressFamily(ADDRESS_FAMILY_IPV4); |
| |
| CreateRequest("h1", 80, MEDIUM, ADDRESS_FAMILY_UNSPECIFIED); |
| CreateRequest("h1", 80, MEDIUM, ADDRESS_FAMILY_IPV4); |
| CreateRequest("h1", 80, MEDIUM, ADDRESS_FAMILY_IPV6); |
| |
| // Start all of the requests. |
| for (size_t i = 0; i < requests_.size(); ++i) { |
| EXPECT_EQ(ERR_IO_PENDING, requests_[i]->Resolve()) << i; |
| } |
| |
| proc_->SignalMultiple(requests_.size()); |
| |
| // Wait for all the requests to complete. |
| for (size_t i = 0u; i < requests_.size(); ++i) { |
| EXPECT_EQ(OK, requests_[i]->WaitForResult()) << i; |
| } |
| |
| // Since the requests all had the same priority and we limited the thread |
| // count to 1, they should have completed in the same order as they were |
| // requested. Moreover, request0 and request1 will have been serviced by |
| // the same job. |
| |
| MockHostResolverProc::CaptureList capture_list = proc_->GetCaptureList(); |
| ASSERT_EQ(2u, capture_list.size()); |
| |
| EXPECT_EQ("h1", capture_list[0].hostname); |
| EXPECT_EQ(ADDRESS_FAMILY_IPV4, capture_list[0].address_family); |
| |
| EXPECT_EQ("h1", capture_list[1].hostname); |
| EXPECT_EQ(ADDRESS_FAMILY_IPV6, capture_list[1].address_family); |
| |
| // Now check that the correct resolved IP addresses were returned. |
| EXPECT_TRUE(requests_[0]->HasOneAddress("1.0.0.1", 80)); |
| EXPECT_TRUE(requests_[1]->HasOneAddress("1.0.0.1", 80)); |
| EXPECT_TRUE(requests_[2]->HasOneAddress("::2", 80)); |
| } |
| |
| // This is the exact same test as SetDefaultAddressFamily_IPv4, except the |
| // default family is set to IPv6 and the family of requests is flipped where |
| // specified. |
| TEST_F(HostResolverImplTest, SetDefaultAddressFamily_IPv6) { |
| CreateSerialResolver(); // To guarantee order of resolutions. |
| |
| // Don't use IPv6 replacements here since some systems don't support it. |
| proc_->AddRule("h1", ADDRESS_FAMILY_IPV4, "1.0.0.1"); |
| proc_->AddRule("h1", ADDRESS_FAMILY_IPV6, "::2"); |
| |
| resolver_->SetDefaultAddressFamily(ADDRESS_FAMILY_IPV6); |
| |
| CreateRequest("h1", 80, MEDIUM, ADDRESS_FAMILY_UNSPECIFIED); |
| CreateRequest("h1", 80, MEDIUM, ADDRESS_FAMILY_IPV6); |
| CreateRequest("h1", 80, MEDIUM, ADDRESS_FAMILY_IPV4); |
| |
| // Start all of the requests. |
| for (size_t i = 0; i < requests_.size(); ++i) { |
| EXPECT_EQ(ERR_IO_PENDING, requests_[i]->Resolve()) << i; |
| } |
| |
| proc_->SignalMultiple(requests_.size()); |
| |
| // Wait for all the requests to complete. |
| for (size_t i = 0u; i < requests_.size(); ++i) { |
| EXPECT_EQ(OK, requests_[i]->WaitForResult()) << i; |
| } |
| |
| // Since the requests all had the same priority and we limited the thread |
| // count to 1, they should have completed in the same order as they were |
| // requested. Moreover, request0 and request1 will have been serviced by |
| // the same job. |
| |
| MockHostResolverProc::CaptureList capture_list = proc_->GetCaptureList(); |
| ASSERT_EQ(2u, capture_list.size()); |
| |
| EXPECT_EQ("h1", capture_list[0].hostname); |
| EXPECT_EQ(ADDRESS_FAMILY_IPV6, capture_list[0].address_family); |
| |
| EXPECT_EQ("h1", capture_list[1].hostname); |
| EXPECT_EQ(ADDRESS_FAMILY_IPV4, capture_list[1].address_family); |
| |
| // Now check that the correct resolved IP addresses were returned. |
| EXPECT_TRUE(requests_[0]->HasOneAddress("::2", 80)); |
| EXPECT_TRUE(requests_[1]->HasOneAddress("::2", 80)); |
| EXPECT_TRUE(requests_[2]->HasOneAddress("1.0.0.1", 80)); |
| } |
| |
| TEST_F(HostResolverImplTest, ResolveFromCache) { |
| proc_->AddRuleForAllFamilies("just.testing", "192.168.1.42"); |
| proc_->SignalMultiple(1u); // Need only one. |
| |
| HostResolver::RequestInfo info(HostPortPair("just.testing", 80)); |
| |
| // First hit will miss the cache. |
| EXPECT_EQ(ERR_DNS_CACHE_MISS, CreateRequest(info)->ResolveFromCache()); |
| |
| // This time, we fetch normally. |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest(info)->Resolve()); |
| EXPECT_EQ(OK, requests_[1]->WaitForResult()); |
| |
| // Now we should be able to fetch from the cache. |
| EXPECT_EQ(OK, CreateRequest(info)->ResolveFromCache()); |
| EXPECT_TRUE(requests_[2]->HasOneAddress("192.168.1.42", 80)); |
| } |
| |
| // Test the retry attempts simulating host resolver proc that takes too long. |
| TEST_F(HostResolverImplTest, MultipleAttempts) { |
| // Total number of attempts would be 3 and we want the 3rd attempt to resolve |
| // the host. First and second attempt will be forced to sleep until they get |
| // word that a resolution has completed. The 3rd resolution attempt will try |
| // to get done ASAP, and won't sleep.. |
| int kAttemptNumberToResolve = 3; |
| int kTotalAttempts = 3; |
| |
| scoped_refptr<LookupAttemptHostResolverProc> resolver_proc( |
| new LookupAttemptHostResolverProc( |
| NULL, kAttemptNumberToResolve, kTotalAttempts)); |
| |
| HostResolverImpl::ProcTaskParams params = DefaultParams(resolver_proc.get()); |
| |
| // Specify smaller interval for unresponsive_delay_ for HostResolverImpl so |
| // that unit test runs faster. For example, this test finishes in 1.5 secs |
| // (500ms * 3). |
| params.unresponsive_delay = base::TimeDelta::FromMilliseconds(500); |
| |
| resolver_.reset( |
| new HostResolverImpl(HostCache::CreateDefaultCache(), |
| DefaultLimits(), |
| params, |
| NULL)); |
| |
| // Resolve "host1". |
| HostResolver::RequestInfo info(HostPortPair("host1", 70)); |
| Request* req = CreateRequest(info); |
| EXPECT_EQ(ERR_IO_PENDING, req->Resolve()); |
| |
| // Resolve returns -4 to indicate that 3rd attempt has resolved the host. |
| EXPECT_EQ(-4, req->WaitForResult()); |
| |
| resolver_proc->WaitForAllAttemptsToFinish( |
| base::TimeDelta::FromMilliseconds(60000)); |
| MessageLoop::current()->RunUntilIdle(); |
| |
| EXPECT_EQ(resolver_proc->total_attempts_resolved(), kTotalAttempts); |
| EXPECT_EQ(resolver_proc->resolved_attempt_number(), kAttemptNumberToResolve); |
| } |
| |
| DnsConfig CreateValidDnsConfig() { |
| IPAddressNumber dns_ip; |
| bool rv = ParseIPLiteralToNumber("192.168.1.0", &dns_ip); |
| EXPECT_TRUE(rv); |
| |
| DnsConfig config; |
| config.nameservers.push_back(IPEndPoint(dns_ip, dns_protocol::kDefaultPort)); |
| EXPECT_TRUE(config.IsValid()); |
| return config; |
| } |
| |
| // Specialized fixture for tests of DnsTask. |
| class HostResolverImplDnsTest : public HostResolverImplTest { |
| protected: |
| virtual void SetUp() override { |
| AddDnsRule("er", dns_protocol::kTypeA, MockDnsClientRule::FAIL_SYNC); |
| AddDnsRule("er", dns_protocol::kTypeAAAA, MockDnsClientRule::FAIL_SYNC); |
| AddDnsRule("nx", dns_protocol::kTypeA, MockDnsClientRule::FAIL_ASYNC); |
| AddDnsRule("nx", dns_protocol::kTypeAAAA, MockDnsClientRule::FAIL_ASYNC); |
| AddDnsRule("ok", dns_protocol::kTypeA, MockDnsClientRule::OK); |
| AddDnsRule("ok", dns_protocol::kTypeAAAA, MockDnsClientRule::OK); |
| AddDnsRule("4ok", dns_protocol::kTypeA, MockDnsClientRule::OK); |
| AddDnsRule("4ok", dns_protocol::kTypeAAAA, MockDnsClientRule::EMPTY); |
| AddDnsRule("6ok", dns_protocol::kTypeA, MockDnsClientRule::EMPTY); |
| AddDnsRule("6ok", dns_protocol::kTypeAAAA, MockDnsClientRule::OK); |
| AddDnsRule("4nx", dns_protocol::kTypeA, MockDnsClientRule::OK); |
| AddDnsRule("4nx", dns_protocol::kTypeAAAA, MockDnsClientRule::FAIL_ASYNC); |
| CreateResolver(); |
| } |
| |
| void CreateResolver() { |
| resolver_.reset(new HostResolverImpl( |
| HostCache::CreateDefaultCache(), |
| DefaultLimits(), |
| DefaultParams(proc_), |
| NULL)); |
| resolver_->SetDnsClient(CreateMockDnsClient(DnsConfig(), dns_rules_)); |
| } |
| |
| // Adds a rule to |dns_rules_|. Must be followed by |CreateResolver| to apply. |
| void AddDnsRule(const std::string& prefix, |
| uint16 qtype, |
| MockDnsClientRule::Result result) { |
| dns_rules_.push_back(MockDnsClientRule(prefix, qtype, result)); |
| } |
| |
| void ChangeDnsConfig(const DnsConfig& config) { |
| NetworkChangeNotifier::SetDnsConfig(config); |
| // Notification is delivered asynchronously. |
| MessageLoop::current()->RunUntilIdle(); |
| } |
| |
| MockDnsClientRuleList dns_rules_; |
| }; |
| |
| // TODO(szym): Test AbortAllInProgressJobs due to DnsConfig change. |
| |
| // TODO(cbentzel): Test a mix of requests with different HostResolverFlags. |
| |
| // Test successful and fallback resolutions in HostResolverImpl::DnsTask. |
| TEST_F(HostResolverImplDnsTest, DnsTask) { |
| resolver_->SetDefaultAddressFamily(ADDRESS_FAMILY_IPV4); |
| |
| proc_->AddRuleForAllFamilies("er_succeed", "192.168.1.101"); |
| proc_->AddRuleForAllFamilies("nx_succeed", "192.168.1.102"); |
| // All other hostnames will fail in proc_. |
| |
| // Initially there is no config, so client should not be invoked. |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("ok_fail", 80)->Resolve()); |
| proc_->SignalMultiple(requests_.size()); |
| |
| EXPECT_EQ(ERR_NAME_NOT_RESOLVED, requests_[0]->WaitForResult()); |
| |
| ChangeDnsConfig(CreateValidDnsConfig()); |
| |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("ok_fail", 80)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("er_fail", 80)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("nx_fail", 80)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("er_succeed", 80)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("nx_succeed", 80)->Resolve()); |
| |
| proc_->SignalMultiple(requests_.size()); |
| |
| for (size_t i = 1; i < requests_.size(); ++i) |
| EXPECT_NE(ERR_UNEXPECTED, requests_[i]->WaitForResult()) << i; |
| |
| EXPECT_EQ(OK, requests_[1]->result()); |
| // Resolved by MockDnsClient. |
| EXPECT_TRUE(requests_[1]->HasOneAddress("127.0.0.1", 80)); |
| // Fallback to ProcTask. |
| EXPECT_EQ(ERR_NAME_NOT_RESOLVED, requests_[2]->result()); |
| EXPECT_EQ(ERR_NAME_NOT_RESOLVED, requests_[3]->result()); |
| EXPECT_EQ(OK, requests_[4]->result()); |
| EXPECT_TRUE(requests_[4]->HasOneAddress("192.168.1.101", 80)); |
| EXPECT_EQ(OK, requests_[5]->result()); |
| EXPECT_TRUE(requests_[5]->HasOneAddress("192.168.1.102", 80)); |
| } |
| |
| TEST_F(HostResolverImplDnsTest, DnsTaskUnspec) { |
| ChangeDnsConfig(CreateValidDnsConfig()); |
| |
| proc_->AddRuleForAllFamilies("4nx", "192.168.1.101"); |
| // All other hostnames will fail in proc_. |
| |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("ok", 80)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("4ok", 80)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("6ok", 80)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("4nx", 80)->Resolve()); |
| |
| proc_->SignalMultiple(requests_.size()); |
| |
| for (size_t i = 0; i < requests_.size(); ++i) |
| EXPECT_EQ(OK, requests_[i]->WaitForResult()) << i; |
| |
| EXPECT_EQ(2u, requests_[0]->NumberOfAddresses()); |
| EXPECT_TRUE(requests_[0]->HasAddress("127.0.0.1", 80)); |
| EXPECT_TRUE(requests_[0]->HasAddress("::1", 80)); |
| EXPECT_EQ(1u, requests_[1]->NumberOfAddresses()); |
| EXPECT_TRUE(requests_[1]->HasAddress("127.0.0.1", 80)); |
| EXPECT_EQ(1u, requests_[2]->NumberOfAddresses()); |
| EXPECT_TRUE(requests_[2]->HasAddress("::1", 80)); |
| EXPECT_EQ(1u, requests_[3]->NumberOfAddresses()); |
| EXPECT_TRUE(requests_[3]->HasAddress("192.168.1.101", 80)); |
| } |
| |
| TEST_F(HostResolverImplDnsTest, ServeFromHosts) { |
| // Initially, use empty HOSTS file. |
| DnsConfig config = CreateValidDnsConfig(); |
| ChangeDnsConfig(config); |
| |
| proc_->AddRuleForAllFamilies("", ""); // Default to failures. |
| proc_->SignalMultiple(1u); // For the first request which misses. |
| |
| Request* req0 = CreateRequest("er_ipv4", 80); |
| EXPECT_EQ(ERR_IO_PENDING, req0->Resolve()); |
| EXPECT_EQ(ERR_NAME_NOT_RESOLVED, req0->WaitForResult()); |
| |
| IPAddressNumber local_ipv4, local_ipv6; |
| ASSERT_TRUE(ParseIPLiteralToNumber("127.0.0.1", &local_ipv4)); |
| ASSERT_TRUE(ParseIPLiteralToNumber("::1", &local_ipv6)); |
| |
| DnsHosts hosts; |
| hosts[DnsHostsKey("er_ipv4", ADDRESS_FAMILY_IPV4)] = local_ipv4; |
| hosts[DnsHostsKey("er_ipv6", ADDRESS_FAMILY_IPV6)] = local_ipv6; |
| hosts[DnsHostsKey("er_both", ADDRESS_FAMILY_IPV4)] = local_ipv4; |
| hosts[DnsHostsKey("er_both", ADDRESS_FAMILY_IPV6)] = local_ipv6; |
| |
| // Update HOSTS file. |
| config.hosts = hosts; |
| ChangeDnsConfig(config); |
| |
| Request* req1 = CreateRequest("er_ipv4", 80); |
| EXPECT_EQ(OK, req1->Resolve()); |
| EXPECT_TRUE(req1->HasOneAddress("127.0.0.1", 80)); |
| |
| Request* req2 = CreateRequest("er_ipv6", 80); |
| EXPECT_EQ(OK, req2->Resolve()); |
| EXPECT_TRUE(req2->HasOneAddress("::1", 80)); |
| |
| Request* req3 = CreateRequest("er_both", 80); |
| EXPECT_EQ(OK, req3->Resolve()); |
| EXPECT_TRUE(req3->HasOneAddress("127.0.0.1", 80) || |
| req3->HasOneAddress("::1", 80)); |
| |
| // Requests with specified AddressFamily. |
| Request* req4 = CreateRequest("er_ipv4", 80, MEDIUM, ADDRESS_FAMILY_IPV4); |
| EXPECT_EQ(OK, req4->Resolve()); |
| EXPECT_TRUE(req4->HasOneAddress("127.0.0.1", 80)); |
| |
| Request* req5 = CreateRequest("er_ipv6", 80, MEDIUM, ADDRESS_FAMILY_IPV6); |
| EXPECT_EQ(OK, req5->Resolve()); |
| EXPECT_TRUE(req5->HasOneAddress("::1", 80)); |
| |
| // Request with upper case. |
| Request* req6 = CreateRequest("er_IPV4", 80); |
| EXPECT_EQ(OK, req6->Resolve()); |
| EXPECT_TRUE(req6->HasOneAddress("127.0.0.1", 80)); |
| } |
| |
| TEST_F(HostResolverImplDnsTest, BypassDnsTask) { |
| ChangeDnsConfig(CreateValidDnsConfig()); |
| |
| proc_->AddRuleForAllFamilies("", ""); // Default to failures. |
| |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("ok.local", 80)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("ok.local.", 80)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("oklocal", 80)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("oklocal.", 80)->Resolve()); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest("ok", 80)->Resolve()); |
| |
| proc_->SignalMultiple(requests_.size()); |
| |
| for (size_t i = 0; i < 2; ++i) |
| EXPECT_EQ(ERR_NAME_NOT_RESOLVED, requests_[i]->WaitForResult()) << i; |
| |
| for (size_t i = 2; i < requests_.size(); ++i) |
| EXPECT_EQ(OK, requests_[i]->WaitForResult()) << i; |
| } |
| |
| TEST_F(HostResolverImplDnsTest, DisableDnsClientOnPersistentFailure) { |
| ChangeDnsConfig(CreateValidDnsConfig()); |
| |
| proc_->AddRuleForAllFamilies("", ""); // Default to failures. |
| |
| // Check that DnsTask works. |
| Request* req = CreateRequest("ok_1", 80); |
| EXPECT_EQ(ERR_IO_PENDING, req->Resolve()); |
| EXPECT_EQ(OK, req->WaitForResult()); |
| |
| for (unsigned i = 0; i < 20; ++i) { |
| // Use custom names to require separate Jobs. |
| std::string hostname = base::StringPrintf("err_%u", i); |
| // Ensure fallback to ProcTask succeeds. |
| proc_->AddRuleForAllFamilies(hostname, "192.168.1.101"); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest(hostname, 80)->Resolve()) << i; |
| } |
| |
| proc_->SignalMultiple(requests_.size()); |
| |
| for (size_t i = 0; i < requests_.size(); ++i) |
| EXPECT_EQ(OK, requests_[i]->WaitForResult()) << i; |
| |
| ASSERT_FALSE(proc_->HasBlockedRequests()); |
| |
| // DnsTask should be disabled by now. |
| req = CreateRequest("ok_2", 80); |
| EXPECT_EQ(ERR_IO_PENDING, req->Resolve()); |
| proc_->SignalMultiple(1u); |
| EXPECT_EQ(ERR_NAME_NOT_RESOLVED, req->WaitForResult()); |
| |
| // Check that it is re-enabled after DNS change. |
| ChangeDnsConfig(CreateValidDnsConfig()); |
| req = CreateRequest("ok_3", 80); |
| EXPECT_EQ(ERR_IO_PENDING, req->Resolve()); |
| EXPECT_EQ(OK, req->WaitForResult()); |
| } |
| |
| TEST_F(HostResolverImplDnsTest, DontDisableDnsClientOnSporadicFailure) { |
| ChangeDnsConfig(CreateValidDnsConfig()); |
| |
| // |proc_| defaults to successes. |
| |
| // 20 failures interleaved with 20 successes. |
| for (unsigned i = 0; i < 40; ++i) { |
| // Use custom names to require separate Jobs. |
| std::string hostname = (i % 2) == 0 ? base::StringPrintf("err_%u", i) |
| : base::StringPrintf("ok_%u", i); |
| EXPECT_EQ(ERR_IO_PENDING, CreateRequest(hostname, 80)->Resolve()) << i; |
| } |
| |
| proc_->SignalMultiple(requests_.size()); |
| |
| for (size_t i = 0; i < requests_.size(); ++i) |
| EXPECT_EQ(OK, requests_[i]->WaitForResult()) << i; |
| |
| // Make |proc_| default to failures. |
| proc_->AddRuleForAllFamilies("", ""); |
| |
| // DnsTask should still be enabled. |
| Request* req = CreateRequest("ok_last", 80); |
| EXPECT_EQ(ERR_IO_PENDING, req->Resolve()); |
| EXPECT_EQ(OK, req->WaitForResult()); |
| } |
| |
| } // namespace net |