| //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit Builtin calls as LLVM code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGCXXABI.h" |
| #include "CGObjCRuntime.h" |
| #include "CGOpenCLRuntime.h" |
| #include "CGRecordLayout.h" |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "ConstantEmitter.h" |
| #include "TargetInfo.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/Analysis/Analyses/OSLog.h" |
| #include "clang/Basic/TargetBuiltins.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/CodeGen/CGFunctionInfo.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/Support/ConvertUTF.h" |
| #include "llvm/Support/ScopedPrinter.h" |
| #include "llvm/Support/TargetParser.h" |
| #include <sstream> |
| |
| using namespace clang; |
| using namespace CodeGen; |
| using namespace llvm; |
| |
| static |
| int64_t clamp(int64_t Value, int64_t Low, int64_t High) { |
| return std::min(High, std::max(Low, Value)); |
| } |
| |
| /// getBuiltinLibFunction - Given a builtin id for a function like |
| /// "__builtin_fabsf", return a Function* for "fabsf". |
| llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, |
| unsigned BuiltinID) { |
| assert(Context.BuiltinInfo.isLibFunction(BuiltinID)); |
| |
| // Get the name, skip over the __builtin_ prefix (if necessary). |
| StringRef Name; |
| GlobalDecl D(FD); |
| |
| // If the builtin has been declared explicitly with an assembler label, |
| // use the mangled name. This differs from the plain label on platforms |
| // that prefix labels. |
| if (FD->hasAttr<AsmLabelAttr>()) |
| Name = getMangledName(D); |
| else |
| Name = Context.BuiltinInfo.getName(BuiltinID) + 10; |
| |
| llvm::FunctionType *Ty = |
| cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); |
| |
| return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); |
| } |
| |
| /// Emit the conversions required to turn the given value into an |
| /// integer of the given size. |
| static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V, |
| QualType T, llvm::IntegerType *IntType) { |
| V = CGF.EmitToMemory(V, T); |
| |
| if (V->getType()->isPointerTy()) |
| return CGF.Builder.CreatePtrToInt(V, IntType); |
| |
| assert(V->getType() == IntType); |
| return V; |
| } |
| |
| static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V, |
| QualType T, llvm::Type *ResultType) { |
| V = CGF.EmitFromMemory(V, T); |
| |
| if (ResultType->isPointerTy()) |
| return CGF.Builder.CreateIntToPtr(V, ResultType); |
| |
| assert(V->getType() == ResultType); |
| return V; |
| } |
| |
| /// Utility to insert an atomic instruction based on Instrinsic::ID |
| /// and the expression node. |
| static Value *MakeBinaryAtomicValue(CodeGenFunction &CGF, |
| llvm::AtomicRMWInst::BinOp Kind, |
| const CallExpr *E) { |
| QualType T = E->getType(); |
| assert(E->getArg(0)->getType()->isPointerType()); |
| assert(CGF.getContext().hasSameUnqualifiedType(T, |
| E->getArg(0)->getType()->getPointeeType())); |
| assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); |
| |
| llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); |
| unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); |
| |
| llvm::IntegerType *IntType = |
| llvm::IntegerType::get(CGF.getLLVMContext(), |
| CGF.getContext().getTypeSize(T)); |
| llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); |
| |
| llvm::Value *Args[2]; |
| Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); |
| Args[1] = CGF.EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ValueType = Args[1]->getType(); |
| Args[1] = EmitToInt(CGF, Args[1], T, IntType); |
| |
| llvm::Value *Result = CGF.Builder.CreateAtomicRMW( |
| Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent); |
| return EmitFromInt(CGF, Result, T, ValueType); |
| } |
| |
| static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) { |
| Value *Val = CGF.EmitScalarExpr(E->getArg(0)); |
| Value *Address = CGF.EmitScalarExpr(E->getArg(1)); |
| |
| // Convert the type of the pointer to a pointer to the stored type. |
| Val = CGF.EmitToMemory(Val, E->getArg(0)->getType()); |
| Value *BC = CGF.Builder.CreateBitCast( |
| Address, llvm::PointerType::getUnqual(Val->getType()), "cast"); |
| LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType()); |
| LV.setNontemporal(true); |
| CGF.EmitStoreOfScalar(Val, LV, false); |
| return nullptr; |
| } |
| |
| static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) { |
| Value *Address = CGF.EmitScalarExpr(E->getArg(0)); |
| |
| LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType()); |
| LV.setNontemporal(true); |
| return CGF.EmitLoadOfScalar(LV, E->getExprLoc()); |
| } |
| |
| static RValue EmitBinaryAtomic(CodeGenFunction &CGF, |
| llvm::AtomicRMWInst::BinOp Kind, |
| const CallExpr *E) { |
| return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E)); |
| } |
| |
| /// Utility to insert an atomic instruction based Instrinsic::ID and |
| /// the expression node, where the return value is the result of the |
| /// operation. |
| static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF, |
| llvm::AtomicRMWInst::BinOp Kind, |
| const CallExpr *E, |
| Instruction::BinaryOps Op, |
| bool Invert = false) { |
| QualType T = E->getType(); |
| assert(E->getArg(0)->getType()->isPointerType()); |
| assert(CGF.getContext().hasSameUnqualifiedType(T, |
| E->getArg(0)->getType()->getPointeeType())); |
| assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); |
| |
| llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); |
| unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); |
| |
| llvm::IntegerType *IntType = |
| llvm::IntegerType::get(CGF.getLLVMContext(), |
| CGF.getContext().getTypeSize(T)); |
| llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); |
| |
| llvm::Value *Args[2]; |
| Args[1] = CGF.EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ValueType = Args[1]->getType(); |
| Args[1] = EmitToInt(CGF, Args[1], T, IntType); |
| Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); |
| |
| llvm::Value *Result = CGF.Builder.CreateAtomicRMW( |
| Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent); |
| Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]); |
| if (Invert) |
| Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result, |
| llvm::ConstantInt::get(IntType, -1)); |
| Result = EmitFromInt(CGF, Result, T, ValueType); |
| return RValue::get(Result); |
| } |
| |
| /// Utility to insert an atomic cmpxchg instruction. |
| /// |
| /// @param CGF The current codegen function. |
| /// @param E Builtin call expression to convert to cmpxchg. |
| /// arg0 - address to operate on |
| /// arg1 - value to compare with |
| /// arg2 - new value |
| /// @param ReturnBool Specifies whether to return success flag of |
| /// cmpxchg result or the old value. |
| /// |
| /// @returns result of cmpxchg, according to ReturnBool |
| static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E, |
| bool ReturnBool) { |
| QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType(); |
| llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); |
| unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); |
| |
| llvm::IntegerType *IntType = llvm::IntegerType::get( |
| CGF.getLLVMContext(), CGF.getContext().getTypeSize(T)); |
| llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); |
| |
| Value *Args[3]; |
| Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); |
| Args[1] = CGF.EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ValueType = Args[1]->getType(); |
| Args[1] = EmitToInt(CGF, Args[1], T, IntType); |
| Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType); |
| |
| Value *Pair = CGF.Builder.CreateAtomicCmpXchg( |
| Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent, |
| llvm::AtomicOrdering::SequentiallyConsistent); |
| if (ReturnBool) |
| // Extract boolean success flag and zext it to int. |
| return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1), |
| CGF.ConvertType(E->getType())); |
| else |
| // Extract old value and emit it using the same type as compare value. |
| return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T, |
| ValueType); |
| } |
| |
| // Emit a simple mangled intrinsic that has 1 argument and a return type |
| // matching the argument type. |
| static Value *emitUnaryBuiltin(CodeGenFunction &CGF, |
| const CallExpr *E, |
| unsigned IntrinsicID) { |
| llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
| |
| Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
| return CGF.Builder.CreateCall(F, Src0); |
| } |
| |
| // Emit an intrinsic that has 2 operands of the same type as its result. |
| static Value *emitBinaryBuiltin(CodeGenFunction &CGF, |
| const CallExpr *E, |
| unsigned IntrinsicID) { |
| llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
| |
| Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
| return CGF.Builder.CreateCall(F, { Src0, Src1 }); |
| } |
| |
| // Emit an intrinsic that has 3 operands of the same type as its result. |
| static Value *emitTernaryBuiltin(CodeGenFunction &CGF, |
| const CallExpr *E, |
| unsigned IntrinsicID) { |
| llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
| llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2)); |
| |
| Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
| return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 }); |
| } |
| |
| // Emit an intrinsic that has 1 float or double operand, and 1 integer. |
| static Value *emitFPIntBuiltin(CodeGenFunction &CGF, |
| const CallExpr *E, |
| unsigned IntrinsicID) { |
| llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); |
| |
| Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); |
| return CGF.Builder.CreateCall(F, {Src0, Src1}); |
| } |
| |
| /// EmitFAbs - Emit a call to @llvm.fabs(). |
| static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) { |
| Value *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType()); |
| llvm::CallInst *Call = CGF.Builder.CreateCall(F, V); |
| Call->setDoesNotAccessMemory(); |
| return Call; |
| } |
| |
| /// Emit the computation of the sign bit for a floating point value. Returns |
| /// the i1 sign bit value. |
| static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) { |
| LLVMContext &C = CGF.CGM.getLLVMContext(); |
| |
| llvm::Type *Ty = V->getType(); |
| int Width = Ty->getPrimitiveSizeInBits(); |
| llvm::Type *IntTy = llvm::IntegerType::get(C, Width); |
| V = CGF.Builder.CreateBitCast(V, IntTy); |
| if (Ty->isPPC_FP128Ty()) { |
| // We want the sign bit of the higher-order double. The bitcast we just |
| // did works as if the double-double was stored to memory and then |
| // read as an i128. The "store" will put the higher-order double in the |
| // lower address in both little- and big-Endian modes, but the "load" |
| // will treat those bits as a different part of the i128: the low bits in |
| // little-Endian, the high bits in big-Endian. Therefore, on big-Endian |
| // we need to shift the high bits down to the low before truncating. |
| Width >>= 1; |
| if (CGF.getTarget().isBigEndian()) { |
| Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width); |
| V = CGF.Builder.CreateLShr(V, ShiftCst); |
| } |
| // We are truncating value in order to extract the higher-order |
| // double, which we will be using to extract the sign from. |
| IntTy = llvm::IntegerType::get(C, Width); |
| V = CGF.Builder.CreateTrunc(V, IntTy); |
| } |
| Value *Zero = llvm::Constant::getNullValue(IntTy); |
| return CGF.Builder.CreateICmpSLT(V, Zero); |
| } |
| |
| static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD, |
| const CallExpr *E, llvm::Constant *calleeValue) { |
| CGCallee callee = CGCallee::forDirect(calleeValue, FD); |
| return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot()); |
| } |
| |
| /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.* |
| /// depending on IntrinsicID. |
| /// |
| /// \arg CGF The current codegen function. |
| /// \arg IntrinsicID The ID for the Intrinsic we wish to generate. |
| /// \arg X The first argument to the llvm.*.with.overflow.*. |
| /// \arg Y The second argument to the llvm.*.with.overflow.*. |
| /// \arg Carry The carry returned by the llvm.*.with.overflow.*. |
| /// \returns The result (i.e. sum/product) returned by the intrinsic. |
| static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF, |
| const llvm::Intrinsic::ID IntrinsicID, |
| llvm::Value *X, llvm::Value *Y, |
| llvm::Value *&Carry) { |
| // Make sure we have integers of the same width. |
| assert(X->getType() == Y->getType() && |
| "Arguments must be the same type. (Did you forget to make sure both " |
| "arguments have the same integer width?)"); |
| |
| llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType()); |
| llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y}); |
| Carry = CGF.Builder.CreateExtractValue(Tmp, 1); |
| return CGF.Builder.CreateExtractValue(Tmp, 0); |
| } |
| |
| static Value *emitRangedBuiltin(CodeGenFunction &CGF, |
| unsigned IntrinsicID, |
| int low, int high) { |
| llvm::MDBuilder MDHelper(CGF.getLLVMContext()); |
| llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high)); |
| Value *F = CGF.CGM.getIntrinsic(IntrinsicID, {}); |
| llvm::Instruction *Call = CGF.Builder.CreateCall(F); |
| Call->setMetadata(llvm::LLVMContext::MD_range, RNode); |
| return Call; |
| } |
| |
| namespace { |
| struct WidthAndSignedness { |
| unsigned Width; |
| bool Signed; |
| }; |
| } |
| |
| static WidthAndSignedness |
| getIntegerWidthAndSignedness(const clang::ASTContext &context, |
| const clang::QualType Type) { |
| assert(Type->isIntegerType() && "Given type is not an integer."); |
| unsigned Width = Type->isBooleanType() ? 1 : context.getTypeInfo(Type).Width; |
| bool Signed = Type->isSignedIntegerType(); |
| return {Width, Signed}; |
| } |
| |
| // Given one or more integer types, this function produces an integer type that |
| // encompasses them: any value in one of the given types could be expressed in |
| // the encompassing type. |
| static struct WidthAndSignedness |
| EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) { |
| assert(Types.size() > 0 && "Empty list of types."); |
| |
| // If any of the given types is signed, we must return a signed type. |
| bool Signed = false; |
| for (const auto &Type : Types) { |
| Signed |= Type.Signed; |
| } |
| |
| // The encompassing type must have a width greater than or equal to the width |
| // of the specified types. Additionally, if the encompassing type is signed, |
| // its width must be strictly greater than the width of any unsigned types |
| // given. |
| unsigned Width = 0; |
| for (const auto &Type : Types) { |
| unsigned MinWidth = Type.Width + (Signed && !Type.Signed); |
| if (Width < MinWidth) { |
| Width = MinWidth; |
| } |
| } |
| |
| return {Width, Signed}; |
| } |
| |
| Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) { |
| llvm::Type *DestType = Int8PtrTy; |
| if (ArgValue->getType() != DestType) |
| ArgValue = |
| Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data()); |
| |
| Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend; |
| return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue); |
| } |
| |
| /// Checks if using the result of __builtin_object_size(p, @p From) in place of |
| /// __builtin_object_size(p, @p To) is correct |
| static bool areBOSTypesCompatible(int From, int To) { |
| // Note: Our __builtin_object_size implementation currently treats Type=0 and |
| // Type=2 identically. Encoding this implementation detail here may make |
| // improving __builtin_object_size difficult in the future, so it's omitted. |
| return From == To || (From == 0 && To == 1) || (From == 3 && To == 2); |
| } |
| |
| static llvm::Value * |
| getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) { |
| return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true); |
| } |
| |
| llvm::Value * |
| CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, |
| llvm::IntegerType *ResType, |
| llvm::Value *EmittedE) { |
| uint64_t ObjectSize; |
| if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type)) |
| return emitBuiltinObjectSize(E, Type, ResType, EmittedE); |
| return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true); |
| } |
| |
| /// Returns a Value corresponding to the size of the given expression. |
| /// This Value may be either of the following: |
| /// - A llvm::Argument (if E is a param with the pass_object_size attribute on |
| /// it) |
| /// - A call to the @llvm.objectsize intrinsic |
| /// |
| /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null |
| /// and we wouldn't otherwise try to reference a pass_object_size parameter, |
| /// we'll call @llvm.objectsize on EmittedE, rather than emitting E. |
| llvm::Value * |
| CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type, |
| llvm::IntegerType *ResType, |
| llvm::Value *EmittedE) { |
| // We need to reference an argument if the pointer is a parameter with the |
| // pass_object_size attribute. |
| if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) { |
| auto *Param = dyn_cast<ParmVarDecl>(D->getDecl()); |
| auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>(); |
| if (Param != nullptr && PS != nullptr && |
| areBOSTypesCompatible(PS->getType(), Type)) { |
| auto Iter = SizeArguments.find(Param); |
| assert(Iter != SizeArguments.end()); |
| |
| const ImplicitParamDecl *D = Iter->second; |
| auto DIter = LocalDeclMap.find(D); |
| assert(DIter != LocalDeclMap.end()); |
| |
| return EmitLoadOfScalar(DIter->second, /*volatile=*/false, |
| getContext().getSizeType(), E->getLocStart()); |
| } |
| } |
| |
| // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't |
| // evaluate E for side-effects. In either case, we shouldn't lower to |
| // @llvm.objectsize. |
| if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext()))) |
| return getDefaultBuiltinObjectSizeResult(Type, ResType); |
| |
| Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E); |
| assert(Ptr->getType()->isPointerTy() && |
| "Non-pointer passed to __builtin_object_size?"); |
| |
| Value *F = CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()}); |
| |
| // LLVM only supports 0 and 2, make sure that we pass along that as a boolean. |
| Value *Min = Builder.getInt1((Type & 2) != 0); |
| // For GCC compatibility, __builtin_object_size treat NULL as unknown size. |
| Value *NullIsUnknown = Builder.getTrue(); |
| return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown}); |
| } |
| |
| namespace { |
| /// A struct to generically desribe a bit test intrinsic. |
| struct BitTest { |
| enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set }; |
| enum InterlockingKind : uint8_t { |
| Unlocked, |
| Sequential, |
| Acquire, |
| Release, |
| NoFence |
| }; |
| |
| ActionKind Action; |
| InterlockingKind Interlocking; |
| bool Is64Bit; |
| |
| static BitTest decodeBitTestBuiltin(unsigned BuiltinID); |
| }; |
| } // namespace |
| |
| BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) { |
| switch (BuiltinID) { |
| // Main portable variants. |
| case Builtin::BI_bittest: |
| return {TestOnly, Unlocked, false}; |
| case Builtin::BI_bittestandcomplement: |
| return {Complement, Unlocked, false}; |
| case Builtin::BI_bittestandreset: |
| return {Reset, Unlocked, false}; |
| case Builtin::BI_bittestandset: |
| return {Set, Unlocked, false}; |
| case Builtin::BI_interlockedbittestandreset: |
| return {Reset, Sequential, false}; |
| case Builtin::BI_interlockedbittestandset: |
| return {Set, Sequential, false}; |
| |
| // X86-specific 64-bit variants. |
| case Builtin::BI_bittest64: |
| return {TestOnly, Unlocked, true}; |
| case Builtin::BI_bittestandcomplement64: |
| return {Complement, Unlocked, true}; |
| case Builtin::BI_bittestandreset64: |
| return {Reset, Unlocked, true}; |
| case Builtin::BI_bittestandset64: |
| return {Set, Unlocked, true}; |
| case Builtin::BI_interlockedbittestandreset64: |
| return {Reset, Sequential, true}; |
| case Builtin::BI_interlockedbittestandset64: |
| return {Set, Sequential, true}; |
| |
| // ARM/AArch64-specific ordering variants. |
| case Builtin::BI_interlockedbittestandset_acq: |
| return {Set, Acquire, false}; |
| case Builtin::BI_interlockedbittestandset_rel: |
| return {Set, Release, false}; |
| case Builtin::BI_interlockedbittestandset_nf: |
| return {Set, NoFence, false}; |
| case Builtin::BI_interlockedbittestandreset_acq: |
| return {Reset, Acquire, false}; |
| case Builtin::BI_interlockedbittestandreset_rel: |
| return {Reset, Release, false}; |
| case Builtin::BI_interlockedbittestandreset_nf: |
| return {Reset, NoFence, false}; |
| } |
| llvm_unreachable("expected only bittest intrinsics"); |
| } |
| |
| static char bitActionToX86BTCode(BitTest::ActionKind A) { |
| switch (A) { |
| case BitTest::TestOnly: return '\0'; |
| case BitTest::Complement: return 'c'; |
| case BitTest::Reset: return 'r'; |
| case BitTest::Set: return 's'; |
| } |
| llvm_unreachable("invalid action"); |
| } |
| |
| static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF, |
| BitTest BT, |
| const CallExpr *E, Value *BitBase, |
| Value *BitPos) { |
| char Action = bitActionToX86BTCode(BT.Action); |
| char SizeSuffix = BT.Is64Bit ? 'q' : 'l'; |
| |
| // Build the assembly. |
| SmallString<64> Asm; |
| raw_svector_ostream AsmOS(Asm); |
| if (BT.Interlocking != BitTest::Unlocked) |
| AsmOS << "lock "; |
| AsmOS << "bt"; |
| if (Action) |
| AsmOS << Action; |
| AsmOS << SizeSuffix << " $2, ($1)\n\tsetc ${0:b}"; |
| |
| // Build the constraints. FIXME: We should support immediates when possible. |
| std::string Constraints = "=r,r,r,~{cc},~{flags},~{fpsr}"; |
| llvm::IntegerType *IntType = llvm::IntegerType::get( |
| CGF.getLLVMContext(), |
| CGF.getContext().getTypeSize(E->getArg(1)->getType())); |
| llvm::Type *IntPtrType = IntType->getPointerTo(); |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false); |
| |
| llvm::InlineAsm *IA = |
| llvm::InlineAsm::get(FTy, Asm, Constraints, /*SideEffects=*/true); |
| return CGF.Builder.CreateCall(IA, {BitBase, BitPos}); |
| } |
| |
| static llvm::AtomicOrdering |
| getBitTestAtomicOrdering(BitTest::InterlockingKind I) { |
| switch (I) { |
| case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic; |
| case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent; |
| case BitTest::Acquire: return llvm::AtomicOrdering::Acquire; |
| case BitTest::Release: return llvm::AtomicOrdering::Release; |
| case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic; |
| } |
| llvm_unreachable("invalid interlocking"); |
| } |
| |
| /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of |
| /// bits and a bit position and read and optionally modify the bit at that |
| /// position. The position index can be arbitrarily large, i.e. it can be larger |
| /// than 31 or 63, so we need an indexed load in the general case. |
| static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF, |
| unsigned BuiltinID, |
| const CallExpr *E) { |
| Value *BitBase = CGF.EmitScalarExpr(E->getArg(0)); |
| Value *BitPos = CGF.EmitScalarExpr(E->getArg(1)); |
| |
| BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID); |
| |
| // X86 has special BT, BTC, BTR, and BTS instructions that handle the array |
| // indexing operation internally. Use them if possible. |
| llvm::Triple::ArchType Arch = CGF.getTarget().getTriple().getArch(); |
| if (Arch == llvm::Triple::x86 || Arch == llvm::Triple::x86_64) |
| return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos); |
| |
| // Otherwise, use generic code to load one byte and test the bit. Use all but |
| // the bottom three bits as the array index, and the bottom three bits to form |
| // a mask. |
| // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0; |
| Value *ByteIndex = CGF.Builder.CreateAShr( |
| BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx"); |
| Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy); |
| Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8, |
| ByteIndex, "bittest.byteaddr"), |
| CharUnits::One()); |
| Value *PosLow = |
| CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty), |
| llvm::ConstantInt::get(CGF.Int8Ty, 0x7)); |
| |
| // The updating instructions will need a mask. |
| Value *Mask = nullptr; |
| if (BT.Action != BitTest::TestOnly) { |
| Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow, |
| "bittest.mask"); |
| } |
| |
| // Check the action and ordering of the interlocked intrinsics. |
| llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking); |
| |
| Value *OldByte = nullptr; |
| if (Ordering != llvm::AtomicOrdering::NotAtomic) { |
| // Emit a combined atomicrmw load/store operation for the interlocked |
| // intrinsics. |
| llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or; |
| if (BT.Action == BitTest::Reset) { |
| Mask = CGF.Builder.CreateNot(Mask); |
| RMWOp = llvm::AtomicRMWInst::And; |
| } |
| OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask, |
| Ordering); |
| } else { |
| // Emit a plain load for the non-interlocked intrinsics. |
| OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte"); |
| Value *NewByte = nullptr; |
| switch (BT.Action) { |
| case BitTest::TestOnly: |
| // Don't store anything. |
| break; |
| case BitTest::Complement: |
| NewByte = CGF.Builder.CreateXor(OldByte, Mask); |
| break; |
| case BitTest::Reset: |
| NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask)); |
| break; |
| case BitTest::Set: |
| NewByte = CGF.Builder.CreateOr(OldByte, Mask); |
| break; |
| } |
| if (NewByte) |
| CGF.Builder.CreateStore(NewByte, ByteAddr); |
| } |
| |
| // However we loaded the old byte, either by plain load or atomicrmw, shift |
| // the bit into the low position and mask it to 0 or 1. |
| Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr"); |
| return CGF.Builder.CreateAnd( |
| ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res"); |
| } |
| |
| namespace { |
| enum class MSVCSetJmpKind { |
| _setjmpex, |
| _setjmp3, |
| _setjmp |
| }; |
| } |
| |
| /// MSVC handles setjmp a bit differently on different platforms. On every |
| /// architecture except 32-bit x86, the frame address is passed. On x86, extra |
| /// parameters can be passed as variadic arguments, but we always pass none. |
| static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind, |
| const CallExpr *E) { |
| llvm::Value *Arg1 = nullptr; |
| llvm::Type *Arg1Ty = nullptr; |
| StringRef Name; |
| bool IsVarArg = false; |
| if (SJKind == MSVCSetJmpKind::_setjmp3) { |
| Name = "_setjmp3"; |
| Arg1Ty = CGF.Int32Ty; |
| Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0); |
| IsVarArg = true; |
| } else { |
| Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex"; |
| Arg1Ty = CGF.Int8PtrTy; |
| Arg1 = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(Intrinsic::frameaddress), |
| llvm::ConstantInt::get(CGF.Int32Ty, 0)); |
| } |
| |
| // Mark the call site and declaration with ReturnsTwice. |
| llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty}; |
| llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get( |
| CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex, |
| llvm::Attribute::ReturnsTwice); |
| llvm::Constant *SetJmpFn = CGF.CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name, |
| ReturnsTwiceAttr, /*Local=*/true); |
| |
| llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast( |
| CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy); |
| llvm::Value *Args[] = {Buf, Arg1}; |
| llvm::CallSite CS = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args); |
| CS.setAttributes(ReturnsTwiceAttr); |
| return RValue::get(CS.getInstruction()); |
| } |
| |
| // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code, |
| // we handle them here. |
| enum class CodeGenFunction::MSVCIntrin { |
| _BitScanForward, |
| _BitScanReverse, |
| _InterlockedAnd, |
| _InterlockedDecrement, |
| _InterlockedExchange, |
| _InterlockedExchangeAdd, |
| _InterlockedExchangeSub, |
| _InterlockedIncrement, |
| _InterlockedOr, |
| _InterlockedXor, |
| __fastfail, |
| }; |
| |
| Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, |
| const CallExpr *E) { |
| switch (BuiltinID) { |
| case MSVCIntrin::_BitScanForward: |
| case MSVCIntrin::_BitScanReverse: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(1)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| llvm::Type *IndexType = |
| EmitScalarExpr(E->getArg(0))->getType()->getPointerElementType(); |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| |
| Value *ArgZero = llvm::Constant::getNullValue(ArgType); |
| Value *ResZero = llvm::Constant::getNullValue(ResultType); |
| Value *ResOne = llvm::ConstantInt::get(ResultType, 1); |
| |
| BasicBlock *Begin = Builder.GetInsertBlock(); |
| BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn); |
| Builder.SetInsertPoint(End); |
| PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result"); |
| |
| Builder.SetInsertPoint(Begin); |
| Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero); |
| BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn); |
| Builder.CreateCondBr(IsZero, End, NotZero); |
| Result->addIncoming(ResZero, Begin); |
| |
| Builder.SetInsertPoint(NotZero); |
| Address IndexAddress = EmitPointerWithAlignment(E->getArg(0)); |
| |
| if (BuiltinID == MSVCIntrin::_BitScanForward) { |
| Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); |
| Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); |
| ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); |
| Builder.CreateStore(ZeroCount, IndexAddress, false); |
| } else { |
| unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth(); |
| Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1); |
| |
| Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); |
| Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); |
| ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); |
| Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount); |
| Builder.CreateStore(Index, IndexAddress, false); |
| } |
| Builder.CreateBr(End); |
| Result->addIncoming(ResOne, NotZero); |
| |
| Builder.SetInsertPoint(End); |
| return Result; |
| } |
| case MSVCIntrin::_InterlockedAnd: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E); |
| case MSVCIntrin::_InterlockedExchange: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E); |
| case MSVCIntrin::_InterlockedExchangeAdd: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E); |
| case MSVCIntrin::_InterlockedExchangeSub: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E); |
| case MSVCIntrin::_InterlockedOr: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E); |
| case MSVCIntrin::_InterlockedXor: |
| return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E); |
| |
| case MSVCIntrin::_InterlockedDecrement: { |
| llvm::Type *IntTy = ConvertType(E->getType()); |
| AtomicRMWInst *RMWI = Builder.CreateAtomicRMW( |
| AtomicRMWInst::Sub, |
| EmitScalarExpr(E->getArg(0)), |
| ConstantInt::get(IntTy, 1), |
| llvm::AtomicOrdering::SequentiallyConsistent); |
| return Builder.CreateSub(RMWI, ConstantInt::get(IntTy, 1)); |
| } |
| case MSVCIntrin::_InterlockedIncrement: { |
| llvm::Type *IntTy = ConvertType(E->getType()); |
| AtomicRMWInst *RMWI = Builder.CreateAtomicRMW( |
| AtomicRMWInst::Add, |
| EmitScalarExpr(E->getArg(0)), |
| ConstantInt::get(IntTy, 1), |
| llvm::AtomicOrdering::SequentiallyConsistent); |
| return Builder.CreateAdd(RMWI, ConstantInt::get(IntTy, 1)); |
| } |
| |
| case MSVCIntrin::__fastfail: { |
| // Request immediate process termination from the kernel. The instruction |
| // sequences to do this are documented on MSDN: |
| // https://msdn.microsoft.com/en-us/library/dn774154.aspx |
| llvm::Triple::ArchType ISA = getTarget().getTriple().getArch(); |
| StringRef Asm, Constraints; |
| switch (ISA) { |
| default: |
| ErrorUnsupported(E, "__fastfail call for this architecture"); |
| break; |
| case llvm::Triple::x86: |
| case llvm::Triple::x86_64: |
| Asm = "int $$0x29"; |
| Constraints = "{cx}"; |
| break; |
| case llvm::Triple::thumb: |
| Asm = "udf #251"; |
| Constraints = "{r0}"; |
| break; |
| } |
| llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false); |
| llvm::InlineAsm *IA = |
| llvm::InlineAsm::get(FTy, Asm, Constraints, /*SideEffects=*/true); |
| llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( |
| getLLVMContext(), llvm::AttributeList::FunctionIndex, |
| llvm::Attribute::NoReturn); |
| CallSite CS = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0))); |
| CS.setAttributes(NoReturnAttr); |
| return CS.getInstruction(); |
| } |
| } |
| llvm_unreachable("Incorrect MSVC intrinsic!"); |
| } |
| |
| namespace { |
| // ARC cleanup for __builtin_os_log_format |
| struct CallObjCArcUse final : EHScopeStack::Cleanup { |
| CallObjCArcUse(llvm::Value *object) : object(object) {} |
| llvm::Value *object; |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) override { |
| CGF.EmitARCIntrinsicUse(object); |
| } |
| }; |
| } |
| |
| Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E, |
| BuiltinCheckKind Kind) { |
| assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) |
| && "Unsupported builtin check kind"); |
| |
| Value *ArgValue = EmitScalarExpr(E); |
| if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef()) |
| return ArgValue; |
| |
| SanitizerScope SanScope(this); |
| Value *Cond = Builder.CreateICmpNE( |
| ArgValue, llvm::Constant::getNullValue(ArgValue->getType())); |
| EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin), |
| SanitizerHandler::InvalidBuiltin, |
| {EmitCheckSourceLocation(E->getExprLoc()), |
| llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)}, |
| None); |
| return ArgValue; |
| } |
| |
| /// Get the argument type for arguments to os_log_helper. |
| static CanQualType getOSLogArgType(ASTContext &C, int Size) { |
| QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false); |
| return C.getCanonicalType(UnsignedTy); |
| } |
| |
| llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction( |
| const analyze_os_log::OSLogBufferLayout &Layout, |
| CharUnits BufferAlignment) { |
| ASTContext &Ctx = getContext(); |
| |
| llvm::SmallString<64> Name; |
| { |
| raw_svector_ostream OS(Name); |
| OS << "__os_log_helper"; |
| OS << "_" << BufferAlignment.getQuantity(); |
| OS << "_" << int(Layout.getSummaryByte()); |
| OS << "_" << int(Layout.getNumArgsByte()); |
| for (const auto &Item : Layout.Items) |
| OS << "_" << int(Item.getSizeByte()) << "_" |
| << int(Item.getDescriptorByte()); |
| } |
| |
| if (llvm::Function *F = CGM.getModule().getFunction(Name)) |
| return F; |
| |
| llvm::SmallVector<ImplicitParamDecl, 4> Params; |
| Params.emplace_back(Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), |
| Ctx.VoidPtrTy, ImplicitParamDecl::Other); |
| |
| for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) { |
| char Size = Layout.Items[I].getSizeByte(); |
| if (!Size) |
| continue; |
| |
| Params.emplace_back( |
| Ctx, nullptr, SourceLocation(), |
| &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), |
| getOSLogArgType(Ctx, Size), ImplicitParamDecl::Other); |
| } |
| |
| FunctionArgList Args; |
| for (auto &P : Params) |
| Args.push_back(&P); |
| |
| // The helper function has linkonce_odr linkage to enable the linker to merge |
| // identical functions. To ensure the merging always happens, 'noinline' is |
| // attached to the function when compiling with -Oz. |
| const CGFunctionInfo &FI = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); |
| llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI); |
| llvm::Function *Fn = llvm::Function::Create( |
| FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule()); |
| Fn->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| CGM.SetLLVMFunctionAttributes(nullptr, FI, Fn); |
| CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn); |
| |
| // Attach 'noinline' at -Oz. |
| if (CGM.getCodeGenOpts().OptimizeSize == 2) |
| Fn->addFnAttr(llvm::Attribute::NoInline); |
| |
| auto NL = ApplyDebugLocation::CreateEmpty(*this); |
| IdentifierInfo *II = &Ctx.Idents.get(Name); |
| FunctionDecl *FD = FunctionDecl::Create( |
| Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, |
| Ctx.VoidTy, nullptr, SC_PrivateExtern, false, false); |
| |
| StartFunction(FD, Ctx.VoidTy, Fn, FI, Args); |
| |
| // Create a scope with an artificial location for the body of this function. |
| auto AL = ApplyDebugLocation::CreateArtificial(*this); |
| |
| CharUnits Offset; |
| Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(&Params[0]), "buf"), |
| BufferAlignment); |
| Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()), |
| Builder.CreateConstByteGEP(BufAddr, Offset++, "summary")); |
| Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()), |
| Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs")); |
| |
| unsigned I = 1; |
| for (const auto &Item : Layout.Items) { |
| Builder.CreateStore( |
| Builder.getInt8(Item.getDescriptorByte()), |
| Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor")); |
| Builder.CreateStore( |
| Builder.getInt8(Item.getSizeByte()), |
| Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize")); |
| |
| CharUnits Size = Item.size(); |
| if (!Size.getQuantity()) |
| continue; |
| |
| Address Arg = GetAddrOfLocalVar(&Params[I]); |
| Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData"); |
| Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(), |
| "argDataCast"); |
| Builder.CreateStore(Builder.CreateLoad(Arg), Addr); |
| Offset += Size; |
| ++I; |
| } |
| |
| FinishFunction(); |
| |
| return Fn; |
| } |
| |
| RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) { |
| assert(E.getNumArgs() >= 2 && |
| "__builtin_os_log_format takes at least 2 arguments"); |
| ASTContext &Ctx = getContext(); |
| analyze_os_log::OSLogBufferLayout Layout; |
| analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout); |
| Address BufAddr = EmitPointerWithAlignment(E.getArg(0)); |
| llvm::SmallVector<llvm::Value *, 4> RetainableOperands; |
| |
| // Ignore argument 1, the format string. It is not currently used. |
| CallArgList Args; |
| Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy); |
| |
| for (const auto &Item : Layout.Items) { |
| int Size = Item.getSizeByte(); |
| if (!Size) |
| continue; |
| |
| llvm::Value *ArgVal; |
| |
| if (const Expr *TheExpr = Item.getExpr()) { |
| ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false); |
| |
| // Check if this is a retainable type. |
| if (TheExpr->getType()->isObjCRetainableType()) { |
| assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar && |
| "Only scalar can be a ObjC retainable type"); |
| // Check if the object is constant, if not, save it in |
| // RetainableOperands. |
| if (!isa<Constant>(ArgVal)) |
| RetainableOperands.push_back(ArgVal); |
| } |
| } else { |
| ArgVal = Builder.getInt32(Item.getConstValue().getQuantity()); |
| } |
| |
| unsigned ArgValSize = |
| CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType()); |
| llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(), |
| ArgValSize); |
| ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy); |
| CanQualType ArgTy = getOSLogArgType(Ctx, Size); |
| // If ArgVal has type x86_fp80, zero-extend ArgVal. |
| ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy)); |
| Args.add(RValue::get(ArgVal), ArgTy); |
| } |
| |
| const CGFunctionInfo &FI = |
| CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args); |
| llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction( |
| Layout, BufAddr.getAlignment()); |
| EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args); |
| |
| // Push a clang.arc.use cleanup for each object in RetainableOperands. The |
| // cleanup will cause the use to appear after the final log call, keeping |
| // the object valid while it’s held in the log buffer. Note that if there’s |
| // a release cleanup on the object, it will already be active; since |
| // cleanups are emitted in reverse order, the use will occur before the |
| // object is released. |
| if (!RetainableOperands.empty() && getLangOpts().ObjCAutoRefCount && |
| CGM.getCodeGenOpts().OptimizationLevel != 0) |
| for (llvm::Value *Object : RetainableOperands) |
| pushFullExprCleanup<CallObjCArcUse>(getARCCleanupKind(), Object); |
| |
| return RValue::get(BufAddr.getPointer()); |
| } |
| |
| /// Determine if a binop is a checked mixed-sign multiply we can specialize. |
| static bool isSpecialMixedSignMultiply(unsigned BuiltinID, |
| WidthAndSignedness Op1Info, |
| WidthAndSignedness Op2Info, |
| WidthAndSignedness ResultInfo) { |
| return BuiltinID == Builtin::BI__builtin_mul_overflow && |
| Op1Info.Width == Op2Info.Width && Op1Info.Width >= ResultInfo.Width && |
| Op1Info.Signed != Op2Info.Signed; |
| } |
| |
| /// Emit a checked mixed-sign multiply. This is a cheaper specialization of |
| /// the generic checked-binop irgen. |
| static RValue |
| EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1, |
| WidthAndSignedness Op1Info, const clang::Expr *Op2, |
| WidthAndSignedness Op2Info, |
| const clang::Expr *ResultArg, QualType ResultQTy, |
| WidthAndSignedness ResultInfo) { |
| assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, |
| Op2Info, ResultInfo) && |
| "Not a mixed-sign multipliction we can specialize"); |
| |
| // Emit the signed and unsigned operands. |
| const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2; |
| const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1; |
| llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp); |
| llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp); |
| |
| llvm::Type *OpTy = Signed->getType(); |
| llvm::Value *Zero = llvm::Constant::getNullValue(OpTy); |
| Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg); |
| llvm::Type *ResTy = ResultPtr.getElementType(); |
| |
| // Take the absolute value of the signed operand. |
| llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero); |
| llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed); |
| llvm::Value *AbsSigned = |
| CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed); |
| |
| // Perform a checked unsigned multiplication. |
| llvm::Value *UnsignedOverflow; |
| llvm::Value *UnsignedResult = |
| EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned, |
| Unsigned, UnsignedOverflow); |
| |
| llvm::Value *Overflow, *Result; |
| if (ResultInfo.Signed) { |
| // Signed overflow occurs if the result is greater than INT_MAX or lesser |
| // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative). |
| auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width) |
| .zextOrSelf(Op1Info.Width); |
| llvm::Value *MaxResult = |
| CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax), |
| CGF.Builder.CreateZExt(IsNegative, OpTy)); |
| llvm::Value *SignedOverflow = |
| CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult); |
| Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow); |
| |
| // Prepare the signed result (possibly by negating it). |
| llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult); |
| llvm::Value *SignedResult = |
| CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult); |
| Result = CGF.Builder.CreateTrunc(SignedResult, ResTy); |
| } else { |
| // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX. |
| llvm::Value *Underflow = CGF.Builder.CreateAnd( |
| IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult)); |
| Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow); |
| if (ResultInfo.Width < Op1Info.Width) { |
| auto IntMax = |
| llvm::APInt::getMaxValue(ResultInfo.Width).zext(Op1Info.Width); |
| llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT( |
| UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax)); |
| Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow); |
| } |
| |
| // Negate the product if it would be negative in infinite precision. |
| Result = CGF.Builder.CreateSelect( |
| IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult); |
| |
| Result = CGF.Builder.CreateTrunc(Result, ResTy); |
| } |
| assert(Overflow && Result && "Missing overflow or result"); |
| |
| bool isVolatile = |
| ResultArg->getType()->getPointeeType().isVolatileQualified(); |
| CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr, |
| isVolatile); |
| return RValue::get(Overflow); |
| } |
| |
| static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType, |
| Value *&RecordPtr, CharUnits Align, Value *Func, |
| int Lvl) { |
| const auto *RT = RType->getAs<RecordType>(); |
| ASTContext &Context = CGF.getContext(); |
| RecordDecl *RD = RT->getDecl()->getDefinition(); |
| ASTContext &Ctx = RD->getASTContext(); |
| const ASTRecordLayout &RL = Ctx.getASTRecordLayout(RD); |
| std::string Pad = std::string(Lvl * 4, ' '); |
| |
| Value *GString = |
| CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n"); |
| Value *Res = CGF.Builder.CreateCall(Func, {GString}); |
| |
| static llvm::DenseMap<QualType, const char *> Types; |
| if (Types.empty()) { |
| Types[Context.CharTy] = "%c"; |
| Types[Context.BoolTy] = "%d"; |
| Types[Context.SignedCharTy] = "%hhd"; |
| Types[Context.UnsignedCharTy] = "%hhu"; |
| Types[Context.IntTy] = "%d"; |
| Types[Context.UnsignedIntTy] = "%u"; |
| Types[Context.LongTy] = "%ld"; |
| Types[Context.UnsignedLongTy] = "%lu"; |
| Types[Context.LongLongTy] = "%lld"; |
| Types[Context.UnsignedLongLongTy] = "%llu"; |
| Types[Context.ShortTy] = "%hd"; |
| Types[Context.UnsignedShortTy] = "%hu"; |
| Types[Context.VoidPtrTy] = "%p"; |
| Types[Context.FloatTy] = "%f"; |
| Types[Context.DoubleTy] = "%f"; |
| Types[Context.LongDoubleTy] = "%Lf"; |
| Types[Context.getPointerType(Context.CharTy)] = "%s"; |
| Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s"; |
| } |
| |
| for (const auto *FD : RD->fields()) { |
| uint64_t Off = RL.getFieldOffset(FD->getFieldIndex()); |
| Off = Ctx.toCharUnitsFromBits(Off).getQuantity(); |
| |
| Value *FieldPtr = RecordPtr; |
| if (RD->isUnion()) |
| FieldPtr = CGF.Builder.CreatePointerCast( |
| FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType()))); |
| else |
| FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr, |
| FD->getFieldIndex()); |
| |
| GString = CGF.Builder.CreateGlobalStringPtr( |
| llvm::Twine(Pad) |
| .concat(FD->getType().getAsString()) |
| .concat(llvm::Twine(' ')) |
| .concat(FD->getNameAsString()) |
| .concat(" : ") |
| .str()); |
| Value *TmpRes = CGF.Builder.CreateCall(Func, {GString}); |
| Res = CGF.Builder.CreateAdd(Res, TmpRes); |
| |
| QualType CanonicalType = |
| FD->getType().getUnqualifiedType().getCanonicalType(); |
| |
| // We check whether we are in a recursive type |
| if (CanonicalType->isRecordType()) { |
| Value *TmpRes = |
| dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1); |
| Res = CGF.Builder.CreateAdd(TmpRes, Res); |
| continue; |
| } |
| |
| // We try to determine the best format to print the current field |
| llvm::Twine Format = Types.find(CanonicalType) == Types.end() |
| ? Types[Context.VoidPtrTy] |
| : Types[CanonicalType]; |
| |
| Address FieldAddress = Address(FieldPtr, Align); |
| FieldPtr = CGF.Builder.CreateLoad(FieldAddress); |
| |
| // FIXME Need to handle bitfield here |
| GString = CGF.Builder.CreateGlobalStringPtr( |
| Format.concat(llvm::Twine('\n')).str()); |
| TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr}); |
| Res = CGF.Builder.CreateAdd(Res, TmpRes); |
| } |
| |
| GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n"); |
| Value *TmpRes = CGF.Builder.CreateCall(Func, {GString}); |
| Res = CGF.Builder.CreateAdd(Res, TmpRes); |
| return Res; |
| } |
| |
| RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD, |
| unsigned BuiltinID, const CallExpr *E, |
| ReturnValueSlot ReturnValue) { |
| // See if we can constant fold this builtin. If so, don't emit it at all. |
| Expr::EvalResult Result; |
| if (E->EvaluateAsRValue(Result, CGM.getContext()) && |
| !Result.hasSideEffects()) { |
| if (Result.Val.isInt()) |
| return RValue::get(llvm::ConstantInt::get(getLLVMContext(), |
| Result.Val.getInt())); |
| if (Result.Val.isFloat()) |
| return RValue::get(llvm::ConstantFP::get(getLLVMContext(), |
| Result.Val.getFloat())); |
| } |
| |
| // There are LLVM math intrinsics/instructions corresponding to math library |
| // functions except the LLVM op will never set errno while the math library |
| // might. Also, math builtins have the same semantics as their math library |
| // twins. Thus, we can transform math library and builtin calls to their |
| // LLVM counterparts if the call is marked 'const' (known to never set errno). |
| if (FD->hasAttr<ConstAttr>()) { |
| switch (BuiltinID) { |
| case Builtin::BIceil: |
| case Builtin::BIceilf: |
| case Builtin::BIceill: |
| case Builtin::BI__builtin_ceil: |
| case Builtin::BI__builtin_ceilf: |
| case Builtin::BI__builtin_ceill: |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::ceil)); |
| |
| case Builtin::BIcopysign: |
| case Builtin::BIcopysignf: |
| case Builtin::BIcopysignl: |
| case Builtin::BI__builtin_copysign: |
| case Builtin::BI__builtin_copysignf: |
| case Builtin::BI__builtin_copysignl: |
| case Builtin::BI__builtin_copysignf128: |
| return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign)); |
| |
| case Builtin::BIcos: |
| case Builtin::BIcosf: |
| case Builtin::BIcosl: |
| case Builtin::BI__builtin_cos: |
| case Builtin::BI__builtin_cosf: |
| case Builtin::BI__builtin_cosl: |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::cos)); |
| |
| case Builtin::BIexp: |
| case Builtin::BIexpf: |
| case Builtin::BIexpl: |
| case Builtin::BI__builtin_exp: |
| case Builtin::BI__builtin_expf: |
| case Builtin::BI__builtin_expl: |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp)); |
| |
| case Builtin::BIexp2: |
| case Builtin::BIexp2f: |
| case Builtin::BIexp2l: |
| case Builtin::BI__builtin_exp2: |
| case Builtin::BI__builtin_exp2f: |
| case Builtin::BI__builtin_exp2l: |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp2)); |
| |
| case Builtin::BIfabs: |
| case Builtin::BIfabsf: |
| case Builtin::BIfabsl: |
| case Builtin::BI__builtin_fabs: |
| case Builtin::BI__builtin_fabsf: |
| case Builtin::BI__builtin_fabsl: |
| case Builtin::BI__builtin_fabsf128: |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs)); |
| |
| case Builtin::BIfloor: |
| case Builtin::BIfloorf: |
| case Builtin::BIfloorl: |
| case Builtin::BI__builtin_floor: |
| case Builtin::BI__builtin_floorf: |
| case Builtin::BI__builtin_floorl: |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::floor)); |
| |
| case Builtin::BIfma: |
| case Builtin::BIfmaf: |
| case Builtin::BIfmal: |
| case Builtin::BI__builtin_fma: |
| case Builtin::BI__builtin_fmaf: |
| case Builtin::BI__builtin_fmal: |
| return RValue::get(emitTernaryBuiltin(*this, E, Intrinsic::fma)); |
| |
| case Builtin::BIfmax: |
| case Builtin::BIfmaxf: |
| case Builtin::BIfmaxl: |
| case Builtin::BI__builtin_fmax: |
| case Builtin::BI__builtin_fmaxf: |
| case Builtin::BI__builtin_fmaxl: |
| return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::maxnum)); |
| |
| case Builtin::BIfmin: |
| case Builtin::BIfminf: |
| case Builtin::BIfminl: |
| case Builtin::BI__builtin_fmin: |
| case Builtin::BI__builtin_fminf: |
| case Builtin::BI__builtin_fminl: |
| return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::minnum)); |
| |
| // fmod() is a special-case. It maps to the frem instruction rather than an |
| // LLVM intrinsic. |
| case Builtin::BIfmod: |
| case Builtin::BIfmodf: |
| case Builtin::BIfmodl: |
| case Builtin::BI__builtin_fmod: |
| case Builtin::BI__builtin_fmodf: |
| case Builtin::BI__builtin_fmodl: { |
| Value *Arg1 = EmitScalarExpr(E->getArg(0)); |
| Value *Arg2 = EmitScalarExpr(E->getArg(1)); |
| return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod")); |
| } |
| |
| case Builtin::BIlog: |
| case Builtin::BIlogf: |
| case Builtin::BIlogl: |
| case Builtin::BI__builtin_log: |
| case Builtin::BI__builtin_logf: |
| case Builtin::BI__builtin_logl: |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log)); |
| |
| case Builtin::BIlog10: |
| case Builtin::BIlog10f: |
| case Builtin::BIlog10l: |
| case Builtin::BI__builtin_log10: |
| case Builtin::BI__builtin_log10f: |
| case Builtin::BI__builtin_log10l: |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log10)); |
| |
| case Builtin::BIlog2: |
| case Builtin::BIlog2f: |
| case Builtin::BIlog2l: |
| case Builtin::BI__builtin_log2: |
| case Builtin::BI__builtin_log2f: |
| case Builtin::BI__builtin_log2l: |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log2)); |
| |
| case Builtin::BInearbyint: |
| case Builtin::BInearbyintf: |
| case Builtin::BInearbyintl: |
| case Builtin::BI__builtin_nearbyint: |
| case Builtin::BI__builtin_nearbyintf: |
| case Builtin::BI__builtin_nearbyintl: |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::nearbyint)); |
| |
| case Builtin::BIpow: |
| case Builtin::BIpowf: |
| case Builtin::BIpowl: |
| case Builtin::BI__builtin_pow: |
| case Builtin::BI__builtin_powf: |
| case Builtin::BI__builtin_powl: |
| return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::pow)); |
| |
| case Builtin::BIrint: |
| case Builtin::BIrintf: |
| case Builtin::BIrintl: |
| case Builtin::BI__builtin_rint: |
| case Builtin::BI__builtin_rintf: |
| case Builtin::BI__builtin_rintl: |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::rint)); |
| |
| case Builtin::BIround: |
| case Builtin::BIroundf: |
| case Builtin::BIroundl: |
| case Builtin::BI__builtin_round: |
| case Builtin::BI__builtin_roundf: |
| case Builtin::BI__builtin_roundl: |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::round)); |
| |
| case Builtin::BIsin: |
| case Builtin::BIsinf: |
| case Builtin::BIsinl: |
| case Builtin::BI__builtin_sin: |
| case Builtin::BI__builtin_sinf: |
| case Builtin::BI__builtin_sinl: |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sin)); |
| |
| case Builtin::BIsqrt: |
| case Builtin::BIsqrtf: |
| case Builtin::BIsqrtl: |
| case Builtin::BI__builtin_sqrt: |
| case Builtin::BI__builtin_sqrtf: |
| case Builtin::BI__builtin_sqrtl: |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sqrt)); |
| |
| case Builtin::BItrunc: |
| case Builtin::BItruncf: |
| case Builtin::BItruncl: |
| case Builtin::BI__builtin_trunc: |
| case Builtin::BI__builtin_truncf: |
| case Builtin::BI__builtin_truncl: |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::trunc)); |
| |
| default: |
| break; |
| } |
| } |
| |
| switch (BuiltinID) { |
| default: break; |
| case Builtin::BI__builtin___CFStringMakeConstantString: |
| case Builtin::BI__builtin___NSStringMakeConstantString: |
| return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType())); |
| case Builtin::BI__builtin_stdarg_start: |
| case Builtin::BI__builtin_va_start: |
| case Builtin::BI__va_start: |
| case Builtin::BI__builtin_va_end: |
| return RValue::get( |
| EmitVAStartEnd(BuiltinID == Builtin::BI__va_start |
| ? EmitScalarExpr(E->getArg(0)) |
| : EmitVAListRef(E->getArg(0)).getPointer(), |
| BuiltinID != Builtin::BI__builtin_va_end)); |
| case Builtin::BI__builtin_va_copy: { |
| Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer(); |
| Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer(); |
| |
| llvm::Type *Type = Int8PtrTy; |
| |
| DstPtr = Builder.CreateBitCast(DstPtr, Type); |
| SrcPtr = Builder.CreateBitCast(SrcPtr, Type); |
| return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy), |
| {DstPtr, SrcPtr})); |
| } |
| case Builtin::BI__builtin_abs: |
| case Builtin::BI__builtin_labs: |
| case Builtin::BI__builtin_llabs: { |
| // X < 0 ? -X : X |
| // The negation has 'nsw' because abs of INT_MIN is undefined. |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg"); |
| Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType()); |
| Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond"); |
| Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_conj: |
| case Builtin::BI__builtin_conjf: |
| case Builtin::BI__builtin_conjl: { |
| ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
| Value *Real = ComplexVal.first; |
| Value *Imag = ComplexVal.second; |
| Value *Zero = |
| Imag->getType()->isFPOrFPVectorTy() |
| ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType()) |
| : llvm::Constant::getNullValue(Imag->getType()); |
| |
| Imag = Builder.CreateFSub(Zero, Imag, "sub"); |
| return RValue::getComplex(std::make_pair(Real, Imag)); |
| } |
| case Builtin::BI__builtin_creal: |
| case Builtin::BI__builtin_crealf: |
| case Builtin::BI__builtin_creall: |
| case Builtin::BIcreal: |
| case Builtin::BIcrealf: |
| case Builtin::BIcreall: { |
| ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
| return RValue::get(ComplexVal.first); |
| } |
| |
| case Builtin::BI__builtin_dump_struct: { |
| Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts()); |
| CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment(); |
| |
| const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts(); |
| QualType Arg0Type = Arg0->getType()->getPointeeType(); |
| |
| Value *RecordPtr = EmitScalarExpr(Arg0); |
| Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align, Func, 0); |
| return RValue::get(Res); |
| } |
| |
| case Builtin::BI__builtin_cimag: |
| case Builtin::BI__builtin_cimagf: |
| case Builtin::BI__builtin_cimagl: |
| case Builtin::BIcimag: |
| case Builtin::BIcimagf: |
| case Builtin::BIcimagl: { |
| ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); |
| return RValue::get(ComplexVal.second); |
| } |
| |
| case Builtin::BI__builtin_ctzs: |
| case Builtin::BI__builtin_ctz: |
| case Builtin::BI__builtin_ctzl: |
| case Builtin::BI__builtin_ctzll: { |
| Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); |
| Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_clzs: |
| case Builtin::BI__builtin_clz: |
| case Builtin::BI__builtin_clzl: |
| case Builtin::BI__builtin_clzll: { |
| Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); |
| Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_ffs: |
| case Builtin::BI__builtin_ffsl: |
| case Builtin::BI__builtin_ffsll: { |
| // ffs(x) -> x ? cttz(x) + 1 : 0 |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Tmp = |
| Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}), |
| llvm::ConstantInt::get(ArgType, 1)); |
| Value *Zero = llvm::Constant::getNullValue(ArgType); |
| Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero"); |
| Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs"); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_parity: |
| case Builtin::BI__builtin_parityl: |
| case Builtin::BI__builtin_parityll: { |
| // parity(x) -> ctpop(x) & 1 |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Tmp = Builder.CreateCall(F, ArgValue); |
| Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1)); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__popcnt16: |
| case Builtin::BI__popcnt: |
| case Builtin::BI__popcnt64: |
| case Builtin::BI__builtin_popcount: |
| case Builtin::BI__builtin_popcountl: |
| case Builtin::BI__builtin_popcountll: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| |
| llvm::Type *ArgType = ArgValue->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); |
| |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Result = Builder.CreateCall(F, ArgValue); |
| if (Result->getType() != ResultType) |
| Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, |
| "cast"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI_rotr8: |
| case Builtin::BI_rotr16: |
| case Builtin::BI_rotr: |
| case Builtin::BI_lrotr: |
| case Builtin::BI_rotr64: { |
| Value *Val = EmitScalarExpr(E->getArg(0)); |
| Value *Shift = EmitScalarExpr(E->getArg(1)); |
| |
| llvm::Type *ArgType = Val->getType(); |
| Shift = Builder.CreateIntCast(Shift, ArgType, false); |
| unsigned ArgWidth = ArgType->getIntegerBitWidth(); |
| Value *Mask = llvm::ConstantInt::get(ArgType, ArgWidth - 1); |
| |
| Value *RightShiftAmt = Builder.CreateAnd(Shift, Mask); |
| Value *RightShifted = Builder.CreateLShr(Val, RightShiftAmt); |
| Value *LeftShiftAmt = Builder.CreateAnd(Builder.CreateNeg(Shift), Mask); |
| Value *LeftShifted = Builder.CreateShl(Val, LeftShiftAmt); |
| Value *Result = Builder.CreateOr(LeftShifted, RightShifted); |
| return RValue::get(Result); |
| } |
| case Builtin::BI_rotl8: |
| case Builtin::BI_rotl16: |
| case Builtin::BI_rotl: |
| case Builtin::BI_lrotl: |
| case Builtin::BI_rotl64: { |
| Value *Val = EmitScalarExpr(E->getArg(0)); |
| Value *Shift = EmitScalarExpr(E->getArg(1)); |
| |
| llvm::Type *ArgType = Val->getType(); |
| Shift = Builder.CreateIntCast(Shift, ArgType, false); |
| unsigned ArgWidth = ArgType->getIntegerBitWidth(); |
| Value *Mask = llvm::ConstantInt::get(ArgType, ArgWidth - 1); |
| |
| Value *LeftShiftAmt = Builder.CreateAnd(Shift, Mask); |
| Value *LeftShifted = Builder.CreateShl(Val, LeftShiftAmt); |
| Value *RightShiftAmt = Builder.CreateAnd(Builder.CreateNeg(Shift), Mask); |
| Value *RightShifted = Builder.CreateLShr(Val, RightShiftAmt); |
| Value *Result = Builder.CreateOr(LeftShifted, RightShifted); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_unpredictable: { |
| // Always return the argument of __builtin_unpredictable. LLVM does not |
| // handle this builtin. Metadata for this builtin should be added directly |
| // to instructions such as branches or switches that use it. |
| return RValue::get(EmitScalarExpr(E->getArg(0))); |
| } |
| case Builtin::BI__builtin_expect: { |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *ArgType = ArgValue->getType(); |
| |
| Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); |
| // Don't generate llvm.expect on -O0 as the backend won't use it for |
| // anything. |
| // Note, we still IRGen ExpectedValue because it could have side-effects. |
| if (CGM.getCodeGenOpts().OptimizationLevel == 0) |
| return RValue::get(ArgValue); |
| |
| Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType); |
| Value *Result = |
| Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval"); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_assume_aligned: { |
| Value *PtrValue = EmitScalarExpr(E->getArg(0)); |
| Value *OffsetValue = |
| (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr; |
| |
| Value *AlignmentValue = EmitScalarExpr(E->getArg(1)); |
| ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue); |
| unsigned Alignment = (unsigned) AlignmentCI->getZExtValue(); |
| |
| EmitAlignmentAssumption(PtrValue, Alignment, OffsetValue); |
| return RValue::get(PtrValue); |
| } |
| case Builtin::BI__assume: |
| case Builtin::BI__builtin_assume: { |
| if (E->getArg(0)->HasSideEffects(getContext())) |
| return RValue::get(nullptr); |
| |
| Value *ArgValue = EmitScalarExpr(E->getArg(0)); |
| Value *FnAssume = CGM.getIntrinsic(Intrinsic::assume); |
| return RValue::get(Builder.CreateCall(FnAssume, ArgValue)); |
| } |
| case Builtin::BI__builtin_bswap16: |
| case Builtin::BI__builtin_bswap32: |
| case Builtin::BI__builtin_bswap64: { |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap)); |
| } |
| case Builtin::BI__builtin_bitreverse8: |
| case Builtin::BI__builtin_bitreverse16: |
| case Builtin::BI__builtin_bitreverse32: |
| case Builtin::BI__builtin_bitreverse64: { |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse)); |
| } |
| case Builtin::BI__builtin_object_size: { |
| unsigned Type = |
| E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue(); |
| auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType())); |
| |
| // We pass this builtin onto the optimizer so that it can figure out the |
| // object size in more complex cases. |
| return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType, |
| /*EmittedE=*/nullptr)); |
| } |
| case Builtin::BI__builtin_prefetch: { |
| Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0)); |
| // FIXME: Technically these constants should of type 'int', yes? |
| RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) : |
| llvm::ConstantInt::get(Int32Ty, 0); |
| Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : |
| llvm::ConstantInt::get(Int32Ty, 3); |
| Value *Data = llvm::ConstantInt::get(Int32Ty, 1); |
| Value *F = CGM.getIntrinsic(Intrinsic::prefetch); |
| return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data})); |
| } |
| case Builtin::BI__builtin_readcyclecounter: { |
| Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter); |
| return RValue::get(Builder.CreateCall(F)); |
| } |
| case Builtin::BI__builtin___clear_cache: { |
| Value *Begin = EmitScalarExpr(E->getArg(0)); |
| Value *End = EmitScalarExpr(E->getArg(1)); |
| Value *F = CGM.getIntrinsic(Intrinsic::clear_cache); |
| return RValue::get(Builder.CreateCall(F, {Begin, End})); |
| } |
| case Builtin::BI__builtin_trap: |
| return RValue::get(EmitTrapCall(Intrinsic::trap)); |
| case Builtin::BI__debugbreak: |
| return RValue::get(EmitTrapCall(Intrinsic::debugtrap)); |
| case Builtin::BI__builtin_unreachable: { |
| EmitUnreachable(E->getExprLoc()); |
| |
| // We do need to preserve an insertion point. |
| EmitBlock(createBasicBlock("unreachable.cont")); |
| |
| return RValue::get(nullptr); |
| } |
| |
| case Builtin::BI__builtin_powi: |
| case Builtin::BI__builtin_powif: |
| case Builtin::BI__builtin_powil: { |
| Value *Base = EmitScalarExpr(E->getArg(0)); |
| Value *Exponent = EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ArgType = Base->getType(); |
| Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType); |
| return RValue::get(Builder.CreateCall(F, {Base, Exponent})); |
| } |
| |
| case Builtin::BI__builtin_isgreater: |
| case Builtin::BI__builtin_isgreaterequal: |
| case Builtin::BI__builtin_isless: |
| case Builtin::BI__builtin_islessequal: |
| case Builtin::BI__builtin_islessgreater: |
| case Builtin::BI__builtin_isunordered: { |
| // Ordered comparisons: we know the arguments to these are matching scalar |
| // floating point values. |
| Value *LHS = EmitScalarExpr(E->getArg(0)); |
| Value *RHS = EmitScalarExpr(E->getArg(1)); |
| |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unknown ordered comparison"); |
| case Builtin::BI__builtin_isgreater: |
| LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_isgreaterequal: |
| LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_isless: |
| LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_islessequal: |
| LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_islessgreater: |
| LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp"); |
| break; |
| case Builtin::BI__builtin_isunordered: |
| LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp"); |
| break; |
| } |
| // ZExt bool to int type. |
| return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()))); |
| } |
| case Builtin::BI__builtin_isnan: { |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| V = Builder.CreateFCmpUNO(V, V, "cmp"); |
| return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); |
| } |
| |
| case Builtin::BIfinite: |
| case Builtin::BI__finite: |
| case Builtin::BIfinitef: |
| case Builtin::BI__finitef: |
| case Builtin::BIfinitel: |
| case Builtin::BI__finitel: |
| case Builtin::BI__builtin_isinf: |
| case Builtin::BI__builtin_isfinite: { |
| // isinf(x) --> fabs(x) == infinity |
| // isfinite(x) --> fabs(x) != infinity |
| // x != NaN via the ordered compare in either case. |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| Value *Fabs = EmitFAbs(*this, V); |
| Constant *Infinity = ConstantFP::getInfinity(V->getType()); |
| CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf) |
| ? CmpInst::FCMP_OEQ |
| : CmpInst::FCMP_ONE; |
| Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf"); |
| return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType()))); |
| } |
| |
| case Builtin::BI__builtin_isinf_sign: { |
| // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0 |
| Value *Arg = EmitScalarExpr(E->getArg(0)); |
| Value *AbsArg = EmitFAbs(*this, Arg); |
| Value *IsInf = Builder.CreateFCmpOEQ( |
| AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf"); |
| Value *IsNeg = EmitSignBit(*this, Arg); |
| |
| llvm::Type *IntTy = ConvertType(E->getType()); |
| Value *Zero = Constant::getNullValue(IntTy); |
| Value *One = ConstantInt::get(IntTy, 1); |
| Value *NegativeOne = ConstantInt::get(IntTy, -1); |
| Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One); |
| Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BI__builtin_isnormal: { |
| // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min |
| Value *V = EmitScalarExpr(E->getArg(0)); |
| Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq"); |
| |
| Value *Abs = EmitFAbs(*this, V); |
| Value *IsLessThanInf = |
| Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf"); |
| APFloat Smallest = APFloat::getSmallestNormalized( |
| getContext().getFloatTypeSemantics(E->getArg(0)->getType())); |
| Value *IsNormal = |
| Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest), |
| "isnormal"); |
| V = Builder.CreateAnd(Eq, IsLessThanInf, "and"); |
| V = Builder.CreateAnd(V, IsNormal, "and"); |
| return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); |
| } |
| |
| case Builtin::BI__builtin_fpclassify: { |
| Value *V = EmitScalarExpr(E->getArg(5)); |
| llvm::Type *Ty = ConvertType(E->getArg(5)->getType()); |
| |
| // Create Result |
| BasicBlock *Begin = Builder.GetInsertBlock(); |
| BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn); |
| Builder.SetInsertPoint(End); |
| PHINode *Result = |
| Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4, |
| "fpclassify_result"); |
| |
| // if (V==0) return FP_ZERO |
| Builder.SetInsertPoint(Begin); |
| Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty), |
| "iszero"); |
| Value *ZeroLiteral = EmitScalarExpr(E->getArg(4)); |
| BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn); |
| Builder.CreateCondBr(IsZero, End, NotZero); |
| Result->addIncoming(ZeroLiteral, Begin); |
| |
| // if (V != V) return FP_NAN |
| Builder.SetInsertPoint(NotZero); |
| Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp"); |
| Value *NanLiteral = EmitScalarExpr(E->getArg(0)); |
| BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn); |
| Builder.CreateCondBr(IsNan, End, NotNan); |
| Result->addIncoming(NanLiteral, NotZero); |
| |
| // if (fabs(V) == infinity) return FP_INFINITY |
| Builder.SetInsertPoint(NotNan); |
| Value *VAbs = EmitFAbs(*this, V); |
| Value *IsInf = |
| Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()), |
| "isinf"); |
| Value *InfLiteral = EmitScalarExpr(E->getArg(1)); |
| BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn); |
| Builder.CreateCondBr(IsInf, End, NotInf); |
| Result->addIncoming(InfLiteral, NotNan); |
| |
| // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL |
| Builder.SetInsertPoint(NotInf); |
| APFloat Smallest = APFloat::getSmallestNormalized( |
| getContext().getFloatTypeSemantics(E->getArg(5)->getType())); |
| Value *IsNormal = |
| Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest), |
| "isnormal"); |
| Value *NormalResult = |
| Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)), |
| EmitScalarExpr(E->getArg(3))); |
| Builder.CreateBr(End); |
| Result->addIncoming(NormalResult, NotInf); |
| |
| // return Result |
| Builder.SetInsertPoint(End); |
| return RValue::get(Result); |
| } |
| |
| case Builtin::BIalloca: |
| case Builtin::BI_alloca: |
| case Builtin::BI__builtin_alloca: { |
| Value *Size = EmitScalarExpr(E->getArg(0)); |
| const TargetInfo &TI = getContext().getTargetInfo(); |
| // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__. |
| unsigned SuitableAlignmentInBytes = |
| CGM.getContext() |
| .toCharUnitsFromBits(TI.getSuitableAlign()) |
| .getQuantity(); |
| AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); |
| AI->setAlignment(SuitableAlignmentInBytes); |
| return RValue::get(AI); |
| } |
| |
| case Builtin::BI__builtin_alloca_with_align: { |
| Value *Size = EmitScalarExpr(E->getArg(0)); |
| Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1)); |
| auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue); |
| unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue(); |
| unsigned AlignmentInBytes = |
| CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getQuantity(); |
| AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); |
| AI->setAlignment(AlignmentInBytes); |
| return RValue::get(AI); |
| } |
| |
| case Builtin::BIbzero: |
| case Builtin::BI__builtin_bzero: { |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Value *SizeVal = EmitScalarExpr(E->getArg(1)); |
| EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), |
| E->getArg(0)->getExprLoc(), FD, 0); |
| Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false); |
| return RValue::get(nullptr); |
| } |
| case Builtin::BImemcpy: |
| case Builtin::BI__builtin_memcpy: { |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Address Src = EmitPointerWithAlignment(E->getArg(1)); |
| Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
| EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), |
| E->getArg(0)->getExprLoc(), FD, 0); |
| EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), |
| E->getArg(1)->getExprLoc(), FD, 1); |
| Builder.CreateMemCpy(Dest, Src, SizeVal, false); |
| return RValue::get(Dest.getPointer()); |
| } |
| |
| case Builtin::BI__builtin_char_memchr: |
| BuiltinID = Builtin::BI__builtin_memchr; |
| break; |
| |
| case Builtin::BI__builtin___memcpy_chk: { |
| // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2. |
| llvm::APSInt Size, DstSize; |
| if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) || |
| !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext())) |
| break; |
| if (Size.ugt(DstSize)) |
| break; |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Address Src = EmitPointerWithAlignment(E->getArg(1)); |
| Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); |
| Builder.CreateMemCpy(Dest, Src, SizeVal, false); |
| return RValue::get(Dest.getPointer()); |
| } |
| |
| case Builtin::BI__builtin_objc_memmove_collectable: { |
| Address DestAddr = EmitPointerWithAlignment(E->getArg(0)); |
| Address SrcAddr = EmitPointerWithAlignment(E->getArg(1)); |
| Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
| CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, |
| DestAddr, SrcAddr, SizeVal); |
| return RValue::get(DestAddr.getPointer()); |
| } |
| |
| case Builtin::BI__builtin___memmove_chk: { |
| // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2. |
| llvm::APSInt Size, DstSize; |
| if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) || |
| !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext())) |
| break; |
| if (Size.ugt(DstSize)) |
| break; |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Address Src = EmitPointerWithAlignment(E->getArg(1)); |
| Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); |
| Builder.CreateMemMove(Dest, Src, SizeVal, false); |
| return RValue::get(Dest.getPointer()); |
| } |
| |
| case Builtin::BImemmove: |
| case Builtin::BI__builtin_memmove: { |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Address Src = EmitPointerWithAlignment(E->getArg(1)); |
| Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
| EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), |
| E->getArg(0)->getExprLoc(), FD, 0); |
| EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), |
| E->getArg(1)->getExprLoc(), FD, 1); |
| Builder.CreateMemMove(Dest, Src, SizeVal, false); |
| return RValue::get(Dest.getPointer()); |
| } |
| case Builtin::BImemset: |
| case Builtin::BI__builtin_memset: { |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), |
| Builder.getInt8Ty()); |
| Value *SizeVal = EmitScalarExpr(E->getArg(2)); |
| EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), |
| E->getArg(0)->getExprLoc(), FD, 0); |
| Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); |
| return RValue::get(Dest.getPointer()); |
| } |
| case Builtin::BI__builtin___memset_chk: { |
| // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2. |
| llvm::APSInt Size, DstSize; |
| if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) || |
| !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext())) |
| break; |
| if (Size.ugt(DstSize)) |
| break; |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), |
| Builder.getInt8Ty()); |
| Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); |
| Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); |
| return RValue::get(Dest.getPointer()); |
| } |
| case Builtin::BI__builtin_wmemcmp: { |
| // The MSVC runtime library does not provide a definition of wmemcmp, so we |
| // need an inline implementation. |
| if (!getTarget().getTriple().isOSMSVCRT()) |
| break; |
| |
| llvm::Type *WCharTy = ConvertType(getContext().WCharTy); |
| |
| Value *Dst = EmitScalarExpr(E->getArg(0)); |
| Value *Src = EmitScalarExpr(E->getArg(1)); |
| Value *Size = EmitScalarExpr(E->getArg(2)); |
| |
| BasicBlock *Entry = Builder.GetInsertBlock(); |
| BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt"); |
| BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt"); |
| BasicBlock *Next = createBasicBlock("wmemcmp.next"); |
| BasicBlock *Exit = createBasicBlock("wmemcmp.exit"); |
| Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0)); |
| Builder.CreateCondBr(SizeEq0, Exit, CmpGT); |
| |
| EmitBlock(CmpGT); |
| PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2); |
| DstPhi->addIncoming(Dst, Entry); |
| PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2); |
| SrcPhi->addIncoming(Src, Entry); |
| PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2); |
| SizePhi->addIncoming(Size, Entry); |
| CharUnits WCharAlign = |
| getContext().getTypeAlignInChars(getContext().WCharTy); |
| Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign); |
| Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign); |
| Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh); |
| Builder.CreateCondBr(DstGtSrc, Exit, CmpLT); |
| |
| EmitBlock(CmpLT); |
| Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh); |
| Builder.CreateCondBr(DstLtSrc, Exit, Next); |
| |
| EmitBlock(Next); |
| Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1); |
| Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1); |
| Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1)); |
| Value *NextSizeEq0 = |
| Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0)); |
| Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT); |
| DstPhi->addIncoming(NextDst, Next); |
| SrcPhi->addIncoming(NextSrc, Next); |
| SizePhi->addIncoming(NextSize, Next); |
| |
| EmitBlock(Exit); |
| PHINode *Ret = Builder.CreatePHI(IntTy, 4); |
| Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry); |
| Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT); |
| Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT); |
| Ret->addIncoming(ConstantInt::get(IntTy, 0), Next); |
| return RValue::get(Ret); |
| } |
| case Builtin::BI__builtin_dwarf_cfa: { |
| // The offset in bytes from the first argument to the CFA. |
| // |
| // Why on earth is this in the frontend? Is there any reason at |
| // all that the backend can't reasonably determine this while |
| // lowering llvm.eh.dwarf.cfa()? |
| // |
| // TODO: If there's a satisfactory reason, add a target hook for |
| // this instead of hard-coding 0, which is correct for most targets. |
| int32_t Offset = 0; |
| |
| Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa); |
| return RValue::get(Builder.CreateCall(F, |
| llvm::ConstantInt::get(Int32Ty, Offset))); |
| } |
| case Builtin::BI__builtin_return_address: { |
| Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), |
| getContext().UnsignedIntTy); |
| Value *F = CGM.getIntrinsic(Intrinsic::returnaddress); |
| return RValue::get(Builder.CreateCall(F, Depth)); |
| } |
| case Builtin::BI_ReturnAddress: { |
| Value *F = CGM.getIntrinsic(Intrinsic::returnaddress); |
| return RValue::get(Builder.CreateCall(F, Builder.getInt32(0))); |
| } |
| case Builtin::BI__builtin_frame_address: { |
| Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), |
| getContext().UnsignedIntTy); |
| Value *F = CGM.getIntrinsic(Intrinsic::frameaddress); |
| return RValue::get(Builder.CreateCall(F, Depth)); |
| } |
| case Builtin::BI__builtin_extract_return_addr: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *Result = getTargetHooks().decodeReturnAddress(*this, Address); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_frob_return_addr: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *Result = getTargetHooks().encodeReturnAddress(*this, Address); |
| return RValue::get(Result); |
| } |
| case Builtin::BI__builtin_dwarf_sp_column: { |
| llvm::IntegerType *Ty |
| = cast<llvm::IntegerType>(ConvertType(E->getType())); |
| int Column = getTargetHooks().getDwarfEHStackPointer(CGM); |
| if (Column == -1) { |
| CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column"); |
| return RValue::get(llvm::UndefValue::get(Ty)); |
| } |
| return RValue::get(llvm::ConstantInt::get(Ty, Column, true)); |
| } |
| case Builtin::BI__builtin_init_dwarf_reg_size_table: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address)) |
| CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table"); |
| return RValue::get(llvm::UndefValue::get(ConvertType(E->getType()))); |
| } |
| case Builtin::BI__builtin_eh_return: { |
| Value *Int = EmitScalarExpr(E->getArg(0)); |
| Value *Ptr = EmitScalarExpr(E->getArg(1)); |
| |
| llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType()); |
| assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && |
| "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"); |
| Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32 |
| ? Intrinsic::eh_return_i32 |
| : Intrinsic::eh_return_i64); |
| Builder.CreateCall(F, {Int, Ptr}); |
| Builder.CreateUnreachable(); |
| |
| // We do need to preserve an insertion point. |
| EmitBlock(createBasicBlock("builtin_eh_return.cont")); |
| |
| return RValue::get(nullptr); |
| } |
| case Builtin::BI__builtin_unwind_init: { |
| Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init); |
| return RValue::get(Builder.CreateCall(F)); |
| } |
| case Builtin::BI__builtin_extend_pointer: { |
| // Extends a pointer to the size of an _Unwind_Word, which is |
| // uint64_t on all platforms. Generally this gets poked into a |
| // register and eventually used as an address, so if the |
| // addressing registers are wider than pointers and the platform |
| // doesn't implicitly ignore high-order bits when doing |
| // addressing, we need to make sure we zext / sext based on |
| // the platform's expectations. |
| // |
| // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html |
| |
| // Cast the pointer to intptr_t. |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast"); |
| |
| // If that's 64 bits, we're done. |
| if (IntPtrTy->getBitWidth() == 64) |
| return RValue::get(Result); |
| |
| // Otherwise, ask the codegen data what to do. |
| if (getTargetHooks().extendPointerWithSExt()) |
| return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext")); |
| else |
| return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext")); |
| } |
| case Builtin::BI__builtin_setjmp: { |
| // Buffer is a void**. |
| Address Buf = EmitPointerWithAlignment(E->getArg(0)); |
| |
| // Store the frame pointer to the setjmp buffer. |
| Value *FrameAddr = |
| Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress), |
| ConstantInt::get(Int32Ty, 0)); |
| Builder.CreateStore(FrameAddr, Buf); |
| |
| // Store the stack pointer to the setjmp buffer. |
| Value *StackAddr = |
| Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave)); |
| Address StackSaveSlot = |
| Builder.CreateConstInBoundsGEP(Buf, 2, getPointerSize()); |
| Builder.CreateStore(StackAddr, StackSaveSlot); |
| |
| // Call LLVM's EH setjmp, which is lightweight. |
| Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp); |
| Buf = Builder.CreateBitCast(Buf, Int8PtrTy); |
| return RValue::get(Builder.CreateCall(F, Buf.getPointer())); |
| } |
| case Builtin::BI__builtin_longjmp: { |
| Value *Buf = EmitScalarExpr(E->getArg(0)); |
| Buf = Builder.CreateBitCast(Buf, Int8PtrTy); |
| |
| // Call LLVM's EH longjmp, which is lightweight. |
| Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf); |
| |
| // longjmp doesn't return; mark this as unreachable. |
| Builder.CreateUnreachable(); |
| |
| // We do need to preserve an insertion point. |
| EmitBlock(createBasicBlock("longjmp.cont")); |
| |
| return RValue::get(nullptr); |
| } |
| case Builtin::BI__sync_fetch_and_add: |
| case Builtin::BI__sync_fetch_and_sub: |
| case Builtin::BI__sync_fetch_and_or: |
| case Builtin::BI__sync_fetch_and_and: |
| case Builtin::BI__sync_fetch_and_xor: |
| case Builtin::BI__sync_fetch_and_nand: |
| case Builtin::BI__sync_add_and_fetch: |
| case Builtin::BI__sync_sub_and_fetch: |
| case Builtin::BI__sync_and_and_fetch: |
| case Builtin::BI__sync_or_and_fetch: |
| case Builtin::BI__sync_xor_and_fetch: |
| case Builtin::BI__sync_nand_and_fetch: |
| case Builtin::BI__sync_val_compare_and_swap: |
| case Builtin::BI__sync_bool_compare_and_swap: |
| case Builtin::BI__sync_lock_test_and_set: |
| case Builtin::BI__sync_lock_release: |
| case Builtin::BI__sync_swap: |
| llvm_unreachable("Shouldn't make it through sema"); |
| case Builtin::BI__sync_fetch_and_add_1: |
| case Builtin::BI__sync_fetch_and_add_2: |
| case Builtin::BI__sync_fetch_and_add_4: |
| case Builtin::BI__sync_fetch_and_add_8: |
| case Builtin::BI__sync_fetch_and_add_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E); |
| case Builtin::BI__sync_fetch_and_sub_1: |
| case Builtin::BI__sync_fetch_and_sub_2: |
| case Builtin::BI__sync_fetch_and_sub_4: |
| case Builtin::BI__sync_fetch_and_sub_8: |
| case Builtin::BI__sync_fetch_and_sub_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E); |
| case Builtin::BI__sync_fetch_and_or_1: |
| case Builtin::BI__sync_fetch_and_or_2: |
| case Builtin::BI__sync_fetch_and_or_4: |
| case Builtin::BI__sync_fetch_and_or_8: |
| case Builtin::BI__sync_fetch_and_or_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E); |
| case Builtin::BI__sync_fetch_and_and_1: |
| case Builtin::BI__sync_fetch_and_and_2: |
| case Builtin::BI__sync_fetch_and_and_4: |
| case Builtin::BI__sync_fetch_and_and_8: |
| case Builtin::BI__sync_fetch_and_and_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E); |
| case Builtin::BI__sync_fetch_and_xor_1: |
| case Builtin::BI__sync_fetch_and_xor_2: |
| case Builtin::BI__sync_fetch_and_xor_4: |
| case Builtin::BI__sync_fetch_and_xor_8: |
| case Builtin::BI__sync_fetch_and_xor_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E); |
| case Builtin::BI__sync_fetch_and_nand_1: |
| case Builtin::BI__sync_fetch_and_nand_2: |
| case Builtin::BI__sync_fetch_and_nand_4: |
| case Builtin::BI__sync_fetch_and_nand_8: |
| case Builtin::BI__sync_fetch_and_nand_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E); |
| |
| // Clang extensions: not overloaded yet. |
| case Builtin::BI__sync_fetch_and_min: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E); |
| case Builtin::BI__sync_fetch_and_max: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E); |
| case Builtin::BI__sync_fetch_and_umin: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E); |
| case Builtin::BI__sync_fetch_and_umax: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E); |
| |
| case Builtin::BI__sync_add_and_fetch_1: |
| case Builtin::BI__sync_add_and_fetch_2: |
| case Builtin::BI__sync_add_and_fetch_4: |
| case Builtin::BI__sync_add_and_fetch_8: |
| case Builtin::BI__sync_add_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E, |
| llvm::Instruction::Add); |
| case Builtin::BI__sync_sub_and_fetch_1: |
| case Builtin::BI__sync_sub_and_fetch_2: |
| case Builtin::BI__sync_sub_and_fetch_4: |
| case Builtin::BI__sync_sub_and_fetch_8: |
| case Builtin::BI__sync_sub_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E, |
| llvm::Instruction::Sub); |
| case Builtin::BI__sync_and_and_fetch_1: |
| case Builtin::BI__sync_and_and_fetch_2: |
| case Builtin::BI__sync_and_and_fetch_4: |
| case Builtin::BI__sync_and_and_fetch_8: |
| case Builtin::BI__sync_and_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E, |
| llvm::Instruction::And); |
| case Builtin::BI__sync_or_and_fetch_1: |
| case Builtin::BI__sync_or_and_fetch_2: |
| case Builtin::BI__sync_or_and_fetch_4: |
| case Builtin::BI__sync_or_and_fetch_8: |
| case Builtin::BI__sync_or_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E, |
| llvm::Instruction::Or); |
| case Builtin::BI__sync_xor_and_fetch_1: |
| case Builtin::BI__sync_xor_and_fetch_2: |
| case Builtin::BI__sync_xor_and_fetch_4: |
| case Builtin::BI__sync_xor_and_fetch_8: |
| case Builtin::BI__sync_xor_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E, |
| llvm::Instruction::Xor); |
| case Builtin::BI__sync_nand_and_fetch_1: |
| case Builtin::BI__sync_nand_and_fetch_2: |
| case Builtin::BI__sync_nand_and_fetch_4: |
| case Builtin::BI__sync_nand_and_fetch_8: |
| case Builtin::BI__sync_nand_and_fetch_16: |
| return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E, |
| llvm::Instruction::And, true); |
| |
| case Builtin::BI__sync_val_compare_and_swap_1: |
| case Builtin::BI__sync_val_compare_and_swap_2: |
| case Builtin::BI__sync_val_compare_and_swap_4: |
| case Builtin::BI__sync_val_compare_and_swap_8: |
| case Builtin::BI__sync_val_compare_and_swap_16: |
| return RValue::get(MakeAtomicCmpXchgValue(*this, E, false)); |
| |
| case Builtin::BI__sync_bool_compare_and_swap_1: |
| case Builtin::BI__sync_bool_compare_and_swap_2: |
| case Builtin::BI__sync_bool_compare_and_swap_4: |
| case Builtin::BI__sync_bool_compare_and_swap_8: |
| case Builtin::BI__sync_bool_compare_and_swap_16: |
| return RValue::get(MakeAtomicCmpXchgValue(*this, E, true)); |
| |
| case Builtin::BI__sync_swap_1: |
| case Builtin::BI__sync_swap_2: |
| case Builtin::BI__sync_swap_4: |
| case Builtin::BI__sync_swap_8: |
| case Builtin::BI__sync_swap_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); |
| |
| case Builtin::BI__sync_lock_test_and_set_1: |
| case Builtin::BI__sync_lock_test_and_set_2: |
| case Builtin::BI__sync_lock_test_and_set_4: |
| case Builtin::BI__sync_lock_test_and_set_8: |
| case Builtin::BI__sync_lock_test_and_set_16: |
| return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); |
| |
| case Builtin::BI__sync_lock_release_1: |
| case Builtin::BI__sync_lock_release_2: |
| case Builtin::BI__sync_lock_release_4: |
| case Builtin::BI__sync_lock_release_8: |
| case Builtin::BI__sync_lock_release_16: { |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| QualType ElTy = E->getArg(0)->getType()->getPointeeType(); |
| CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy); |
| llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(), |
| StoreSize.getQuantity() * 8); |
| Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo()); |
| llvm::StoreInst *Store = |
| Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr, |
| StoreSize); |
| Store->setAtomic(llvm::AtomicOrdering::Release); |
| return RValue::get(nullptr); |
| } |
| |
| case Builtin::BI__sync_synchronize: { |
| // We assume this is supposed to correspond to a C++0x-style |
| // sequentially-consistent fence (i.e. this is only usable for |
| // synchronization, not device I/O or anything like that). This intrinsic |
| // is really badly designed in the sense that in theory, there isn't |
| // any way to safely use it... but in practice, it mostly works |
| // to use it with non-atomic loads and stores to get acquire/release |
| // semantics. |
| Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent); |
| return RValue::get(nullptr); |
| } |
| |
| case Builtin::BI__builtin_nontemporal_load: |
| return RValue::get(EmitNontemporalLoad(*this, E)); |
| case Builtin::BI__builtin_nontemporal_store: |
| return RValue::get(EmitNontemporalStore(*this, E)); |
| case Builtin::BI__c11_atomic_is_lock_free: |
| case Builtin::BI__atomic_is_lock_free: { |
| // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the |
| // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since |
| // _Atomic(T) is always properly-aligned. |
| const char *LibCallName = "__atomic_is_lock_free"; |
| CallArgList Args; |
| Args.add(RValue::get(EmitScalarExpr(E->getArg(0))), |
| getContext().getSizeType()); |
| if (BuiltinID == Builtin::BI__atomic_is_lock_free) |
| Args.add(RValue::get(EmitScalarExpr(E->getArg(1))), |
| getContext().VoidPtrTy); |
| else |
| Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)), |
| getContext().VoidPtrTy); |
| const CGFunctionInfo &FuncInfo = |
| CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args); |
| llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); |
| llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); |
| return EmitCall(FuncInfo, CGCallee::forDirect(Func), |
| ReturnValueSlot(), Args); |
| } |
| |
| case Builtin::BI__atomic_test_and_set: { |
| // Look at the argument type to determine whether this is a volatile |
| // operation. The parameter type is always volatile. |
| QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); |
| bool Volatile = |
| PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); |
| |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace(); |
| Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); |
| Value *NewVal = Builder.getInt8(1); |
| Value *Order = EmitScalarExpr(E->getArg(1)); |
| if (isa<llvm::ConstantInt>(Order)) { |
| int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); |
| AtomicRMWInst *Result = nullptr; |
| switch (ord) { |
| case 0: // memory_order_relaxed |
| default: // invalid order |
| Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, |
| llvm::AtomicOrdering::Monotonic); |
| break; |
| case 1: // memory_order_consume |
| case 2: // memory_order_acquire |
| Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, |
| llvm::AtomicOrdering::Acquire); |
| break; |
| case 3: // memory_order_release |
| Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, |
| llvm::AtomicOrdering::Release); |
| break; |
| case 4: // memory_order_acq_rel |
| |
| Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, |
| llvm::AtomicOrdering::AcquireRelease); |
| break; |
| case 5: // memory_order_seq_cst |
| Result = Builder.CreateAtomicRMW( |
| llvm::AtomicRMWInst::Xchg, Ptr, NewVal, |
| llvm::AtomicOrdering::SequentiallyConsistent); |
| break; |
| } |
| Result->setVolatile(Volatile); |
| return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); |
| } |
| |
| llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); |
| |
| llvm::BasicBlock *BBs[5] = { |
| createBasicBlock("monotonic", CurFn), |
| createBasicBlock("acquire", CurFn), |
| createBasicBlock("release", CurFn), |
| createBasicBlock("acqrel", CurFn), |
| createBasicBlock("seqcst", CurFn) |
| }; |
| llvm::AtomicOrdering Orders[5] = { |
| llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire, |
| llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease, |
| llvm::AtomicOrdering::SequentiallyConsistent}; |
| |
| Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); |
| llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); |
| |
| Builder.SetInsertPoint(ContBB); |
| PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set"); |
| |
| for (unsigned i = 0; i < 5; ++i) { |
| Builder.SetInsertPoint(BBs[i]); |
| AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, |
| Ptr, NewVal, Orders[i]); |
| RMW->setVolatile(Volatile); |
| Result->addIncoming(RMW, BBs[i]); |
| Builder.CreateBr(ContBB); |
| } |
| |
| SI->addCase(Builder.getInt32(0), BBs[0]); |
| SI->addCase(Builder.getInt32(1), BBs[1]); |
| SI->addCase(Builder.getInt32(2), BBs[1]); |
| SI->addCase(Builder.getInt32(3), BBs[2]); |
| SI->addCase(Builder.getInt32(4), BBs[3]); |
| SI->addCase(Builder.getInt32(5), BBs[4]); |
| |
| Builder.SetInsertPoint(ContBB); |
| return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); |
| } |
| |
| case Builtin::BI__atomic_clear: { |
| QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); |
| bool Volatile = |
| PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); |
| |
| Address Ptr = EmitPointerWithAlignment(E->getArg(0)); |
| unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace(); |
| Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); |
| Value *NewVal = Builder.getInt8(0); |
| Value *Order = EmitScalarExpr(E->getArg(1)); |
| if (isa<llvm::ConstantInt>(Order)) { |
| int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); |
| StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); |
| switch (ord) { |
| case 0: // memory_order_relaxed |
| default: // invalid order |
| Store->setOrdering(llvm::AtomicOrdering::Monotonic); |
| break; |
| case 3: // memory_order_release |
| Store->setOrdering(llvm::AtomicOrdering::Release); |
| break; |
| case 5: // memory_order_seq_cst |
| Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent); |
| break; |
| } |
| return RValue::get(nullptr); |
| } |
| |
| llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); |
| |
| llvm::BasicBlock *BBs[3] = { |
| createBasicBlock("monotonic", CurFn), |
| createBasicBlock("release", CurFn), |
| createBasicBlock("seqcst", CurFn) |
| }; |
| llvm::AtomicOrdering Orders[3] = { |
| llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release, |
| llvm::AtomicOrdering::SequentiallyConsistent}; |
| |
| Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); |
| llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); |
| |
| for (unsigned i = 0; i < 3; ++i) { |
| Builder.SetInsertPoint(BBs[i]); |
| StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); |
| Store->setOrdering(Orders[i]); |
| Builder.CreateBr(ContBB); |
| } |
| |
| SI->addCase(Builder.getInt32(0), BBs[0]); |
| SI->addCase(Builder.getInt32(3), BBs[1]); |
| SI->addCase(Builder.getInt32(5), BBs[2]); |
| |
| Builder.SetInsertPoint(ContBB); |
| return RValue::get(nullptr); |
| } |
| |
| case Builtin::BI__atomic_thread_fence: |
| case Builtin::BI__atomic_signal_fence: |
| case Builtin::BI__c11_atomic_thread_fence: |
| case Builtin::BI__c11_atomic_signal_fence: { |
| llvm::SyncScope::ID SSID; |
| if (BuiltinID == Builtin::BI__atomic_signal_fence || |
| BuiltinID == Builtin::BI__c11_atomic_signal_fence) |
| SSID = llvm::SyncScope::SingleThread; |
| else |
| SSID = llvm::SyncScope::System; |
| Value *Order = EmitScalarExpr(E->getArg(0)); |
| if (isa<llvm::ConstantInt>(Order)) { |
| int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); |
| switch (ord) { |
| case 0: // memory_order_relaxed |
| default: // invalid order |
| break; |
| case 1: // memory_order_consume |
| case 2: // memory_order_acquire |
| Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); |
| break; |
| case 3: // memory_order_release |
| Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); |
| break; |
| case 4: // memory_order_acq_rel |
| Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); |
| break; |
| case 5: // memory_order_seq_cst |
| Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); |
| break; |
| } |
| return RValue::get(nullptr); |
| } |
| |
| llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB; |
| AcquireBB = createBasicBlock("acquire", CurFn); |
| ReleaseBB = createBasicBlock("release", CurFn); |
| AcqRelBB = createBasicBlock("acqrel", CurFn); |
| SeqCstBB = createBasicBlock("seqcst", CurFn); |
| llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); |
| |
| Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); |
| llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB); |
| |
| Builder.SetInsertPoint(AcquireBB); |
| Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); |
| Builder.CreateBr(ContBB); |
| SI->addCase(Builder.getInt32(1), AcquireBB); |
| SI->addCase(Builder.getInt32(2), AcquireBB); |
| |
| Builder.SetInsertPoint(ReleaseBB); |
| Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); |
| Builder.CreateBr(ContBB); |
| SI->addCase(Builder.getInt32(3), ReleaseBB); |
| |
| Builder.SetInsertPoint(AcqRelBB); |
| Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); |
| Builder.CreateBr(ContBB); |
| SI->addCase(Builder.getInt32(4), AcqRelBB); |
| |
| Builder.SetInsertPoint(SeqCstBB); |
| Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); |
| Builder.CreateBr(ContBB); |
| SI->addCase(Builder.getInt32(5), SeqCstBB); |
| |
| Builder.SetInsertPoint(ContBB); |
| return RValue::get(nullptr); |
| } |
| |
| case Builtin::BI__builtin_signbit: |
| case Builtin::BI__builtin_signbitf: |
| case Builtin::BI__builtin_signbitl: { |
| return RValue::get( |
| Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))), |
| ConvertType(E->getType()))); |
| } |
| case Builtin::BI__annotation: { |
| // Re-encode each wide string to UTF8 and make an MDString. |
| SmallVector<Metadata *, 1> Strings; |
| for (const Expr *Arg : E->arguments()) { |
| const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts()); |
| assert(Str->getCharByteWidth() == 2); |
| StringRef WideBytes = Str->getBytes(); |
| std::string StrUtf8; |
| if (!convertUTF16ToUTF8String( |
| makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) { |
| CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument"); |
| continue; |
| } |
| Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8)); |
| } |
| |
| // Build and MDTuple of MDStrings and emit the intrinsic call. |
| llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {}); |
| MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings); |
| Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple)); |
| return RValue::getIgnored(); |
| } |
| case Builtin::BI__builtin_annotation: { |
| llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation, |
| AnnVal->getType()); |
| |
| // Get the annotation string, go through casts. Sema requires this to be a |
| // non-wide string literal, potentially casted, so the cast<> is safe. |
| const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts(); |
| StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString(); |
| return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc())); |
| } |
| case Builtin::BI__builtin_addcb: |
| case Builtin::BI__builtin_addcs: |
| case Builtin::BI__builtin_addc: |
| case Builtin::BI__builtin_addcl: |
| case Builtin::BI__builtin_addcll: |
| case Builtin::BI__builtin_subcb: |
| case Builtin::BI__builtin_subcs: |
| case Builtin::BI__builtin_subc: |
| case Builtin::BI__builtin_subcl: |
| case Builtin::BI__builtin_subcll: { |
| |
| // We translate all of these builtins from expressions of the form: |
| // int x = ..., y = ..., carryin = ..., carryout, result; |
| // result = __builtin_addc(x, y, carryin, &carryout); |
| // |
| // to LLVM IR of the form: |
| // |
| // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y) |
| // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0 |
| // %carry1 = extractvalue {i32, i1} %tmp1, 1 |
| // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1, |
| // i32 %carryin) |
| // %result = extractvalue {i32, i1} %tmp2, 0 |
| // %carry2 = extractvalue {i32, i1} %tmp2, 1 |
| // %tmp3 = or i1 %carry1, %carry2 |
| // %tmp4 = zext i1 %tmp3 to i32 |
| // store i32 %tmp4, i32* %carryout |
| |
| // Scalarize our inputs. |
| llvm::Value *X = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Y = EmitScalarExpr(E->getArg(1)); |
| llvm::Value *Carryin = EmitScalarExpr(E->getArg(2)); |
| Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3)); |
| |
| // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow. |
| llvm::Intrinsic::ID IntrinsicId; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unknown multiprecision builtin id."); |
| case Builtin::BI__builtin_addcb: |
| case Builtin::BI__builtin_addcs: |
| case Builtin::BI__builtin_addc: |
| case Builtin::BI__builtin_addcl: |
| case Builtin::BI__builtin_addcll: |
| IntrinsicId = llvm::Intrinsic::uadd_with_overflow; |
| break; |
| case Builtin::BI__builtin_subcb: |
| case Builtin::BI__builtin_subcs: |
| case Builtin::BI__builtin_subc: |
| case Builtin::BI__builtin_subcl: |
| case Builtin::BI__builtin_subcll: |
| IntrinsicId = llvm::Intrinsic::usub_with_overflow; |
| break; |
| } |
| |
| // Construct our resulting LLVM IR expression. |
| llvm::Value *Carry1; |
| llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId, |
| X, Y, Carry1); |
| llvm::Value *Carry2; |
| llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId, |
| Sum1, Carryin, Carry2); |
| llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2), |
| X->getType()); |
| Builder.CreateStore(CarryOut, CarryOutPtr); |
| return RValue::get(Sum2); |
| } |
| |
| case Builtin::BI__builtin_add_overflow: |
| case Builtin::BI__builtin_sub_overflow: |
| case Builtin::BI__builtin_mul_overflow: { |
| const clang::Expr *LeftArg = E->getArg(0); |
| const clang::Expr *RightArg = E->getArg(1); |
| const clang::Expr *ResultArg = E->getArg(2); |
| |
| clang::QualType ResultQTy = |
| ResultArg->getType()->castAs<PointerType>()->getPointeeType(); |
| |
| WidthAndSignedness LeftInfo = |
| getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType()); |
| WidthAndSignedness RightInfo = |
| getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType()); |
| WidthAndSignedness ResultInfo = |
| getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy); |
| |
| // Handle mixed-sign multiplication as a special case, because adding |
| // runtime or backend support for our generic irgen would be too expensive. |
| if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo)) |
| return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg, |
| RightInfo, ResultArg, ResultQTy, |
| ResultInfo); |
| |
| WidthAndSignedness EncompassingInfo = |
| EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo}); |
| |
| llvm::Type *EncompassingLLVMTy = |
| llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width); |
| |
| llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy); |
| |
| llvm::Intrinsic::ID IntrinsicId; |
| switch (BuiltinID) { |
| default: |
| llvm_unreachable("Unknown overflow builtin id."); |
| case Builtin::BI__builtin_add_overflow: |
| IntrinsicId = EncompassingInfo.Signed |
| ? llvm::Intrinsic::sadd_with_overflow |
| : llvm::Intrinsic::uadd_with_overflow; |
| break; |
| case Builtin::BI__builtin_sub_overflow: |
| IntrinsicId = EncompassingInfo.Signed |
| ? llvm::Intrinsic::ssub_with_overflow |
| : llvm::Intrinsic::usub_with_overflow; |
| break; |
| case Builtin::BI__builtin_mul_overflow: |
| IntrinsicId = EncompassingInfo.Signed |
| ? llvm::Intrinsic::smul_with_overflow |
| : llvm::Intrinsic::umul_with_overflow; |
| break; |
| } |
| |
| llvm::Value *Left = EmitScalarExpr(LeftArg); |
| llvm::Value *Right = EmitScalarExpr(RightArg); |
| Address ResultPtr = EmitPointerWithAlignment(ResultArg); |
| |
| // Extend each operand to the encompassing type. |
| Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed); |
| Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed); |
| |
| // Perform the operation on the extended values. |
| llvm::Value *Overflow, *Result; |
| Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow); |
| |
| if (EncompassingInfo.Width > ResultInfo.Width) { |
| // The encompassing type is wider than the result type, so we need to |
| // truncate it. |
| llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy); |
| |
| // To see if the truncation caused an overflow, we will extend |
| // the result and then compare it to the original result. |
| llvm::Value *ResultTruncExt = Builder.CreateIntCast( |
| ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed); |
| llvm::Value *TruncationOverflow = |
| Builder.CreateICmpNE(Result, ResultTruncExt); |
| |
| Overflow = Builder.CreateOr(Overflow, TruncationOverflow); |
| Result = ResultTrunc; |
| } |
| |
| // Finally, store the result using the pointer. |
| bool isVolatile = |
| ResultArg->getType()->getPointeeType().isVolatileQualified(); |
| Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile); |
| |
| return RValue::get(Overflow); |
| } |
| |
| case Builtin::BI__builtin_uadd_overflow: |
| case Builtin::BI__builtin_uaddl_overflow: |
| case Builtin::BI__builtin_uaddll_overflow: |
| case Builtin::BI__builtin_usub_overflow: |
| case Builtin::BI__builtin_usubl_overflow: |
| case Builtin::BI__builtin_usubll_overflow: |
| case Builtin::BI__builtin_umul_overflow: |
| case Builtin::BI__builtin_umull_overflow: |
| case Builtin::BI__builtin_umulll_overflow: |
| case Builtin::BI__builtin_sadd_overflow: |
| case Builtin::BI__builtin_saddl_overflow: |
| case Builtin::BI__builtin_saddll_overflow: |
| case Builtin::BI__builtin_ssub_overflow: |
| case Builtin::BI__builtin_ssubl_overflow: |
| case Builtin::BI__builtin_ssubll_overflow: |
| case Builtin::BI__builtin_smul_overflow: |
| case Builtin::BI__builtin_smull_overflow: |
| case Builtin::BI__builtin_smulll_overflow: { |
| |
| // We translate all of these builtins directly to the relevant llvm IR node. |
| |
| // Scalarize our inputs. |
| llvm::Value *X = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Y = EmitScalarExpr(E->getArg(1)); |
| Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2)); |
| |
| // Decide which of the overflow intrinsics we are lowering to: |
| llvm::Intrinsic::ID IntrinsicId; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unknown overflow builtin id."); |
| case Builtin::BI__builtin_uadd_overflow: |
| case Builtin::BI__builtin_uaddl_overflow: |
| case Builtin::BI__builtin_uaddll_overflow: |
| IntrinsicId = llvm::Intrinsic::uadd_with_overflow; |
| break; |
| case Builtin::BI__builtin_usub_overflow: |
| case Builtin::BI__builtin_usubl_overflow: |
| case Builtin::BI__builtin_usubll_overflow: |
| IntrinsicId = llvm::Intrinsic::usub_with_overflow; |
| break; |
| case Builtin::BI__builtin_umul_overflow: |
| case Builtin::BI__builtin_umull_overflow: |
| case Builtin::BI__builtin_umulll_overflow: |
| IntrinsicId = llvm::Intrinsic::umul_with_overflow; |
| break; |
| case Builtin::BI__builtin_sadd_overflow: |
| case Builtin::BI__builtin_saddl_overflow: |
| case Builtin::BI__builtin_saddll_overflow: |
| IntrinsicId = llvm::Intrinsic::sadd_with_overflow; |
| break; |
| case Builtin::BI__builtin_ssub_overflow: |
| case Builtin::BI__builtin_ssubl_overflow: |
| case Builtin::BI__builtin_ssubll_overflow: |
| IntrinsicId = llvm::Intrinsic::ssub_with_overflow; |
| break; |
| case Builtin::BI__builtin_smul_overflow: |
| case Builtin::BI__builtin_smull_overflow: |
| case Builtin::BI__builtin_smulll_overflow: |
| IntrinsicId = llvm::Intrinsic::smul_with_overflow; |
| break; |
| } |
| |
| |
| llvm::Value *Carry; |
| llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry); |
| Builder.CreateStore(Sum, SumOutPtr); |
| |
| return RValue::get(Carry); |
| } |
| case Builtin::BI__builtin_addressof: |
| return RValue::get(EmitLValue(E->getArg(0)).getPointer()); |
| case Builtin::BI__builtin_operator_new: |
| return EmitBuiltinNewDeleteCall( |
| E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false); |
| case Builtin::BI__builtin_operator_delete: |
| return EmitBuiltinNewDeleteCall( |
| E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true); |
| |
| case Builtin::BI__noop: |
| // __noop always evaluates to an integer literal zero. |
| return RValue::get(ConstantInt::get(IntTy, 0)); |
| case Builtin::BI__builtin_call_with_static_chain: { |
| const CallExpr *Call = cast<CallExpr>(E->getArg(0)); |
| const Expr *Chain = E->getArg(1); |
| return EmitCall(Call->getCallee()->getType(), |
| EmitCallee(Call->getCallee()), Call, ReturnValue, |
| EmitScalarExpr(Chain)); |
| } |
| case Builtin::BI_InterlockedExchange8: |
| case Builtin::BI_InterlockedExchange16: |
| case Builtin::BI_InterlockedExchange: |
| case Builtin::BI_InterlockedExchangePointer: |
| return RValue::get( |
| EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E)); |
| case Builtin::BI_InterlockedCompareExchangePointer: { |
| llvm::Type *RTy; |
| llvm::IntegerType *IntType = |
| IntegerType::get(getLLVMContext(), |
| getContext().getTypeSize(E->getType())); |
| llvm::Type *IntPtrType = IntType->getPointerTo(); |
| |
| llvm::Value *Destination = |
| Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType); |
| |
| llvm::Value *Exchange = EmitScalarExpr(E->getArg(1)); |
| RTy = Exchange->getType(); |
| Exchange = Builder.CreatePtrToInt(Exchange, IntType); |
| |
| llvm::Value *Comparand = |
| Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType); |
| |
| auto Result = |
| Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, |
| AtomicOrdering::SequentiallyConsistent, |
| AtomicOrdering::SequentiallyConsistent); |
| Result->setVolatile(true); |
| |
| return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result, |
| 0), |
| RTy)); |
| } |
| case Builtin::BI_InterlockedCompareExchange8: |
| case Builtin::BI_InterlockedCompareExchange16: |
| case Builtin::BI_InterlockedCompareExchange: |
| case Builtin::BI_InterlockedCompareExchange64: { |
| AtomicCmpXchgInst *CXI = Builder.CreateAtomicCmpXchg( |
| EmitScalarExpr(E->getArg(0)), |
| EmitScalarExpr(E->getArg(2)), |
| EmitScalarExpr(E->getArg(1)), |
| AtomicOrdering::SequentiallyConsistent, |
| AtomicOrdering::SequentiallyConsistent); |
| CXI->setVolatile(true); |
| return RValue::get(Builder.CreateExtractValue(CXI, 0)); |
| } |
| case Builtin::BI_InterlockedIncrement16: |
| case Builtin::BI_InterlockedIncrement: |
| return RValue::get( |
| EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E)); |
| case Builtin::BI_InterlockedDecrement16: |
| case Builtin::BI_InterlockedDecrement: |
| return RValue::get( |
| EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E)); |
| case Builtin::BI_InterlockedAnd8: |
| case Builtin::BI_InterlockedAnd16: |
| case Builtin::BI_InterlockedAnd: |
| return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E)); |
| case Builtin::BI_InterlockedExchangeAdd8: |
| case Builtin::BI_InterlockedExchangeAdd16: |
| case Builtin::BI_InterlockedExchangeAdd: |
| return RValue::get( |
| EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E)); |
| case Builtin::BI_InterlockedExchangeSub8: |
| case Builtin::BI_InterlockedExchangeSub16: |
| case Builtin::BI_InterlockedExchangeSub: |
| return RValue::get( |
| EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E)); |
| case Builtin::BI_InterlockedOr8: |
| case Builtin::BI_InterlockedOr16: |
| case Builtin::BI_InterlockedOr: |
| return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E)); |
| case Builtin::BI_InterlockedXor8: |
| case Builtin::BI_InterlockedXor16: |
| case Builtin::BI_InterlockedXor: |
| return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E)); |
| |
| case Builtin::BI_bittest64: |
| case Builtin::BI_bittest: |
| case Builtin::BI_bittestandcomplement64: |
| case Builtin::BI_bittestandcomplement: |
| case Builtin::BI_bittestandreset64: |
| case Builtin::BI_bittestandreset: |
| case Builtin::BI_bittestandset64: |
| case Builtin::BI_bittestandset: |
| case Builtin::BI_interlockedbittestandreset: |
| case Builtin::BI_interlockedbittestandreset64: |
| case Builtin::BI_interlockedbittestandset64: |
| case Builtin::BI_interlockedbittestandset: |
| case Builtin::BI_interlockedbittestandset_acq: |
| case Builtin::BI_interlockedbittestandset_rel: |
| case Builtin::BI_interlockedbittestandset_nf: |
| case Builtin::BI_interlockedbittestandreset_acq: |
| case Builtin::BI_interlockedbittestandreset_rel: |
| case Builtin::BI_interlockedbittestandreset_nf: |
| return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E)); |
| |
| case Builtin::BI__exception_code: |
| case Builtin::BI_exception_code: |
| return RValue::get(EmitSEHExceptionCode()); |
| case Builtin::BI__exception_info: |
| case Builtin::BI_exception_info: |
| return RValue::get(EmitSEHExceptionInfo()); |
| case Builtin::BI__abnormal_termination: |
| case Builtin::BI_abnormal_termination: |
| return RValue::get(EmitSEHAbnormalTermination()); |
| case Builtin::BI_setjmpex: |
| if (getTarget().getTriple().isOSMSVCRT()) |
| return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); |
| break; |
| case Builtin::BI_setjmp: |
| if (getTarget().getTriple().isOSMSVCRT()) { |
| if (getTarget().getTriple().getArch() == llvm::Triple::x86) |
| return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E); |
| else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64) |
| return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); |
| return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E); |
| } |
| break; |
| |
| case Builtin::BI__GetExceptionInfo: { |
| if (llvm::GlobalVariable *GV = |
| CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType())) |
| return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy)); |
| break; |
| } |
| |
| case Builtin::BI__fastfail: |
| return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E)); |
| |
| case Builtin::BI__builtin_coro_size: { |
| auto & Context = getContext(); |
| auto SizeTy = Context.getSizeType(); |
| auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); |
| Value *F = CGM.getIntrinsic(Intrinsic::coro_size, T); |
| return RValue::get(Builder.CreateCall(F)); |
| } |
| |
| case Builtin::BI__builtin_coro_id: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_id); |
| case Builtin::BI__builtin_coro_promise: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise); |
| case Builtin::BI__builtin_coro_resume: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume); |
| case Builtin::BI__builtin_coro_frame: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame); |
| case Builtin::BI__builtin_coro_noop: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop); |
| case Builtin::BI__builtin_coro_free: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_free); |
| case Builtin::BI__builtin_coro_destroy: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy); |
| case Builtin::BI__builtin_coro_done: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_done); |
| case Builtin::BI__builtin_coro_alloc: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc); |
| case Builtin::BI__builtin_coro_begin: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin); |
| case Builtin::BI__builtin_coro_end: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_end); |
| case Builtin::BI__builtin_coro_suspend: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend); |
| case Builtin::BI__builtin_coro_param: |
| return EmitCoroutineIntrinsic(E, Intrinsic::coro_param); |
| |
| // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions |
| case Builtin::BIread_pipe: |
| case Builtin::BIwrite_pipe: { |
| Value *Arg0 = EmitScalarExpr(E->getArg(0)), |
| *Arg1 = EmitScalarExpr(E->getArg(1)); |
| CGOpenCLRuntime OpenCLRT(CGM); |
| Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); |
| Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); |
| |
| // Type of the generic packet parameter. |
| unsigned GenericAS = |
| getContext().getTargetAddressSpace(LangAS::opencl_generic); |
| llvm::Type *I8PTy = llvm::PointerType::get( |
| llvm::Type::getInt8Ty(getLLVMContext()), GenericAS); |
| |
| // Testing which overloaded version we should generate the call for. |
| if (2U == E->getNumArgs()) { |
| const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2" |
| : "__write_pipe_2"; |
| // Creating a generic function type to be able to call with any builtin or |
| // user defined type. |
| llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty}; |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy); |
| return RValue::get( |
| Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), |
| {Arg0, BCast, PacketSize, PacketAlign})); |
| } else { |
| assert(4 == E->getNumArgs() && |
| "Illegal number of parameters to pipe function"); |
| const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4" |
| : "__write_pipe_4"; |
| |
| llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy, |
| Int32Ty, Int32Ty}; |
| Value *Arg2 = EmitScalarExpr(E->getArg(2)), |
| *Arg3 = EmitScalarExpr(E->getArg(3)); |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy); |
| // We know the third argument is an integer type, but we may need to cast |
| // it to i32. |
| if (Arg2->getType() != Int32Ty) |
| Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty); |
| return RValue::get(Builder.CreateCall( |
| CGM.CreateRuntimeFunction(FTy, Name), |
| {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign})); |
| } |
| } |
| // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write |
| // functions |
| case Builtin::BIreserve_read_pipe: |
| case Builtin::BIreserve_write_pipe: |
| case Builtin::BIwork_group_reserve_read_pipe: |
| case Builtin::BIwork_group_reserve_write_pipe: |
| case Builtin::BIsub_group_reserve_read_pipe: |
| case Builtin::BIsub_group_reserve_write_pipe: { |
| // Composing the mangled name for the function. |
| const char *Name; |
| if (BuiltinID == Builtin::BIreserve_read_pipe) |
| Name = "__reserve_read_pipe"; |
| else if (BuiltinID == Builtin::BIreserve_write_pipe) |
| Name = "__reserve_write_pipe"; |
| else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe) |
| Name = "__work_group_reserve_read_pipe"; |
| else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe) |
| Name = "__work_group_reserve_write_pipe"; |
| else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe) |
| Name = "__sub_group_reserve_read_pipe"; |
| else |
| Name = "__sub_group_reserve_write_pipe"; |
| |
| Value *Arg0 = EmitScalarExpr(E->getArg(0)), |
| *Arg1 = EmitScalarExpr(E->getArg(1)); |
| llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy); |
| CGOpenCLRuntime OpenCLRT(CGM); |
| Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); |
| Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); |
| |
| // Building the generic function prototype. |
| llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty}; |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| // We know the second argument is an integer type, but we may need to cast |
| // it to i32. |
| if (Arg1->getType() != Int32Ty) |
| Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty); |
| return RValue::get( |
| Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), |
| {Arg0, Arg1, PacketSize, PacketAlign})); |
| } |
| // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write |
| // functions |
| case Builtin::BIcommit_read_pipe: |
| case Builtin::BIcommit_write_pipe: |
| case Builtin::BIwork_group_commit_read_pipe: |
| case Builtin::BIwork_group_commit_write_pipe: |
| case Builtin::BIsub_group_commit_read_pipe: |
| case Builtin::BIsub_group_commit_write_pipe: { |
| const char *Name; |
| if (BuiltinID == Builtin::BIcommit_read_pipe) |
| Name = "__commit_read_pipe"; |
| else if (BuiltinID == Builtin::BIcommit_write_pipe) |
| Name = "__commit_write_pipe"; |
| else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe) |
| Name = "__work_group_commit_read_pipe"; |
| else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe) |
| Name = "__work_group_commit_write_pipe"; |
| else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe) |
| Name = "__sub_group_commit_read_pipe"; |
| else |
| Name = "__sub_group_commit_write_pipe"; |
| |
| Value *Arg0 = EmitScalarExpr(E->getArg(0)), |
| *Arg1 = EmitScalarExpr(E->getArg(1)); |
| CGOpenCLRuntime OpenCLRT(CGM); |
| Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); |
| Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); |
| |
| // Building the generic function prototype. |
| llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty}; |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), |
| llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| |
| return RValue::get( |
| Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), |
| {Arg0, Arg1, PacketSize, PacketAlign})); |
| } |
| // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions |
| case Builtin::BIget_pipe_num_packets: |
| case Builtin::BIget_pipe_max_packets: { |
| const char *BaseName; |
| const PipeType *PipeTy = E->getArg(0)->getType()->getAs<PipeType>(); |
| if (BuiltinID == Builtin::BIget_pipe_num_packets) |
| BaseName = "__get_pipe_num_packets"; |
| else |
| BaseName = "__get_pipe_max_packets"; |
| auto Name = std::string(BaseName) + |
| std::string(PipeTy->isReadOnly() ? "_ro" : "_wo"); |
| |
| // Building the generic function prototype. |
| Value *Arg0 = EmitScalarExpr(E->getArg(0)); |
| CGOpenCLRuntime OpenCLRT(CGM); |
| Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); |
| Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); |
| llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty}; |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| |
| return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), |
| {Arg0, PacketSize, PacketAlign})); |
| } |
| |
| // OpenCL v2.0 s6.13.9 - Address space qualifier functions. |
| case Builtin::BIto_global: |
| case Builtin::BIto_local: |
| case Builtin::BIto_private: { |
| auto Arg0 = EmitScalarExpr(E->getArg(0)); |
| auto NewArgT = llvm::PointerType::get(Int8Ty, |
| CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
| auto NewRetT = llvm::PointerType::get(Int8Ty, |
| CGM.getContext().getTargetAddressSpace( |
| E->getType()->getPointeeType().getAddressSpace())); |
| auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false); |
| llvm::Value *NewArg; |
| if (Arg0->getType()->getPointerAddressSpace() != |
| NewArgT->getPointerAddressSpace()) |
| NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT); |
| else |
| NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT); |
| auto NewName = std::string("__") + E->getDirectCallee()->getName().str(); |
| auto NewCall = |
| Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg}); |
| return RValue::get(Builder.CreateBitOrPointerCast(NewCall, |
| ConvertType(E->getType()))); |
| } |
| |
| // OpenCL v2.0, s6.13.17 - Enqueue kernel function. |
| // It contains four different overload formats specified in Table 6.13.17.1. |
| case Builtin::BIenqueue_kernel: { |
| StringRef Name; // Generated function call name |
| unsigned NumArgs = E->getNumArgs(); |
| |
| llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy); |
| llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( |
| getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
| |
| llvm::Value *Queue = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Flags = EmitScalarExpr(E->getArg(1)); |
| LValue NDRangeL = EmitAggExprToLValue(E->getArg(2)); |
| llvm::Value *Range = NDRangeL.getAddress().getPointer(); |
| llvm::Type *RangeTy = NDRangeL.getAddress().getType(); |
| |
| if (NumArgs == 4) { |
| // The most basic form of the call with parameters: |
| // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void) |
| Name = "__enqueue_kernel_basic"; |
| llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy, |
| GenericVoidPtrTy}; |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| |
| auto Info = |
| CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); |
| llvm::Value *Kernel = |
| Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
| llvm::Value *Block = |
| Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
| |
| AttrBuilder B; |
| B.addAttribute(Attribute::ByVal); |
| llvm::AttributeList ByValAttrSet = |
| llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B); |
| |
| auto RTCall = |
| Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet), |
| {Queue, Flags, Range, Kernel, Block}); |
| RTCall->setAttributes(ByValAttrSet); |
| return RValue::get(RTCall); |
| } |
| assert(NumArgs >= 5 && "Invalid enqueue_kernel signature"); |
| |
| // Create a temporary array to hold the sizes of local pointer arguments |
| // for the block. \p First is the position of the first size argument. |
| auto CreateArrayForSizeVar = [=](unsigned First) { |
| auto *AT = llvm::ArrayType::get(SizeTy, NumArgs - First); |
| auto *Arr = Builder.CreateAlloca(AT); |
| llvm::Value *Ptr; |
| // Each of the following arguments specifies the size of the corresponding |
| // argument passed to the enqueued block. |
| auto *Zero = llvm::ConstantInt::get(IntTy, 0); |
| for (unsigned I = First; I < NumArgs; ++I) { |
| auto *Index = llvm::ConstantInt::get(IntTy, I - First); |
| auto *GEP = Builder.CreateGEP(Arr, {Zero, Index}); |
| if (I == First) |
| Ptr = GEP; |
| auto *V = |
| Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy); |
| Builder.CreateAlignedStore( |
| V, GEP, CGM.getDataLayout().getPrefTypeAlignment(SizeTy)); |
| } |
| return Ptr; |
| }; |
| |
| // Could have events and/or varargs. |
| if (E->getArg(3)->getType()->isBlockPointerType()) { |
| // No events passed, but has variadic arguments. |
| Name = "__enqueue_kernel_varargs"; |
| auto Info = |
| CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); |
| llvm::Value *Kernel = |
| Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
| auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
| auto *PtrToSizeArray = CreateArrayForSizeVar(4); |
| |
| // Create a vector of the arguments, as well as a constant value to |
| // express to the runtime the number of variadic arguments. |
| std::vector<llvm::Value *> Args = { |
| Queue, Flags, Range, |
| Kernel, Block, ConstantInt::get(IntTy, NumArgs - 4), |
| PtrToSizeArray}; |
| std::vector<llvm::Type *> ArgTys = { |
| QueueTy, IntTy, RangeTy, |
| GenericVoidPtrTy, GenericVoidPtrTy, IntTy, |
| PtrToSizeArray->getType()}; |
| |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| return RValue::get( |
| Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), |
| llvm::ArrayRef<llvm::Value *>(Args))); |
| } |
| // Any calls now have event arguments passed. |
| if (NumArgs >= 7) { |
| llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy); |
| llvm::Type *EventPtrTy = EventTy->getPointerTo( |
| CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
| |
| llvm::Value *NumEvents = |
| Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty); |
| llvm::Value *EventList = |
| E->getArg(4)->getType()->isArrayType() |
| ? EmitArrayToPointerDecay(E->getArg(4)).getPointer() |
| : EmitScalarExpr(E->getArg(4)); |
| llvm::Value *ClkEvent = EmitScalarExpr(E->getArg(5)); |
| // Convert to generic address space. |
| EventList = Builder.CreatePointerCast(EventList, EventPtrTy); |
| ClkEvent = Builder.CreatePointerCast(ClkEvent, EventPtrTy); |
| auto Info = |
| CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6)); |
| llvm::Value *Kernel = |
| Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
| llvm::Value *Block = |
| Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
| |
| std::vector<llvm::Type *> ArgTys = { |
| QueueTy, Int32Ty, RangeTy, Int32Ty, |
| EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy}; |
| |
| std::vector<llvm::Value *> Args = {Queue, Flags, Range, NumEvents, |
| EventList, ClkEvent, Kernel, Block}; |
| |
| if (NumArgs == 7) { |
| // Has events but no variadics. |
| Name = "__enqueue_kernel_basic_events"; |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| return RValue::get( |
| Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), |
| llvm::ArrayRef<llvm::Value *>(Args))); |
| } |
| // Has event info and variadics |
| // Pass the number of variadics to the runtime function too. |
| Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7)); |
| ArgTys.push_back(Int32Ty); |
| Name = "__enqueue_kernel_events_varargs"; |
| |
| auto *PtrToSizeArray = CreateArrayForSizeVar(7); |
| Args.push_back(PtrToSizeArray); |
| ArgTys.push_back(PtrToSizeArray->getType()); |
| |
| llvm::FunctionType *FTy = llvm::FunctionType::get( |
| Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); |
| return RValue::get( |
| Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), |
| llvm::ArrayRef<llvm::Value *>(Args))); |
| } |
| LLVM_FALLTHROUGH; |
| } |
| // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block |
| // parameter. |
| case Builtin::BIget_kernel_work_group_size: { |
| llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( |
| getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
| auto Info = |
| CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); |
| Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
| Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
| return RValue::get(Builder.CreateCall( |
| CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, |
| false), |
| "__get_kernel_work_group_size_impl"), |
| {Kernel, Arg})); |
| } |
| case Builtin::BIget_kernel_preferred_work_group_size_multiple: { |
| llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( |
| getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
| auto Info = |
| CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); |
| Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
| Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
| return RValue::get(Builder.CreateCall( |
| CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, |
| false), |
| "__get_kernel_preferred_work_group_size_multiple_impl"), |
| {Kernel, Arg})); |
| } |
| case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: |
| case Builtin::BIget_kernel_sub_group_count_for_ndrange: { |
| llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( |
| getContext().getTargetAddressSpace(LangAS::opencl_generic)); |
| LValue NDRangeL = EmitAggExprToLValue(E->getArg(0)); |
| llvm::Value *NDRange = NDRangeL.getAddress().getPointer(); |
| auto Info = |
| CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1)); |
| Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); |
| Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); |
| const char *Name = |
| BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange |
| ? "__get_kernel_max_sub_group_size_for_ndrange_impl" |
| : "__get_kernel_sub_group_count_for_ndrange_impl"; |
| return RValue::get(Builder.CreateCall( |
| CGM.CreateRuntimeFunction( |
| llvm::FunctionType::get( |
| IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy}, |
| false), |
| Name), |
| {NDRange, Kernel, Block})); |
| } |
| |
| case Builtin::BI__builtin_store_half: |
| case Builtin::BI__builtin_store_halff: { |
| Value *Val = EmitScalarExpr(E->getArg(0)); |
| Address Address = EmitPointerWithAlignment(E->getArg(1)); |
| Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy()); |
| return RValue::get(Builder.CreateStore(HalfVal, Address)); |
| } |
| case Builtin::BI__builtin_load_half: { |
| Address Address = EmitPointerWithAlignment(E->getArg(0)); |
| Value *HalfVal = Builder.CreateLoad(Address); |
| return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy())); |
| } |
| case Builtin::BI__builtin_load_halff: { |
| Address Address = EmitPointerWithAlignment(E->getArg(0)); |
| Value *HalfVal = Builder.CreateLoad(Address); |
| return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy())); |
| } |
| case Builtin::BIprintf: |
| if (getTarget().getTriple().isNVPTX()) |
| return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue); |
| break; |
| case Builtin::BI__builtin_canonicalize: |
| case Builtin::BI__builtin_canonicalizef: |
| case Builtin::BI__builtin_canonicalizel: |
| return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize)); |
| |
| case Builtin::BI__builtin_thread_pointer: { |
| if (!getContext().getTargetInfo().isTLSSupported()) |
| CGM.ErrorUnsupported(E, "__builtin_thread_pointer"); |
| // Fall through - it's already mapped to the intrinsic by GCCBuiltin. |
| break; |
| } |
| case Builtin::BI__builtin_os_log_format: |
| return emitBuiltinOSLogFormat(*E); |
| |
| case Builtin::BI__builtin_os_log_format_buffer_size: { |
| analyze_os_log::OSLogBufferLayout Layout; |
| analyze_os_log::computeOSLogBufferLayout(CGM.getContext(), E, Layout); |
| return RValue::get(ConstantInt::get(ConvertType(E->getType()), |
| Layout.size().getQuantity())); |
| } |
| |
| case Builtin::BI__xray_customevent: { |
| if (!ShouldXRayInstrumentFunction()) |
| return RValue::getIgnored(); |
| |
| if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
| XRayInstrKind::Custom)) |
| return RValue::getIgnored(); |
| |
| if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) |
| if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents()) |
| return RValue::getIgnored(); |
| |
| Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent); |
| auto FTy = F->getFunctionType(); |
| auto Arg0 = E->getArg(0); |
| auto Arg0Val = EmitScalarExpr(Arg0); |
| auto Arg0Ty = Arg0->getType(); |
| auto PTy0 = FTy->getParamType(0); |
| if (PTy0 != Arg0Val->getType()) { |
| if (Arg0Ty->isArrayType()) |
| Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer(); |
| else |
| Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0); |
| } |
| auto Arg1 = EmitScalarExpr(E->getArg(1)); |
| auto PTy1 = FTy->getParamType(1); |
| if (PTy1 != Arg1->getType()) |
| Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1); |
| return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1})); |
| } |
| |
| case Builtin::BI__xray_typedevent: { |
| // TODO: There should be a way to always emit events even if the current |
| // function is not instrumented. Losing events in a stream can cripple |
| // a trace. |
| if (!ShouldXRayInstrumentFunction()) |
| return RValue::getIgnored(); |
| |
| if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
| XRayInstrKind::Typed)) |
| return RValue::getIgnored(); |
| |
| if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) |
| if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents()) |
| return RValue::getIgnored(); |
| |
| Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent); |
| auto FTy = F->getFunctionType(); |
| auto Arg0 = EmitScalarExpr(E->getArg(0)); |
| auto PTy0 = FTy->getParamType(0); |
| if (PTy0 != Arg0->getType()) |
| Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0); |
| auto Arg1 = E->getArg(1); |
| auto Arg1Val = EmitScalarExpr(Arg1); |
| auto Arg1Ty = Arg1->getType(); |
| auto PTy1 = FTy->getParamType(1); |
| if (PTy1 != Arg1Val->getType()) { |
| if (Arg1Ty->isArrayType()) |
| Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer(); |
| else |
| Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1); |
| } |
| auto Arg2 = EmitScalarExpr(E->getArg(2)); |
| auto PTy2 = FTy->getParamType(2); |
| if (PTy2 != Arg2->getType()) |
| Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2); |
| return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2})); |
| } |
| |
| case Builtin::BI__builtin_ms_va_start: |
| case Builtin::BI__builtin_ms_va_end: |
| return RValue::get( |
| EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(), |
| BuiltinID == Builtin::BI__builtin_ms_va_start)); |
| |
| case Builtin::BI__builtin_ms_va_copy: { |
| // Lower this manually. We can't reliably determine whether or not any |
| // given va_copy() is for a Win64 va_list from the calling convention |
| // alone, because it's legal to do this from a System V ABI function. |
| // With opaque pointer types, we won't have enough information in LLVM |
| // IR to determine this from the argument types, either. Best to do it |
| // now, while we have enough information. |
| Address DestAddr = EmitMSVAListRef(E->getArg(0)); |
| Address SrcAddr = EmitMSVAListRef(E->getArg(1)); |
| |
| llvm::Type *BPP = Int8PtrPtrTy; |
| |
| DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"), |
| DestAddr.getAlignment()); |
| SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"), |
| SrcAddr.getAlignment()); |
| |
| Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val"); |
| return RValue::get(Builder.CreateStore(ArgPtr, DestAddr)); |
| } |
| } |
| |
| // If this is an alias for a lib function (e.g. __builtin_sin), emit |
| // the call using the normal call path, but using the unmangled |
| // version of the function name. |
| if (getContext().BuiltinInfo.isLibFunction(BuiltinID)) |
| return emitLibraryCall(*this, FD, E, |
| CGM.getBuiltinLibFunction(FD, BuiltinID)); |
| |
| // If this is a predefined lib function (e.g. malloc), emit the call |
| // using exactly the normal call path. |
| if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID)) |
| return emitLibraryCall(*this, FD, E, |
| cast<llvm::Constant>(EmitScalarExpr(E->getCallee()))); |
| |
| // Check that a call to a target specific builtin has the correct target |
| // features. |
| // This is down here to avoid non-target specific builtins, however, if |
| // generic builtins start to require generic target features then we |
| // can move this up to the beginning of the function. |
| checkTargetFeatures(E, FD); |
| |
| if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID)) |
| LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth); |
| |
| // See if we have a target specific intrinsic. |
| const char *Name = getContext().BuiltinInfo.getName(BuiltinID); |
| Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic; |
| StringRef Prefix = |
| llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch()); |
| if (!Prefix.empty()) { |
| IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name); |
| // NOTE we don't need to perform a compatibility flag check here since the |
| // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the |
| // MS builtins via ALL_MS_LANGUAGES and are filtered earlier. |
| if (IntrinsicID == Intrinsic::not_intrinsic) |
| IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name); |
| } |
| |
| if (IntrinsicID != Intrinsic::not_intrinsic) { |
| SmallVector<Value*, 16> Args; |
| |
| // Find out if any arguments are required to be integer constant |
| // expressions. |
| unsigned ICEArguments = 0; |
| ASTContext::GetBuiltinTypeError Error; |
| getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); |
| assert(Error == ASTContext::GE_None && "Should not codegen an error"); |
| |
| Function *F = CGM.getIntrinsic(IntrinsicID); |
| llvm::FunctionType *FTy = F->getFunctionType(); |
| |
| for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { |
| Value *ArgValue; |
| // If this is a normal argument, just emit it as a scalar. |
| if ((ICEArguments & (1 << i)) == 0) { |
| ArgValue = EmitScalarExpr(E->getArg(i)); |
| } else { |
| // If this is required to be a constant, constant fold it so that we |
| // know that the generated intrinsic gets a ConstantInt. |
| llvm::APSInt Result; |
| bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext()); |
| assert(IsConst && "Constant arg isn't actually constant?"); |
| (void)IsConst; |
| ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result); |
| } |
| |
| // If the intrinsic arg type is different from the builtin arg type |
| // we need to do a bit cast. |
| llvm::Type *PTy = FTy->getParamType(i); |
| if (PTy != ArgValue->getType()) { |
| assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && |
| "Must be able to losslessly bit cast to param"); |
| ArgValue = Builder.CreateBitCast(ArgValue, PTy); |
| } |
| |
| Args.push_back(ArgValue); |
| } |
| |
| Value *V = Builder.CreateCall(F, Args); |
| QualType BuiltinRetType = E->getType(); |
| |
| llvm::Type *RetTy = VoidTy; |
| if (!BuiltinRetType->isVoidType()) |
| RetTy = ConvertType(BuiltinRetType); |
| |
| if (RetTy != V->getType()) { |
| assert(V->getType()->canLosslesslyBitCastTo(RetTy) && |
| "Must be able to losslessly bit cast result type"); |
| V = Builder.CreateBitCast(V, RetTy); |
| } |
| |
| return RValue::get(V); |
| } |
| |
| // See if we have a target specific builtin that needs to be lowered. |
| if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E)) |
| return RValue::get(V); |
| |
| ErrorUnsupported(E, "builtin function"); |
| |
| // Unknown builtin, for now just dump it out and return undef. |
| return GetUndefRValue(E->getType()); |
| } |
| |
| static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF, |
| unsigned BuiltinID, const CallExpr *E, |
| llvm::Triple::ArchType Arch) { |
| switch (Arch) { |
| case llvm::Triple::arm: |
| case llvm::Triple::armeb: |
| case llvm::Triple::thumb: |
| case llvm::Triple::thumbeb: |
| return CGF->EmitARMBuiltinExpr(BuiltinID, E, Arch); |
| case llvm::Triple::aarch64: |
| case llvm::Triple::aarch64_be: |
| return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch); |
| case llvm::Triple::x86: |
| case llvm::Triple::x86_64: |
| return CGF->EmitX86BuiltinExpr(BuiltinID, E); |
| case llvm::Triple::ppc: |
| case llvm::Triple::ppc64: |
| case llvm::Triple::ppc64le: |
| return CGF->EmitPPCBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::r600: |
| case llvm::Triple::amdgcn: |
| return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::systemz: |
| return CGF->EmitSystemZBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::nvptx: |
| case llvm::Triple::nvptx64: |
| return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::wasm32: |
| case llvm::Triple::wasm64: |
| return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E); |
| case llvm::Triple::hexagon: |
| return CGF->EmitHexagonBuiltinExpr(BuiltinID, E); |
| default: |
| return nullptr; |
| } |
| } |
| |
| Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) { |
| assert(getContext().getAuxTargetInfo() && "Missing aux target info"); |
| return EmitTargetArchBuiltinExpr( |
| this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E, |
| getContext().getAuxTargetInfo()->getTriple().getArch()); |
| } |
| |
| return EmitTargetArchBuiltinExpr(this, BuiltinID, E, |
| getTarget().getTriple().getArch()); |
| } |
| |
| static llvm::VectorType *GetNeonType(CodeGenFunction *CGF, |
| NeonTypeFlags TypeFlags, |
| bool HasLegalHalfType=true, |
| bool V1Ty=false) { |
| int IsQuad = TypeFlags.isQuad(); |
| switch (TypeFlags.getEltType()) { |
| case NeonTypeFlags::Int8: |
| case NeonTypeFlags::Poly8: |
| return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad)); |
| case NeonTypeFlags::Int16: |
| case NeonTypeFlags::Poly16: |
| return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); |
| case NeonTypeFlags::Float16: |
| if (HasLegalHalfType) |
| return llvm::VectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad)); |
| else |
| return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); |
| case NeonTypeFlags::Int32: |
| return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad)); |
| case NeonTypeFlags::Int64: |
| case NeonTypeFlags::Poly64: |
| return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad)); |
| case NeonTypeFlags::Poly128: |
| // FIXME: i128 and f128 doesn't get fully support in Clang and llvm. |
| // There is a lot of i128 and f128 API missing. |
| // so we use v16i8 to represent poly128 and get pattern matched. |
| return llvm::VectorType::get(CGF->Int8Ty, 16); |
| case NeonTypeFlags::Float32: |
| return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad)); |
| case NeonTypeFlags::Float64: |
| return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad)); |
| } |
| llvm_unreachable("Unknown vector element type!"); |
| } |
| |
| static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF, |
| NeonTypeFlags IntTypeFlags) { |
| int IsQuad = IntTypeFlags.isQuad(); |
| switch (IntTypeFlags.getEltType()) { |
| case NeonTypeFlags::Int16: |
| return llvm::VectorType::get(CGF->HalfTy, (4 << IsQuad)); |
| case NeonTypeFlags::Int32: |
| return llvm::VectorType::get(CGF->FloatTy, (2 << IsQuad)); |
| case NeonTypeFlags::Int64: |
| return llvm::VectorType::get(CGF->DoubleTy, (1 << IsQuad)); |
| default: |
| llvm_unreachable("Type can't be converted to floating-point!"); |
| } |
| } |
| |
| Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) { |
| unsigned nElts = V->getType()->getVectorNumElements(); |
| Value* SV = llvm::ConstantVector::getSplat(nElts, C); |
| return Builder.CreateShuffleVector(V, V, SV, "lane"); |
| } |
| |
| Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops, |
| const char *name, |
| unsigned shift, bool rightshift) { |
| unsigned j = 0; |
| for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); |
| ai != ae; ++ai, ++j) |
| if (shift > 0 && shift == j) |
| Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift); |
| else |
| Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name); |
| |
| return Builder.CreateCall(F, Ops, name); |
| } |
| |
| Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty, |
| bool neg) { |
| int SV = cast<ConstantInt>(V)->getSExtValue(); |
| return ConstantInt::get(Ty, neg ? -SV : SV); |
| } |
| |
| // Right-shift a vector by a constant. |
| Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift, |
| llvm::Type *Ty, bool usgn, |
| const char *name) { |
| llvm::VectorType *VTy = cast<llvm::VectorType>(Ty); |
| |
| int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue(); |
| int EltSize = VTy->getScalarSizeInBits(); |
| |
| Vec = Builder.CreateBitCast(Vec, Ty); |
| |
| // lshr/ashr are undefined when the shift amount is equal to the vector |
| // element size. |
| if (ShiftAmt == EltSize) { |
| if (usgn) { |
| // Right-shifting an unsigned value by its size yields 0. |
| return llvm::ConstantAggregateZero::get(VTy); |
| } else { |
| // Right-shifting a signed value by its size is equivalent |
| // to a shift of size-1. |
| --ShiftAmt; |
| Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt); |
| } |
| } |
| |
| Shift = EmitNeonShiftVector(Shift, Ty, false); |
| if (usgn) |
| return Builder.CreateLShr(Vec, Shift, name); |
| else |
| return Builder.CreateAShr(Vec, Shift, name); |
| } |
| |
| enum { |
| AddRetType = (1 << 0), |
| Add1ArgType = (1 << 1), |
| Add2ArgTypes = (1 << 2), |
| |
| VectorizeRetType = (1 << 3), |
| VectorizeArgTypes = (1 << 4), |
| |
| InventFloatType = (1 << 5), |
| UnsignedAlts = (1 << 6), |
| |
| Use64BitVectors = (1 << 7), |
| Use128BitVectors = (1 << 8), |
| |
| Vectorize1ArgType = Add1ArgType | VectorizeArgTypes, |
| VectorRet = AddRetType | VectorizeRetType, |
| VectorRetGetArgs01 = |
| AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes, |
| FpCmpzModifiers = |
| AddRetType | VectorizeRetType | Add1ArgType | InventFloatType |
| }; |
| |
| namespace { |
| struct NeonIntrinsicInfo { |
| const char *NameHint; |
| unsigned BuiltinID; |
| unsigned LLVMIntrinsic; |
| unsigned AltLLVMIntrinsic; |
| unsigned TypeModifier; |
| |
| bool operator<(unsigned RHSBuiltinID) const { |
| return BuiltinID < RHSBuiltinID; |
| } |
| bool operator<(const NeonIntrinsicInfo &TE) const { |
| return BuiltinID < TE.BuiltinID; |
| } |
| }; |
| } // end anonymous namespace |
| |
| #define NEONMAP0(NameBase) \ |
| { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 } |
| |
| #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ |
| { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ |
| Intrinsic::LLVMIntrinsic, 0, TypeModifier } |
| |
| #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \ |
| { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ |
| Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \ |
| TypeModifier } |
| |
| static const NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = { |
| NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vabs_v, arm_neon_vabs, 0), |
| NEONMAP1(vabsq_v, arm_neon_vabs, 0), |
| NEONMAP0(vaddhn_v), |
| NEONMAP1(vaesdq_v, arm_neon_aesd, 0), |
| NEONMAP1(vaeseq_v, arm_neon_aese, 0), |
| NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0), |
| NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0), |
| NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType), |
| NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType), |
| NEONMAP1(vcage_v, arm_neon_vacge, 0), |
| NEONMAP1(vcageq_v, arm_neon_vacge, 0), |
| NEONMAP1(vcagt_v, arm_neon_vacgt, 0), |
| NEONMAP1(vcagtq_v, arm_neon_vacgt, 0), |
| NEONMAP1(vcale_v, arm_neon_vacge, 0), |
| NEONMAP1(vcaleq_v, arm_neon_vacge, 0), |
| NEONMAP1(vcalt_v, arm_neon_vacgt, 0), |
| NEONMAP1(vcaltq_v, arm_neon_vacgt, 0), |
| NEONMAP0(vceqz_v), |
| NEONMAP0(vceqzq_v), |
| NEONMAP0(vcgez_v), |
| NEONMAP0(vcgezq_v), |
| NEONMAP0(vcgtz_v), |
| NEONMAP0(vcgtzq_v), |
| NEONMAP0(vclez_v), |
| NEONMAP0(vclezq_v), |
| NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType), |
| NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType), |
| NEONMAP0(vcltz_v), |
| NEONMAP0(vcltzq_v), |
| NEONMAP1(vclz_v, ctlz, Add1ArgType), |
| NEONMAP1(vclzq_v, ctlz, Add1ArgType), |
| NEONMAP1(vcnt_v, ctpop, Add1ArgType), |
| NEONMAP1(vcntq_v, ctpop, Add1ArgType), |
| NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0), |
| NEONMAP0(vcvt_f16_v), |
| NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0), |
| NEONMAP0(vcvt_f32_v), |
| NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), |
| NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), |
| NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP0(vcvt_s16_v), |
| NEONMAP0(vcvt_s32_v), |
| NEONMAP0(vcvt_s64_v), |
| NEONMAP0(vcvt_u16_v), |
| NEONMAP0(vcvt_u32_v), |
| NEONMAP0(vcvt_u64_v), |
| NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0), |
| NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0), |
| NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0), |
| NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0), |
| NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0), |
| NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0), |
| NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0), |
| NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0), |
| NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0), |
| NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0), |
| NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0), |
| NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0), |
| NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0), |
| NEONMAP0(vcvtq_f16_v), |
| NEONMAP0(vcvtq_f32_v), |
| NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), |
| NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), |
| NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0), |
| NEONMAP0(vcvtq_s16_v), |
| NEONMAP0(vcvtq_s32_v), |
| NEONMAP0(vcvtq_s64_v), |
| NEONMAP0(vcvtq_u16_v), |
| NEONMAP0(vcvtq_u32_v), |
| NEONMAP0(vcvtq_u64_v), |
| NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0), |
| NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0), |
| NEONMAP0(vext_v), |
| NEONMAP0(vextq_v), |
| NEONMAP0(vfma_v), |
| NEONMAP0(vfmaq_v), |
| NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), |
| NEONMAP0(vld1_dup_v), |
| NEONMAP1(vld1_v, arm_neon_vld1, 0), |
| NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0), |
| NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0), |
| NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0), |
| NEONMAP0(vld1q_dup_v), |
| NEONMAP1(vld1q_v, arm_neon_vld1, 0), |
| NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0), |
| NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0), |
| NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0), |
| NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0), |
| NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0), |
| NEONMAP1(vld2_v, arm_neon_vld2, 0), |
| NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0), |
| NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0), |
| NEONMAP1(vld2q_v, arm_neon_vld2, 0), |
| NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0), |
| NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0), |
| NEONMAP1(vld3_v, arm_neon_vld3, 0), |
| NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0), |
| NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0), |
| NEONMAP1(vld3q_v, arm_neon_vld3, 0), |
| NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0), |
| NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0), |
| NEONMAP1(vld4_v, arm_neon_vld4, 0), |
| NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0), |
| NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0), |
| NEONMAP1(vld4q_v, arm_neon_vld4, 0), |
| NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType), |
| NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType), |
| NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType), |
| NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType), |
| NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), |
| NEONMAP0(vmovl_v), |
| NEONMAP0(vmovn_v), |
| NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType), |
| NEONMAP0(vmull_v), |
| NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType), |
| NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), |
| NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), |
| NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType), |
| NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), |
| NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), |
| NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType), |
| NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType), |
| NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType), |
| NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0), |
| NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0), |
| NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType), |
| NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType), |
| NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType), |
| NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType), |
| NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType), |
| NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType), |
| NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType), |
| NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType), |
| NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), |
| NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), |
| NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0), |
| NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0), |
| NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType), |
| NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), |
| NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), |
| NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType), |
| NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType), |
| NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType), |
| NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType), |
| NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType), |
| NEONMAP0(vrndi_v), |
| NEONMAP0(vrndiq_v), |
| NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType), |
| NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType), |
| NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType), |
| NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType), |
| NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType), |
| NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType), |
| NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType), |
| NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType), |
| NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType), |
| NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), |
| NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), |
| NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), |
| NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), |
| NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType), |
| NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType), |
| NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType), |
| NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0), |
| NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0), |
| NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0), |
| NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0), |
| NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0), |
| NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0), |
| NEONMAP0(vshl_n_v), |
| NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP0(vshll_n_v), |
| NEONMAP0(vshlq_n_v), |
| NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), |
| NEONMAP0(vshr_n_v), |
| NEONMAP0(vshrn_n_v), |
| NEONMAP0(vshrq_n_v), |
| NEONMAP1(vst1_v, arm_neon_vst1, 0), |
| NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0), |
| NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0), |
| NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0), |
| NEONMAP1(vst1q_v, arm_neon_vst1, 0), |
| NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0), |
| NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0), |
| NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0), |
| NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0), |
| NEONMAP1(vst2_v, arm_neon_vst2, 0), |
| NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0), |
| NEONMAP1(vst2q_v, arm_neon_vst2, 0), |
| NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0), |
| NEONMAP1(vst3_v, arm_neon_vst3, 0), |
| NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0), |
| NEONMAP1(vst3q_v, arm_neon_vst3, 0), |
| NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0), |
| NEONMAP1(vst4_v, arm_neon_vst4, 0), |
| NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0), |
| NEONMAP1(vst4q_v, arm_neon_vst4, 0), |
| NEONMAP0(vsubhn_v), |
| NEONMAP0(vtrn_v), |
| NEONMAP0(vtrnq_v), |
| NEONMAP0(vtst_v), |
| NEONMAP0(vtstq_v), |
| NEONMAP0(vuzp_v), |
| NEONMAP0(vuzpq_v), |
| NEONMAP0(vzip_v), |
| NEONMAP0(vzipq_v) |
| }; |
| |
| static const NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = { |
| NEONMAP1(vabs_v, aarch64_neon_abs, 0), |
| NEONMAP1(vabsq_v, aarch64_neon_abs, 0), |
| NEONMAP0(vaddhn_v), |
| NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0), |
| NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0), |
| NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0), |
| NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0), |
| NEONMAP1(vcage_v, aarch64_neon_facge, 0), |
| NEONMAP1(vcageq_v, aarch64_neon_facge, 0), |
| NEONMAP1(vcagt_v, aarch64_neon_facgt, 0), |
| NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0), |
| NEONMAP1(vcale_v, aarch64_neon_facge, 0), |
| NEONMAP1(vcaleq_v, aarch64_neon_facge, 0), |
| NEONMAP1(vcalt_v, aarch64_neon_facgt, 0), |
| NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0), |
| NEONMAP0(vceqz_v), |
| NEONMAP0(vceqzq_v), |
| NEONMAP0(vcgez_v), |
| NEONMAP0(vcgezq_v), |
| NEONMAP0(vcgtz_v), |
| NEONMAP0(vcgtzq_v), |
| NEONMAP0(vclez_v), |
| NEONMAP0(vclezq_v), |
| NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType), |
| NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType), |
| NEONMAP0(vcltz_v), |
| NEONMAP0(vcltzq_v), |
| NEONMAP1(vclz_v, ctlz, Add1ArgType), |
| NEONMAP1(vclzq_v, ctlz, Add1ArgType), |
| NEONMAP1(vcnt_v, ctpop, Add1ArgType), |
| NEONMAP1(vcntq_v, ctpop, Add1ArgType), |
| NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0), |
| NEONMAP0(vcvt_f16_v), |
| NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0), |
| NEONMAP0(vcvt_f32_v), |
| NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
| NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
| NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
| NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), |
| NEONMAP0(vcvtq_f16_v), |
| NEONMAP0(vcvtq_f32_v), |
| NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
| NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
| NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), |
| NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), |
| NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), |
| NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType), |
| NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0), |
| NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0), |
| NEONMAP0(vext_v), |
| NEONMAP0(vextq_v), |
| NEONMAP0(vfma_v), |
| NEONMAP0(vfmaq_v), |
| NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0), |
| NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0), |
| NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0), |
| NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0), |
| NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0), |
| NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0), |
| NEONMAP0(vmovl_v), |
| NEONMAP0(vmovn_v), |
| NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType), |
| NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType), |
| NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType), |
| NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), |
| NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), |
| NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType), |
| NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType), |
| NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType), |
| NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0), |
| NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0), |
| NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType), |
| NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType), |
| NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType), |
| NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType), |
| NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType), |
| NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType), |
| NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType), |
| NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType), |
| NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts), |
| NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts), |
| NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0), |
| NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0), |
| NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), |
| NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType), |
| NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), |
| NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), |
| NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType), |
| NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType), |
| NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), |
| NEONMAP0(vrndi_v), |
| NEONMAP0(vrndiq_v), |
| NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), |
| NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), |
| NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), |
| NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), |
| NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), |
| NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType), |
| NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType), |
| NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType), |
| NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0), |
| NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0), |
| NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0), |
| NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0), |
| NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0), |
| NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0), |
| NEONMAP0(vshl_n_v), |
| NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), |
| NEONMAP0(vshll_n_v), |
| NEONMAP0(vshlq_n_v), |
| NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), |
| NEONMAP0(vshr_n_v), |
| NEONMAP0(vshrn_n_v), |
| NEONMAP0(vshrq_n_v), |
| NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0), |
| NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0), |
| NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0), |
| NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0), |
| NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0), |
| NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0), |
| NEONMAP0(vsubhn_v), |
| NEONMAP0(vtst_v), |
| NEONMAP0(vtstq_v), |
| }; |
| |
| static const NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = { |
| NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType), |
| NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType), |
| NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType), |
| NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), |
| NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), |
| NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType), |
| NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType), |
| NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), |
| NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), |
| NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType), |
| NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType), |
| NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), |
| NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), |
| NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0), |
| NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), |
| NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), |
| NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), |
| NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), |
| NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), |
| NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), |
| NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), |
| NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0), |
| NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType), |
| NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType), |
| NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType), |
| NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), |
| NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), |
| NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), |
| NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), |
| NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), |
| NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType), |
| NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType), |
| NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType), |
| NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType), |
| NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType), |
| NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType), |
| NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType), |
| NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors), |
| NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0), |
| NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType), |
| NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType), |
| NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType), |
| NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), |
| NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), |
| NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType), |
| NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType), |
| NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType), |
| NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType), |
| NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType), |
| NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType), |
| NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType), |
| NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType), |
| NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType), |
| NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType), |
| NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), |
| NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), |
| NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType), |
| NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType), |
| NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType), |
| NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType), |
| NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType), |
| NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType), |
| NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType), |
| NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType), |
| NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType), |
| NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), |
| NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType), |
| NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), |
| NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), |
| NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType), |
| NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType), |
| NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType), |
| NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType), |
| NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType), |
| NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType), |
| NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType), |
| NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType), |
| NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType), |
| NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType), |
| NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType), |
| NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType), |
| NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType), |
| NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType), |
| NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0), |
| NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0), |
| NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0), |
| NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0), |
| NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType), |
| NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType), |
| NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType), |
| NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType), |
| NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType), |
| NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType), |
| NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType), |
| NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType), |
| NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType), |
| NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), |
| NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType), |
| // FP16 scalar intrinisics go here. |
| NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType), |
| NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), |
| NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), |
| NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType), |
| NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType), |
| NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType), |
| NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType), |
| NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType), |
| }; |
| |
| #undef NEONMAP0 |
| #undef NEONMAP1 |
| #undef NEONMAP2 |
| |
| static bool NEONSIMDIntrinsicsProvenSorted = false; |
| |
| static bool AArch64SIMDIntrinsicsProvenSorted = false; |
| static bool AArch64SISDIntrinsicsProvenSorted = false; |
| |
| |
| static const NeonIntrinsicInfo * |
| findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap, |
| unsigned BuiltinID, bool &MapProvenSorted) { |
| |
| #ifndef NDEBUG |
| if (!MapProvenSorted) { |
| assert(std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap))); |
| MapProvenSorted = true; |
| } |
| #endif |
| |
| const NeonIntrinsicInfo *Builtin = |
| std::lower_bound(IntrinsicMap.begin(), IntrinsicMap.end(), BuiltinID); |
| |
| if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID) |
| return Builtin; |
| |
| return nullptr; |
| } |
| |
| Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID, |
| unsigned Modifier, |
| llvm::Type *ArgType, |
| const CallExpr *E) { |
| int VectorSize = 0; |
| if (Modifier & Use64BitVectors) |
| VectorSize = 64; |
| else if (Modifier & Use128BitVectors) |
| VectorSize = 128; |
| |
| // Return type. |
| SmallVector<llvm::Type *, 3> Tys; |
| if (Modifier & AddRetType) { |
| llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); |
| if (Modifier & VectorizeRetType) |
| Ty = llvm::VectorType::get( |
| Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1); |
| |
| Tys.push_back(Ty); |
| } |
| |
| // Arguments. |
| if (Modifier & VectorizeArgTypes) { |
| int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1; |
| ArgType = llvm::VectorType::get(ArgType, Elts); |
| } |
| |
| if (Modifier & (Add1ArgType | Add2ArgTypes)) |
| Tys.push_back(ArgType); |
| |
| if (Modifier & Add2ArgTypes) |
| Tys.push_back(ArgType); |
| |
| if (Modifier & InventFloatType) |
| Tys.push_back(FloatTy); |
| |
| return CGM.getIntrinsic(IntrinsicID, Tys); |
| } |
| |
| static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF, |
| const NeonIntrinsicInfo &SISDInfo, |
| SmallVectorImpl<Value *> &Ops, |
| const CallExpr *E) { |
| unsigned BuiltinID = SISDInfo.BuiltinID; |
| unsigned int Int = SISDInfo.LLVMIntrinsic; |
| unsigned Modifier = SISDInfo.TypeModifier; |
| const char *s = SISDInfo.NameHint; |
| |
| switch (BuiltinID) { |
| case NEON::BI__builtin_neon_vcled_s64: |
| case NEON::BI__builtin_neon_vcled_u64: |
| case NEON::BI__builtin_neon_vcles_f32: |
| case NEON::BI__builtin_neon_vcled_f64: |
| case NEON::BI__builtin_neon_vcltd_s64: |
| case NEON::BI__builtin_neon_vcltd_u64: |
| case NEON::BI__builtin_neon_vclts_f32: |
| case NEON::BI__builtin_neon_vcltd_f64: |
| case NEON::BI__builtin_neon_vcales_f32: |
| case NEON::BI__builtin_neon_vcaled_f64: |
| case NEON::BI__builtin_neon_vcalts_f32: |
| case NEON::BI__builtin_neon_vcaltd_f64: |
| // Only one direction of comparisons actually exist, cmle is actually a cmge |
| // with swapped operands. The table gives us the right intrinsic but we |
| // still need to do the swap. |
| std::swap(Ops[0], Ops[1]); |
| break; |
| } |
| |
| assert(Int && "Generic code assumes a valid intrinsic"); |
| |
| // Determine the type(s) of this overloaded AArch64 intrinsic. |
| const Expr *Arg = E->getArg(0); |
| llvm::Type *ArgTy = CGF.ConvertType(Arg->getType()); |
| Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E); |
| |
| int j = 0; |
| ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0); |
| for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); |
| ai != ae; ++ai, ++j) { |
| llvm::Type *ArgTy = ai->getType(); |
| if (Ops[j]->getType()->getPrimitiveSizeInBits() == |
| ArgTy->getPrimitiveSizeInBits()) |
| continue; |
| |
| assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()); |
| // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate |
| // it before inserting. |
| Ops[j] = |
| CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType()); |
| Ops[j] = |
| CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0); |
| } |
| |
| Value *Result = CGF.EmitNeonCall(F, Ops, s); |
| llvm::Type *ResultType = CGF.ConvertType(E->getType()); |
| if (ResultType->getPrimitiveSizeInBits() < |
| Result->getType()->getPrimitiveSizeInBits()) |
| return CGF.Builder.CreateExtractElement(Result, C0); |
| |
| return CGF.Builder.CreateBitCast(Result, ResultType, s); |
| } |
| |
| Value *CodeGenFunction::EmitCommonNeonBuiltinExpr( |
| unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic, |
| const char *NameHint, unsigned Modifier, const CallExpr *E, |
| SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1, |
| llvm::Triple::ArchType Arch) { |
| // Get the last argument, which specifies the vector type. |
| llvm::APSInt NeonTypeConst; |
| const Expr *Arg = E->getArg(E->getNumArgs() - 1); |
| if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext())) |
| return nullptr; |
| |
| // Determine the type of this overloaded NEON intrinsic. |
| NeonTypeFlags Type(NeonTypeConst.getZExtValue()); |
| bool Usgn = Type.isUnsigned(); |
| bool Quad = Type.isQuad(); |
| const bool HasLegalHalfType = getTarget().hasLegalHalfType(); |
| |
| llvm::VectorType *VTy = GetNeonType(this, Type, HasLegalHalfType); |
| llvm::Type *Ty = VTy; |
| if (!Ty) |
| return nullptr; |
| |
| auto getAlignmentValue32 = [&](Address addr) -> Value* { |
| return Builder.getInt32(addr.getAlignment().getQuantity()); |
| }; |
| |
| unsigned Int = LLVMIntrinsic; |
| if ((Modifier & UnsignedAlts) && !Usgn) |
| Int = AltLLVMIntrinsic; |
| |
| switch (BuiltinID) { |
| default: break; |
| case NEON::BI__builtin_neon_vabs_v: |
| case NEON::BI__builtin_neon_vabsq_v: |
| if (VTy->getElementType()->isFloatingPointTy()) |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs"); |
| return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs"); |
| case NEON::BI__builtin_neon_vaddhn_v: { |
| llvm::VectorType *SrcTy = |
| llvm::VectorType::getExtendedElementVectorType(VTy); |
| |
| // %sum = add <4 x i32> %lhs, %rhs |
| Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); |
| Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn"); |
| |
| // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16> |
| Constant *ShiftAmt = |
| ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); |
| Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn"); |
| |
| // %res = trunc <4 x i32> %high to <4 x i16> |
| return Builder.CreateTrunc(Ops[0], VTy, "vaddhn"); |
| } |
| case NEON::BI__builtin_neon_vcale_v: |
| case NEON::BI__builtin_neon_vcaleq_v: |
| case NEON::BI__builtin_neon_vcalt_v: |
| case NEON::BI__builtin_neon_vcaltq_v: |
| std::swap(Ops[0], Ops[1]); |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vcage_v: |
| case NEON::BI__builtin_neon_vcageq_v: |
| case NEON::BI__builtin_neon_vcagt_v: |
| case NEON::BI__builtin_neon_vcagtq_v: { |
| llvm::Type *Ty; |
| switch (VTy->getScalarSizeInBits()) { |
| default: llvm_unreachable("unexpected type"); |
| case 32: |
| Ty = FloatTy; |
| break; |
| case 64: |
| Ty = DoubleTy; |
| break; |
| case 16: |
| Ty = HalfTy; |
| break; |
| } |
| llvm::Type *VecFlt = llvm::VectorType::get(Ty, VTy->getNumElements()); |
| llvm::Type *Tys[] = { VTy, VecFlt }; |
| Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); |
| return EmitNeonCall(F, Ops, NameHint); |
| } |
| case NEON::BI__builtin_neon_vceqz_v: |
| case NEON::BI__builtin_neon_vceqzq_v: |
| return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ, |
| ICmpInst::ICMP_EQ, "vceqz"); |
| case NEON::BI__builtin_neon_vcgez_v: |
| case NEON::BI__builtin_neon_vcgezq_v: |
| return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE, |
| ICmpInst::ICMP_SGE, "vcgez"); |
| case NEON::BI__builtin_neon_vclez_v: |
| case NEON::BI__builtin_neon_vclezq_v: |
| return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE, |
| ICmpInst::ICMP_SLE, "vclez"); |
| case NEON::BI__builtin_neon_vcgtz_v: |
| case NEON::BI__builtin_neon_vcgtzq_v: |
| return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT, |
| ICmpInst::ICMP_SGT, "vcgtz"); |
| case NEON::BI__builtin_neon_vcltz_v: |
| case NEON::BI__builtin_neon_vcltzq_v: |
| return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT, |
| ICmpInst::ICMP_SLT, "vcltz"); |
| case NEON::BI__builtin_neon_vclz_v: |
| case NEON::BI__builtin_neon_vclzq_v: |
| // We generate target-independent intrinsic, which needs a second argument |
| // for whether or not clz of zero is undefined; on ARM it isn't. |
| Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef())); |
| break; |
| case NEON::BI__builtin_neon_vcvt_f32_v: |
| case NEON::BI__builtin_neon_vcvtq_f32_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad), |
| HasLegalHalfType); |
| return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") |
| : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); |
| case NEON::BI__builtin_neon_vcvt_f16_v: |
| case NEON::BI__builtin_neon_vcvtq_f16_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad), |
| HasLegalHalfType); |
| return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") |
| : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); |
| case NEON::BI__builtin_neon_vcvt_n_f16_v: |
| case NEON::BI__builtin_neon_vcvt_n_f32_v: |
| case NEON::BI__builtin_neon_vcvt_n_f64_v: |
| case NEON::BI__builtin_neon_vcvtq_n_f16_v: |
| case NEON::BI__builtin_neon_vcvtq_n_f32_v: |
| case NEON::BI__builtin_neon_vcvtq_n_f64_v: { |
| llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty }; |
| Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; |
| Function *F = CGM.getIntrinsic(Int, Tys); |
| return EmitNeonCall(F, Ops, "vcvt_n"); |
| } |
| case NEON::BI__builtin_neon_vcvt_n_s16_v: |
| case NEON::BI__builtin_neon_vcvt_n_s32_v: |
| case NEON::BI__builtin_neon_vcvt_n_u16_v: |
| case NEON::BI__builtin_neon_vcvt_n_u32_v: |
| case NEON::BI__builtin_neon_vcvt_n_s64_v: |
| case NEON::BI__builtin_neon_vcvt_n_u64_v: |
| case NEON::BI__builtin_neon_vcvtq_n_s16_v: |
| case NEON::BI__builtin_neon_vcvtq_n_s32_v: |
| case NEON::BI__builtin_neon_vcvtq_n_u16_v: |
| case NEON::BI__builtin_neon_vcvtq_n_u32_v: |
| case NEON::BI__builtin_neon_vcvtq_n_s64_v: |
| case NEON::BI__builtin_neon_vcvtq_n_u64_v: { |
| llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; |
| Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); |
| return EmitNeonCall(F, Ops, "vcvt_n"); |
| } |
| case NEON::BI__builtin_neon_vcvt_s32_v: |
| case NEON::BI__builtin_neon_vcvt_u32_v: |
| case NEON::BI__builtin_neon_vcvt_s64_v: |
| case NEON::BI__builtin_neon_vcvt_u64_v: |
| case NEON::BI__builtin_neon_vcvt_s16_v: |
| case NEON::BI__builtin_neon_vcvt_u16_v: |
| case NEON::BI__builtin_neon_vcvtq_s32_v: |
| case NEON::BI__builtin_neon_vcvtq_u32_v: |
| case NEON::BI__builtin_neon_vcvtq_s64_v: |
| case NEON::BI__builtin_neon_vcvtq_u64_v: |
| case NEON::BI__builtin_neon_vcvtq_s16_v: |
| case NEON::BI__builtin_neon_vcvtq_u16_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type)); |
| return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt") |
| : Builder.CreateFPToSI(Ops[0], Ty, "vcvt"); |
| } |
| case NEON::BI__builtin_neon_vcvta_s16_v: |
| case NEON::BI__builtin_neon_vcvta_s32_v: |
| case NEON::BI__builtin_neon_vcvta_s64_v: |
| case NEON::BI__builtin_neon_vcvta_u16_v: |
| case NEON::BI__builtin_neon_vcvta_u32_v: |
| case NEON::BI__builtin_neon_vcvta_u64_v: |
| case NEON::BI__builtin_neon_vcvtaq_s16_v: |
| case NEON::BI__builtin_neon_vcvtaq_s32_v: |
| case NEON::BI__builtin_neon_vcvtaq_s64_v: |
| case NEON::BI__builtin_neon_vcvtaq_u16_v: |
| case NEON::BI__builtin_neon_vcvtaq_u32_v: |
| case NEON::BI__builtin_neon_vcvtaq_u64_v: |
| case NEON::BI__builtin_neon_vcvtn_s16_v: |
| case NEON::BI__builtin_neon_vcvtn_s32_v: |
| case NEON::BI__builtin_neon_vcvtn_s64_v: |
| case NEON::BI__builtin_neon_vcvtn_u16_v: |
| case NEON::BI__builtin_neon_vcvtn_u32_v: |
| case NEON::BI__builtin_neon_vcvtn_u64_v: |
| case NEON::BI__builtin_neon_vcvtnq_s16_v: |
| case NEON::BI__builtin_neon_vcvtnq_s32_v: |
| case NEON::BI__builtin_neon_vcvtnq_s64_v: |
| case NEON::BI__builtin_neon_vcvtnq_u16_v: |
| case NEON::BI__builtin_neon_vcvtnq_u32_v: |
| case NEON::BI__builtin_neon_vcvtnq_u64_v: |
| case NEON::BI__builtin_neon_vcvtp_s16_v: |
| case NEON::BI__builtin_neon_vcvtp_s32_v: |
| case NEON::BI__builtin_neon_vcvtp_s64_v: |
| case NEON::BI__builtin_neon_vcvtp_u16_v: |
| case NEON::BI__builtin_neon_vcvtp_u32_v: |
| case NEON::BI__builtin_neon_vcvtp_u64_v: |
| case NEON::BI__builtin_neon_vcvtpq_s16_v: |
| case NEON::BI__builtin_neon_vcvtpq_s32_v: |
| case NEON::BI__builtin_neon_vcvtpq_s64_v: |
| case NEON::BI__builtin_neon_vcvtpq_u16_v: |
| case NEON::BI__builtin_neon_vcvtpq_u32_v: |
| case NEON::BI__builtin_neon_vcvtpq_u64_v: |
| case NEON::BI__builtin_neon_vcvtm_s16_v: |
| case NEON::BI__builtin_neon_vcvtm_s32_v: |
| case NEON::BI__builtin_neon_vcvtm_s64_v: |
| case NEON::BI__builtin_neon_vcvtm_u16_v: |
| case NEON::BI__builtin_neon_vcvtm_u32_v: |
| case NEON::BI__builtin_neon_vcvtm_u64_v: |
| case NEON::BI__builtin_neon_vcvtmq_s16_v: |
| case NEON::BI__builtin_neon_vcvtmq_s32_v: |
| case NEON::BI__builtin_neon_vcvtmq_s64_v: |
| case NEON::BI__builtin_neon_vcvtmq_u16_v: |
| case NEON::BI__builtin_neon_vcvtmq_u32_v: |
| case NEON::BI__builtin_neon_vcvtmq_u64_v: { |
| llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; |
| return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint); |
| } |
| case NEON::BI__builtin_neon_vext_v: |
| case NEON::BI__builtin_neon_vextq_v: { |
| int CV = cast<ConstantInt>(Ops[2])->getSExtValue(); |
| SmallVector<uint32_t, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) |
| Indices.push_back(i+CV); |
| |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext"); |
| } |
| case NEON::BI__builtin_neon_vfma_v: |
| case NEON::BI__builtin_neon_vfmaq_v: { |
| Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| |
| // NEON intrinsic puts accumulator first, unlike the LLVM fma. |
| return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]}); |
| } |
| case NEON::BI__builtin_neon_vld1_v: |
| case NEON::BI__builtin_neon_vld1q_v: { |
| llvm::Type *Tys[] = {Ty, Int8PtrTy}; |
| Ops.push_back(getAlignmentValue32(PtrOp0)); |
| return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1"); |
| } |
| case NEON::BI__builtin_neon_vld1_x2_v: |
| case NEON::BI__builtin_neon_vld1q_x2_v: |
| case NEON::BI__builtin_neon_vld1_x3_v: |
| case NEON::BI__builtin_neon_vld1q_x3_v: |
| case NEON::BI__builtin_neon_vld1_x4_v: |
| case NEON::BI__builtin_neon_vld1q_x4_v: { |
| llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType()); |
| Ops[1] = Builder.CreateBitCast(Ops[1], PTy); |
| llvm::Type *Tys[2] = { VTy, PTy }; |
| Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); |
| Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN"); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld2_v: |
| case NEON::BI__builtin_neon_vld2q_v: |
| case NEON::BI__builtin_neon_vld3_v: |
| case NEON::BI__builtin_neon_vld3q_v: |
| case NEON::BI__builtin_neon_vld4_v: |
| case NEON::BI__builtin_neon_vld4q_v: |
| case NEON::BI__builtin_neon_vld2_dup_v: |
| case NEON::BI__builtin_neon_vld2q_dup_v: |
| case NEON::BI__builtin_neon_vld3_dup_v: |
| case NEON::BI__builtin_neon_vld3q_dup_v: |
| case NEON::BI__builtin_neon_vld4_dup_v: |
| case NEON::BI__builtin_neon_vld4q_dup_v: { |
| llvm::Type *Tys[] = {Ty, Int8PtrTy}; |
| Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); |
| Value *Align = getAlignmentValue32(PtrOp1); |
| Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld1_dup_v: |
| case NEON::BI__builtin_neon_vld1q_dup_v: { |
| Value *V = UndefValue::get(Ty); |
| Ty = llvm::PointerType::getUnqual(VTy->getElementType()); |
| PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty); |
| LoadInst *Ld = Builder.CreateLoad(PtrOp0); |
| llvm::Constant *CI = ConstantInt::get(SizeTy, 0); |
| Ops[0] = Builder.CreateInsertElement(V, Ld, CI); |
| return EmitNeonSplat(Ops[0], CI); |
| } |
| case NEON::BI__builtin_neon_vld2_lane_v: |
| case NEON::BI__builtin_neon_vld2q_lane_v: |
| case NEON::BI__builtin_neon_vld3_lane_v: |
| case NEON::BI__builtin_neon_vld3q_lane_v: |
| case NEON::BI__builtin_neon_vld4_lane_v: |
| case NEON::BI__builtin_neon_vld4q_lane_v: { |
| llvm::Type *Tys[] = {Ty, Int8PtrTy}; |
| Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); |
| for (unsigned I = 2; I < Ops.size() - 1; ++I) |
| Ops[I] = Builder.CreateBitCast(Ops[I], Ty); |
| Ops.push_back(getAlignmentValue32(PtrOp1)); |
| Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vmovl_v: { |
| llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy); |
| Ops[0] = Builder.CreateBitCast(Ops[0], DTy); |
| if (Usgn) |
| return Builder.CreateZExt(Ops[0], Ty, "vmovl"); |
| return Builder.CreateSExt(Ops[0], Ty, "vmovl"); |
| } |
| case NEON::BI__builtin_neon_vmovn_v: { |
| llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy); |
| Ops[0] = Builder.CreateBitCast(Ops[0], QTy); |
| return Builder.CreateTrunc(Ops[0], Ty, "vmovn"); |
| } |
| case NEON::BI__builtin_neon_vmull_v: |
| // FIXME: the integer vmull operations could be emitted in terms of pure |
| // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of |
| // hoisting the exts outside loops. Until global ISel comes along that can |
| // see through such movement this leads to bad CodeGen. So we need an |
| // intrinsic for now. |
| Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls; |
| Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); |
| case NEON::BI__builtin_neon_vpadal_v: |
| case NEON::BI__builtin_neon_vpadalq_v: { |
| // The source operand type has twice as many elements of half the size. |
| unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); |
| llvm::Type *EltTy = |
| llvm::IntegerType::get(getLLVMContext(), EltBits / 2); |
| llvm::Type *NarrowTy = |
| llvm::VectorType::get(EltTy, VTy->getNumElements() * 2); |
| llvm::Type *Tys[2] = { Ty, NarrowTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); |
| } |
| case NEON::BI__builtin_neon_vpaddl_v: |
| case NEON::BI__builtin_neon_vpaddlq_v: { |
| // The source operand type has twice as many elements of half the size. |
| unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); |
| llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2); |
| llvm::Type *NarrowTy = |
| llvm::VectorType::get(EltTy, VTy->getNumElements() * 2); |
| llvm::Type *Tys[2] = { Ty, NarrowTy }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl"); |
| } |
| case NEON::BI__builtin_neon_vqdmlal_v: |
| case NEON::BI__builtin_neon_vqdmlsl_v: { |
| SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end()); |
| Ops[1] = |
| EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal"); |
| Ops.resize(2); |
| return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint); |
| } |
| case NEON::BI__builtin_neon_vqshl_n_v: |
| case NEON::BI__builtin_neon_vqshlq_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n", |
| 1, false); |
| case NEON::BI__builtin_neon_vqshlu_n_v: |
| case NEON::BI__builtin_neon_vqshluq_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n", |
| 1, false); |
| case NEON::BI__builtin_neon_vrecpe_v: |
| case NEON::BI__builtin_neon_vrecpeq_v: |
| case NEON::BI__builtin_neon_vrsqrte_v: |
| case NEON::BI__builtin_neon_vrsqrteq_v: |
| Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); |
| case NEON::BI__builtin_neon_vrndi_v: |
| case NEON::BI__builtin_neon_vrndiq_v: |
| Int = Intrinsic::nearbyint; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); |
| case NEON::BI__builtin_neon_vrshr_n_v: |
| case NEON::BI__builtin_neon_vrshrq_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", |
| 1, true); |
| case NEON::BI__builtin_neon_vshl_n_v: |
| case NEON::BI__builtin_neon_vshlq_n_v: |
| Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false); |
| return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1], |
| "vshl_n"); |
| case NEON::BI__builtin_neon_vshll_n_v: { |
| llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy); |
| Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); |
| if (Usgn) |
| Ops[0] = Builder.CreateZExt(Ops[0], VTy); |
| else |
| Ops[0] = Builder.CreateSExt(Ops[0], VTy); |
| Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false); |
| return Builder.CreateShl(Ops[0], Ops[1], "vshll_n"); |
| } |
| case NEON::BI__builtin_neon_vshrn_n_v: { |
| llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy); |
| Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); |
| Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false); |
| if (Usgn) |
| Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]); |
| else |
| Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]); |
| return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n"); |
| } |
| case NEON::BI__builtin_neon_vshr_n_v: |
| case NEON::BI__builtin_neon_vshrq_n_v: |
| return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n"); |
| case NEON::BI__builtin_neon_vst1_v: |
| case NEON::BI__builtin_neon_vst1q_v: |
| case NEON::BI__builtin_neon_vst2_v: |
| case NEON::BI__builtin_neon_vst2q_v: |
| case NEON::BI__builtin_neon_vst3_v: |
| case NEON::BI__builtin_neon_vst3q_v: |
| case NEON::BI__builtin_neon_vst4_v: |
| case NEON::BI__builtin_neon_vst4q_v: |
| case NEON::BI__builtin_neon_vst2_lane_v: |
| case NEON::BI__builtin_neon_vst2q_lane_v: |
| case NEON::BI__builtin_neon_vst3_lane_v: |
| case NEON::BI__builtin_neon_vst3q_lane_v: |
| case NEON::BI__builtin_neon_vst4_lane_v: |
| case NEON::BI__builtin_neon_vst4q_lane_v: { |
| llvm::Type *Tys[] = {Int8PtrTy, Ty}; |
| Ops.push_back(getAlignmentValue32(PtrOp0)); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vst1_x2_v: |
| case NEON::BI__builtin_neon_vst1q_x2_v: |
| case NEON::BI__builtin_neon_vst1_x3_v: |
| case NEON::BI__builtin_neon_vst1q_x3_v: |
| case NEON::BI__builtin_neon_vst1_x4_v: |
| case NEON::BI__builtin_neon_vst1q_x4_v: { |
| llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType()); |
| // TODO: Currently in AArch32 mode the pointer operand comes first, whereas |
| // in AArch64 it comes last. We may want to stick to one or another. |
| if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) { |
| llvm::Type *Tys[2] = { VTy, PTy }; |
| std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); |
| return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, ""); |
| } |
| llvm::Type *Tys[2] = { PTy, VTy }; |
| return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vsubhn_v: { |
| llvm::VectorType *SrcTy = |
| llvm::VectorType::getExtendedElementVectorType(VTy); |
| |
| // %sum = add <4 x i32> %lhs, %rhs |
| Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); |
| Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn"); |
| |
| // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16> |
| Constant *ShiftAmt = |
| ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); |
| Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn"); |
| |
| // %res = trunc <4 x i32> %high to <4 x i16> |
| return Builder.CreateTrunc(Ops[0], VTy, "vsubhn"); |
| } |
| case NEON::BI__builtin_neon_vtrn_v: |
| case NEON::BI__builtin_neon_vtrnq_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Value *SV = nullptr; |
| |
| for (unsigned vi = 0; vi != 2; ++vi) { |
| SmallVector<uint32_t, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { |
| Indices.push_back(i+vi); |
| Indices.push_back(i+e+vi); |
| } |
| Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); |
| SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn"); |
| SV = Builder.CreateDefaultAlignedStore(SV, Addr); |
| } |
| return SV; |
| } |
| case NEON::BI__builtin_neon_vtst_v: |
| case NEON::BI__builtin_neon_vtstq_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); |
| Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], |
| ConstantAggregateZero::get(Ty)); |
| return Builder.CreateSExt(Ops[0], Ty, "vtst"); |
| } |
| case NEON::BI__builtin_neon_vuzp_v: |
| case NEON::BI__builtin_neon_vuzpq_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Value *SV = nullptr; |
| |
| for (unsigned vi = 0; vi != 2; ++vi) { |
| SmallVector<uint32_t, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) |
| Indices.push_back(2*i+vi); |
| |
| Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); |
| SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp"); |
| SV = Builder.CreateDefaultAlignedStore(SV, Addr); |
| } |
| return SV; |
| } |
| case NEON::BI__builtin_neon_vzip_v: |
| case NEON::BI__builtin_neon_vzipq_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Value *SV = nullptr; |
| |
| for (unsigned vi = 0; vi != 2; ++vi) { |
| SmallVector<uint32_t, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { |
| Indices.push_back((i + vi*e) >> 1); |
| Indices.push_back(((i + vi*e) >> 1)+e); |
| } |
| Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); |
| SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip"); |
| SV = Builder.CreateDefaultAlignedStore(SV, Addr); |
| } |
| return SV; |
| } |
| case NEON::BI__builtin_neon_vdot_v: |
| case NEON::BI__builtin_neon_vdotq_v: { |
| llvm::Type *InputTy = |
| llvm::VectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); |
| llvm::Type *Tys[2] = { Ty, InputTy }; |
| Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot"); |
| } |
| } |
| |
| assert(Int && "Expected valid intrinsic number"); |
| |
| // Determine the type(s) of this overloaded AArch64 intrinsic. |
| Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E); |
| |
| Value *Result = EmitNeonCall(F, Ops, NameHint); |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| // AArch64 intrinsic one-element vector type cast to |
| // scalar type expected by the builtin |
| return Builder.CreateBitCast(Result, ResultType, NameHint); |
| } |
| |
| Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr( |
| Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp, |
| const CmpInst::Predicate Ip, const Twine &Name) { |
| llvm::Type *OTy = Op->getType(); |
| |
| // FIXME: this is utterly horrific. We should not be looking at previous |
| // codegen context to find out what needs doing. Unfortunately TableGen |
| // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32 |
| // (etc). |
| if (BitCastInst *BI = dyn_cast<BitCastInst>(Op)) |
| OTy = BI->getOperand(0)->getType(); |
| |
| Op = Builder.CreateBitCast(Op, OTy); |
| if (OTy->getScalarType()->isFloatingPointTy()) { |
| Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy)); |
| } else { |
| Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy)); |
| } |
| return Builder.CreateSExt(Op, Ty, Name); |
| } |
| |
| static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops, |
| Value *ExtOp, Value *IndexOp, |
| llvm::Type *ResTy, unsigned IntID, |
| const char *Name) { |
| SmallVector<Value *, 2> TblOps; |
| if (ExtOp) |
| TblOps.push_back(ExtOp); |
| |
| // Build a vector containing sequential number like (0, 1, 2, ..., 15) |
| SmallVector<uint32_t, 16> Indices; |
| llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType()); |
| for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) { |
| Indices.push_back(2*i); |
| Indices.push_back(2*i+1); |
| } |
| |
| int PairPos = 0, End = Ops.size() - 1; |
| while (PairPos < End) { |
| TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], |
| Ops[PairPos+1], Indices, |
| Name)); |
| PairPos += 2; |
| } |
| |
| // If there's an odd number of 64-bit lookup table, fill the high 64-bit |
| // of the 128-bit lookup table with zero. |
| if (PairPos == End) { |
| Value *ZeroTbl = ConstantAggregateZero::get(TblTy); |
| TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], |
| ZeroTbl, Indices, Name)); |
| } |
| |
| Function *TblF; |
| TblOps.push_back(IndexOp); |
| TblF = CGF.CGM.getIntrinsic(IntID, ResTy); |
| |
| return CGF.EmitNeonCall(TblF, TblOps, Name); |
| } |
| |
| Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) { |
| unsigned Value; |
| switch (BuiltinID) { |
| default: |
| return nullptr; |
| case ARM::BI__builtin_arm_nop: |
| Value = 0; |
| break; |
| case ARM::BI__builtin_arm_yield: |
| case ARM::BI__yield: |
| Value = 1; |
| break; |
| case ARM::BI__builtin_arm_wfe: |
| case ARM::BI__wfe: |
| Value = 2; |
| break; |
| case ARM::BI__builtin_arm_wfi: |
| case ARM::BI__wfi: |
| Value = 3; |
| break; |
| case ARM::BI__builtin_arm_sev: |
| case ARM::BI__sev: |
| Value = 4; |
| break; |
| case ARM::BI__builtin_arm_sevl: |
| case ARM::BI__sevl: |
| Value = 5; |
| break; |
| } |
| |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint), |
| llvm::ConstantInt::get(Int32Ty, Value)); |
| } |
| |
| // Generates the IR for the read/write special register builtin, |
| // ValueType is the type of the value that is to be written or read, |
| // RegisterType is the type of the register being written to or read from. |
| static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF, |
| const CallExpr *E, |
| llvm::Type *RegisterType, |
| llvm::Type *ValueType, |
| bool IsRead, |
| StringRef SysReg = "") { |
| // write and register intrinsics only support 32 and 64 bit operations. |
| assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) |
| && "Unsupported size for register."); |
| |
| CodeGen::CGBuilderTy &Builder = CGF.Builder; |
| CodeGen::CodeGenModule &CGM = CGF.CGM; |
| LLVMContext &Context = CGM.getLLVMContext(); |
| |
| if (SysReg.empty()) { |
| const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts(); |
| SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString(); |
| } |
| |
| llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) }; |
| llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); |
| llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); |
| |
| llvm::Type *Types[] = { RegisterType }; |
| |
| bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32); |
| assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) |
| && "Can't fit 64-bit value in 32-bit register"); |
| |
| if (IsRead) { |
| llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); |
| llvm::Value *Call = Builder.CreateCall(F, Metadata); |
| |
| if (MixedTypes) |
| // Read into 64 bit register and then truncate result to 32 bit. |
| return Builder.CreateTrunc(Call, ValueType); |
| |
| if (ValueType->isPointerTy()) |
| // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*). |
| return Builder.CreateIntToPtr(Call, ValueType); |
| |
| return Call; |
| } |
| |
| llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); |
| llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1)); |
| if (MixedTypes) { |
| // Extend 32 bit write value to 64 bit to pass to write. |
| ArgValue = Builder.CreateZExt(ArgValue, RegisterType); |
| return Builder.CreateCall(F, { Metadata, ArgValue }); |
| } |
| |
| if (ValueType->isPointerTy()) { |
| // Have VoidPtrTy ArgValue but want to return an i32/i64. |
| ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType); |
| return Builder.CreateCall(F, { Metadata, ArgValue }); |
| } |
| |
| return Builder.CreateCall(F, { Metadata, ArgValue }); |
| } |
| |
| /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra |
| /// argument that specifies the vector type. |
| static bool HasExtraNeonArgument(unsigned BuiltinID) { |
| switch (BuiltinID) { |
| default: break; |
| case NEON::BI__builtin_neon_vget_lane_i8: |
| case NEON::BI__builtin_neon_vget_lane_i16: |
| case NEON::BI__builtin_neon_vget_lane_i32: |
| case NEON::BI__builtin_neon_vget_lane_i64: |
| case NEON::BI__builtin_neon_vget_lane_f32: |
| case NEON::BI__builtin_neon_vgetq_lane_i8: |
| case NEON::BI__builtin_neon_vgetq_lane_i16: |
| case NEON::BI__builtin_neon_vgetq_lane_i32: |
| case NEON::BI__builtin_neon_vgetq_lane_i64: |
| case NEON::BI__builtin_neon_vgetq_lane_f32: |
| case NEON::BI__builtin_neon_vset_lane_i8: |
| case NEON::BI__builtin_neon_vset_lane_i16: |
| case NEON::BI__builtin_neon_vset_lane_i32: |
| case NEON::BI__builtin_neon_vset_lane_i64: |
| case NEON::BI__builtin_neon_vset_lane_f32: |
| case NEON::BI__builtin_neon_vsetq_lane_i8: |
| case NEON::BI__builtin_neon_vsetq_lane_i16: |
| case NEON::BI__builtin_neon_vsetq_lane_i32: |
| case NEON::BI__builtin_neon_vsetq_lane_i64: |
| case NEON::BI__builtin_neon_vsetq_lane_f32: |
| case NEON::BI__builtin_neon_vsha1h_u32: |
| case NEON::BI__builtin_neon_vsha1cq_u32: |
| case NEON::BI__builtin_neon_vsha1pq_u32: |
| case NEON::BI__builtin_neon_vsha1mq_u32: |
| case clang::ARM::BI_MoveToCoprocessor: |
| case clang::ARM::BI_MoveToCoprocessor2: |
| return false; |
| } |
| return true; |
| } |
| |
| Value *CodeGenFunction::EmitISOVolatileLoad(const CallExpr *E) { |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| QualType ElTy = E->getArg(0)->getType()->getPointeeType(); |
| CharUnits LoadSize = getContext().getTypeSizeInChars(ElTy); |
| llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(), |
| LoadSize.getQuantity() * 8); |
| Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo()); |
| llvm::LoadInst *Load = |
| Builder.CreateAlignedLoad(Ptr, LoadSize); |
| Load->setVolatile(true); |
| return Load; |
| } |
| |
| Value *CodeGenFunction::EmitISOVolatileStore(const CallExpr *E) { |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| Value *Value = EmitScalarExpr(E->getArg(1)); |
| QualType ElTy = E->getArg(0)->getType()->getPointeeType(); |
| CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy); |
| llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(), |
| StoreSize.getQuantity() * 8); |
| Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo()); |
| llvm::StoreInst *Store = |
| Builder.CreateAlignedStore(Value, Ptr, |
| StoreSize); |
| Store->setVolatile(true); |
| return Store; |
| } |
| |
| Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E, |
| llvm::Triple::ArchType Arch) { |
| if (auto Hint = GetValueForARMHint(BuiltinID)) |
| return Hint; |
| |
| if (BuiltinID == ARM::BI__emit) { |
| bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb; |
| llvm::FunctionType *FTy = |
| llvm::FunctionType::get(VoidTy, /*Variadic=*/false); |
| |
| APSInt Value; |
| if (!E->getArg(0)->EvaluateAsInt(Value, CGM.getContext())) |
| llvm_unreachable("Sema will ensure that the parameter is constant"); |
| |
| uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue(); |
| |
| llvm::InlineAsm *Emit = |
| IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "", |
| /*SideEffects=*/true) |
| : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "", |
| /*SideEffects=*/true); |
| |
| return Builder.CreateCall(Emit); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_dbg) { |
| Value *Option = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_prefetch) { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *RW = EmitScalarExpr(E->getArg(1)); |
| Value *IsData = EmitScalarExpr(E->getArg(2)); |
| |
| // Locality is not supported on ARM target |
| Value *Locality = llvm::ConstantInt::get(Int32Ty, 3); |
| |
| Value *F = CGM.getIntrinsic(Intrinsic::prefetch); |
| return Builder.CreateCall(F, {Address, RW, Locality, IsData}); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_rbit) { |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); |
| } |
| |
| if (BuiltinID == ARM::BI__clear_cache) { |
| assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); |
| const FunctionDecl *FD = E->getDirectCallee(); |
| Value *Ops[2]; |
| for (unsigned i = 0; i < 2; i++) |
| Ops[i] = EmitScalarExpr(E->getArg(i)); |
| llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); |
| llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); |
| StringRef Name = FD->getName(); |
| return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_mcrr || |
| BuiltinID == ARM::BI__builtin_arm_mcrr2) { |
| Function *F; |
| |
| switch (BuiltinID) { |
| default: llvm_unreachable("unexpected builtin"); |
| case ARM::BI__builtin_arm_mcrr: |
| F = CGM.getIntrinsic(Intrinsic::arm_mcrr); |
| break; |
| case ARM::BI__builtin_arm_mcrr2: |
| F = CGM.getIntrinsic(Intrinsic::arm_mcrr2); |
| break; |
| } |
| |
| // MCRR{2} instruction has 5 operands but |
| // the intrinsic has 4 because Rt and Rt2 |
| // are represented as a single unsigned 64 |
| // bit integer in the intrinsic definition |
| // but internally it's represented as 2 32 |
| // bit integers. |
| |
| Value *Coproc = EmitScalarExpr(E->getArg(0)); |
| Value *Opc1 = EmitScalarExpr(E->getArg(1)); |
| Value *RtAndRt2 = EmitScalarExpr(E->getArg(2)); |
| Value *CRm = EmitScalarExpr(E->getArg(3)); |
| |
| Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); |
| Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty); |
| Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1); |
| Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty); |
| |
| return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm}); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_mrrc || |
| BuiltinID == ARM::BI__builtin_arm_mrrc2) { |
| Function *F; |
| |
| switch (BuiltinID) { |
| default: llvm_unreachable("unexpected builtin"); |
| case ARM::BI__builtin_arm_mrrc: |
| F = CGM.getIntrinsic(Intrinsic::arm_mrrc); |
| break; |
| case ARM::BI__builtin_arm_mrrc2: |
| F = CGM.getIntrinsic(Intrinsic::arm_mrrc2); |
| break; |
| } |
| |
| Value *Coproc = EmitScalarExpr(E->getArg(0)); |
| Value *Opc1 = EmitScalarExpr(E->getArg(1)); |
| Value *CRm = EmitScalarExpr(E->getArg(2)); |
| Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm}); |
| |
| // Returns an unsigned 64 bit integer, represented |
| // as two 32 bit integers. |
| |
| Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1); |
| Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0); |
| Rt = Builder.CreateZExt(Rt, Int64Ty); |
| Rt1 = Builder.CreateZExt(Rt1, Int64Ty); |
| |
| Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32); |
| RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true); |
| RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1); |
| |
| return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType())); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_ldrexd || |
| ((BuiltinID == ARM::BI__builtin_arm_ldrex || |
| BuiltinID == ARM::BI__builtin_arm_ldaex) && |
| getContext().getTypeSize(E->getType()) == 64) || |
| BuiltinID == ARM::BI__ldrexd) { |
| Function *F; |
| |
| switch (BuiltinID) { |
| default: llvm_unreachable("unexpected builtin"); |
| case ARM::BI__builtin_arm_ldaex: |
| F = CGM.getIntrinsic(Intrinsic::arm_ldaexd); |
| break; |
| case ARM::BI__builtin_arm_ldrexd: |
| case ARM::BI__builtin_arm_ldrex: |
| case ARM::BI__ldrexd: |
| F = CGM.getIntrinsic(Intrinsic::arm_ldrexd); |
| break; |
| } |
| |
| Value *LdPtr = EmitScalarExpr(E->getArg(0)); |
| Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), |
| "ldrexd"); |
| |
| Value *Val0 = Builder.CreateExtractValue(Val, 1); |
| Value *Val1 = Builder.CreateExtractValue(Val, 0); |
| Val0 = Builder.CreateZExt(Val0, Int64Ty); |
| Val1 = Builder.CreateZExt(Val1, Int64Ty); |
| |
| Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32); |
| Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); |
| Val = Builder.CreateOr(Val, Val1); |
| return Builder.CreateBitCast(Val, ConvertType(E->getType())); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_ldrex || |
| BuiltinID == ARM::BI__builtin_arm_ldaex) { |
| Value *LoadAddr = EmitScalarExpr(E->getArg(0)); |
| |
| QualType Ty = E->getType(); |
| llvm::Type *RealResTy = ConvertType(Ty); |
| llvm::Type *PtrTy = llvm::IntegerType::get( |
| getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo(); |
| LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy); |
| |
| Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex |
| ? Intrinsic::arm_ldaex |
| : Intrinsic::arm_ldrex, |
| PtrTy); |
| Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex"); |
| |
| if (RealResTy->isPointerTy()) |
| return Builder.CreateIntToPtr(Val, RealResTy); |
| else { |
| llvm::Type *IntResTy = llvm::IntegerType::get( |
| getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); |
| Val = Builder.CreateTruncOrBitCast(Val, IntResTy); |
| return Builder.CreateBitCast(Val, RealResTy); |
| } |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_strexd || |
| ((BuiltinID == ARM::BI__builtin_arm_stlex || |
| BuiltinID == ARM::BI__builtin_arm_strex) && |
| getContext().getTypeSize(E->getArg(0)->getType()) == 64)) { |
| Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex |
| ? Intrinsic::arm_stlexd |
| : Intrinsic::arm_strexd); |
| llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty); |
| |
| Address Tmp = CreateMemTemp(E->getArg(0)->getType()); |
| Value *Val = EmitScalarExpr(E->getArg(0)); |
| Builder.CreateStore(Val, Tmp); |
| |
| Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy)); |
| Val = Builder.CreateLoad(LdPtr); |
| |
| Value *Arg0 = Builder.CreateExtractValue(Val, 0); |
| Value *Arg1 = Builder.CreateExtractValue(Val, 1); |
| Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy); |
| return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd"); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_strex || |
| BuiltinID == ARM::BI__builtin_arm_stlex) { |
| Value *StoreVal = EmitScalarExpr(E->getArg(0)); |
| Value *StoreAddr = EmitScalarExpr(E->getArg(1)); |
| |
| QualType Ty = E->getArg(0)->getType(); |
| llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), |
| getContext().getTypeSize(Ty)); |
| StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); |
| |
| if (StoreVal->getType()->isPointerTy()) |
| StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty); |
| else { |
| llvm::Type *IntTy = llvm::IntegerType::get( |
| getLLVMContext(), |
| CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); |
| StoreVal = Builder.CreateBitCast(StoreVal, IntTy); |
| StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty); |
| } |
| |
| Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex |
| ? Intrinsic::arm_stlex |
| : Intrinsic::arm_strex, |
| StoreAddr->getType()); |
| return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex"); |
| } |
| |
| switch (BuiltinID) { |
| case ARM::BI__iso_volatile_load8: |
| case ARM::BI__iso_volatile_load16: |
| case ARM::BI__iso_volatile_load32: |
| case ARM::BI__iso_volatile_load64: |
| return EmitISOVolatileLoad(E); |
| case ARM::BI__iso_volatile_store8: |
| case ARM::BI__iso_volatile_store16: |
| case ARM::BI__iso_volatile_store32: |
| case ARM::BI__iso_volatile_store64: |
| return EmitISOVolatileStore(E); |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_clrex) { |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex); |
| return Builder.CreateCall(F); |
| } |
| |
| // CRC32 |
| Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; |
| switch (BuiltinID) { |
| case ARM::BI__builtin_arm_crc32b: |
| CRCIntrinsicID = Intrinsic::arm_crc32b; break; |
| case ARM::BI__builtin_arm_crc32cb: |
| CRCIntrinsicID = Intrinsic::arm_crc32cb; break; |
| case ARM::BI__builtin_arm_crc32h: |
| CRCIntrinsicID = Intrinsic::arm_crc32h; break; |
| case ARM::BI__builtin_arm_crc32ch: |
| CRCIntrinsicID = Intrinsic::arm_crc32ch; break; |
| case ARM::BI__builtin_arm_crc32w: |
| case ARM::BI__builtin_arm_crc32d: |
| CRCIntrinsicID = Intrinsic::arm_crc32w; break; |
| case ARM::BI__builtin_arm_crc32cw: |
| case ARM::BI__builtin_arm_crc32cd: |
| CRCIntrinsicID = Intrinsic::arm_crc32cw; break; |
| } |
| |
| if (CRCIntrinsicID != Intrinsic::not_intrinsic) { |
| Value *Arg0 = EmitScalarExpr(E->getArg(0)); |
| Value *Arg1 = EmitScalarExpr(E->getArg(1)); |
| |
| // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w |
| // intrinsics, hence we need different codegen for these cases. |
| if (BuiltinID == ARM::BI__builtin_arm_crc32d || |
| BuiltinID == ARM::BI__builtin_arm_crc32cd) { |
| Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); |
| Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty); |
| Value *Arg1b = Builder.CreateLShr(Arg1, C1); |
| Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty); |
| |
| Function *F = CGM.getIntrinsic(CRCIntrinsicID); |
| Value *Res = Builder.CreateCall(F, {Arg0, Arg1a}); |
| return Builder.CreateCall(F, {Res, Arg1b}); |
| } else { |
| Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty); |
| |
| Function *F = CGM.getIntrinsic(CRCIntrinsicID); |
| return Builder.CreateCall(F, {Arg0, Arg1}); |
| } |
| } |
| |
| if (BuiltinID == ARM::BI__builtin_arm_rsr || |
| BuiltinID == ARM::BI__builtin_arm_rsr64 || |
| BuiltinID == ARM::BI__builtin_arm_rsrp || |
| BuiltinID == ARM::BI__builtin_arm_wsr || |
| BuiltinID == ARM::BI__builtin_arm_wsr64 || |
| BuiltinID == ARM::BI__builtin_arm_wsrp) { |
| |
| bool IsRead = BuiltinID == ARM::BI__builtin_arm_rsr || |
| BuiltinID == ARM::BI__builtin_arm_rsr64 || |
| BuiltinID == ARM::BI__builtin_arm_rsrp; |
| |
| bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp || |
| BuiltinID == ARM::BI__builtin_arm_wsrp; |
| |
| bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 || |
| BuiltinID == ARM::BI__builtin_arm_wsr64; |
| |
| llvm::Type *ValueType; |
| llvm::Type *RegisterType; |
| if (IsPointerBuiltin) { |
| ValueType = VoidPtrTy; |
| RegisterType = Int32Ty; |
| } else if (Is64Bit) { |
| ValueType = RegisterType = Int64Ty; |
| } else { |
| ValueType = RegisterType = Int32Ty; |
| } |
| |
| return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead); |
| } |
| |
| // Find out if any arguments are required to be integer constant |
| // expressions. |
| unsigned ICEArguments = 0; |
| ASTContext::GetBuiltinTypeError Error; |
| getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); |
| assert(Error == ASTContext::GE_None && "Should not codegen an error"); |
| |
| auto getAlignmentValue32 = [&](Address addr) -> Value* { |
| return Builder.getInt32(addr.getAlignment().getQuantity()); |
| }; |
| |
| Address PtrOp0 = Address::invalid(); |
| Address PtrOp1 = Address::invalid(); |
| SmallVector<Value*, 4> Ops; |
| bool HasExtraArg = HasExtraNeonArgument(BuiltinID); |
| unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0); |
| for (unsigned i = 0, e = NumArgs; i != e; i++) { |
| if (i == 0) { |
| switch (BuiltinID) { |
| case NEON::BI__builtin_neon_vld1_v: |
| case NEON::BI__builtin_neon_vld1q_v: |
| case NEON::BI__builtin_neon_vld1q_lane_v: |
| case NEON::BI__builtin_neon_vld1_lane_v: |
| case NEON::BI__builtin_neon_vld1_dup_v: |
| case NEON::BI__builtin_neon_vld1q_dup_v: |
| case NEON::BI__builtin_neon_vst1_v: |
| case NEON::BI__builtin_neon_vst1q_v: |
| case NEON::BI__builtin_neon_vst1q_lane_v: |
| case NEON::BI__builtin_neon_vst1_lane_v: |
| case NEON::BI__builtin_neon_vst2_v: |
| case NEON::BI__builtin_neon_vst2q_v: |
| case NEON::BI__builtin_neon_vst2_lane_v: |
| case NEON::BI__builtin_neon_vst2q_lane_v: |
| case NEON::BI__builtin_neon_vst3_v: |
| case NEON::BI__builtin_neon_vst3q_v: |
| case NEON::BI__builtin_neon_vst3_lane_v: |
| case NEON::BI__builtin_neon_vst3q_lane_v: |
| case NEON::BI__builtin_neon_vst4_v: |
| case NEON::BI__builtin_neon_vst4q_v: |
| case NEON::BI__builtin_neon_vst4_lane_v: |
| case NEON::BI__builtin_neon_vst4q_lane_v: |
| // Get the alignment for the argument in addition to the value; |
| // we'll use it later. |
| PtrOp0 = EmitPointerWithAlignment(E->getArg(0)); |
| Ops.push_back(PtrOp0.getPointer()); |
| continue; |
| } |
| } |
| if (i == 1) { |
| switch (BuiltinID) { |
| case NEON::BI__builtin_neon_vld2_v: |
| case NEON::BI__builtin_neon_vld2q_v: |
| case NEON::BI__builtin_neon_vld3_v: |
| case NEON::BI__builtin_neon_vld3q_v: |
| case NEON::BI__builtin_neon_vld4_v: |
| case NEON::BI__builtin_neon_vld4q_v: |
| case NEON::BI__builtin_neon_vld2_lane_v: |
| case NEON::BI__builtin_neon_vld2q_lane_v: |
| case NEON::BI__builtin_neon_vld3_lane_v: |
| case NEON::BI__builtin_neon_vld3q_lane_v: |
| case NEON::BI__builtin_neon_vld4_lane_v: |
| case NEON::BI__builtin_neon_vld4q_lane_v: |
| case NEON::BI__builtin_neon_vld2_dup_v: |
| case NEON::BI__builtin_neon_vld2q_dup_v: |
| case NEON::BI__builtin_neon_vld3_dup_v: |
| case NEON::BI__builtin_neon_vld3q_dup_v: |
| case NEON::BI__builtin_neon_vld4_dup_v: |
| case NEON::BI__builtin_neon_vld4q_dup_v: |
| // Get the alignment for the argument in addition to the value; |
| // we'll use it later. |
| PtrOp1 = EmitPointerWithAlignment(E->getArg(1)); |
| Ops.push_back(PtrOp1.getPointer()); |
| continue; |
| } |
| } |
| |
| if ((ICEArguments & (1 << i)) == 0) { |
| Ops.push_back(EmitScalarExpr(E->getArg(i))); |
| } else { |
| // If this is required to be a constant, constant fold it so that we know |
| // that the generated intrinsic gets a ConstantInt. |
| llvm::APSInt Result; |
| bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext()); |
| assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst; |
| Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result)); |
| } |
| } |
| |
| switch (BuiltinID) { |
| default: break; |
| |
| case NEON::BI__builtin_neon_vget_lane_i8: |
| case NEON::BI__builtin_neon_vget_lane_i16: |
| case NEON::BI__builtin_neon_vget_lane_i32: |
| case NEON::BI__builtin_neon_vget_lane_i64: |
| case NEON::BI__builtin_neon_vget_lane_f32: |
| case NEON::BI__builtin_neon_vgetq_lane_i8: |
| case NEON::BI__builtin_neon_vgetq_lane_i16: |
| case NEON::BI__builtin_neon_vgetq_lane_i32: |
| case NEON::BI__builtin_neon_vgetq_lane_i64: |
| case NEON::BI__builtin_neon_vgetq_lane_f32: |
| return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane"); |
| |
| case NEON::BI__builtin_neon_vrndns_f32: { |
| Value *Arg = EmitScalarExpr(E->getArg(0)); |
| llvm::Type *Tys[] = {Arg->getType()}; |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys); |
| return Builder.CreateCall(F, {Arg}, "vrndn"); } |
| |
| case NEON::BI__builtin_neon_vset_lane_i8: |
| case NEON::BI__builtin_neon_vset_lane_i16: |
| case NEON::BI__builtin_neon_vset_lane_i32: |
| case NEON::BI__builtin_neon_vset_lane_i64: |
| case NEON::BI__builtin_neon_vset_lane_f32: |
| case NEON::BI__builtin_neon_vsetq_lane_i8: |
| case NEON::BI__builtin_neon_vsetq_lane_i16: |
| case NEON::BI__builtin_neon_vsetq_lane_i32: |
| case NEON::BI__builtin_neon_vsetq_lane_i64: |
| case NEON::BI__builtin_neon_vsetq_lane_f32: |
| return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); |
| |
| case NEON::BI__builtin_neon_vsha1h_u32: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops, |
| "vsha1h"); |
| case NEON::BI__builtin_neon_vsha1cq_u32: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops, |
| "vsha1h"); |
| case NEON::BI__builtin_neon_vsha1pq_u32: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops, |
| "vsha1h"); |
| case NEON::BI__builtin_neon_vsha1mq_u32: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops, |
| "vsha1h"); |
| |
| // The ARM _MoveToCoprocessor builtins put the input register value as |
| // the first argument, but the LLVM intrinsic expects it as the third one. |
| case ARM::BI_MoveToCoprocessor: |
| case ARM::BI_MoveToCoprocessor2: { |
| Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ? |
| Intrinsic::arm_mcr : Intrinsic::arm_mcr2); |
| return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0], |
| Ops[3], Ops[4], Ops[5]}); |
| } |
| case ARM::BI_BitScanForward: |
| case ARM::BI_BitScanForward64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E); |
| case ARM::BI_BitScanReverse: |
| case ARM::BI_BitScanReverse64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E); |
| |
| case ARM::BI_InterlockedAnd64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E); |
| case ARM::BI_InterlockedExchange64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E); |
| case ARM::BI_InterlockedExchangeAdd64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E); |
| case ARM::BI_InterlockedExchangeSub64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E); |
| case ARM::BI_InterlockedOr64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E); |
| case ARM::BI_InterlockedXor64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E); |
| case ARM::BI_InterlockedDecrement64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E); |
| case ARM::BI_InterlockedIncrement64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E); |
| } |
| |
| // Get the last argument, which specifies the vector type. |
| assert(HasExtraArg); |
| llvm::APSInt Result; |
| const Expr *Arg = E->getArg(E->getNumArgs()-1); |
| if (!Arg->isIntegerConstantExpr(Result, getContext())) |
| return nullptr; |
| |
| if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f || |
| BuiltinID == ARM::BI__builtin_arm_vcvtr_d) { |
| // Determine the overloaded type of this builtin. |
| llvm::Type *Ty; |
| if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f) |
| Ty = FloatTy; |
| else |
| Ty = DoubleTy; |
| |
| // Determine whether this is an unsigned conversion or not. |
| bool usgn = Result.getZExtValue() == 1; |
| unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr; |
| |
| // Call the appropriate intrinsic. |
| Function *F = CGM.getIntrinsic(Int, Ty); |
| return Builder.CreateCall(F, Ops, "vcvtr"); |
| } |
| |
| // Determine the type of this overloaded NEON intrinsic. |
| NeonTypeFlags Type(Result.getZExtValue()); |
| bool usgn = Type.isUnsigned(); |
| bool rightShift = false; |
| |
| llvm::VectorType *VTy = GetNeonType(this, Type, |
| getTarget().hasLegalHalfType()); |
| llvm::Type *Ty = VTy; |
| if (!Ty) |
| return nullptr; |
| |
| // Many NEON builtins have identical semantics and uses in ARM and |
| // AArch64. Emit these in a single function. |
| auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap); |
| const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap( |
| IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted); |
| if (Builtin) |
| return EmitCommonNeonBuiltinExpr( |
| Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, |
| Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch); |
| |
| unsigned Int; |
| switch (BuiltinID) { |
| default: return nullptr; |
| case NEON::BI__builtin_neon_vld1q_lane_v: |
| // Handle 64-bit integer elements as a special case. Use shuffles of |
| // one-element vectors to avoid poor code for i64 in the backend. |
| if (VTy->getElementType()->isIntegerTy(64)) { |
| // Extract the other lane. |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| uint32_t Lane = cast<ConstantInt>(Ops[2])->getZExtValue(); |
| Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane)); |
| Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); |
| // Load the value as a one-element vector. |
| Ty = llvm::VectorType::get(VTy->getElementType(), 1); |
| llvm::Type *Tys[] = {Ty, Int8PtrTy}; |
| Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys); |
| Value *Align = getAlignmentValue32(PtrOp0); |
| Value *Ld = Builder.CreateCall(F, {Ops[0], Align}); |
| // Combine them. |
| uint32_t Indices[] = {1 - Lane, Lane}; |
| SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices); |
| return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane"); |
| } |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vld1_lane_v: { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType()); |
| Value *Ld = Builder.CreateLoad(PtrOp0); |
| return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane"); |
| } |
| case NEON::BI__builtin_neon_vqrshrn_n_v: |
| Int = |
| usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n", |
| 1, true); |
| case NEON::BI__builtin_neon_vqrshrun_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty), |
| Ops, "vqrshrun_n", 1, true); |
| case NEON::BI__builtin_neon_vqshrn_n_v: |
| Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n", |
| 1, true); |
| case NEON::BI__builtin_neon_vqshrun_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty), |
| Ops, "vqshrun_n", 1, true); |
| case NEON::BI__builtin_neon_vrecpe_v: |
| case NEON::BI__builtin_neon_vrecpeq_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty), |
| Ops, "vrecpe"); |
| case NEON::BI__builtin_neon_vrshrn_n_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty), |
| Ops, "vrshrn_n", 1, true); |
| case NEON::BI__builtin_neon_vrsra_n_v: |
| case NEON::BI__builtin_neon_vrsraq_n_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true); |
| Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts; |
| Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]}); |
| return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n"); |
| case NEON::BI__builtin_neon_vsri_n_v: |
| case NEON::BI__builtin_neon_vsriq_n_v: |
| rightShift = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vsli_n_v: |
| case NEON::BI__builtin_neon_vsliq_n_v: |
| Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty), |
| Ops, "vsli_n"); |
| case NEON::BI__builtin_neon_vsra_n_v: |
| case NEON::BI__builtin_neon_vsraq_n_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); |
| return Builder.CreateAdd(Ops[0], Ops[1]); |
| case NEON::BI__builtin_neon_vst1q_lane_v: |
| // Handle 64-bit integer elements as a special case. Use a shuffle to get |
| // a one-element vector and avoid poor code for i64 in the backend. |
| if (VTy->getElementType()->isIntegerTy(64)) { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2])); |
| Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); |
| Ops[2] = getAlignmentValue32(PtrOp0); |
| llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()}; |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, |
| Tys), Ops); |
| } |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vst1_lane_v: { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty)); |
| return St; |
| } |
| case NEON::BI__builtin_neon_vtbl1_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1), |
| Ops, "vtbl1"); |
| case NEON::BI__builtin_neon_vtbl2_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2), |
| Ops, "vtbl2"); |
| case NEON::BI__builtin_neon_vtbl3_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3), |
| Ops, "vtbl3"); |
| case NEON::BI__builtin_neon_vtbl4_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4), |
| Ops, "vtbl4"); |
| case NEON::BI__builtin_neon_vtbx1_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1), |
| Ops, "vtbx1"); |
| case NEON::BI__builtin_neon_vtbx2_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2), |
| Ops, "vtbx2"); |
| case NEON::BI__builtin_neon_vtbx3_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3), |
| Ops, "vtbx3"); |
| case NEON::BI__builtin_neon_vtbx4_v: |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4), |
| Ops, "vtbx4"); |
| } |
| } |
| |
| static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID, |
| const CallExpr *E, |
| SmallVectorImpl<Value *> &Ops, |
| llvm::Triple::ArchType Arch) { |
| unsigned int Int = 0; |
| const char *s = nullptr; |
| |
| switch (BuiltinID) { |
| default: |
| return nullptr; |
| case NEON::BI__builtin_neon_vtbl1_v: |
| case NEON::BI__builtin_neon_vqtbl1_v: |
| case NEON::BI__builtin_neon_vqtbl1q_v: |
| case NEON::BI__builtin_neon_vtbl2_v: |
| case NEON::BI__builtin_neon_vqtbl2_v: |
| case NEON::BI__builtin_neon_vqtbl2q_v: |
| case NEON::BI__builtin_neon_vtbl3_v: |
| case NEON::BI__builtin_neon_vqtbl3_v: |
| case NEON::BI__builtin_neon_vqtbl3q_v: |
| case NEON::BI__builtin_neon_vtbl4_v: |
| case NEON::BI__builtin_neon_vqtbl4_v: |
| case NEON::BI__builtin_neon_vqtbl4q_v: |
| break; |
| case NEON::BI__builtin_neon_vtbx1_v: |
| case NEON::BI__builtin_neon_vqtbx1_v: |
| case NEON::BI__builtin_neon_vqtbx1q_v: |
| case NEON::BI__builtin_neon_vtbx2_v: |
| case NEON::BI__builtin_neon_vqtbx2_v: |
| case NEON::BI__builtin_neon_vqtbx2q_v: |
| case NEON::BI__builtin_neon_vtbx3_v: |
| case NEON::BI__builtin_neon_vqtbx3_v: |
| case NEON::BI__builtin_neon_vqtbx3q_v: |
| case NEON::BI__builtin_neon_vtbx4_v: |
| case NEON::BI__builtin_neon_vqtbx4_v: |
| case NEON::BI__builtin_neon_vqtbx4q_v: |
| break; |
| } |
| |
| assert(E->getNumArgs() >= 3); |
| |
| // Get the last argument, which specifies the vector type. |
| llvm::APSInt Result; |
| const Expr *Arg = E->getArg(E->getNumArgs() - 1); |
| if (!Arg->isIntegerConstantExpr(Result, CGF.getContext())) |
| return nullptr; |
| |
| // Determine the type of this overloaded NEON intrinsic. |
| NeonTypeFlags Type(Result.getZExtValue()); |
| llvm::VectorType *Ty = GetNeonType(&CGF, Type); |
| if (!Ty) |
| return nullptr; |
| |
| CodeGen::CGBuilderTy &Builder = CGF.Builder; |
| |
| // AArch64 scalar builtins are not overloaded, they do not have an extra |
| // argument that specifies the vector type, need to handle each case. |
| switch (BuiltinID) { |
| case NEON::BI__builtin_neon_vtbl1_v: { |
| return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr, |
| Ops[1], Ty, Intrinsic::aarch64_neon_tbl1, |
| "vtbl1"); |
| } |
| case NEON::BI__builtin_neon_vtbl2_v: { |
| return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr, |
| Ops[2], Ty, Intrinsic::aarch64_neon_tbl1, |
| "vtbl1"); |
| } |
| case NEON::BI__builtin_neon_vtbl3_v: { |
| return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr, |
| Ops[3], Ty, Intrinsic::aarch64_neon_tbl2, |
| "vtbl2"); |
| } |
| case NEON::BI__builtin_neon_vtbl4_v: { |
| return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr, |
| Ops[4], Ty, Intrinsic::aarch64_neon_tbl2, |
| "vtbl2"); |
| } |
| case NEON::BI__builtin_neon_vtbx1_v: { |
| Value *TblRes = |
| packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2], |
| Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1"); |
| |
| llvm::Constant *EightV = ConstantInt::get(Ty, 8); |
| Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV); |
| CmpRes = Builder.CreateSExt(CmpRes, Ty); |
| |
| Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); |
| Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); |
| return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); |
| } |
| case NEON::BI__builtin_neon_vtbx2_v: { |
| return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0], |
| Ops[3], Ty, Intrinsic::aarch64_neon_tbx1, |
| "vtbx1"); |
| } |
| case NEON::BI__builtin_neon_vtbx3_v: { |
| Value *TblRes = |
| packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4], |
| Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2"); |
| |
| llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24); |
| Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4], |
| TwentyFourV); |
| CmpRes = Builder.CreateSExt(CmpRes, Ty); |
| |
| Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); |
| Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); |
| return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); |
| } |
| case NEON::BI__builtin_neon_vtbx4_v: { |
| return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0], |
| Ops[5], Ty, Intrinsic::aarch64_neon_tbx2, |
| "vtbx2"); |
| } |
| case NEON::BI__builtin_neon_vqtbl1_v: |
| case NEON::BI__builtin_neon_vqtbl1q_v: |
| Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break; |
| case NEON::BI__builtin_neon_vqtbl2_v: |
| case NEON::BI__builtin_neon_vqtbl2q_v: { |
| Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break; |
| case NEON::BI__builtin_neon_vqtbl3_v: |
| case NEON::BI__builtin_neon_vqtbl3q_v: |
| Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break; |
| case NEON::BI__builtin_neon_vqtbl4_v: |
| case NEON::BI__builtin_neon_vqtbl4q_v: |
| Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break; |
| case NEON::BI__builtin_neon_vqtbx1_v: |
| case NEON::BI__builtin_neon_vqtbx1q_v: |
| Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break; |
| case NEON::BI__builtin_neon_vqtbx2_v: |
| case NEON::BI__builtin_neon_vqtbx2q_v: |
| Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break; |
| case NEON::BI__builtin_neon_vqtbx3_v: |
| case NEON::BI__builtin_neon_vqtbx3q_v: |
| Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break; |
| case NEON::BI__builtin_neon_vqtbx4_v: |
| case NEON::BI__builtin_neon_vqtbx4q_v: |
| Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break; |
| } |
| } |
| |
| if (!Int) |
| return nullptr; |
| |
| Function *F = CGF.CGM.getIntrinsic(Int, Ty); |
| return CGF.EmitNeonCall(F, Ops, s); |
| } |
| |
| Value *CodeGenFunction::vectorWrapScalar16(Value *Op) { |
| llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4); |
| Op = Builder.CreateBitCast(Op, Int16Ty); |
| Value *V = UndefValue::get(VTy); |
| llvm::Constant *CI = ConstantInt::get(SizeTy, 0); |
| Op = Builder.CreateInsertElement(V, Op, CI); |
| return Op; |
| } |
| |
| Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E, |
| llvm::Triple::ArchType Arch) { |
| unsigned HintID = static_cast<unsigned>(-1); |
| switch (BuiltinID) { |
| default: break; |
| case AArch64::BI__builtin_arm_nop: |
| HintID = 0; |
| break; |
| case AArch64::BI__builtin_arm_yield: |
| case AArch64::BI__yield: |
| HintID = 1; |
| break; |
| case AArch64::BI__builtin_arm_wfe: |
| case AArch64::BI__wfe: |
| HintID = 2; |
| break; |
| case AArch64::BI__builtin_arm_wfi: |
| case AArch64::BI__wfi: |
| HintID = 3; |
| break; |
| case AArch64::BI__builtin_arm_sev: |
| case AArch64::BI__sev: |
| HintID = 4; |
| break; |
| case AArch64::BI__builtin_arm_sevl: |
| case AArch64::BI__sevl: |
| HintID = 5; |
| break; |
| } |
| |
| if (HintID != static_cast<unsigned>(-1)) { |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint); |
| return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID)); |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *RW = EmitScalarExpr(E->getArg(1)); |
| Value *CacheLevel = EmitScalarExpr(E->getArg(2)); |
| Value *RetentionPolicy = EmitScalarExpr(E->getArg(3)); |
| Value *IsData = EmitScalarExpr(E->getArg(4)); |
| |
| Value *Locality = nullptr; |
| if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) { |
| // Temporal fetch, needs to convert cache level to locality. |
| Locality = llvm::ConstantInt::get(Int32Ty, |
| -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3); |
| } else { |
| // Streaming fetch. |
| Locality = llvm::ConstantInt::get(Int32Ty, 0); |
| } |
| |
| // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify |
| // PLDL3STRM or PLDL2STRM. |
| Value *F = CGM.getIntrinsic(Intrinsic::prefetch); |
| return Builder.CreateCall(F, {Address, RW, Locality, IsData}); |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_rbit) { |
| assert((getContext().getTypeSize(E->getType()) == 32) && |
| "rbit of unusual size!"); |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); |
| } |
| if (BuiltinID == AArch64::BI__builtin_arm_rbit64) { |
| assert((getContext().getTypeSize(E->getType()) == 64) && |
| "rbit of unusual size!"); |
| llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall( |
| CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); |
| } |
| |
| if (BuiltinID == AArch64::BI__clear_cache) { |
| assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); |
| const FunctionDecl *FD = E->getDirectCallee(); |
| Value *Ops[2]; |
| for (unsigned i = 0; i < 2; i++) |
| Ops[i] = EmitScalarExpr(E->getArg(i)); |
| llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); |
| llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); |
| StringRef Name = FD->getName(); |
| return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); |
| } |
| |
| if ((BuiltinID == AArch64::BI__builtin_arm_ldrex || |
| BuiltinID == AArch64::BI__builtin_arm_ldaex) && |
| getContext().getTypeSize(E->getType()) == 128) { |
| Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex |
| ? Intrinsic::aarch64_ldaxp |
| : Intrinsic::aarch64_ldxp); |
| |
| Value *LdPtr = EmitScalarExpr(E->getArg(0)); |
| Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), |
| "ldxp"); |
| |
| Value *Val0 = Builder.CreateExtractValue(Val, 1); |
| Value *Val1 = Builder.CreateExtractValue(Val, 0); |
| llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); |
| Val0 = Builder.CreateZExt(Val0, Int128Ty); |
| Val1 = Builder.CreateZExt(Val1, Int128Ty); |
| |
| Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64); |
| Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); |
| Val = Builder.CreateOr(Val, Val1); |
| return Builder.CreateBitCast(Val, ConvertType(E->getType())); |
| } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex || |
| BuiltinID == AArch64::BI__builtin_arm_ldaex) { |
| Value *LoadAddr = EmitScalarExpr(E->getArg(0)); |
| |
| QualType Ty = E->getType(); |
| llvm::Type *RealResTy = ConvertType(Ty); |
| llvm::Type *PtrTy = llvm::IntegerType::get( |
| getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo(); |
| LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy); |
| |
| Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex |
| ? Intrinsic::aarch64_ldaxr |
| : Intrinsic::aarch64_ldxr, |
| PtrTy); |
| Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr"); |
| |
| if (RealResTy->isPointerTy()) |
| return Builder.CreateIntToPtr(Val, RealResTy); |
| |
| llvm::Type *IntResTy = llvm::IntegerType::get( |
| getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); |
| Val = Builder.CreateTruncOrBitCast(Val, IntResTy); |
| return Builder.CreateBitCast(Val, RealResTy); |
| } |
| |
| if ((BuiltinID == AArch64::BI__builtin_arm_strex || |
| BuiltinID == AArch64::BI__builtin_arm_stlex) && |
| getContext().getTypeSize(E->getArg(0)->getType()) == 128) { |
| Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex |
| ? Intrinsic::aarch64_stlxp |
| : Intrinsic::aarch64_stxp); |
| llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty); |
| |
| Address Tmp = CreateMemTemp(E->getArg(0)->getType()); |
| EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true); |
| |
| Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy)); |
| llvm::Value *Val = Builder.CreateLoad(Tmp); |
| |
| Value *Arg0 = Builder.CreateExtractValue(Val, 0); |
| Value *Arg1 = Builder.CreateExtractValue(Val, 1); |
| Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), |
| Int8PtrTy); |
| return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp"); |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_strex || |
| BuiltinID == AArch64::BI__builtin_arm_stlex) { |
| Value *StoreVal = EmitScalarExpr(E->getArg(0)); |
| Value *StoreAddr = EmitScalarExpr(E->getArg(1)); |
| |
| QualType Ty = E->getArg(0)->getType(); |
| llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), |
| getContext().getTypeSize(Ty)); |
| StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); |
| |
| if (StoreVal->getType()->isPointerTy()) |
| StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty); |
| else { |
| llvm::Type *IntTy = llvm::IntegerType::get( |
| getLLVMContext(), |
| CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); |
| StoreVal = Builder.CreateBitCast(StoreVal, IntTy); |
| StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty); |
| } |
| |
| Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex |
| ? Intrinsic::aarch64_stlxr |
| : Intrinsic::aarch64_stxr, |
| StoreAddr->getType()); |
| return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr"); |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_clrex) { |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex); |
| return Builder.CreateCall(F); |
| } |
| |
| // CRC32 |
| Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; |
| switch (BuiltinID) { |
| case AArch64::BI__builtin_arm_crc32b: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32b; break; |
| case AArch64::BI__builtin_arm_crc32cb: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break; |
| case AArch64::BI__builtin_arm_crc32h: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32h; break; |
| case AArch64::BI__builtin_arm_crc32ch: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break; |
| case AArch64::BI__builtin_arm_crc32w: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32w; break; |
| case AArch64::BI__builtin_arm_crc32cw: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break; |
| case AArch64::BI__builtin_arm_crc32d: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32x; break; |
| case AArch64::BI__builtin_arm_crc32cd: |
| CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break; |
| } |
| |
| if (CRCIntrinsicID != Intrinsic::not_intrinsic) { |
| Value *Arg0 = EmitScalarExpr(E->getArg(0)); |
| Value *Arg1 = EmitScalarExpr(E->getArg(1)); |
| Function *F = CGM.getIntrinsic(CRCIntrinsicID); |
| |
| llvm::Type *DataTy = F->getFunctionType()->getParamType(1); |
| Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy); |
| |
| return Builder.CreateCall(F, {Arg0, Arg1}); |
| } |
| |
| if (BuiltinID == AArch64::BI__builtin_arm_rsr || |
| BuiltinID == AArch64::BI__builtin_arm_rsr64 || |
| BuiltinID == AArch64::BI__builtin_arm_rsrp || |
| BuiltinID == AArch64::BI__builtin_arm_wsr || |
| BuiltinID == AArch64::BI__builtin_arm_wsr64 || |
| BuiltinID == AArch64::BI__builtin_arm_wsrp) { |
| |
| bool IsRead = BuiltinID == AArch64::BI__builtin_arm_rsr || |
| BuiltinID == AArch64::BI__builtin_arm_rsr64 || |
| BuiltinID == AArch64::BI__builtin_arm_rsrp; |
| |
| bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp || |
| BuiltinID == AArch64::BI__builtin_arm_wsrp; |
| |
| bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr && |
| BuiltinID != AArch64::BI__builtin_arm_wsr; |
| |
| llvm::Type *ValueType; |
| llvm::Type *RegisterType = Int64Ty; |
| if (IsPointerBuiltin) { |
| ValueType = VoidPtrTy; |
| } else if (Is64Bit) { |
| ValueType = Int64Ty; |
| } else { |
| ValueType = Int32Ty; |
| } |
| |
| return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead); |
| } |
| |
| // Find out if any arguments are required to be integer constant |
| // expressions. |
| unsigned ICEArguments = 0; |
| ASTContext::GetBuiltinTypeError Error; |
| getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); |
| assert(Error == ASTContext::GE_None && "Should not codegen an error"); |
| |
| llvm::SmallVector<Value*, 4> Ops; |
| for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) { |
| if ((ICEArguments & (1 << i)) == 0) { |
| Ops.push_back(EmitScalarExpr(E->getArg(i))); |
| } else { |
| // If this is required to be a constant, constant fold it so that we know |
| // that the generated intrinsic gets a ConstantInt. |
| llvm::APSInt Result; |
| bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext()); |
| assert(IsConst && "Constant arg isn't actually constant?"); |
| (void)IsConst; |
| Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result)); |
| } |
| } |
| |
| auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap); |
| const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap( |
| SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted); |
| |
| if (Builtin) { |
| Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1))); |
| Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E); |
| assert(Result && "SISD intrinsic should have been handled"); |
| return Result; |
| } |
| |
| llvm::APSInt Result; |
| const Expr *Arg = E->getArg(E->getNumArgs()-1); |
| NeonTypeFlags Type(0); |
| if (Arg->isIntegerConstantExpr(Result, getContext())) |
| // Determine the type of this overloaded NEON intrinsic. |
| Type = NeonTypeFlags(Result.getZExtValue()); |
| |
| bool usgn = Type.isUnsigned(); |
| bool quad = Type.isQuad(); |
| |
| // Handle non-overloaded intrinsics first. |
| switch (BuiltinID) { |
| default: break; |
| case NEON::BI__builtin_neon_vabsh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs"); |
| case NEON::BI__builtin_neon_vldrq_p128: { |
| llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128); |
| llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0); |
| Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy); |
| return Builder.CreateAlignedLoad(Int128Ty, Ptr, |
| CharUnits::fromQuantity(16)); |
| } |
| case NEON::BI__builtin_neon_vstrq_p128: { |
| llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128); |
| Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy); |
| return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr); |
| } |
| case NEON::BI__builtin_neon_vcvts_u32_f32: |
| case NEON::BI__builtin_neon_vcvtd_u64_f64: |
| usgn = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vcvts_s32_f32: |
| case NEON::BI__builtin_neon_vcvtd_s64_f64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64; |
| llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty; |
| llvm::Type *FTy = Is64 ? DoubleTy : FloatTy; |
| Ops[0] = Builder.CreateBitCast(Ops[0], FTy); |
| if (usgn) |
| return Builder.CreateFPToUI(Ops[0], InTy); |
| return Builder.CreateFPToSI(Ops[0], InTy); |
| } |
| case NEON::BI__builtin_neon_vcvts_f32_u32: |
| case NEON::BI__builtin_neon_vcvtd_f64_u64: |
| usgn = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vcvts_f32_s32: |
| case NEON::BI__builtin_neon_vcvtd_f64_s64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64; |
| llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty; |
| llvm::Type *FTy = Is64 ? DoubleTy : FloatTy; |
| Ops[0] = Builder.CreateBitCast(Ops[0], InTy); |
| if (usgn) |
| return Builder.CreateUIToFP(Ops[0], FTy); |
| return Builder.CreateSIToFP(Ops[0], FTy); |
| } |
| case NEON::BI__builtin_neon_vcvth_f16_u16: |
| case NEON::BI__builtin_neon_vcvth_f16_u32: |
| case NEON::BI__builtin_neon_vcvth_f16_u64: |
| usgn = true; |
| // FALL THROUGH |
| case NEON::BI__builtin_neon_vcvth_f16_s16: |
| case NEON::BI__builtin_neon_vcvth_f16_s32: |
| case NEON::BI__builtin_neon_vcvth_f16_s64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| llvm::Type *FTy = HalfTy; |
| llvm::Type *InTy; |
| if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64) |
| InTy = Int64Ty; |
| else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32) |
| InTy = Int32Ty; |
| else |
| InTy = Int16Ty; |
| Ops[0] = Builder.CreateBitCast(Ops[0], InTy); |
| if (usgn) |
| return Builder.CreateUIToFP(Ops[0], FTy); |
| return Builder.CreateSIToFP(Ops[0], FTy); |
| } |
| case NEON::BI__builtin_neon_vcvth_u16_f16: |
| usgn = true; |
| // FALL THROUGH |
| case NEON::BI__builtin_neon_vcvth_s16_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); |
| if (usgn) |
| return Builder.CreateFPToUI(Ops[0], Int16Ty); |
| return Builder.CreateFPToSI(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vcvth_u32_f16: |
| usgn = true; |
| // FALL THROUGH |
| case NEON::BI__builtin_neon_vcvth_s32_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); |
| if (usgn) |
| return Builder.CreateFPToUI(Ops[0], Int32Ty); |
| return Builder.CreateFPToSI(Ops[0], Int32Ty); |
| } |
| case NEON::BI__builtin_neon_vcvth_u64_f16: |
| usgn = true; |
| // FALL THROUGH |
| case NEON::BI__builtin_neon_vcvth_s64_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); |
| if (usgn) |
| return Builder.CreateFPToUI(Ops[0], Int64Ty); |
| return Builder.CreateFPToSI(Ops[0], Int64Ty); |
| } |
| case NEON::BI__builtin_neon_vcvtah_u16_f16: |
| case NEON::BI__builtin_neon_vcvtmh_u16_f16: |
| case NEON::BI__builtin_neon_vcvtnh_u16_f16: |
| case NEON::BI__builtin_neon_vcvtph_u16_f16: |
| case NEON::BI__builtin_neon_vcvtah_s16_f16: |
| case NEON::BI__builtin_neon_vcvtmh_s16_f16: |
| case NEON::BI__builtin_neon_vcvtnh_s16_f16: |
| case NEON::BI__builtin_neon_vcvtph_s16_f16: { |
| unsigned Int; |
| llvm::Type* InTy = Int32Ty; |
| llvm::Type* FTy = HalfTy; |
| llvm::Type *Tys[2] = {InTy, FTy}; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vcvtah_u16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtau; break; |
| case NEON::BI__builtin_neon_vcvtmh_u16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtmu; break; |
| case NEON::BI__builtin_neon_vcvtnh_u16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtnu; break; |
| case NEON::BI__builtin_neon_vcvtph_u16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtpu; break; |
| case NEON::BI__builtin_neon_vcvtah_s16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtas; break; |
| case NEON::BI__builtin_neon_vcvtmh_s16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtms; break; |
| case NEON::BI__builtin_neon_vcvtnh_s16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtns; break; |
| case NEON::BI__builtin_neon_vcvtph_s16_f16: |
| Int = Intrinsic::aarch64_neon_fcvtps; break; |
| } |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vcaleh_f16: |
| case NEON::BI__builtin_neon_vcalth_f16: |
| case NEON::BI__builtin_neon_vcageh_f16: |
| case NEON::BI__builtin_neon_vcagth_f16: { |
| unsigned Int; |
| llvm::Type* InTy = Int32Ty; |
| llvm::Type* FTy = HalfTy; |
| llvm::Type *Tys[2] = {InTy, FTy}; |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vcageh_f16: |
| Int = Intrinsic::aarch64_neon_facge; break; |
| case NEON::BI__builtin_neon_vcagth_f16: |
| Int = Intrinsic::aarch64_neon_facgt; break; |
| case NEON::BI__builtin_neon_vcaleh_f16: |
| Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break; |
| case NEON::BI__builtin_neon_vcalth_f16: |
| Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break; |
| } |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vcvth_n_s16_f16: |
| case NEON::BI__builtin_neon_vcvth_n_u16_f16: { |
| unsigned Int; |
| llvm::Type* InTy = Int32Ty; |
| llvm::Type* FTy = HalfTy; |
| llvm::Type *Tys[2] = {InTy, FTy}; |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vcvth_n_s16_f16: |
| Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break; |
| case NEON::BI__builtin_neon_vcvth_n_u16_f16: |
| Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break; |
| } |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vcvth_n_f16_s16: |
| case NEON::BI__builtin_neon_vcvth_n_f16_u16: { |
| unsigned Int; |
| llvm::Type* FTy = HalfTy; |
| llvm::Type* InTy = Int32Ty; |
| llvm::Type *Tys[2] = {FTy, InTy}; |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vcvth_n_f16_s16: |
| Int = Intrinsic::aarch64_neon_vcvtfxs2fp; |
| Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext"); |
| break; |
| case NEON::BI__builtin_neon_vcvth_n_f16_u16: |
| Int = Intrinsic::aarch64_neon_vcvtfxu2fp; |
| Ops[0] = Builder.CreateZExt(Ops[0], InTy); |
| break; |
| } |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n"); |
| } |
| case NEON::BI__builtin_neon_vpaddd_s64: { |
| llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2); |
| Value *Vec = EmitScalarExpr(E->getArg(0)); |
| // The vector is v2f64, so make sure it's bitcast to that. |
| Vec = Builder.CreateBitCast(Vec, Ty, "v2i64"); |
| llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); |
| llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); |
| Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); |
| Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); |
| // Pairwise addition of a v2f64 into a scalar f64. |
| return Builder.CreateAdd(Op0, Op1, "vpaddd"); |
| } |
| case NEON::BI__builtin_neon_vpaddd_f64: { |
| llvm::Type *Ty = |
| llvm::VectorType::get(DoubleTy, 2); |
| Value *Vec = EmitScalarExpr(E->getArg(0)); |
| // The vector is v2f64, so make sure it's bitcast to that. |
| Vec = Builder.CreateBitCast(Vec, Ty, "v2f64"); |
| llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); |
| llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); |
| Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); |
| Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); |
| // Pairwise addition of a v2f64 into a scalar f64. |
| return Builder.CreateFAdd(Op0, Op1, "vpaddd"); |
| } |
| case NEON::BI__builtin_neon_vpadds_f32: { |
| llvm::Type *Ty = |
| llvm::VectorType::get(FloatTy, 2); |
| Value *Vec = EmitScalarExpr(E->getArg(0)); |
| // The vector is v2f32, so make sure it's bitcast to that. |
| Vec = Builder.CreateBitCast(Vec, Ty, "v2f32"); |
| llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); |
| llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); |
| Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); |
| Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); |
| // Pairwise addition of a v2f32 into a scalar f32. |
| return Builder.CreateFAdd(Op0, Op1, "vpaddd"); |
| } |
| case NEON::BI__builtin_neon_vceqzd_s64: |
| case NEON::BI__builtin_neon_vceqzd_f64: |
| case NEON::BI__builtin_neon_vceqzs_f32: |
| case NEON::BI__builtin_neon_vceqzh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitAArch64CompareBuiltinExpr( |
| Ops[0], ConvertType(E->getCallReturnType(getContext())), |
| ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz"); |
| case NEON::BI__builtin_neon_vcgezd_s64: |
| case NEON::BI__builtin_neon_vcgezd_f64: |
| case NEON::BI__builtin_neon_vcgezs_f32: |
| case NEON::BI__builtin_neon_vcgezh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitAArch64CompareBuiltinExpr( |
| Ops[0], ConvertType(E->getCallReturnType(getContext())), |
| ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez"); |
| case NEON::BI__builtin_neon_vclezd_s64: |
| case NEON::BI__builtin_neon_vclezd_f64: |
| case NEON::BI__builtin_neon_vclezs_f32: |
| case NEON::BI__builtin_neon_vclezh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitAArch64CompareBuiltinExpr( |
| Ops[0], ConvertType(E->getCallReturnType(getContext())), |
| ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez"); |
| case NEON::BI__builtin_neon_vcgtzd_s64: |
| case NEON::BI__builtin_neon_vcgtzd_f64: |
| case NEON::BI__builtin_neon_vcgtzs_f32: |
| case NEON::BI__builtin_neon_vcgtzh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitAArch64CompareBuiltinExpr( |
| Ops[0], ConvertType(E->getCallReturnType(getContext())), |
| ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz"); |
| case NEON::BI__builtin_neon_vcltzd_s64: |
| case NEON::BI__builtin_neon_vcltzd_f64: |
| case NEON::BI__builtin_neon_vcltzs_f32: |
| case NEON::BI__builtin_neon_vcltzh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitAArch64CompareBuiltinExpr( |
| Ops[0], ConvertType(E->getCallReturnType(getContext())), |
| ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz"); |
| |
| case NEON::BI__builtin_neon_vceqzd_u64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); |
| Ops[0] = |
| Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty)); |
| return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd"); |
| } |
| case NEON::BI__builtin_neon_vceqd_f64: |
| case NEON::BI__builtin_neon_vcled_f64: |
| case NEON::BI__builtin_neon_vcltd_f64: |
| case NEON::BI__builtin_neon_vcged_f64: |
| case NEON::BI__builtin_neon_vcgtd_f64: { |
| llvm::CmpInst::Predicate P; |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break; |
| case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break; |
| case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break; |
| case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break; |
| case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break; |
| } |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); |
| Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); |
| return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd"); |
| } |
| case NEON::BI__builtin_neon_vceqs_f32: |
| case NEON::BI__builtin_neon_vcles_f32: |
| case NEON::BI__builtin_neon_vclts_f32: |
| case NEON::BI__builtin_neon_vcges_f32: |
| case NEON::BI__builtin_neon_vcgts_f32: { |
| llvm::CmpInst::Predicate P; |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break; |
| case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break; |
| case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break; |
| case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break; |
| case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break; |
| } |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy); |
| Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); |
| return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd"); |
| } |
| case NEON::BI__builtin_neon_vceqh_f16: |
| case NEON::BI__builtin_neon_vcleh_f16: |
| case NEON::BI__builtin_neon_vclth_f16: |
| case NEON::BI__builtin_neon_vcgeh_f16: |
| case NEON::BI__builtin_neon_vcgth_f16: { |
| llvm::CmpInst::Predicate P; |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break; |
| case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break; |
| case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break; |
| case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break; |
| case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break; |
| } |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy); |
| Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); |
| return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd"); |
| } |
| case NEON::BI__builtin_neon_vceqd_s64: |
| case NEON::BI__builtin_neon_vceqd_u64: |
| case NEON::BI__builtin_neon_vcgtd_s64: |
| case NEON::BI__builtin_neon_vcgtd_u64: |
| case NEON::BI__builtin_neon_vcltd_s64: |
| case NEON::BI__builtin_neon_vcltd_u64: |
| case NEON::BI__builtin_neon_vcged_u64: |
| case NEON::BI__builtin_neon_vcged_s64: |
| case NEON::BI__builtin_neon_vcled_u64: |
| case NEON::BI__builtin_neon_vcled_s64: { |
| llvm::CmpInst::Predicate P; |
| switch (BuiltinID) { |
| default: llvm_unreachable("missing builtin ID in switch!"); |
| case NEON::BI__builtin_neon_vceqd_s64: |
| case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break; |
| case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break; |
| case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break; |
| case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break; |
| case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break; |
| case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break; |
| case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break; |
| case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break; |
| case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break; |
| } |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); |
| Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]); |
| return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd"); |
| } |
| case NEON::BI__builtin_neon_vtstd_s64: |
| case NEON::BI__builtin_neon_vtstd_u64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); |
| Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); |
| Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], |
| llvm::Constant::getNullValue(Int64Ty)); |
| return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd"); |
| } |
| case NEON::BI__builtin_neon_vset_lane_i8: |
| case NEON::BI__builtin_neon_vset_lane_i16: |
| case NEON::BI__builtin_neon_vset_lane_i32: |
| case NEON::BI__builtin_neon_vset_lane_i64: |
| case NEON::BI__builtin_neon_vset_lane_f32: |
| case NEON::BI__builtin_neon_vsetq_lane_i8: |
| case NEON::BI__builtin_neon_vsetq_lane_i16: |
| case NEON::BI__builtin_neon_vsetq_lane_i32: |
| case NEON::BI__builtin_neon_vsetq_lane_i64: |
| case NEON::BI__builtin_neon_vsetq_lane_f32: |
| Ops.push_back(EmitScalarExpr(E->getArg(2))); |
| return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); |
| case NEON::BI__builtin_neon_vset_lane_f64: |
| // The vector type needs a cast for the v1f64 variant. |
| Ops[1] = Builder.CreateBitCast(Ops[1], |
| llvm::VectorType::get(DoubleTy, 1)); |
| Ops.push_back(EmitScalarExpr(E->getArg(2))); |
| return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); |
| case NEON::BI__builtin_neon_vsetq_lane_f64: |
| // The vector type needs a cast for the v2f64 variant. |
| Ops[1] = Builder.CreateBitCast(Ops[1], |
| llvm::VectorType::get(DoubleTy, 2)); |
| Ops.push_back(EmitScalarExpr(E->getArg(2))); |
| return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); |
| |
| case NEON::BI__builtin_neon_vget_lane_i8: |
| case NEON::BI__builtin_neon_vdupb_lane_i8: |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 8)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vget_lane"); |
| case NEON::BI__builtin_neon_vgetq_lane_i8: |
| case NEON::BI__builtin_neon_vdupb_laneq_i8: |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 16)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vgetq_lane"); |
| case NEON::BI__builtin_neon_vget_lane_i16: |
| case NEON::BI__builtin_neon_vduph_lane_i16: |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 4)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vget_lane"); |
| case NEON::BI__builtin_neon_vgetq_lane_i16: |
| case NEON::BI__builtin_neon_vduph_laneq_i16: |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 8)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vgetq_lane"); |
| case NEON::BI__builtin_neon_vget_lane_i32: |
| case NEON::BI__builtin_neon_vdups_lane_i32: |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 2)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vget_lane"); |
| case NEON::BI__builtin_neon_vdups_lane_f32: |
| Ops[0] = Builder.CreateBitCast(Ops[0], |
| llvm::VectorType::get(FloatTy, 2)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vdups_lane"); |
| case NEON::BI__builtin_neon_vgetq_lane_i32: |
| case NEON::BI__builtin_neon_vdups_laneq_i32: |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vgetq_lane"); |
| case NEON::BI__builtin_neon_vget_lane_i64: |
| case NEON::BI__builtin_neon_vdupd_lane_i64: |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 1)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vget_lane"); |
| case NEON::BI__builtin_neon_vdupd_lane_f64: |
| Ops[0] = Builder.CreateBitCast(Ops[0], |
| llvm::VectorType::get(DoubleTy, 1)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vdupd_lane"); |
| case NEON::BI__builtin_neon_vgetq_lane_i64: |
| case NEON::BI__builtin_neon_vdupd_laneq_i64: |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vgetq_lane"); |
| case NEON::BI__builtin_neon_vget_lane_f32: |
| Ops[0] = Builder.CreateBitCast(Ops[0], |
| llvm::VectorType::get(FloatTy, 2)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vget_lane"); |
| case NEON::BI__builtin_neon_vget_lane_f64: |
| Ops[0] = Builder.CreateBitCast(Ops[0], |
| llvm::VectorType::get(DoubleTy, 1)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vget_lane"); |
| case NEON::BI__builtin_neon_vgetq_lane_f32: |
| case NEON::BI__builtin_neon_vdups_laneq_f32: |
| Ops[0] = Builder.CreateBitCast(Ops[0], |
| llvm::VectorType::get(FloatTy, 4)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vgetq_lane"); |
| case NEON::BI__builtin_neon_vgetq_lane_f64: |
| case NEON::BI__builtin_neon_vdupd_laneq_f64: |
| Ops[0] = Builder.CreateBitCast(Ops[0], |
| llvm::VectorType::get(DoubleTy, 2)); |
| return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), |
| "vgetq_lane"); |
| case NEON::BI__builtin_neon_vaddh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh"); |
| case NEON::BI__builtin_neon_vsubh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| return Builder.CreateFSub(Ops[0], Ops[1], "vsubh"); |
| case NEON::BI__builtin_neon_vmulh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| return Builder.CreateFMul(Ops[0], Ops[1], "vmulh"); |
| case NEON::BI__builtin_neon_vdivh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh"); |
| case NEON::BI__builtin_neon_vfmah_f16: { |
| Value *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy); |
| // NEON intrinsic puts accumulator first, unlike the LLVM fma. |
| return Builder.CreateCall(F, |
| {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]}); |
| } |
| case NEON::BI__builtin_neon_vfmsh_f16: { |
| Value *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy); |
| Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy); |
| Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh"); |
| // NEON intrinsic puts accumulator first, unlike the LLVM fma. |
| return Builder.CreateCall(F, {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]}); |
| } |
| case NEON::BI__builtin_neon_vaddd_s64: |
| case NEON::BI__builtin_neon_vaddd_u64: |
| return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd"); |
| case NEON::BI__builtin_neon_vsubd_s64: |
| case NEON::BI__builtin_neon_vsubd_u64: |
| return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd"); |
| case NEON::BI__builtin_neon_vqdmlalh_s16: |
| case NEON::BI__builtin_neon_vqdmlslh_s16: { |
| SmallVector<Value *, 2> ProductOps; |
| ProductOps.push_back(vectorWrapScalar16(Ops[1])); |
| ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2)))); |
| llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4); |
| Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), |
| ProductOps, "vqdmlXl"); |
| Constant *CI = ConstantInt::get(SizeTy, 0); |
| Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); |
| |
| unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16 |
| ? Intrinsic::aarch64_neon_sqadd |
| : Intrinsic::aarch64_neon_sqsub; |
| return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl"); |
| } |
| case NEON::BI__builtin_neon_vqshlud_n_s64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty), |
| Ops, "vqshlu_n"); |
| } |
| case NEON::BI__builtin_neon_vqshld_n_u64: |
| case NEON::BI__builtin_neon_vqshld_n_s64: { |
| unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64 |
| ? Intrinsic::aarch64_neon_uqshl |
| : Intrinsic::aarch64_neon_sqshl; |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n"); |
| } |
| case NEON::BI__builtin_neon_vrshrd_n_u64: |
| case NEON::BI__builtin_neon_vrshrd_n_s64: { |
| unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64 |
| ? Intrinsic::aarch64_neon_urshl |
| : Intrinsic::aarch64_neon_srshl; |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| int SV = cast<ConstantInt>(Ops[1])->getSExtValue(); |
| Ops[1] = ConstantInt::get(Int64Ty, -SV); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n"); |
| } |
| case NEON::BI__builtin_neon_vrsrad_n_u64: |
| case NEON::BI__builtin_neon_vrsrad_n_s64: { |
| unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64 |
| ? Intrinsic::aarch64_neon_urshl |
| : Intrinsic::aarch64_neon_srshl; |
| Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); |
| Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2)))); |
| Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty), |
| {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)}); |
| return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty)); |
| } |
| case NEON::BI__builtin_neon_vshld_n_s64: |
| case NEON::BI__builtin_neon_vshld_n_u64: { |
| llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); |
| return Builder.CreateShl( |
| Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n"); |
| } |
| case NEON::BI__builtin_neon_vshrd_n_s64: { |
| llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); |
| return Builder.CreateAShr( |
| Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63), |
| Amt->getZExtValue())), |
| "shrd_n"); |
| } |
| case NEON::BI__builtin_neon_vshrd_n_u64: { |
| llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); |
| uint64_t ShiftAmt = Amt->getZExtValue(); |
| // Right-shifting an unsigned value by its size yields 0. |
| if (ShiftAmt == 64) |
| return ConstantInt::get(Int64Ty, 0); |
| return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt), |
| "shrd_n"); |
| } |
| case NEON::BI__builtin_neon_vsrad_n_s64: { |
| llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2))); |
| Ops[1] = Builder.CreateAShr( |
| Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63), |
| Amt->getZExtValue())), |
| "shrd_n"); |
| return Builder.CreateAdd(Ops[0], Ops[1]); |
| } |
| case NEON::BI__builtin_neon_vsrad_n_u64: { |
| llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2))); |
| uint64_t ShiftAmt = Amt->getZExtValue(); |
| // Right-shifting an unsigned value by its size yields 0. |
| // As Op + 0 = Op, return Ops[0] directly. |
| if (ShiftAmt == 64) |
| return Ops[0]; |
| Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt), |
| "shrd_n"); |
| return Builder.CreateAdd(Ops[0], Ops[1]); |
| } |
| case NEON::BI__builtin_neon_vqdmlalh_lane_s16: |
| case NEON::BI__builtin_neon_vqdmlalh_laneq_s16: |
| case NEON::BI__builtin_neon_vqdmlslh_lane_s16: |
| case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: { |
| Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), |
| "lane"); |
| SmallVector<Value *, 2> ProductOps; |
| ProductOps.push_back(vectorWrapScalar16(Ops[1])); |
| ProductOps.push_back(vectorWrapScalar16(Ops[2])); |
| llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4); |
| Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), |
| ProductOps, "vqdmlXl"); |
| Constant *CI = ConstantInt::get(SizeTy, 0); |
| Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); |
| Ops.pop_back(); |
| |
| unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 || |
| BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16) |
| ? Intrinsic::aarch64_neon_sqadd |
| : Intrinsic::aarch64_neon_sqsub; |
| return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl"); |
| } |
| case NEON::BI__builtin_neon_vqdmlals_s32: |
| case NEON::BI__builtin_neon_vqdmlsls_s32: { |
| SmallVector<Value *, 2> ProductOps; |
| ProductOps.push_back(Ops[1]); |
| ProductOps.push_back(EmitScalarExpr(E->getArg(2))); |
| Ops[1] = |
| EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), |
| ProductOps, "vqdmlXl"); |
| |
| unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32 |
| ? Intrinsic::aarch64_neon_sqadd |
| : Intrinsic::aarch64_neon_sqsub; |
| return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl"); |
| } |
| case NEON::BI__builtin_neon_vqdmlals_lane_s32: |
| case NEON::BI__builtin_neon_vqdmlals_laneq_s32: |
| case NEON::BI__builtin_neon_vqdmlsls_lane_s32: |
| case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: { |
| Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), |
| "lane"); |
| SmallVector<Value *, 2> ProductOps; |
| ProductOps.push_back(Ops[1]); |
| ProductOps.push_back(Ops[2]); |
| Ops[1] = |
| EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), |
| ProductOps, "vqdmlXl"); |
| Ops.pop_back(); |
| |
| unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 || |
| BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32) |
| ? Intrinsic::aarch64_neon_sqadd |
| : Intrinsic::aarch64_neon_sqsub; |
| return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl"); |
| } |
| } |
| |
| llvm::VectorType *VTy = GetNeonType(this, Type); |
| llvm::Type *Ty = VTy; |
| if (!Ty) |
| return nullptr; |
| |
| // Not all intrinsics handled by the common case work for AArch64 yet, so only |
| // defer to common code if it's been added to our special map. |
| Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID, |
| AArch64SIMDIntrinsicsProvenSorted); |
| |
| if (Builtin) |
| return EmitCommonNeonBuiltinExpr( |
| Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, |
| Builtin->NameHint, Builtin->TypeModifier, E, Ops, |
| /*never use addresses*/ Address::invalid(), Address::invalid(), Arch); |
| |
| if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch)) |
| return V; |
| |
| unsigned Int; |
| switch (BuiltinID) { |
| default: return nullptr; |
| case NEON::BI__builtin_neon_vbsl_v: |
| case NEON::BI__builtin_neon_vbslq_v: { |
| llvm::Type *BitTy = llvm::VectorType::getInteger(VTy); |
| Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl"); |
| Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl"); |
| Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl"); |
| |
| Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl"); |
| Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl"); |
| Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl"); |
| return Builder.CreateBitCast(Ops[0], Ty); |
| } |
| case NEON::BI__builtin_neon_vfma_lane_v: |
| case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types |
| // The ARM builtins (and instructions) have the addend as the first |
| // operand, but the 'fma' intrinsics have it last. Swap it around here. |
| Value *Addend = Ops[0]; |
| Value *Multiplicand = Ops[1]; |
| Value *LaneSource = Ops[2]; |
| Ops[0] = Multiplicand; |
| Ops[1] = LaneSource; |
| Ops[2] = Addend; |
| |
| // Now adjust things to handle the lane access. |
| llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ? |
| llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) : |
| VTy; |
| llvm::Constant *cst = cast<Constant>(Ops[3]); |
| Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst); |
| Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy); |
| Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane"); |
| |
| Ops.pop_back(); |
| Int = Intrinsic::fma; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla"); |
| } |
| case NEON::BI__builtin_neon_vfma_laneq_v: { |
| llvm::VectorType *VTy = cast<llvm::VectorType>(Ty); |
| // v1f64 fma should be mapped to Neon scalar f64 fma |
| if (VTy && VTy->getElementType() == DoubleTy) { |
| Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); |
| llvm::Type *VTy = GetNeonType(this, |
| NeonTypeFlags(NeonTypeFlags::Float64, false, true)); |
| Ops[2] = Builder.CreateBitCast(Ops[2], VTy); |
| Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); |
| Value *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy); |
| Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]}); |
| return Builder.CreateBitCast(Result, Ty); |
| } |
| Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| |
| llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(), |
| VTy->getNumElements() * 2); |
| Ops[2] = Builder.CreateBitCast(Ops[2], STy); |
| Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), |
| cast<ConstantInt>(Ops[3])); |
| Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane"); |
| |
| return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]}); |
| } |
| case NEON::BI__builtin_neon_vfmaq_laneq_v: { |
| Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3])); |
| return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]}); |
| } |
| case NEON::BI__builtin_neon_vfmah_lane_f16: |
| case NEON::BI__builtin_neon_vfmas_lane_f32: |
| case NEON::BI__builtin_neon_vfmah_laneq_f16: |
| case NEON::BI__builtin_neon_vfmas_laneq_f32: |
| case NEON::BI__builtin_neon_vfmad_lane_f64: |
| case NEON::BI__builtin_neon_vfmad_laneq_f64: { |
| Ops.push_back(EmitScalarExpr(E->getArg(3))); |
| llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); |
| Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty); |
| Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); |
| return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]}); |
| } |
| case NEON::BI__builtin_neon_vmull_v: |
| // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. |
| Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull; |
| if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); |
| case NEON::BI__builtin_neon_vmax_v: |
| case NEON::BI__builtin_neon_vmaxq_v: |
| // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. |
| Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax; |
| if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax"); |
| case NEON::BI__builtin_neon_vmaxh_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Int = Intrinsic::aarch64_neon_fmax; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax"); |
| } |
| case NEON::BI__builtin_neon_vmin_v: |
| case NEON::BI__builtin_neon_vminq_v: |
| // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. |
| Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin; |
| if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin"); |
| case NEON::BI__builtin_neon_vminh_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Int = Intrinsic::aarch64_neon_fmin; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin"); |
| } |
| case NEON::BI__builtin_neon_vabd_v: |
| case NEON::BI__builtin_neon_vabdq_v: |
| // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. |
| Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd; |
| if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd"); |
| case NEON::BI__builtin_neon_vpadal_v: |
| case NEON::BI__builtin_neon_vpadalq_v: { |
| unsigned ArgElts = VTy->getNumElements(); |
| llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType()); |
| unsigned BitWidth = EltTy->getBitWidth(); |
| llvm::Type *ArgTy = llvm::VectorType::get( |
| llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts); |
| llvm::Type* Tys[2] = { VTy, ArgTy }; |
| Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp; |
| SmallVector<llvm::Value*, 1> TmpOps; |
| TmpOps.push_back(Ops[1]); |
| Function *F = CGM.getIntrinsic(Int, Tys); |
| llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal"); |
| llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType()); |
| return Builder.CreateAdd(tmp, addend); |
| } |
| case NEON::BI__builtin_neon_vpmin_v: |
| case NEON::BI__builtin_neon_vpminq_v: |
| // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. |
| Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp; |
| if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin"); |
| case NEON::BI__builtin_neon_vpmax_v: |
| case NEON::BI__builtin_neon_vpmaxq_v: |
| // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. |
| Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp; |
| if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax"); |
| case NEON::BI__builtin_neon_vminnm_v: |
| case NEON::BI__builtin_neon_vminnmq_v: |
| Int = Intrinsic::aarch64_neon_fminnm; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm"); |
| case NEON::BI__builtin_neon_vminnmh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Int = Intrinsic::aarch64_neon_fminnm; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm"); |
| case NEON::BI__builtin_neon_vmaxnm_v: |
| case NEON::BI__builtin_neon_vmaxnmq_v: |
| Int = Intrinsic::aarch64_neon_fmaxnm; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm"); |
| case NEON::BI__builtin_neon_vmaxnmh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| Int = Intrinsic::aarch64_neon_fmaxnm; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm"); |
| case NEON::BI__builtin_neon_vrecpss_f32: { |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy), |
| Ops, "vrecps"); |
| } |
| case NEON::BI__builtin_neon_vrecpsd_f64: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy), |
| Ops, "vrecps"); |
| case NEON::BI__builtin_neon_vrecpsh_f16: |
| Ops.push_back(EmitScalarExpr(E->getArg(1))); |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy), |
| Ops, "vrecps"); |
| case NEON::BI__builtin_neon_vqshrun_n_v: |
| Int = Intrinsic::aarch64_neon_sqshrun; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n"); |
| case NEON::BI__builtin_neon_vqrshrun_n_v: |
| Int = Intrinsic::aarch64_neon_sqrshrun; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n"); |
| case NEON::BI__builtin_neon_vqshrn_n_v: |
| Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n"); |
| case NEON::BI__builtin_neon_vrshrn_n_v: |
| Int = Intrinsic::aarch64_neon_rshrn; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n"); |
| case NEON::BI__builtin_neon_vqrshrn_n_v: |
| Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n"); |
| case NEON::BI__builtin_neon_vrndah_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Intrinsic::round; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda"); |
| } |
| case NEON::BI__builtin_neon_vrnda_v: |
| case NEON::BI__builtin_neon_vrndaq_v: { |
| Int = Intrinsic::round; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda"); |
| } |
| case NEON::BI__builtin_neon_vrndih_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Intrinsic::nearbyint; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi"); |
| } |
| case NEON::BI__builtin_neon_vrndmh_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Intrinsic::floor; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm"); |
| } |
| case NEON::BI__builtin_neon_vrndm_v: |
| case NEON::BI__builtin_neon_vrndmq_v: { |
| Int = Intrinsic::floor; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm"); |
| } |
| case NEON::BI__builtin_neon_vrndnh_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Intrinsic::aarch64_neon_frintn; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn"); |
| } |
| case NEON::BI__builtin_neon_vrndn_v: |
| case NEON::BI__builtin_neon_vrndnq_v: { |
| Int = Intrinsic::aarch64_neon_frintn; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn"); |
| } |
| case NEON::BI__builtin_neon_vrndns_f32: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Intrinsic::aarch64_neon_frintn; |
| return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn"); |
| } |
| case NEON::BI__builtin_neon_vrndph_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Intrinsic::ceil; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp"); |
| } |
| case NEON::BI__builtin_neon_vrndp_v: |
| case NEON::BI__builtin_neon_vrndpq_v: { |
| Int = Intrinsic::ceil; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp"); |
| } |
| case NEON::BI__builtin_neon_vrndxh_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Intrinsic::rint; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx"); |
| } |
| case NEON::BI__builtin_neon_vrndx_v: |
| case NEON::BI__builtin_neon_vrndxq_v: { |
| Int = Intrinsic::rint; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx"); |
| } |
| case NEON::BI__builtin_neon_vrndh_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Intrinsic::trunc; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz"); |
| } |
| case NEON::BI__builtin_neon_vrnd_v: |
| case NEON::BI__builtin_neon_vrndq_v: { |
| Int = Intrinsic::trunc; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz"); |
| } |
| case NEON::BI__builtin_neon_vcvt_f64_v: |
| case NEON::BI__builtin_neon_vcvtq_f64_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad)); |
| return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") |
| : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); |
| case NEON::BI__builtin_neon_vcvt_f64_f32: { |
| assert(Type.getEltType() == NeonTypeFlags::Float64 && quad && |
| "unexpected vcvt_f64_f32 builtin"); |
| NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false); |
| Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); |
| |
| return Builder.CreateFPExt(Ops[0], Ty, "vcvt"); |
| } |
| case NEON::BI__builtin_neon_vcvt_f32_f64: { |
| assert(Type.getEltType() == NeonTypeFlags::Float32 && |
| "unexpected vcvt_f32_f64 builtin"); |
| NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true); |
| Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); |
| |
| return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt"); |
| } |
| case NEON::BI__builtin_neon_vcvt_s32_v: |
| case NEON::BI__builtin_neon_vcvt_u32_v: |
| case NEON::BI__builtin_neon_vcvt_s64_v: |
| case NEON::BI__builtin_neon_vcvt_u64_v: |
| case NEON::BI__builtin_neon_vcvt_s16_v: |
| case NEON::BI__builtin_neon_vcvt_u16_v: |
| case NEON::BI__builtin_neon_vcvtq_s32_v: |
| case NEON::BI__builtin_neon_vcvtq_u32_v: |
| case NEON::BI__builtin_neon_vcvtq_s64_v: |
| case NEON::BI__builtin_neon_vcvtq_u64_v: |
| case NEON::BI__builtin_neon_vcvtq_s16_v: |
| case NEON::BI__builtin_neon_vcvtq_u16_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type)); |
| if (usgn) |
| return Builder.CreateFPToUI(Ops[0], Ty); |
| return Builder.CreateFPToSI(Ops[0], Ty); |
| } |
| case NEON::BI__builtin_neon_vcvta_s16_v: |
| case NEON::BI__builtin_neon_vcvta_u16_v: |
| case NEON::BI__builtin_neon_vcvta_s32_v: |
| case NEON::BI__builtin_neon_vcvtaq_s16_v: |
| case NEON::BI__builtin_neon_vcvtaq_s32_v: |
| case NEON::BI__builtin_neon_vcvta_u32_v: |
| case NEON::BI__builtin_neon_vcvtaq_u16_v: |
| case NEON::BI__builtin_neon_vcvtaq_u32_v: |
| case NEON::BI__builtin_neon_vcvta_s64_v: |
| case NEON::BI__builtin_neon_vcvtaq_s64_v: |
| case NEON::BI__builtin_neon_vcvta_u64_v: |
| case NEON::BI__builtin_neon_vcvtaq_u64_v: { |
| Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas; |
| llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta"); |
| } |
| case NEON::BI__builtin_neon_vcvtm_s16_v: |
| case NEON::BI__builtin_neon_vcvtm_s32_v: |
| case NEON::BI__builtin_neon_vcvtmq_s16_v: |
| case NEON::BI__builtin_neon_vcvtmq_s32_v: |
| case NEON::BI__builtin_neon_vcvtm_u16_v: |
| case NEON::BI__builtin_neon_vcvtm_u32_v: |
| case NEON::BI__builtin_neon_vcvtmq_u16_v: |
| case NEON::BI__builtin_neon_vcvtmq_u32_v: |
| case NEON::BI__builtin_neon_vcvtm_s64_v: |
| case NEON::BI__builtin_neon_vcvtmq_s64_v: |
| case NEON::BI__builtin_neon_vcvtm_u64_v: |
| case NEON::BI__builtin_neon_vcvtmq_u64_v: { |
| Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms; |
| llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm"); |
| } |
| case NEON::BI__builtin_neon_vcvtn_s16_v: |
| case NEON::BI__builtin_neon_vcvtn_s32_v: |
| case NEON::BI__builtin_neon_vcvtnq_s16_v: |
| case NEON::BI__builtin_neon_vcvtnq_s32_v: |
| case NEON::BI__builtin_neon_vcvtn_u16_v: |
| case NEON::BI__builtin_neon_vcvtn_u32_v: |
| case NEON::BI__builtin_neon_vcvtnq_u16_v: |
| case NEON::BI__builtin_neon_vcvtnq_u32_v: |
| case NEON::BI__builtin_neon_vcvtn_s64_v: |
| case NEON::BI__builtin_neon_vcvtnq_s64_v: |
| case NEON::BI__builtin_neon_vcvtn_u64_v: |
| case NEON::BI__builtin_neon_vcvtnq_u64_v: { |
| Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns; |
| llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn"); |
| } |
| case NEON::BI__builtin_neon_vcvtp_s16_v: |
| case NEON::BI__builtin_neon_vcvtp_s32_v: |
| case NEON::BI__builtin_neon_vcvtpq_s16_v: |
| case NEON::BI__builtin_neon_vcvtpq_s32_v: |
| case NEON::BI__builtin_neon_vcvtp_u16_v: |
| case NEON::BI__builtin_neon_vcvtp_u32_v: |
| case NEON::BI__builtin_neon_vcvtpq_u16_v: |
| case NEON::BI__builtin_neon_vcvtpq_u32_v: |
| case NEON::BI__builtin_neon_vcvtp_s64_v: |
| case NEON::BI__builtin_neon_vcvtpq_s64_v: |
| case NEON::BI__builtin_neon_vcvtp_u64_v: |
| case NEON::BI__builtin_neon_vcvtpq_u64_v: { |
| Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps; |
| llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp"); |
| } |
| case NEON::BI__builtin_neon_vmulx_v: |
| case NEON::BI__builtin_neon_vmulxq_v: { |
| Int = Intrinsic::aarch64_neon_fmulx; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx"); |
| } |
| case NEON::BI__builtin_neon_vmulxh_lane_f16: |
| case NEON::BI__builtin_neon_vmulxh_laneq_f16: { |
| // vmulx_lane should be mapped to Neon scalar mulx after |
| // extracting the scalar element |
| Ops.push_back(EmitScalarExpr(E->getArg(2))); |
| Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); |
| Ops.pop_back(); |
| Int = Intrinsic::aarch64_neon_fmulx; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx"); |
| } |
| case NEON::BI__builtin_neon_vmul_lane_v: |
| case NEON::BI__builtin_neon_vmul_laneq_v: { |
| // v1f64 vmul_lane should be mapped to Neon scalar mul lane |
| bool Quad = false; |
| if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v) |
| Quad = true; |
| Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); |
| llvm::Type *VTy = GetNeonType(this, |
| NeonTypeFlags(NeonTypeFlags::Float64, false, Quad)); |
| Ops[1] = Builder.CreateBitCast(Ops[1], VTy); |
| Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); |
| Value *Result = Builder.CreateFMul(Ops[0], Ops[1]); |
| return Builder.CreateBitCast(Result, Ty); |
| } |
| case NEON::BI__builtin_neon_vnegd_s64: |
| return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd"); |
| case NEON::BI__builtin_neon_vnegh_f16: |
| return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh"); |
| case NEON::BI__builtin_neon_vpmaxnm_v: |
| case NEON::BI__builtin_neon_vpmaxnmq_v: { |
| Int = Intrinsic::aarch64_neon_fmaxnmp; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm"); |
| } |
| case NEON::BI__builtin_neon_vpminnm_v: |
| case NEON::BI__builtin_neon_vpminnmq_v: { |
| Int = Intrinsic::aarch64_neon_fminnmp; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm"); |
| } |
| case NEON::BI__builtin_neon_vsqrth_f16: { |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Int = Intrinsic::sqrt; |
| return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt"); |
| } |
| case NEON::BI__builtin_neon_vsqrt_v: |
| case NEON::BI__builtin_neon_vsqrtq_v: { |
| Int = Intrinsic::sqrt; |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt"); |
| } |
| case NEON::BI__builtin_neon_vrbit_v: |
| case NEON::BI__builtin_neon_vrbitq_v: { |
| Int = Intrinsic::aarch64_neon_rbit; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit"); |
| } |
| case NEON::BI__builtin_neon_vaddv_u8: |
| // FIXME: These are handled by the AArch64 scalar code. |
| usgn = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vaddv_s8: { |
| Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int8Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vaddv_u16: |
| usgn = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vaddv_s16: { |
| Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int16Ty, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vaddvq_u8: |
| usgn = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vaddvq_s8: { |
| Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int8Ty, 16); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vaddvq_u16: |
| usgn = true; |
| LLVM_FALLTHROUGH; |
| case NEON::BI__builtin_neon_vaddvq_s16: { |
| Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int16Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxv_u8: { |
| Int = Intrinsic::aarch64_neon_umaxv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int8Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxv_u16: { |
| Int = Intrinsic::aarch64_neon_umaxv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int16Ty, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxvq_u8: { |
| Int = Intrinsic::aarch64_neon_umaxv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int8Ty, 16); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxvq_u16: { |
| Int = Intrinsic::aarch64_neon_umaxv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int16Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxv_s8: { |
| Int = Intrinsic::aarch64_neon_smaxv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int8Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxv_s16: { |
| Int = Intrinsic::aarch64_neon_smaxv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int16Ty, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxvq_s8: { |
| Int = Intrinsic::aarch64_neon_smaxv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int8Ty, 16); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxvq_s16: { |
| Int = Intrinsic::aarch64_neon_smaxv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int16Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vmaxv_f16: { |
| Int = Intrinsic::aarch64_neon_fmaxv; |
| Ty = HalfTy; |
| VTy = llvm::VectorType::get(HalfTy, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vmaxvq_f16: { |
| Int = Intrinsic::aarch64_neon_fmaxv; |
| Ty = HalfTy; |
| VTy = llvm::VectorType::get(HalfTy, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vminv_u8: { |
| Int = Intrinsic::aarch64_neon_uminv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int8Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vminv_u16: { |
| Int = Intrinsic::aarch64_neon_uminv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int16Ty, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vminvq_u8: { |
| Int = Intrinsic::aarch64_neon_uminv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int8Ty, 16); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vminvq_u16: { |
| Int = Intrinsic::aarch64_neon_uminv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int16Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vminv_s8: { |
| Int = Intrinsic::aarch64_neon_sminv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int8Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vminv_s16: { |
| Int = Intrinsic::aarch64_neon_sminv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int16Ty, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vminvq_s8: { |
| Int = Intrinsic::aarch64_neon_sminv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int8Ty, 16); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int8Ty); |
| } |
| case NEON::BI__builtin_neon_vminvq_s16: { |
| Int = Intrinsic::aarch64_neon_sminv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int16Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vminv_f16: { |
| Int = Intrinsic::aarch64_neon_fminv; |
| Ty = HalfTy; |
| VTy = llvm::VectorType::get(HalfTy, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vminvq_f16: { |
| Int = Intrinsic::aarch64_neon_fminv; |
| Ty = HalfTy; |
| VTy = llvm::VectorType::get(HalfTy, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vmaxnmv_f16: { |
| Int = Intrinsic::aarch64_neon_fmaxnmv; |
| Ty = HalfTy; |
| VTy = llvm::VectorType::get(HalfTy, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vmaxnmvq_f16: { |
| Int = Intrinsic::aarch64_neon_fmaxnmv; |
| Ty = HalfTy; |
| VTy = llvm::VectorType::get(HalfTy, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vminnmv_f16: { |
| Int = Intrinsic::aarch64_neon_fminnmv; |
| Ty = HalfTy; |
| VTy = llvm::VectorType::get(HalfTy, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vminnmvq_f16: { |
| Int = Intrinsic::aarch64_neon_fminnmv; |
| Ty = HalfTy; |
| VTy = llvm::VectorType::get(HalfTy, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv"); |
| return Builder.CreateTrunc(Ops[0], HalfTy); |
| } |
| case NEON::BI__builtin_neon_vmul_n_f64: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); |
| Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy); |
| return Builder.CreateFMul(Ops[0], RHS); |
| } |
| case NEON::BI__builtin_neon_vaddlv_u8: { |
| Int = Intrinsic::aarch64_neon_uaddlv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int8Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vaddlv_u16: { |
| Int = Intrinsic::aarch64_neon_uaddlv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int16Ty, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| } |
| case NEON::BI__builtin_neon_vaddlvq_u8: { |
| Int = Intrinsic::aarch64_neon_uaddlv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int8Ty, 16); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vaddlvq_u16: { |
| Int = Intrinsic::aarch64_neon_uaddlv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int16Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| } |
| case NEON::BI__builtin_neon_vaddlv_s8: { |
| Int = Intrinsic::aarch64_neon_saddlv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int8Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vaddlv_s16: { |
| Int = Intrinsic::aarch64_neon_saddlv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int16Ty, 4); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| } |
| case NEON::BI__builtin_neon_vaddlvq_s8: { |
| Int = Intrinsic::aarch64_neon_saddlv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int8Ty, 16); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| return Builder.CreateTrunc(Ops[0], Int16Ty); |
| } |
| case NEON::BI__builtin_neon_vaddlvq_s16: { |
| Int = Intrinsic::aarch64_neon_saddlv; |
| Ty = Int32Ty; |
| VTy = llvm::VectorType::get(Int16Ty, 8); |
| llvm::Type *Tys[2] = { Ty, VTy }; |
| Ops.push_back(EmitScalarExpr(E->getArg(0))); |
| return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); |
| } |
| case NEON::BI__builtin_neon_vsri_n_v: |
| case NEON::BI__builtin_neon_vsriq_n_v: { |
| Int = Intrinsic::aarch64_neon_vsri; |
| llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); |
| return EmitNeonCall(Intrin, Ops, "vsri_n"); |
| } |
| case NEON::BI__builtin_neon_vsli_n_v: |
| case NEON::BI__builtin_neon_vsliq_n_v: { |
| Int = Intrinsic::aarch64_neon_vsli; |
| llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); |
| return EmitNeonCall(Intrin, Ops, "vsli_n"); |
| } |
| case NEON::BI__builtin_neon_vsra_n_v: |
| case NEON::BI__builtin_neon_vsraq_n_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); |
| return Builder.CreateAdd(Ops[0], Ops[1]); |
| case NEON::BI__builtin_neon_vrsra_n_v: |
| case NEON::BI__builtin_neon_vrsraq_n_v: { |
| Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl; |
| SmallVector<llvm::Value*,2> TmpOps; |
| TmpOps.push_back(Ops[1]); |
| TmpOps.push_back(Ops[2]); |
| Function* F = CGM.getIntrinsic(Int, Ty); |
| llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true); |
| Ops[0] = Builder.CreateBitCast(Ops[0], VTy); |
| return Builder.CreateAdd(Ops[0], tmp); |
| } |
| case NEON::BI__builtin_neon_vld1_v: |
| case NEON::BI__builtin_neon_vld1q_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); |
| auto Alignment = CharUnits::fromQuantity( |
| BuiltinID == NEON::BI__builtin_neon_vld1_v ? 8 : 16); |
| return Builder.CreateAlignedLoad(VTy, Ops[0], Alignment); |
| } |
| case NEON::BI__builtin_neon_vst1_v: |
| case NEON::BI__builtin_neon_vst1q_v: |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); |
| Ops[1] = Builder.CreateBitCast(Ops[1], VTy); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| case NEON::BI__builtin_neon_vld1_lane_v: |
| case NEON::BI__builtin_neon_vld1q_lane_v: { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ty = llvm::PointerType::getUnqual(VTy->getElementType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| auto Alignment = CharUnits::fromQuantity( |
| BuiltinID == NEON::BI__builtin_neon_vld1_lane_v ? 8 : 16); |
| Ops[0] = |
| Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment); |
| return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane"); |
| } |
| case NEON::BI__builtin_neon_vld1_dup_v: |
| case NEON::BI__builtin_neon_vld1q_dup_v: { |
| Value *V = UndefValue::get(Ty); |
| Ty = llvm::PointerType::getUnqual(VTy->getElementType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| auto Alignment = CharUnits::fromQuantity( |
| BuiltinID == NEON::BI__builtin_neon_vld1_dup_v ? 8 : 16); |
| Ops[0] = |
| Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment); |
| llvm::Constant *CI = ConstantInt::get(Int32Ty, 0); |
| Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI); |
| return EmitNeonSplat(Ops[0], CI); |
| } |
| case NEON::BI__builtin_neon_vst1_lane_v: |
| case NEON::BI__builtin_neon_vst1q_lane_v: |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| return Builder.CreateDefaultAlignedStore(Ops[1], |
| Builder.CreateBitCast(Ops[0], Ty)); |
| case NEON::BI__builtin_neon_vld2_v: |
| case NEON::BI__builtin_neon_vld2q_v: { |
| llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], PTy); |
| llvm::Type *Tys[2] = { VTy, PTy }; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys); |
| Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); |
| Ops[0] = Builder.CreateBitCast(Ops[0], |
| llvm::PointerType::getUnqual(Ops[1]->getType())); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld3_v: |
| case NEON::BI__builtin_neon_vld3q_v: { |
| llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], PTy); |
| llvm::Type *Tys[2] = { VTy, PTy }; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys); |
| Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); |
| Ops[0] = Builder.CreateBitCast(Ops[0], |
| llvm::PointerType::getUnqual(Ops[1]->getType())); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld4_v: |
| case NEON::BI__builtin_neon_vld4q_v: { |
| llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); |
| Ops[1] = Builder.CreateBitCast(Ops[1], PTy); |
| llvm::Type *Tys[2] = { VTy, PTy }; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys); |
| Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); |
| Ops[0] = Builder.CreateBitCast(Ops[0], |
| llvm::PointerType::getUnqual(Ops[1]->getType())); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld2_dup_v: |
| case NEON::BI__builtin_neon_vld2q_dup_v: { |
| llvm::Type *PTy = |
| llvm::PointerType::getUnqual(VTy->getElementType()); |
| Ops[1] = Builder.CreateBitCast(Ops[1], PTy); |
| llvm::Type *Tys[2] = { VTy, PTy }; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys); |
| Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); |
| Ops[0] = Builder.CreateBitCast(Ops[0], |
| llvm::PointerType::getUnqual(Ops[1]->getType())); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld3_dup_v: |
| case NEON::BI__builtin_neon_vld3q_dup_v: { |
| llvm::Type *PTy = |
| llvm::PointerType::getUnqual(VTy->getElementType()); |
| Ops[1] = Builder.CreateBitCast(Ops[1], PTy); |
| llvm::Type *Tys[2] = { VTy, PTy }; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys); |
| Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); |
| Ops[0] = Builder.CreateBitCast(Ops[0], |
| llvm::PointerType::getUnqual(Ops[1]->getType())); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld4_dup_v: |
| case NEON::BI__builtin_neon_vld4q_dup_v: { |
| llvm::Type *PTy = |
| llvm::PointerType::getUnqual(VTy->getElementType()); |
| Ops[1] = Builder.CreateBitCast(Ops[1], PTy); |
| llvm::Type *Tys[2] = { VTy, PTy }; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys); |
| Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); |
| Ops[0] = Builder.CreateBitCast(Ops[0], |
| llvm::PointerType::getUnqual(Ops[1]->getType())); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld2_lane_v: |
| case NEON::BI__builtin_neon_vld2q_lane_v: { |
| llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys); |
| Ops.push_back(Ops[1]); |
| Ops.erase(Ops.begin()+1); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); |
| Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane"); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld3_lane_v: |
| case NEON::BI__builtin_neon_vld3q_lane_v: { |
| llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys); |
| Ops.push_back(Ops[1]); |
| Ops.erase(Ops.begin()+1); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Ops[3] = Builder.CreateBitCast(Ops[3], Ty); |
| Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty); |
| Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane"); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vld4_lane_v: |
| case NEON::BI__builtin_neon_vld4q_lane_v: { |
| llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; |
| Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys); |
| Ops.push_back(Ops[1]); |
| Ops.erase(Ops.begin()+1); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Ops[3] = Builder.CreateBitCast(Ops[3], Ty); |
| Ops[4] = Builder.CreateBitCast(Ops[4], Ty); |
| Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty); |
| Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane"); |
| Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], Ty); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case NEON::BI__builtin_neon_vst2_v: |
| case NEON::BI__builtin_neon_vst2q_v: { |
| Ops.push_back(Ops[0]); |
| Ops.erase(Ops.begin()); |
| llvm::Type *Tys[2] = { VTy, Ops[2]->getType() }; |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys), |
| Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vst2_lane_v: |
| case NEON::BI__builtin_neon_vst2q_lane_v: { |
| Ops.push_back(Ops[0]); |
| Ops.erase(Ops.begin()); |
| Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); |
| llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys), |
| Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vst3_v: |
| case NEON::BI__builtin_neon_vst3q_v: { |
| Ops.push_back(Ops[0]); |
| Ops.erase(Ops.begin()); |
| llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys), |
| Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vst3_lane_v: |
| case NEON::BI__builtin_neon_vst3q_lane_v: { |
| Ops.push_back(Ops[0]); |
| Ops.erase(Ops.begin()); |
| Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); |
| llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys), |
| Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vst4_v: |
| case NEON::BI__builtin_neon_vst4q_v: { |
| Ops.push_back(Ops[0]); |
| Ops.erase(Ops.begin()); |
| llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys), |
| Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vst4_lane_v: |
| case NEON::BI__builtin_neon_vst4q_lane_v: { |
| Ops.push_back(Ops[0]); |
| Ops.erase(Ops.begin()); |
| Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty); |
| llvm::Type *Tys[2] = { VTy, Ops[5]->getType() }; |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys), |
| Ops, ""); |
| } |
| case NEON::BI__builtin_neon_vtrn_v: |
| case NEON::BI__builtin_neon_vtrnq_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Value *SV = nullptr; |
| |
| for (unsigned vi = 0; vi != 2; ++vi) { |
| SmallVector<uint32_t, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { |
| Indices.push_back(i+vi); |
| Indices.push_back(i+e+vi); |
| } |
| Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); |
| SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn"); |
| SV = Builder.CreateDefaultAlignedStore(SV, Addr); |
| } |
| return SV; |
| } |
| case NEON::BI__builtin_neon_vuzp_v: |
| case NEON::BI__builtin_neon_vuzpq_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Value *SV = nullptr; |
| |
| for (unsigned vi = 0; vi != 2; ++vi) { |
| SmallVector<uint32_t, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) |
| Indices.push_back(2*i+vi); |
| |
| Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); |
| SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp"); |
| SV = Builder.CreateDefaultAlignedStore(SV, Addr); |
| } |
| return SV; |
| } |
| case NEON::BI__builtin_neon_vzip_v: |
| case NEON::BI__builtin_neon_vzipq_v: { |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); |
| Ops[1] = Builder.CreateBitCast(Ops[1], Ty); |
| Ops[2] = Builder.CreateBitCast(Ops[2], Ty); |
| Value *SV = nullptr; |
| |
| for (unsigned vi = 0; vi != 2; ++vi) { |
| SmallVector<uint32_t, 16> Indices; |
| for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { |
| Indices.push_back((i + vi*e) >> 1); |
| Indices.push_back(((i + vi*e) >> 1)+e); |
| } |
| Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); |
| SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip"); |
| SV = Builder.CreateDefaultAlignedStore(SV, Addr); |
| } |
| return SV; |
| } |
| case NEON::BI__builtin_neon_vqtbl1q_v: { |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty), |
| Ops, "vtbl1"); |
| } |
| case NEON::BI__builtin_neon_vqtbl2q_v: { |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty), |
| Ops, "vtbl2"); |
| } |
| case NEON::BI__builtin_neon_vqtbl3q_v: { |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty), |
| Ops, "vtbl3"); |
| } |
| case NEON::BI__builtin_neon_vqtbl4q_v: { |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty), |
| Ops, "vtbl4"); |
| } |
| case NEON::BI__builtin_neon_vqtbx1q_v: { |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty), |
| Ops, "vtbx1"); |
| } |
| case NEON::BI__builtin_neon_vqtbx2q_v: { |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty), |
| Ops, "vtbx2"); |
| } |
| case NEON::BI__builtin_neon_vqtbx3q_v: { |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty), |
| Ops, "vtbx3"); |
| } |
| case NEON::BI__builtin_neon_vqtbx4q_v: { |
| return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty), |
| Ops, "vtbx4"); |
| } |
| case NEON::BI__builtin_neon_vsqadd_v: |
| case NEON::BI__builtin_neon_vsqaddq_v: { |
| Int = Intrinsic::aarch64_neon_usqadd; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd"); |
| } |
| case NEON::BI__builtin_neon_vuqadd_v: |
| case NEON::BI__builtin_neon_vuqaddq_v: { |
| Int = Intrinsic::aarch64_neon_suqadd; |
| return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd"); |
| } |
| case AArch64::BI__iso_volatile_load8: |
| case AArch64::BI__iso_volatile_load16: |
| case AArch64::BI__iso_volatile_load32: |
| case AArch64::BI__iso_volatile_load64: |
| return EmitISOVolatileLoad(E); |
| case AArch64::BI__iso_volatile_store8: |
| case AArch64::BI__iso_volatile_store16: |
| case AArch64::BI__iso_volatile_store32: |
| case AArch64::BI__iso_volatile_store64: |
| return EmitISOVolatileStore(E); |
| case AArch64::BI_BitScanForward: |
| case AArch64::BI_BitScanForward64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E); |
| case AArch64::BI_BitScanReverse: |
| case AArch64::BI_BitScanReverse64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E); |
| case AArch64::BI_InterlockedAnd64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E); |
| case AArch64::BI_InterlockedExchange64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E); |
| case AArch64::BI_InterlockedExchangeAdd64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E); |
| case AArch64::BI_InterlockedExchangeSub64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E); |
| case AArch64::BI_InterlockedOr64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E); |
| case AArch64::BI_InterlockedXor64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E); |
| case AArch64::BI_InterlockedDecrement64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E); |
| case AArch64::BI_InterlockedIncrement64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E); |
| } |
| } |
| |
| llvm::Value *CodeGenFunction:: |
| BuildVector(ArrayRef<llvm::Value*> Ops) { |
| assert((Ops.size() & (Ops.size() - 1)) == 0 && |
| "Not a power-of-two sized vector!"); |
| bool AllConstants = true; |
| for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i) |
| AllConstants &= isa<Constant>(Ops[i]); |
| |
| // If this is a constant vector, create a ConstantVector. |
| if (AllConstants) { |
| SmallVector<llvm::Constant*, 16> CstOps; |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| CstOps.push_back(cast<Constant>(Ops[i])); |
| return llvm::ConstantVector::get(CstOps); |
| } |
| |
| // Otherwise, insertelement the values to build the vector. |
| Value *Result = |
| llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size())); |
| |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i)); |
| |
| return Result; |
| } |
| |
| // Convert the mask from an integer type to a vector of i1. |
| static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask, |
| unsigned NumElts) { |
| |
| llvm::VectorType *MaskTy = llvm::VectorType::get(CGF.Builder.getInt1Ty(), |
| cast<IntegerType>(Mask->getType())->getBitWidth()); |
| Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy); |
| |
| // If we have less than 8 elements, then the starting mask was an i8 and |
| // we need to extract down to the right number of elements. |
| if (NumElts < 8) { |
| uint32_t Indices[4]; |
| for (unsigned i = 0; i != NumElts; ++i) |
| Indices[i] = i; |
| MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec, |
| makeArrayRef(Indices, NumElts), |
| "extract"); |
| } |
| return MaskVec; |
| } |
| |
| static Value *EmitX86MaskedStore(CodeGenFunction &CGF, |
| ArrayRef<Value *> Ops, |
| unsigned Align) { |
| // Cast the pointer to right type. |
| Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], |
| llvm::PointerType::getUnqual(Ops[1]->getType())); |
| |
| Value *MaskVec = getMaskVecValue(CGF, Ops[2], |
| Ops[1]->getType()->getVectorNumElements()); |
| |
| return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Align, MaskVec); |
| } |
| |
| static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, |
| ArrayRef<Value *> Ops, unsigned Align) { |
| // Cast the pointer to right type. |
| Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], |
| llvm::PointerType::getUnqual(Ops[1]->getType())); |
| |
| Value *MaskVec = getMaskVecValue(CGF, Ops[2], |
| Ops[1]->getType()->getVectorNumElements()); |
| |
| return CGF.Builder.CreateMaskedLoad(Ptr, Align, MaskVec, Ops[1]); |
| } |
| |
| static Value *EmitX86ExpandLoad(CodeGenFunction &CGF, |
| ArrayRef<Value *> Ops) { |
| llvm::Type *ResultTy = Ops[1]->getType(); |
| llvm::Type *PtrTy = ResultTy->getVectorElementType(); |
| |
| // Cast the pointer to element type. |
| Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], |
| llvm::PointerType::getUnqual(PtrTy)); |
| |
| Value *MaskVec = getMaskVecValue(CGF, Ops[2], |
| ResultTy->getVectorNumElements()); |
| |
| llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload, |
| ResultTy); |
| return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] }); |
| } |
| |
| static Value *EmitX86CompressStore(CodeGenFunction &CGF, |
| ArrayRef<Value *> Ops) { |
| llvm::Type *ResultTy = Ops[1]->getType(); |
| llvm::Type *PtrTy = ResultTy->getVectorElementType(); |
| |
| // Cast the pointer to element type. |
| Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], |
| llvm::PointerType::getUnqual(PtrTy)); |
| |
| Value *MaskVec = getMaskVecValue(CGF, Ops[2], |
| ResultTy->getVectorNumElements()); |
| |
| llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore, |
| ResultTy); |
| return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec }); |
| } |
| |
| static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc, |
| unsigned NumElts, ArrayRef<Value *> Ops, |
| bool InvertLHS = false) { |
| Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts); |
| Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts); |
| |
| if (InvertLHS) |
| LHS = CGF.Builder.CreateNot(LHS); |
| |
| return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS), |
| CGF.Builder.getIntNTy(std::max(NumElts, 8U))); |
| } |
| |
| static Value *EmitX86Select(CodeGenFunction &CGF, |
| Value *Mask, Value *Op0, Value *Op1) { |
| |
| // If the mask is all ones just return first argument. |
| if (const auto *C = dyn_cast<Constant>(Mask)) |
| if (C->isAllOnesValue()) |
| return Op0; |
| |
| Mask = getMaskVecValue(CGF, Mask, Op0->getType()->getVectorNumElements()); |
| |
| return CGF.Builder.CreateSelect(Mask, Op0, Op1); |
| } |
| |
| static Value *EmitX86ScalarSelect(CodeGenFunction &CGF, |
| Value *Mask, Value *Op0, Value *Op1) { |
| // If the mask is all ones just return first argument. |
| if (const auto *C = dyn_cast<Constant>(Mask)) |
| if (C->isAllOnesValue()) |
| return Op0; |
| |
| llvm::VectorType *MaskTy = |
| llvm::VectorType::get(CGF.Builder.getInt1Ty(), |
| Mask->getType()->getIntegerBitWidth()); |
| Mask = CGF.Builder.CreateBitCast(Mask, MaskTy); |
| Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0); |
| return CGF.Builder.CreateSelect(Mask, Op0, Op1); |
| } |
| |
| static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp, |
| unsigned NumElts, Value *MaskIn) { |
| if (MaskIn) { |
| const auto *C = dyn_cast<Constant>(MaskIn); |
| if (!C || !C->isAllOnesValue()) |
| Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts)); |
| } |
| |
| if (NumElts < 8) { |
| uint32_t Indices[8]; |
| for (unsigned i = 0; i != NumElts; ++i) |
| Indices[i] = i; |
| for (unsigned i = NumElts; i != 8; ++i) |
| Indices[i] = i % NumElts + NumElts; |
| Cmp = CGF.Builder.CreateShuffleVector( |
| Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices); |
| } |
| |
| return CGF.Builder.CreateBitCast(Cmp, |
| IntegerType::get(CGF.getLLVMContext(), |
| std::max(NumElts, 8U))); |
| } |
| |
| static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC, |
| bool Signed, ArrayRef<Value *> Ops) { |
| assert((Ops.size() == 2 || Ops.size() == 4) && |
| "Unexpected number of arguments"); |
| unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); |
| Value *Cmp; |
| |
| if (CC == 3) { |
| Cmp = Constant::getNullValue( |
| llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts)); |
| } else if (CC == 7) { |
| Cmp = Constant::getAllOnesValue( |
| llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts)); |
| } else { |
| ICmpInst::Predicate Pred; |
| switch (CC) { |
| default: llvm_unreachable("Unknown condition code"); |
| case 0: Pred = ICmpInst::ICMP_EQ; break; |
| case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break; |
| case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break; |
| case 4: Pred = ICmpInst::ICMP_NE; break; |
| case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break; |
| case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break; |
| } |
| Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]); |
| } |
| |
| Value *MaskIn = nullptr; |
| if (Ops.size() == 4) |
| MaskIn = Ops[3]; |
| |
| return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn); |
| } |
| |
| static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) { |
| Value *Zero = Constant::getNullValue(In->getType()); |
| return EmitX86MaskedCompare(CGF, 1, true, { In, Zero }); |
| } |
| |
| static Value *EmitX86Abs(CodeGenFunction &CGF, ArrayRef<Value *> Ops) { |
| |
| llvm::Type *Ty = Ops[0]->getType(); |
| Value *Zero = llvm::Constant::getNullValue(Ty); |
| Value *Sub = CGF.Builder.CreateSub(Zero, Ops[0]); |
| Value *Cmp = CGF.Builder.CreateICmp(ICmpInst::ICMP_SGT, Ops[0], Zero); |
| Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Sub); |
| return Res; |
| } |
| |
| static Value *EmitX86MinMax(CodeGenFunction &CGF, ICmpInst::Predicate Pred, |
| ArrayRef<Value *> Ops) { |
| Value *Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]); |
| Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Ops[1]); |
| |
| assert(Ops.size() == 2); |
| return Res; |
| } |
| |
| // Lowers X86 FMA intrinsics to IR. |
| static Value *EmitX86FMAExpr(CodeGenFunction &CGF, ArrayRef<Value *> Ops, |
| unsigned BuiltinID, bool IsAddSub) { |
| |
| bool Subtract = false; |
| Intrinsic::ID IID = Intrinsic::not_intrinsic; |
| switch (BuiltinID) { |
| default: break; |
| case clang::X86::BI__builtin_ia32_vfmsubps512_mask3: |
| Subtract = true; |
| LLVM_FALLTHROUGH; |
| case clang::X86::BI__builtin_ia32_vfmaddps512_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddps512_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddps512_mask3: |
| IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break; |
| case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3: |
| Subtract = true; |
| LLVM_FALLTHROUGH; |
| case clang::X86::BI__builtin_ia32_vfmaddpd512_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3: |
| IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break; |
| case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3: |
| Subtract = true; |
| LLVM_FALLTHROUGH; |
| case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3: |
| IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512; |
| break; |
| case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3: |
| Subtract = true; |
| LLVM_FALLTHROUGH; |
| case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3: |
| IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512; |
| break; |
| } |
| |
| Value *A = Ops[0]; |
| Value *B = Ops[1]; |
| Value *C = Ops[2]; |
| |
| if (Subtract) |
| C = CGF.Builder.CreateFNeg(C); |
| |
| Value *Res; |
| |
| // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding). |
| if (IID != Intrinsic::not_intrinsic && |
| cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4) { |
| Function *Intr = CGF.CGM.getIntrinsic(IID); |
| Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() }); |
| } else { |
| llvm::Type *Ty = A->getType(); |
| Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty); |
| Res = CGF.Builder.CreateCall(FMA, {A, B, C} ); |
| |
| if (IsAddSub) { |
| // Negate even elts in C using a mask. |
| unsigned NumElts = Ty->getVectorNumElements(); |
| SmallVector<uint32_t, 16> Indices(NumElts); |
| for (unsigned i = 0; i != NumElts; ++i) |
| Indices[i] = i + (i % 2) * NumElts; |
| |
| Value *NegC = CGF.Builder.CreateFNeg(C); |
| Value *FMSub = CGF.Builder.CreateCall(FMA, {A, B, NegC} ); |
| Res = CGF.Builder.CreateShuffleVector(FMSub, Res, Indices); |
| } |
| } |
| |
| // Handle any required masking. |
| Value *MaskFalseVal = nullptr; |
| switch (BuiltinID) { |
| case clang::X86::BI__builtin_ia32_vfmaddps512_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddpd512_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask: |
| case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask: |
| MaskFalseVal = Ops[0]; |
| break; |
| case clang::X86::BI__builtin_ia32_vfmaddps512_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz: |
| case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz: |
| MaskFalseVal = Constant::getNullValue(Ops[0]->getType()); |
| break; |
| case clang::X86::BI__builtin_ia32_vfmsubps512_mask3: |
| case clang::X86::BI__builtin_ia32_vfmaddps512_mask3: |
| case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3: |
| case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3: |
| case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3: |
| case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3: |
| case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3: |
| case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3: |
| MaskFalseVal = Ops[2]; |
| break; |
| } |
| |
| if (MaskFalseVal) |
| return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal); |
| |
| return Res; |
| } |
| |
| static Value * |
| EmitScalarFMAExpr(CodeGenFunction &CGF, MutableArrayRef<Value *> Ops, |
| Value *Upper, bool ZeroMask = false, unsigned PTIdx = 0, |
| bool NegAcc = false) { |
| unsigned Rnd = 4; |
| if (Ops.size() > 4) |
| Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue(); |
| |
| if (NegAcc) |
| Ops[2] = CGF.Builder.CreateFNeg(Ops[2]); |
| |
| Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0); |
| Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0); |
| Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0); |
| Value *Res; |
| if (Rnd != 4) { |
| Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ? |
| Intrinsic::x86_avx512_vfmadd_f32 : |
| Intrinsic::x86_avx512_vfmadd_f64; |
| Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID), |
| {Ops[0], Ops[1], Ops[2], Ops[4]}); |
| } else { |
| Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType()); |
| Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3)); |
| } |
| // If we have more than 3 arguments, we need to do masking. |
| if (Ops.size() > 3) { |
| Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType()) |
| : Ops[PTIdx]; |
| |
| // If we negated the accumulator and the its the PassThru value we need to |
| // bypass the negate. Conveniently Upper should be the same thing in this |
| // case. |
| if (NegAcc && PTIdx == 2) |
| PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0); |
| |
| Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru); |
| } |
| return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0); |
| } |
| |
| static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned, |
| ArrayRef<Value *> Ops) { |
| llvm::Type *Ty = Ops[0]->getType(); |
| // Arguments have a vXi32 type so cast to vXi64. |
| Ty = llvm::VectorType::get(CGF.Int64Ty, |
| Ty->getPrimitiveSizeInBits() / 64); |
| Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty); |
| Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty); |
| |
| if (IsSigned) { |
| // Shift left then arithmetic shift right. |
| Constant *ShiftAmt = ConstantInt::get(Ty, 32); |
| LHS = CGF.Builder.CreateShl(LHS, ShiftAmt); |
| LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt); |
| RHS = CGF.Builder.CreateShl(RHS, ShiftAmt); |
| RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt); |
| } else { |
| // Clear the upper bits. |
| Constant *Mask = ConstantInt::get(Ty, 0xffffffff); |
| LHS = CGF.Builder.CreateAnd(LHS, Mask); |
| RHS = CGF.Builder.CreateAnd(RHS, Mask); |
| } |
| |
| return CGF.Builder.CreateMul(LHS, RHS); |
| } |
| |
| // Emit a masked pternlog intrinsic. This only exists because the header has to |
| // use a macro and we aren't able to pass the input argument to a pternlog |
| // builtin and a select builtin without evaluating it twice. |
| static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask, |
| ArrayRef<Value *> Ops) { |
| llvm::Type *Ty = Ops[0]->getType(); |
| |
| unsigned VecWidth = Ty->getPrimitiveSizeInBits(); |
| unsigned EltWidth = Ty->getScalarSizeInBits(); |
| Intrinsic::ID IID; |
| if (VecWidth == 128 && EltWidth == 32) |
| IID = Intrinsic::x86_avx512_pternlog_d_128; |
| else if (VecWidth == 256 && EltWidth == 32) |
| IID = Intrinsic::x86_avx512_pternlog_d_256; |
| else if (VecWidth == 512 && EltWidth == 32) |
| IID = Intrinsic::x86_avx512_pternlog_d_512; |
| else if (VecWidth == 128 && EltWidth == 64) |
| IID = Intrinsic::x86_avx512_pternlog_q_128; |
| else if (VecWidth == 256 && EltWidth == 64) |
| IID = Intrinsic::x86_avx512_pternlog_q_256; |
| else if (VecWidth == 512 && EltWidth == 64) |
| IID = Intrinsic::x86_avx512_pternlog_q_512; |
| else |
| llvm_unreachable("Unexpected intrinsic"); |
| |
| Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID), |
| Ops.drop_back()); |
| Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0]; |
| return EmitX86Select(CGF, Ops[4], Ternlog, PassThru); |
| } |
| |
| static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op, |
| llvm::Type *DstTy) { |
| unsigned NumberOfElements = DstTy->getVectorNumElements(); |
| Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements); |
| return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2"); |
| } |
| |
| Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) { |
| const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts(); |
| StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString(); |
| return EmitX86CpuIs(CPUStr); |
| } |
| |
| Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) { |
| |
| llvm::Type *Int32Ty = Builder.getInt32Ty(); |
| |
| // Matching the struct layout from the compiler-rt/libgcc structure that is |
| // filled in: |
| // unsigned int __cpu_vendor; |
| // unsigned int __cpu_type; |
| // unsigned int __cpu_subtype; |
| // unsigned int __cpu_features[1]; |
| llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, |
| llvm::ArrayType::get(Int32Ty, 1)); |
| |
| // Grab the global __cpu_model. |
| llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model"); |
| |
| // Calculate the index needed to access the correct field based on the |
| // range. Also adjust the expected value. |
| unsigned Index; |
| unsigned Value; |
| std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr) |
| #define X86_VENDOR(ENUM, STRING) \ |
| .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)}) |
| #define X86_CPU_TYPE_COMPAT_WITH_ALIAS(ARCHNAME, ENUM, STR, ALIAS) \ |
| .Cases(STR, ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)}) |
| #define X86_CPU_TYPE_COMPAT(ARCHNAME, ENUM, STR) \ |
| .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)}) |
| #define X86_CPU_SUBTYPE_COMPAT(ARCHNAME, ENUM, STR) \ |
| .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)}) |
| #include "llvm/Support/X86TargetParser.def" |
| .Default({0, 0}); |
| assert(Value != 0 && "Invalid CPUStr passed to CpuIs"); |
| |
| // Grab the appropriate field from __cpu_model. |
| llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0), |
| ConstantInt::get(Int32Ty, Index)}; |
| llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs); |
| CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4)); |
| |
| // Check the value of the field against the requested value. |
| return Builder.CreateICmpEQ(CpuValue, |
| llvm::ConstantInt::get(Int32Ty, Value)); |
| } |
| |
| Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) { |
| const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts(); |
| StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString(); |
| return EmitX86CpuSupports(FeatureStr); |
| } |
| |
| uint32_t |
| CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) { |
| // Processor features and mapping to processor feature value. |
| uint32_t FeaturesMask = 0; |
| for (const StringRef &FeatureStr : FeatureStrs) { |
| unsigned Feature = |
| StringSwitch<unsigned>(FeatureStr) |
| #define X86_FEATURE_COMPAT(VAL, ENUM, STR) .Case(STR, VAL) |
| #include "llvm/Support/X86TargetParser.def" |
| ; |
| FeaturesMask |= (1U << Feature); |
| } |
| return FeaturesMask; |
| } |
| |
| Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) { |
| return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs)); |
| } |
| |
| llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint32_t FeaturesMask) { |
| // Matching the struct layout from the compiler-rt/libgcc structure that is |
| // filled in: |
| // unsigned int __cpu_vendor; |
| // unsigned int __cpu_type; |
| // unsigned int __cpu_subtype; |
| // unsigned int __cpu_features[1]; |
| llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, |
| llvm::ArrayType::get(Int32Ty, 1)); |
| |
| // Grab the global __cpu_model. |
| llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model"); |
| |
| // Grab the first (0th) element from the field __cpu_features off of the |
| // global in the struct STy. |
| Value *Idxs[] = {ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 3), |
| ConstantInt::get(Int32Ty, 0)}; |
| Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs); |
| Value *Features = |
| Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4)); |
| |
| // Check the value of the bit corresponding to the feature requested. |
| Value *Mask = Builder.getInt32(FeaturesMask); |
| Value *Bitset = Builder.CreateAnd(Features, Mask); |
| return Builder.CreateICmpEQ(Bitset, Mask); |
| } |
| |
| Value *CodeGenFunction::EmitX86CpuInit() { |
| llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, |
| /*Variadic*/ false); |
| llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init"); |
| return Builder.CreateCall(Func); |
| } |
| |
| Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| if (BuiltinID == X86::BI__builtin_cpu_is) |
| return EmitX86CpuIs(E); |
| if (BuiltinID == X86::BI__builtin_cpu_supports) |
| return EmitX86CpuSupports(E); |
| if (BuiltinID == X86::BI__builtin_cpu_init) |
| return EmitX86CpuInit(); |
| |
| SmallVector<Value*, 4> Ops; |
| |
| // Find out if any arguments are required to be integer constant expressions. |
| unsigned ICEArguments = 0; |
| ASTContext::GetBuiltinTypeError Error; |
| getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); |
| assert(Error == ASTContext::GE_None && "Should not codegen an error"); |
| |
| for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) { |
| // If this is a normal argument, just emit it as a scalar. |
| if ((ICEArguments & (1 << i)) == 0) { |
| Ops.push_back(EmitScalarExpr(E->getArg(i))); |
| continue; |
| } |
| |
| // If this is required to be a constant, constant fold it so that we know |
| // that the generated intrinsic gets a ConstantInt. |
| llvm::APSInt Result; |
| bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext()); |
| assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst; |
| Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result)); |
| } |
| |
| // These exist so that the builtin that takes an immediate can be bounds |
| // checked by clang to avoid passing bad immediates to the backend. Since |
| // AVX has a larger immediate than SSE we would need separate builtins to |
| // do the different bounds checking. Rather than create a clang specific |
| // SSE only builtin, this implements eight separate builtins to match gcc |
| // implementation. |
| auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) { |
| Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm)); |
| llvm::Function *F = CGM.getIntrinsic(ID); |
| return Builder.CreateCall(F, Ops); |
| }; |
| |
| // For the vector forms of FP comparisons, translate the builtins directly to |
| // IR. |
| // TODO: The builtins could be removed if the SSE header files used vector |
| // extension comparisons directly (vector ordered/unordered may need |
| // additional support via __builtin_isnan()). |
| auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred) { |
| Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]); |
| llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType()); |
| llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy); |
| Value *Sext = Builder.CreateSExt(Cmp, IntVecTy); |
| return Builder.CreateBitCast(Sext, FPVecTy); |
| }; |
| |
| switch (BuiltinID) { |
| default: return nullptr; |
| case X86::BI_mm_prefetch: { |
| Value *Address = Ops[0]; |
| ConstantInt *C = cast<ConstantInt>(Ops[1]); |
| Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1); |
| Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3); |
| Value *Data = ConstantInt::get(Int32Ty, 1); |
| Value *F = CGM.getIntrinsic(Intrinsic::prefetch); |
| return Builder.CreateCall(F, {Address, RW, Locality, Data}); |
| } |
| case X86::BI_mm_clflush: { |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush), |
| Ops[0]); |
| } |
| case X86::BI_mm_lfence: { |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence)); |
| } |
| case X86::BI_mm_mfence: { |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence)); |
| } |
| case X86::BI_mm_sfence: { |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence)); |
| } |
| case X86::BI_mm_pause: { |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause)); |
| } |
| case X86::BI__rdtsc: { |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc)); |
| } |
| case X86::BI__builtin_ia32_undef128: |
| case X86::BI__builtin_ia32_undef256: |
| case X86::BI__builtin_ia32_undef512: |
| // The x86 definition of "undef" is not the same as the LLVM definition |
| // (PR32176). We leave optimizing away an unnecessary zero constant to the |
| // IR optimizer and backend. |
| // TODO: If we had a "freeze" IR instruction to generate a fixed undef |
| // value, we should use that here instead of a zero. |
| return llvm::Constant::getNullValue(ConvertType(E->getType())); |
| case X86::BI__builtin_ia32_vec_init_v8qi: |
| case X86::BI__builtin_ia32_vec_init_v4hi: |
| case X86::BI__builtin_ia32_vec_init_v2si: |
| return Builder.CreateBitCast(BuildVector(Ops), |
| llvm::Type::getX86_MMXTy(getLLVMContext())); |
| case X86::BI__builtin_ia32_vec_ext_v2si: |
| case X86::BI__builtin_ia32_vec_ext_v16qi: |
| case X86::BI__builtin_ia32_vec_ext_v8hi: |
| case X86::BI__builtin_ia32_vec_ext_v4si: |
| case X86::BI__builtin_ia32_vec_ext_v4sf: |
| case X86::BI__builtin_ia32_vec_ext_v2di: |
| case X86::BI__builtin_ia32_vec_ext_v32qi: |
| case X86::BI__builtin_ia32_vec_ext_v16hi: |
| case X86::BI__builtin_ia32_vec_ext_v8si: |
| case X86::BI__builtin_ia32_vec_ext_v4di: { |
| unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); |
| uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue(); |
| Index &= NumElts - 1; |
| // These builtins exist so we can ensure the index is an ICE and in range. |
| // Otherwise we could just do this in the header file. |
| return Builder.CreateExtractElement(Ops[0], Index); |
| } |
| case X86::BI__builtin_ia32_vec_set_v16qi: |
| case X86::BI__builtin_ia32_vec_set_v8hi: |
| case X86::BI__builtin_ia32_vec_set_v4si: |
| case X86::BI__builtin_ia32_vec_set_v2di: |
| case X86::BI__builtin_ia32_vec_set_v32qi: |
| case X86::BI__builtin_ia32_vec_set_v16hi: |
| case X86::BI__builtin_ia32_vec_set_v8si: |
| case X86::BI__builtin_ia32_vec_set_v4di: { |
| unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); |
| unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue(); |
| Index &= NumElts - 1; |
| // These builtins exist so we can ensure the index is an ICE and in range. |
| // Otherwise we could just do this in the header file. |
| return Builder.CreateInsertElement(Ops[0], Ops[1], Index); |
| } |
| case X86::BI_mm_setcsr: |
| case X86::BI__builtin_ia32_ldmxcsr: { |
| Address Tmp = CreateMemTemp(E->getArg(0)->getType()); |
| Builder.CreateStore(Ops[0], Tmp); |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr), |
| Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy)); |
| } |
| case X86::BI_mm_getcsr: |
| case X86::BI__builtin_ia32_stmxcsr: { |
| Address Tmp = CreateMemTemp(E->getType()); |
| Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr), |
| Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy)); |
| return Builder.CreateLoad(Tmp, "stmxcsr"); |
| } |
| case X86::BI__builtin_ia32_xsave: |
| case X86::BI__builtin_ia32_xsave64: |
| case X86::BI__builtin_ia32_xrstor: |
| case X86::BI__builtin_ia32_xrstor64: |
| case X86::BI__builtin_ia32_xsaveopt: |
| case X86::BI__builtin_ia32_xsaveopt64: |
| case X86::BI__builtin_ia32_xrstors: |
| case X86::BI__builtin_ia32_xrstors64: |
| case X86::BI__builtin_ia32_xsavec: |
| case X86::BI__builtin_ia32_xsavec64: |
| case X86::BI__builtin_ia32_xsaves: |
| case X86::BI__builtin_ia32_xsaves64: { |
| Intrinsic::ID ID; |
| #define INTRINSIC_X86_XSAVE_ID(NAME) \ |
| case X86::BI__builtin_ia32_##NAME: \ |
| ID = Intrinsic::x86_##NAME; \ |
| break |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported intrinsic!"); |
| INTRINSIC_X86_XSAVE_ID(xsave); |
| INTRINSIC_X86_XSAVE_ID(xsave64); |
| INTRINSIC_X86_XSAVE_ID(xrstor); |
| INTRINSIC_X86_XSAVE_ID(xrstor64); |
| INTRINSIC_X86_XSAVE_ID(xsaveopt); |
| INTRINSIC_X86_XSAVE_ID(xsaveopt64); |
| INTRINSIC_X86_XSAVE_ID(xrstors); |
| INTRINSIC_X86_XSAVE_ID(xrstors64); |
| INTRINSIC_X86_XSAVE_ID(xsavec); |
| INTRINSIC_X86_XSAVE_ID(xsavec64); |
| INTRINSIC_X86_XSAVE_ID(xsaves); |
| INTRINSIC_X86_XSAVE_ID(xsaves64); |
| } |
| #undef INTRINSIC_X86_XSAVE_ID |
| Value *Mhi = Builder.CreateTrunc( |
| Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty); |
| Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty); |
| Ops[1] = Mhi; |
| Ops.push_back(Mlo); |
| return Builder.CreateCall(CGM.getIntrinsic(ID), Ops); |
| } |
| case X86::BI__builtin_ia32_storedqudi128_mask: |
| case X86::BI__builtin_ia32_storedqusi128_mask: |
| case X86::BI__builtin_ia32_storedquhi128_mask: |
| case X86::BI__builtin_ia32_storedquqi128_mask: |
| case X86::BI__builtin_ia32_storeupd128_mask: |
| case X86::BI__builtin_ia32_storeups128_mask: |
| case X86::BI__builtin_ia32_storedqudi256_mask: |
| case X86::BI__builtin_ia32_storedqusi256_mask: |
| case X86::BI__builtin_ia32_storedquhi256_mask: |
| case X86::BI__builtin_ia32_storedquqi256_mask: |
| case X86::BI__builtin_ia32_storeupd256_mask: |
| case X86::BI__builtin_ia32_storeups256_mask: |
| case X86::BI__builtin_ia32_storedqudi512_mask: |
| case X86::BI__builtin_ia32_storedqusi512_mask: |
| case X86::BI__builtin_ia32_storedquhi512_mask: |
| case X86::BI__builtin_ia32_storedquqi512_mask: |
| case X86::BI__builtin_ia32_storeupd512_mask: |
| case X86::BI__builtin_ia32_storeups512_mask: |
| return EmitX86MaskedStore(*this, Ops, 1); |
| |
| case X86::BI__builtin_ia32_storess128_mask: |
| case X86::BI__builtin_ia32_storesd128_mask: { |
| return EmitX86MaskedStore(*this, Ops, 1); |
| } |
| case X86::BI__builtin_ia32_vpopcntb_128: |
| case X86::BI__builtin_ia32_vpopcntd_128: |
| case X86::BI__builtin_ia32_vpopcntq_128: |
| case X86::BI__builtin_ia32_vpopcntw_128: |
| case X86::BI__builtin_ia32_vpopcntb_256: |
| case X86::BI__builtin_ia32_vpopcntd_256: |
| case X86::BI__builtin_ia32_vpopcntq_256: |
| case X86::BI__builtin_ia32_vpopcntw_256: |
| case X86::BI__builtin_ia32_vpopcntb_512: |
| case X86::BI__builtin_ia32_vpopcntd_512: |
| case X86::BI__builtin_ia32_vpopcntq_512: |
| case X86::BI__builtin_ia32_vpopcntw_512: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); |
| return Builder.CreateCall(F, Ops); |
| } |
| case X86::BI__builtin_ia32_cvtmask2b128: |
| case X86::BI__builtin_ia32_cvtmask2b256: |
| case X86::BI__builtin_ia32_cvtmask2b512: |
| case X86::BI__builtin_ia32_cvtmask2w128: |
| case X86::BI__builtin_ia32_cvtmask2w256: |
| case X86::BI__builtin_ia32_cvtmask2w512: |
| case X86::BI__builtin_ia32_cvtmask2d128: |
| case X86::BI__builtin_ia32_cvtmask2d256: |
| case X86::BI__builtin_ia32_cvtmask2d512: |
| case X86::BI__builtin_ia32_cvtmask2q128: |
| case X86::BI__builtin_ia32_cvtmask2q256: |
| case X86::BI__builtin_ia32_cvtmask2q512: |
| return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType())); |
| |
| case X86::BI__builtin_ia32_cvtb2mask128: |
| case X86::BI__builtin_ia32_cvtb2mask256: |
| case X86::BI__builtin_ia32_cvtb2mask512: |
| case X86::BI__builtin_ia32_cvtw2mask128: |
| case X86::BI__builtin_ia32_cvtw2mask256: |
| case X86::BI__builtin_ia32_cvtw2mask512: |
| case X86::BI__builtin_ia32_cvtd2mask128: |
| case X86::BI__builtin_ia32_cvtd2mask256: |
| case X86::BI__builtin_ia32_cvtd2mask512: |
| case X86::BI__builtin_ia32_cvtq2mask128: |
| case X86::BI__builtin_ia32_cvtq2mask256: |
| case X86::BI__builtin_ia32_cvtq2mask512: |
| return EmitX86ConvertToMask(*this, Ops[0]); |
| |
| case X86::BI__builtin_ia32_vfmaddss3: |
| case X86::BI__builtin_ia32_vfmaddsd3: |
| case X86::BI__builtin_ia32_vfmaddss3_mask: |
| case X86::BI__builtin_ia32_vfmaddsd3_mask: |
| return EmitScalarFMAExpr(*this, Ops, Ops[0]); |
| case X86::BI__builtin_ia32_vfmaddss: |
| case X86::BI__builtin_ia32_vfmaddsd: |
| return EmitScalarFMAExpr(*this, Ops, |
| Constant::getNullValue(Ops[0]->getType())); |
| case X86::BI__builtin_ia32_vfmaddss3_maskz: |
| case X86::BI__builtin_ia32_vfmaddsd3_maskz: |
| return EmitScalarFMAExpr(*this, Ops, Ops[0], /*ZeroMask*/true); |
| case X86::BI__builtin_ia32_vfmaddss3_mask3: |
| case X86::BI__builtin_ia32_vfmaddsd3_mask3: |
| return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2); |
| case X86::BI__builtin_ia32_vfmsubss3_mask3: |
| case X86::BI__builtin_ia32_vfmsubsd3_mask3: |
| return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2, |
| /*NegAcc*/true); |
| case X86::BI__builtin_ia32_vfmaddps: |
| case X86::BI__builtin_ia32_vfmaddpd: |
| case X86::BI__builtin_ia32_vfmaddps256: |
| case X86::BI__builtin_ia32_vfmaddpd256: |
| case X86::BI__builtin_ia32_vfmaddps512_mask: |
| case X86::BI__builtin_ia32_vfmaddps512_maskz: |
| case X86::BI__builtin_ia32_vfmaddps512_mask3: |
| case X86::BI__builtin_ia32_vfmsubps512_mask3: |
| case X86::BI__builtin_ia32_vfmaddpd512_mask: |
| case X86::BI__builtin_ia32_vfmaddpd512_maskz: |
| case X86::BI__builtin_ia32_vfmaddpd512_mask3: |
| case X86::BI__builtin_ia32_vfmsubpd512_mask3: |
| return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/false); |
| case X86::BI__builtin_ia32_vfmaddsubps: |
| case X86::BI__builtin_ia32_vfmaddsubpd: |
| case X86::BI__builtin_ia32_vfmaddsubps256: |
| case X86::BI__builtin_ia32_vfmaddsubpd256: |
| case X86::BI__builtin_ia32_vfmaddsubps512_mask: |
| case X86::BI__builtin_ia32_vfmaddsubps512_maskz: |
| case X86::BI__builtin_ia32_vfmaddsubps512_mask3: |
| case X86::BI__builtin_ia32_vfmsubaddps512_mask3: |
| case X86::BI__builtin_ia32_vfmaddsubpd512_mask: |
| case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: |
| case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: |
| case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: |
| return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/true); |
| |
| case X86::BI__builtin_ia32_movdqa32store128_mask: |
| case X86::BI__builtin_ia32_movdqa64store128_mask: |
| case X86::BI__builtin_ia32_storeaps128_mask: |
| case X86::BI__builtin_ia32_storeapd128_mask: |
| case X86::BI__builtin_ia32_movdqa32store256_mask: |
| case X86::BI__builtin_ia32_movdqa64store256_mask: |
| case X86::BI__builtin_ia32_storeaps256_mask: |
| case X86::BI__builtin_ia32_storeapd256_mask: |
| case X86::BI__builtin_ia32_movdqa32store512_mask: |
| case X86::BI__builtin_ia32_movdqa64store512_mask: |
| case X86::BI__builtin_ia32_storeaps512_mask: |
| case X86::BI__builtin_ia32_storeapd512_mask: { |
| unsigned Align = |
| getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity(); |
| return EmitX86MaskedStore(*this, Ops, Align); |
| } |
| case X86::BI__builtin_ia32_loadups128_mask: |
| case X86::BI__builtin_ia32_loadups256_mask: |
| case X86::BI__builtin_ia32_loadups512_mask: |
| case X86::BI__builtin_ia32_loadupd128_mask: |
| case X86::BI__builtin_ia32_loadupd256_mask: |
| case X86::BI__builtin_ia32_loadupd512_mask: |
| case X86::BI__builtin_ia32_loaddquqi128_mask: |
| case X86::BI__builtin_ia32_loaddquqi256_mask: |
| case X86::BI__builtin_ia32_loaddquqi512_mask: |
| case X86::BI__builtin_ia32_loaddquhi128_mask: |
| case X86::BI__builtin_ia32_loaddquhi256_mask: |
| case X86::BI__builtin_ia32_loaddquhi512_mask: |
| case X86::BI__builtin_ia32_loaddqusi128_mask: |
| case X86::BI__builtin_ia32_loaddqusi256_mask: |
| case X86::BI__builtin_ia32_loaddqusi512_mask: |
| case X86::BI__builtin_ia32_loaddqudi128_mask: |
| case X86::BI__builtin_ia32_loaddqudi256_mask: |
| case X86::BI__builtin_ia32_loaddqudi512_mask: |
| return EmitX86MaskedLoad(*this, Ops, 1); |
| |
| case X86::BI__builtin_ia32_loadss128_mask: |
| case X86::BI__builtin_ia32_loadsd128_mask: |
| return EmitX86MaskedLoad(*this, Ops, 1); |
| |
| case X86::BI__builtin_ia32_loadaps128_mask: |
| case X86::BI__builtin_ia32_loadaps256_mask: |
| case X86::BI__builtin_ia32_loadaps512_mask: |
| case X86::BI__builtin_ia32_loadapd128_mask: |
| case X86::BI__builtin_ia32_loadapd256_mask: |
| case X86::BI__builtin_ia32_loadapd512_mask: |
| case X86::BI__builtin_ia32_movdqa32load128_mask: |
| case X86::BI__builtin_ia32_movdqa32load256_mask: |
| case X86::BI__builtin_ia32_movdqa32load512_mask: |
| case X86::BI__builtin_ia32_movdqa64load128_mask: |
| case X86::BI__builtin_ia32_movdqa64load256_mask: |
| case X86::BI__builtin_ia32_movdqa64load512_mask: { |
| unsigned Align = |
| getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity(); |
| return EmitX86MaskedLoad(*this, Ops, Align); |
| } |
| |
| case X86::BI__builtin_ia32_expandloaddf128_mask: |
| case X86::BI__builtin_ia32_expandloaddf256_mask: |
| case X86::BI__builtin_ia32_expandloaddf512_mask: |
| case X86::BI__builtin_ia32_expandloadsf128_mask: |
| case X86::BI__builtin_ia32_expandloadsf256_mask: |
| case X86::BI__builtin_ia32_expandloadsf512_mask: |
| case X86::BI__builtin_ia32_expandloaddi128_mask: |
| case X86::BI__builtin_ia32_expandloaddi256_mask: |
| case X86::BI__builtin_ia32_expandloaddi512_mask: |
| case X86::BI__builtin_ia32_expandloadsi128_mask: |
| case X86::BI__builtin_ia32_expandloadsi256_mask: |
| case X86::BI__builtin_ia32_expandloadsi512_mask: |
| case X86::BI__builtin_ia32_expandloadhi128_mask: |
| case X86::BI__builtin_ia32_expandloadhi256_mask: |
| case X86::BI__builtin_ia32_expandloadhi512_mask: |
| case X86::BI__builtin_ia32_expandloadqi128_mask: |
| case X86::BI__builtin_ia32_expandloadqi256_mask: |
| case X86::BI__builtin_ia32_expandloadqi512_mask: |
| return EmitX86ExpandLoad(*this, Ops); |
| |
| case X86::BI__builtin_ia32_compressstoredf128_mask: |
| case X86::BI__builtin_ia32_compressstoredf256_mask: |
| case X86::BI__builtin_ia32_compressstoredf512_mask: |
| case X86::BI__builtin_ia32_compressstoresf128_mask: |
| case X86::BI__builtin_ia32_compressstoresf256_mask: |
| case X86::BI__builtin_ia32_compressstoresf512_mask: |
| case X86::BI__builtin_ia32_compressstoredi128_mask: |
| case X86::BI__builtin_ia32_compressstoredi256_mask: |
| case X86::BI__builtin_ia32_compressstoredi512_mask: |
| case X86::BI__builtin_ia32_compressstoresi128_mask: |
| case X86::BI__builtin_ia32_compressstoresi256_mask: |
| case X86::BI__builtin_ia32_compressstoresi512_mask: |
| case X86::BI__builtin_ia32_compressstorehi128_mask: |
| case X86::BI__builtin_ia32_compressstorehi256_mask: |
| case X86::BI__builtin_ia32_compressstorehi512_mask: |
| case X86::BI__builtin_ia32_compressstoreqi128_mask: |
| case X86::BI__builtin_ia32_compressstoreqi256_mask: |
| case X86::BI__builtin_ia32_compressstoreqi512_mask: |
| return EmitX86CompressStore(*this, Ops); |
| |
| case X86::BI__builtin_ia32_storehps: |
| case X86::BI__builtin_ia32_storelps: { |
| llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty); |
| llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2); |
| |
| // cast val v2i64 |
| Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast"); |
| |
| // extract (0, 1) |
| unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1; |
| Ops[1] = Builder.CreateExtractElement(Ops[1], Index, "extract"); |
| |
| // cast pointer to i64 & store |
| Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy); |
| return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); |
| } |
| case X86::BI__builtin_ia32_vextractf128_pd256: |
| case X86::BI__builtin_ia32_vextractf128_ps256: |
| case X86::BI__builtin_ia32_vextractf128_si256: |
| case X86::BI__builtin_ia32_extract128i256: |
| case X86::BI__builtin_ia32_extractf64x4_mask: |
| case X86::BI__builtin_ia32_extractf32x4_mask: |
| case X86::BI__builtin_ia32_extracti64x4_mask: |
| case X86::BI__builtin_ia32_extracti32x4_mask: |
| case X86::BI__builtin_ia32_extractf32x8_mask: |
| case X86::BI__builtin_ia32_extracti32x8_mask: |
| case X86::BI__builtin_ia32_extractf32x4_256_mask: |
| case X86::BI__builtin_ia32_extracti32x4_256_mask: |
| case X86::BI__builtin_ia32_extractf64x2_256_mask: |
| case X86::BI__builtin_ia32_extracti64x2_256_mask: |
| case X86::BI__builtin_ia32_extractf64x2_512_mask: |
| case X86::BI__builtin_ia32_extracti64x2_512_mask: { |
| llvm::Type *DstTy = ConvertType(E->getType()); |
| unsigned NumElts = DstTy->getVectorNumElements(); |
| unsigned SrcNumElts = Ops[0]->getType()->getVectorNumElements(); |
| unsigned SubVectors = SrcNumElts / NumElts; |
| unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue(); |
| assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"); |
| Index &= SubVectors - 1; // Remove any extra bits. |
| Index *= NumElts; |
| |
| uint32_t Indices[16]; |
| for (unsigned i = 0; i != NumElts; ++i) |
| Indices[i] = i + Index; |
| |
| Value *Res = Builder.CreateShuffleVector(Ops[0], |
| UndefValue::get(Ops[0]->getType()), |
| makeArrayRef(Indices, NumElts), |
| "extract"); |
| |
| if (Ops.size() == 4) |
| Res = EmitX86Select(*this, Ops[3], Res, Ops[2]); |
| |
| return Res; |
| } |
| case X86::BI__builtin_ia32_vinsertf128_pd256: |
| case X86::BI__builtin_ia32_vinsertf128_ps256: |
| case X86::BI__builtin_ia32_vinsertf128_si256: |
| case X86::BI__builtin_ia32_insert128i256: |
| case X86::BI__builtin_ia32_insertf64x4: |
| case X86::BI__builtin_ia32_insertf32x4: |
| case X86::BI__builtin_ia32_inserti64x4: |
| case X86::BI__builtin_ia32_inserti32x4: |
| case X86::BI__builtin_ia32_insertf32x8: |
| case X86::BI__builtin_ia32_inserti32x8: |
| case X86::BI__builtin_ia32_insertf32x4_256: |
| case X86::BI__builtin_ia32_inserti32x4_256: |
| case X86::BI__builtin_ia32_insertf64x2_256: |
| case X86::BI__builtin_ia32_inserti64x2_256: |
| case X86::BI__builtin_ia32_insertf64x2_512: |
| case X86::BI__builtin_ia32_inserti64x2_512: { |
| unsigned DstNumElts = Ops[0]->getType()->getVectorNumElements(); |
| unsigned SrcNumElts = Ops[1]->getType()->getVectorNumElements(); |
| unsigned SubVectors = DstNumElts / SrcNumElts; |
| unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue(); |
| assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"); |
| Index &= SubVectors - 1; // Remove any extra bits. |
| Index *= SrcNumElts; |
| |
| uint32_t Indices[16]; |
| for (unsigned i = 0; i != DstNumElts; ++i) |
| Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i; |
| |
| Value *Op1 = Builder.CreateShuffleVector(Ops[1], |
| UndefValue::get(Ops[1]->getType()), |
| makeArrayRef(Indices, DstNumElts), |
| "widen"); |
| |
| for (unsigned i = 0; i != DstNumElts; ++i) { |
| if (i >= Index && i < (Index + SrcNumElts)) |
| Indices[i] = (i - Index) + DstNumElts; |
| else |
| Indices[i] = i; |
| } |
| |
| return Builder.CreateShuffleVector(Ops[0], Op1, |
| makeArrayRef(Indices, DstNumElts), |
| "insert"); |
| } |
| case X86::BI__builtin_ia32_pmovqd512_mask: |
| case X86::BI__builtin_ia32_pmovwb512_mask: { |
| Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType()); |
| return EmitX86Select(*this, Ops[2], Res, Ops[1]); |
| } |
| case X86::BI__builtin_ia32_pmovdb512_mask: |
| case X86::BI__builtin_ia32_pmovdw512_mask: |
| case X86::BI__builtin_ia32_pmovqw512_mask: { |
| if (const auto *C = dyn_cast<Constant>(Ops[2])) |
| if (C->isAllOnesValue()) |
| return Builder.CreateTrunc(Ops[0], Ops[1]->getType()); |
| |
| Intrinsic::ID IID; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported intrinsic!"); |
| case X86::BI__builtin_ia32_pmovdb512_mask: |
| IID = Intrinsic::x86_avx512_mask_pmov_db_512; |
| break; |
| case X86::BI__builtin_ia32_pmovdw512_mask: |
| IID = Intrinsic::x86_avx512_mask_pmov_dw_512; |
| break; |
| case X86::BI__builtin_ia32_pmovqw512_mask: |
| IID = Intrinsic::x86_avx512_mask_pmov_qw_512; |
| break; |
| } |
| |
| Function *Intr = CGM.getIntrinsic(IID); |
| return Builder.CreateCall(Intr, Ops); |
| } |
| case X86::BI__builtin_ia32_pblendw128: |
| case X86::BI__builtin_ia32_blendpd: |
| case X86::BI__builtin_ia32_blendps: |
| case X86::BI__builtin_ia32_blendpd256: |
| case X86::BI__builtin_ia32_blendps256: |
| case X86::BI__builtin_ia32_pblendw256: |
| case X86::BI__builtin_ia32_pblendd128: |
| case X86::BI__builtin_ia32_pblendd256: { |
| unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); |
| unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); |
| |
| uint32_t Indices[16]; |
| // If there are more than 8 elements, the immediate is used twice so make |
| // sure we handle that. |
| for (unsigned i = 0; i != NumElts; ++i) |
| Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i; |
| |
| return Builder.CreateShuffleVector(Ops[0], Ops[1], |
| makeArrayRef(Indices, NumElts), |
| "blend"); |
| } |
| case X86::BI__builtin_ia32_pshuflw: |
| case X86::BI__builtin_ia32_pshuflw256: |
| case X86::BI__builtin_ia32_pshuflw512: { |
| uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); |
| llvm::Type *Ty = Ops[0]->getType(); |
| unsigned NumElts = Ty->getVectorNumElements(); |
| |
| // Splat the 8-bits of immediate 4 times to help the loop wrap around. |
| Imm = (Imm & 0xff) * 0x01010101; |
| |
| uint32_t Indices[32]; |
| for (unsigned l = 0; l != NumElts; l += 8) { |
| for (unsigned i = 0; i != 4; ++i) { |
| Indices[l + i] = l + (Imm & 3); |
| Imm >>= 2; |
| } |
| for (unsigned i = 4; i != 8; ++i) |
| Indices[l + i] = l + i; |
| } |
| |
| return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty), |
| makeArrayRef(Indices, NumElts), |
| "pshuflw"); |
| } |
| case X86::BI__builtin_ia32_pshufhw: |
| case X86::BI__builtin_ia32_pshufhw256: |
| case X86::BI__builtin_ia32_pshufhw512: { |
| uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); |
| llvm::Type *Ty = Ops[0]->getType(); |
| unsigned NumElts = Ty->getVectorNumElements(); |
| |
| // Splat the 8-bits of immediate 4 times to help the loop wrap around. |
| Imm = (Imm & 0xff) * 0x01010101; |
| |
| uint32_t Indices[32]; |
| for (unsigned l = 0; l != NumElts; l += 8) { |
| for (unsigned i = 0; i != 4; ++i) |
| Indices[l + i] = l + i; |
| for (unsigned i = 4; i != 8; ++i) { |
| Indices[l + i] = l + 4 + (Imm & 3); |
| Imm >>= 2; |
| } |
| } |
| |
| return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty), |
| makeArrayRef(Indices, NumElts), |
| "pshufhw"); |
| } |
| case X86::BI__builtin_ia32_pshufd: |
| case X86::BI__builtin_ia32_pshufd256: |
| case X86::BI__builtin_ia32_pshufd512: |
| case X86::BI__builtin_ia32_vpermilpd: |
| case X86::BI__builtin_ia32_vpermilps: |
| case X86::BI__builtin_ia32_vpermilpd256: |
| case X86::BI__builtin_ia32_vpermilps256: |
| case X86::BI__builtin_ia32_vpermilpd512: |
| case X86::BI__builtin_ia32_vpermilps512: { |
| uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); |
| llvm::Type *Ty = Ops[0]->getType(); |
| unsigned NumElts = Ty->getVectorNumElements(); |
| unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128; |
| unsigned NumLaneElts = NumElts / NumLanes; |
| |
| // Splat the 8-bits of immediate 4 times to help the loop wrap around. |
| Imm = (Imm & 0xff) * 0x01010101; |
| |
| uint32_t Indices[16]; |
| for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
| for (unsigned i = 0; i != NumLaneElts; ++i) { |
| Indices[i + l] = (Imm % NumLaneElts) + l; |
| Imm /= NumLaneElts; |
| } |
| } |
| |
| return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty), |
| makeArrayRef(Indices, NumElts), |
| "permil"); |
| } |
| case X86::BI__builtin_ia32_shufpd: |
| case X86::BI__builtin_ia32_shufpd256: |
| case X86::BI__builtin_ia32_shufpd512: |
| case X86::BI__builtin_ia32_shufps: |
| case X86::BI__builtin_ia32_shufps256: |
| case X86::BI__builtin_ia32_shufps512: { |
| uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); |
| llvm::Type *Ty = Ops[0]->getType(); |
| unsigned NumElts = Ty->getVectorNumElements(); |
| unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128; |
| unsigned NumLaneElts = NumElts / NumLanes; |
| |
| // Splat the 8-bits of immediate 4 times to help the loop wrap around. |
| Imm = (Imm & 0xff) * 0x01010101; |
| |
| uint32_t Indices[16]; |
| for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
| for (unsigned i = 0; i != NumLaneElts; ++i) { |
| unsigned Index = Imm % NumLaneElts; |
| Imm /= NumLaneElts; |
| if (i >= (NumLaneElts / 2)) |
| Index += NumElts; |
| Indices[l + i] = l + Index; |
| } |
| } |
| |
| return Builder.CreateShuffleVector(Ops[0], Ops[1], |
| makeArrayRef(Indices, NumElts), |
| "shufp"); |
| } |
| case X86::BI__builtin_ia32_permdi256: |
| case X86::BI__builtin_ia32_permdf256: |
| case X86::BI__builtin_ia32_permdi512: |
| case X86::BI__builtin_ia32_permdf512: { |
| unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); |
| llvm::Type *Ty = Ops[0]->getType(); |
| unsigned NumElts = Ty->getVectorNumElements(); |
| |
| // These intrinsics operate on 256-bit lanes of four 64-bit elements. |
| uint32_t Indices[8]; |
| for (unsigned l = 0; l != NumElts; l += 4) |
| for (unsigned i = 0; i != 4; ++i) |
| Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3); |
| |
| return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty), |
| makeArrayRef(Indices, NumElts), |
| "perm"); |
| } |
| case X86::BI__builtin_ia32_palignr128: |
| case X86::BI__builtin_ia32_palignr256: |
| case X86::BI__builtin_ia32_palignr512: { |
| unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff; |
| |
| unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); |
| assert(NumElts % 16 == 0); |
| |
| // If palignr is shifting the pair of vectors more than the size of two |
| // lanes, emit zero. |
| if (ShiftVal >= 32) |
| return llvm::Constant::getNullValue(ConvertType(E->getType())); |
| |
| // If palignr is shifting the pair of input vectors more than one lane, |
| // but less than two lanes, convert to shifting in zeroes. |
| if (ShiftVal > 16) { |
| ShiftVal -= 16; |
| Ops[1] = Ops[0]; |
| Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType()); |
| } |
| |
| uint32_t Indices[64]; |
| // 256-bit palignr operates on 128-bit lanes so we need to handle that |
| for (unsigned l = 0; l != NumElts; l += 16) { |
| for (unsigned i = 0; i != 16; ++i) { |
| unsigned Idx = ShiftVal + i; |
| if (Idx >= 16) |
| Idx += NumElts - 16; // End of lane, switch operand. |
| Indices[l + i] = Idx + l; |
| } |
| } |
| |
| return Builder.CreateShuffleVector(Ops[1], Ops[0], |
| makeArrayRef(Indices, NumElts), |
| "palignr"); |
| } |
| case X86::BI__builtin_ia32_alignd128: |
| case X86::BI__builtin_ia32_alignd256: |
| case X86::BI__builtin_ia32_alignd512: |
| case X86::BI__builtin_ia32_alignq128: |
| case X86::BI__builtin_ia32_alignq256: |
| case X86::BI__builtin_ia32_alignq512: { |
| unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); |
| unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff; |
| |
| // Mask the shift amount to width of two vectors. |
| ShiftVal &= (2 * NumElts) - 1; |
| |
| uint32_t Indices[16]; |
| for (unsigned i = 0; i != NumElts; ++i) |
| Indices[i] = i + ShiftVal; |
| |
| return Builder.CreateShuffleVector(Ops[1], Ops[0], |
| makeArrayRef(Indices, NumElts), |
| "valign"); |
| } |
| case X86::BI__builtin_ia32_shuf_f32x4_256: |
| case X86::BI__builtin_ia32_shuf_f64x2_256: |
| case X86::BI__builtin_ia32_shuf_i32x4_256: |
| case X86::BI__builtin_ia32_shuf_i64x2_256: |
| case X86::BI__builtin_ia32_shuf_f32x4: |
| case X86::BI__builtin_ia32_shuf_f64x2: |
| case X86::BI__builtin_ia32_shuf_i32x4: |
| case X86::BI__builtin_ia32_shuf_i64x2: { |
| unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); |
| llvm::Type *Ty = Ops[0]->getType(); |
| unsigned NumElts = Ty->getVectorNumElements(); |
| unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2; |
| unsigned NumLaneElts = NumElts / NumLanes; |
| |
| uint32_t Indices[16]; |
| for (unsigned l = 0; l != NumElts; l += NumLaneElts) { |
| unsigned Index = (Imm % NumLanes) * NumLaneElts; |
| Imm /= NumLanes; // Discard the bits we just used. |
| if (l >= (NumElts / 2)) |
| Index += NumElts; // Switch to other source. |
| for (unsigned i = 0; i != NumLaneElts; ++i) { |
| Indices[l + i] = Index + i; |
| } |
| } |
| |
| return Builder.CreateShuffleVector(Ops[0], Ops[1], |
| makeArrayRef(Indices, NumElts), |
| "shuf"); |
| } |
| |
| case X86::BI__builtin_ia32_vperm2f128_pd256: |
| case X86::BI__builtin_ia32_vperm2f128_ps256: |
| case X86::BI__builtin_ia32_vperm2f128_si256: |
| case X86::BI__builtin_ia32_permti256: { |
| unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); |
| unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); |
| |
| // This takes a very simple approach since there are two lanes and a |
| // shuffle can have 2 inputs. So we reserve the first input for the first |
| // lane and the second input for the second lane. This may result in |
| // duplicate sources, but this can be dealt with in the backend. |
| |
| Value *OutOps[2]; |
| uint32_t Indices[8]; |
| for (unsigned l = 0; l != 2; ++l) { |
| // Determine the source for this lane. |
| if (Imm & (1 << ((l * 4) + 3))) |
| OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType()); |
| else if (Imm & (1 << ((l * 4) + 1))) |
| OutOps[l] = Ops[1]; |
| else |
| OutOps[l] = Ops[0]; |
| |
| for (unsigned i = 0; i != NumElts/2; ++i) { |
| // Start with ith element of the source for this lane. |
| unsigned Idx = (l * NumElts) + i; |
| // If bit 0 of the immediate half is set, switch to the high half of |
| // the source. |
| if (Imm & (1 << (l * 4))) |
| Idx += NumElts/2; |
| Indices[(l * (NumElts/2)) + i] = Idx; |
| } |
| } |
| |
| return Builder.CreateShuffleVector(OutOps[0], OutOps[1], |
| makeArrayRef(Indices, NumElts), |
| "vperm"); |
| } |
| |
| case X86::BI__builtin_ia32_pslldqi128_byteshift: |
| case X86::BI__builtin_ia32_pslldqi256_byteshift: |
| case X86::BI__builtin_ia32_pslldqi512_byteshift: { |
| unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; |
| llvm::Type *ResultType = Ops[0]->getType(); |
| // Builtin type is vXi64 so multiply by 8 to get bytes. |
| unsigned NumElts = ResultType->getVectorNumElements() * 8; |
| |
| // If pslldq is shifting the vector more than 15 bytes, emit zero. |
| if (ShiftVal >= 16) |
| return llvm::Constant::getNullValue(ResultType); |
| |
| uint32_t Indices[64]; |
| // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that |
| for (unsigned l = 0; l != NumElts; l += 16) { |
| for (unsigned i = 0; i != 16; ++i) { |
| unsigned Idx = NumElts + i - ShiftVal; |
| if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand. |
| Indices[l + i] = Idx + l; |
| } |
| } |
| |
| llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts); |
| Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast"); |
| Value *Zero = llvm::Constant::getNullValue(VecTy); |
| Value *SV = Builder.CreateShuffleVector(Zero, Cast, |
| makeArrayRef(Indices, NumElts), |
| "pslldq"); |
| return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast"); |
| } |
| case X86::BI__builtin_ia32_psrldqi128_byteshift: |
| case X86::BI__builtin_ia32_psrldqi256_byteshift: |
| case X86::BI__builtin_ia32_psrldqi512_byteshift: { |
| unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; |
| llvm::Type *ResultType = Ops[0]->getType(); |
| // Builtin type is vXi64 so multiply by 8 to get bytes. |
| unsigned NumElts = ResultType->getVectorNumElements() * 8; |
| |
| // If psrldq is shifting the vector more than 15 bytes, emit zero. |
| if (ShiftVal >= 16) |
| return llvm::Constant::getNullValue(ResultType); |
| |
| uint32_t Indices[64]; |
| // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that |
| for (unsigned l = 0; l != NumElts; l += 16) { |
| for (unsigned i = 0; i != 16; ++i) { |
| unsigned Idx = i + ShiftVal; |
| if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand. |
| Indices[l + i] = Idx + l; |
| } |
| } |
| |
| llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts); |
| Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast"); |
| Value *Zero = llvm::Constant::getNullValue(VecTy); |
| Value *SV = Builder.CreateShuffleVector(Cast, Zero, |
| makeArrayRef(Indices, NumElts), |
| "psrldq"); |
| return Builder.CreateBitCast(SV, ResultType, "cast"); |
| } |
| case X86::BI__builtin_ia32_movnti: |
| case X86::BI__builtin_ia32_movnti64: |
| case X86::BI__builtin_ia32_movntsd: |
| case X86::BI__builtin_ia32_movntss: { |
| llvm::MDNode *Node = llvm::MDNode::get( |
| getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); |
| |
| Value *Ptr = Ops[0]; |
| Value *Src = Ops[1]; |
| |
| // Extract the 0'th element of the source vector. |
| if (BuiltinID == X86::BI__builtin_ia32_movntsd || |
| BuiltinID == X86::BI__builtin_ia32_movntss) |
| Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract"); |
| |
| // Convert the type of the pointer to a pointer to the stored type. |
| Value *BC = Builder.CreateBitCast( |
| Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast"); |
| |
| // Unaligned nontemporal store of the scalar value. |
| StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC); |
| SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); |
| SI->setAlignment(1); |
| return SI; |
| } |
| |
| case X86::BI__builtin_ia32_selectb_128: |
| case X86::BI__builtin_ia32_selectb_256: |
| case X86::BI__builtin_ia32_selectb_512: |
| case X86::BI__builtin_ia32_selectw_128: |
| case X86::BI__builtin_ia32_selectw_256: |
| case X86::BI__builtin_ia32_selectw_512: |
| case X86::BI__builtin_ia32_selectd_128: |
| case X86::BI__builtin_ia32_selectd_256: |
| case X86::BI__builtin_ia32_selectd_512: |
| case X86::BI__builtin_ia32_selectq_128: |
| case X86::BI__builtin_ia32_selectq_256: |
| case X86::BI__builtin_ia32_selectq_512: |
| case X86::BI__builtin_ia32_selectps_128: |
| case X86::BI__builtin_ia32_selectps_256: |
| case X86::BI__builtin_ia32_selectps_512: |
| case X86::BI__builtin_ia32_selectpd_128: |
| case X86::BI__builtin_ia32_selectpd_256: |
| case X86::BI__builtin_ia32_selectpd_512: |
| return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]); |
| case X86::BI__builtin_ia32_selectss_128: |
| case X86::BI__builtin_ia32_selectsd_128: { |
| Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0); |
| Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0); |
| A = EmitX86ScalarSelect(*this, Ops[0], A, B); |
| return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0); |
| } |
| case X86::BI__builtin_ia32_cmpb128_mask: |
| case X86::BI__builtin_ia32_cmpb256_mask: |
| case X86::BI__builtin_ia32_cmpb512_mask: |
| case X86::BI__builtin_ia32_cmpw128_mask: |
| case X86::BI__builtin_ia32_cmpw256_mask: |
| case X86::BI__builtin_ia32_cmpw512_mask: |
| case X86::BI__builtin_ia32_cmpd128_mask: |
| case X86::BI__builtin_ia32_cmpd256_mask: |
| case X86::BI__builtin_ia32_cmpd512_mask: |
| case X86::BI__builtin_ia32_cmpq128_mask: |
| case X86::BI__builtin_ia32_cmpq256_mask: |
| case X86::BI__builtin_ia32_cmpq512_mask: { |
| unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; |
| return EmitX86MaskedCompare(*this, CC, true, Ops); |
| } |
| case X86::BI__builtin_ia32_ucmpb128_mask: |
| case X86::BI__builtin_ia32_ucmpb256_mask: |
| case X86::BI__builtin_ia32_ucmpb512_mask: |
| case X86::BI__builtin_ia32_ucmpw128_mask: |
| case X86::BI__builtin_ia32_ucmpw256_mask: |
| case X86::BI__builtin_ia32_ucmpw512_mask: |
| case X86::BI__builtin_ia32_ucmpd128_mask: |
| case X86::BI__builtin_ia32_ucmpd256_mask: |
| case X86::BI__builtin_ia32_ucmpd512_mask: |
| case X86::BI__builtin_ia32_ucmpq128_mask: |
| case X86::BI__builtin_ia32_ucmpq256_mask: |
| case X86::BI__builtin_ia32_ucmpq512_mask: { |
| unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; |
| return EmitX86MaskedCompare(*this, CC, false, Ops); |
| } |
| |
| case X86::BI__builtin_ia32_kortestchi: |
| case X86::BI__builtin_ia32_kortestzhi: { |
| Value *Or = EmitX86MaskLogic(*this, Instruction::Or, 16, Ops); |
| Value *C; |
| if (BuiltinID == X86::BI__builtin_ia32_kortestchi) |
| C = llvm::Constant::getAllOnesValue(Builder.getInt16Ty()); |
| else |
| C = llvm::Constant::getNullValue(Builder.getInt16Ty()); |
| Value *Cmp = Builder.CreateICmpEQ(Or, C); |
| return Builder.CreateZExt(Cmp, ConvertType(E->getType())); |
| } |
| |
| case X86::BI__builtin_ia32_kandhi: |
| return EmitX86MaskLogic(*this, Instruction::And, 16, Ops); |
| case X86::BI__builtin_ia32_kandnhi: |
| return EmitX86MaskLogic(*this, Instruction::And, 16, Ops, true); |
| case X86::BI__builtin_ia32_korhi: |
| return EmitX86MaskLogic(*this, Instruction::Or, 16, Ops); |
| case X86::BI__builtin_ia32_kxnorhi: |
| return EmitX86MaskLogic(*this, Instruction::Xor, 16, Ops, true); |
| case X86::BI__builtin_ia32_kxorhi: |
| return EmitX86MaskLogic(*this, Instruction::Xor, 16, Ops); |
| case X86::BI__builtin_ia32_knothi: { |
| Ops[0] = getMaskVecValue(*this, Ops[0], 16); |
| return Builder.CreateBitCast(Builder.CreateNot(Ops[0]), |
| Builder.getInt16Ty()); |
| } |
| |
| case X86::BI__builtin_ia32_kunpckdi: |
| case X86::BI__builtin_ia32_kunpcksi: |
| case X86::BI__builtin_ia32_kunpckhi: { |
| unsigned NumElts = Ops[0]->getType()->getScalarSizeInBits(); |
| Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); |
| Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); |
| uint32_t Indices[64]; |
| for (unsigned i = 0; i != NumElts; ++i) |
| Indices[i] = i; |
| |
| // First extract half of each vector. This gives better codegen than |
| // doing it in a single shuffle. |
| LHS = Builder.CreateShuffleVector(LHS, LHS, |
| makeArrayRef(Indices, NumElts / 2)); |
| RHS = Builder.CreateShuffleVector(RHS, RHS, |
| makeArrayRef(Indices, NumElts / 2)); |
| // Concat the vectors. |
| // NOTE: Operands are swapped to match the intrinsic definition. |
| Value *Res = Builder.CreateShuffleVector(RHS, LHS, |
| makeArrayRef(Indices, NumElts)); |
| return Builder.CreateBitCast(Res, Ops[0]->getType()); |
| } |
| |
| case X86::BI__builtin_ia32_vplzcntd_128: |
| case X86::BI__builtin_ia32_vplzcntd_256: |
| case X86::BI__builtin_ia32_vplzcntd_512: |
| case X86::BI__builtin_ia32_vplzcntq_128: |
| case X86::BI__builtin_ia32_vplzcntq_256: |
| case X86::BI__builtin_ia32_vplzcntq_512: { |
| Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType()); |
| return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)}); |
| } |
| case X86::BI__builtin_ia32_sqrtss: |
| case X86::BI__builtin_ia32_sqrtsd: { |
| Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0); |
| Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType()); |
| A = Builder.CreateCall(F, {A}); |
| return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0); |
| } |
| case X86::BI__builtin_ia32_sqrtsd_round_mask: |
| case X86::BI__builtin_ia32_sqrtss_round_mask: { |
| unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue(); |
| // Support only if the rounding mode is 4 (AKA CUR_DIRECTION), |
| // otherwise keep the intrinsic. |
| if (CC != 4) { |
| Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ? |
| Intrinsic::x86_avx512_mask_sqrt_sd : |
| Intrinsic::x86_avx512_mask_sqrt_ss; |
| return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); |
| } |
| Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0); |
| Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType()); |
| A = Builder.CreateCall(F, A); |
| Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0); |
| A = EmitX86ScalarSelect(*this, Ops[3], A, Src); |
| return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0); |
| } |
| case X86::BI__builtin_ia32_sqrtpd256: |
| case X86::BI__builtin_ia32_sqrtpd: |
| case X86::BI__builtin_ia32_sqrtps256: |
| case X86::BI__builtin_ia32_sqrtps: |
| case X86::BI__builtin_ia32_sqrtps512: |
| case X86::BI__builtin_ia32_sqrtpd512: { |
| if (Ops.size() == 2) { |
| unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); |
| // Support only if the rounding mode is 4 (AKA CUR_DIRECTION), |
| // otherwise keep the intrinsic. |
| if (CC != 4) { |
| Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ? |
| Intrinsic::x86_avx512_sqrt_ps_512 : |
| Intrinsic::x86_avx512_sqrt_pd_512; |
| return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); |
| } |
| } |
| Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType()); |
| return Builder.CreateCall(F, Ops[0]); |
| } |
| case X86::BI__builtin_ia32_pabsb128: |
| case X86::BI__builtin_ia32_pabsw128: |
| case X86::BI__builtin_ia32_pabsd128: |
| case X86::BI__builtin_ia32_pabsb256: |
| case X86::BI__builtin_ia32_pabsw256: |
| case X86::BI__builtin_ia32_pabsd256: |
| case X86::BI__builtin_ia32_pabsq128: |
| case X86::BI__builtin_ia32_pabsq256: |
| case X86::BI__builtin_ia32_pabsb512: |
| case X86::BI__builtin_ia32_pabsw512: |
| case X86::BI__builtin_ia32_pabsd512: |
| case X86::BI__builtin_ia32_pabsq512: |
| return EmitX86Abs(*this, Ops); |
| |
| case X86::BI__builtin_ia32_pmaxsb128: |
| case X86::BI__builtin_ia32_pmaxsw128: |
| case X86::BI__builtin_ia32_pmaxsd128: |
| case X86::BI__builtin_ia32_pmaxsq128: |
| case X86::BI__builtin_ia32_pmaxsb256: |
| case X86::BI__builtin_ia32_pmaxsw256: |
| case X86::BI__builtin_ia32_pmaxsd256: |
| case X86::BI__builtin_ia32_pmaxsq256: |
| case X86::BI__builtin_ia32_pmaxsb512: |
| case X86::BI__builtin_ia32_pmaxsw512: |
| case X86::BI__builtin_ia32_pmaxsd512: |
| case X86::BI__builtin_ia32_pmaxsq512: |
| return EmitX86MinMax(*this, ICmpInst::ICMP_SGT, Ops); |
| case X86::BI__builtin_ia32_pmaxub128: |
| case X86::BI__builtin_ia32_pmaxuw128: |
| case X86::BI__builtin_ia32_pmaxud128: |
| case X86::BI__builtin_ia32_pmaxuq128: |
| case X86::BI__builtin_ia32_pmaxub256: |
| case X86::BI__builtin_ia32_pmaxuw256: |
| case X86::BI__builtin_ia32_pmaxud256: |
| case X86::BI__builtin_ia32_pmaxuq256: |
| case X86::BI__builtin_ia32_pmaxub512: |
| case X86::BI__builtin_ia32_pmaxuw512: |
| case X86::BI__builtin_ia32_pmaxud512: |
| case X86::BI__builtin_ia32_pmaxuq512: |
| return EmitX86MinMax(*this, ICmpInst::ICMP_UGT, Ops); |
| case X86::BI__builtin_ia32_pminsb128: |
| case X86::BI__builtin_ia32_pminsw128: |
| case X86::BI__builtin_ia32_pminsd128: |
| case X86::BI__builtin_ia32_pminsq128: |
| case X86::BI__builtin_ia32_pminsb256: |
| case X86::BI__builtin_ia32_pminsw256: |
| case X86::BI__builtin_ia32_pminsd256: |
| case X86::BI__builtin_ia32_pminsq256: |
| case X86::BI__builtin_ia32_pminsb512: |
| case X86::BI__builtin_ia32_pminsw512: |
| case X86::BI__builtin_ia32_pminsd512: |
| case X86::BI__builtin_ia32_pminsq512: |
| return EmitX86MinMax(*this, ICmpInst::ICMP_SLT, Ops); |
| case X86::BI__builtin_ia32_pminub128: |
| case X86::BI__builtin_ia32_pminuw128: |
| case X86::BI__builtin_ia32_pminud128: |
| case X86::BI__builtin_ia32_pminuq128: |
| case X86::BI__builtin_ia32_pminub256: |
| case X86::BI__builtin_ia32_pminuw256: |
| case X86::BI__builtin_ia32_pminud256: |
| case X86::BI__builtin_ia32_pminuq256: |
| case X86::BI__builtin_ia32_pminub512: |
| case X86::BI__builtin_ia32_pminuw512: |
| case X86::BI__builtin_ia32_pminud512: |
| case X86::BI__builtin_ia32_pminuq512: |
| return EmitX86MinMax(*this, ICmpInst::ICMP_ULT, Ops); |
| |
| case X86::BI__builtin_ia32_pmuludq128: |
| case X86::BI__builtin_ia32_pmuludq256: |
| case X86::BI__builtin_ia32_pmuludq512: |
| return EmitX86Muldq(*this, /*IsSigned*/false, Ops); |
| |
| case X86::BI__builtin_ia32_pmuldq128: |
| case X86::BI__builtin_ia32_pmuldq256: |
| case X86::BI__builtin_ia32_pmuldq512: |
| return EmitX86Muldq(*this, /*IsSigned*/true, Ops); |
| |
| case X86::BI__builtin_ia32_pternlogd512_mask: |
| case X86::BI__builtin_ia32_pternlogq512_mask: |
| case X86::BI__builtin_ia32_pternlogd128_mask: |
| case X86::BI__builtin_ia32_pternlogd256_mask: |
| case X86::BI__builtin_ia32_pternlogq128_mask: |
| case X86::BI__builtin_ia32_pternlogq256_mask: |
| return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops); |
| |
| case X86::BI__builtin_ia32_pternlogd512_maskz: |
| case X86::BI__builtin_ia32_pternlogq512_maskz: |
| case X86::BI__builtin_ia32_pternlogd128_maskz: |
| case X86::BI__builtin_ia32_pternlogd256_maskz: |
| case X86::BI__builtin_ia32_pternlogq128_maskz: |
| case X86::BI__builtin_ia32_pternlogq256_maskz: |
| return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops); |
| |
| // 3DNow! |
| case X86::BI__builtin_ia32_pswapdsf: |
| case X86::BI__builtin_ia32_pswapdsi: { |
| llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext()); |
| Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast"); |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd); |
| return Builder.CreateCall(F, Ops, "pswapd"); |
| } |
| case X86::BI__builtin_ia32_rdrand16_step: |
| case X86::BI__builtin_ia32_rdrand32_step: |
| case X86::BI__builtin_ia32_rdrand64_step: |
| case X86::BI__builtin_ia32_rdseed16_step: |
| case X86::BI__builtin_ia32_rdseed32_step: |
| case X86::BI__builtin_ia32_rdseed64_step: { |
| Intrinsic::ID ID; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported intrinsic!"); |
| case X86::BI__builtin_ia32_rdrand16_step: |
| ID = Intrinsic::x86_rdrand_16; |
| break; |
| case X86::BI__builtin_ia32_rdrand32_step: |
| ID = Intrinsic::x86_rdrand_32; |
| break; |
| case X86::BI__builtin_ia32_rdrand64_step: |
| ID = Intrinsic::x86_rdrand_64; |
| break; |
| case X86::BI__builtin_ia32_rdseed16_step: |
| ID = Intrinsic::x86_rdseed_16; |
| break; |
| case X86::BI__builtin_ia32_rdseed32_step: |
| ID = Intrinsic::x86_rdseed_32; |
| break; |
| case X86::BI__builtin_ia32_rdseed64_step: |
| ID = Intrinsic::x86_rdseed_64; |
| break; |
| } |
| |
| Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID)); |
| Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0), |
| Ops[0]); |
| return Builder.CreateExtractValue(Call, 1); |
| } |
| |
| case X86::BI__builtin_ia32_fpclassps128_mask: |
| case X86::BI__builtin_ia32_fpclassps256_mask: |
| case X86::BI__builtin_ia32_fpclassps512_mask: |
| case X86::BI__builtin_ia32_fpclasspd128_mask: |
| case X86::BI__builtin_ia32_fpclasspd256_mask: |
| case X86::BI__builtin_ia32_fpclasspd512_mask: { |
| unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); |
| Value *MaskIn = Ops[2]; |
| Ops.erase(&Ops[2]); |
| |
| Intrinsic::ID ID; |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported intrinsic!"); |
| case X86::BI__builtin_ia32_fpclassps128_mask: |
| ID = Intrinsic::x86_avx512_fpclass_ps_128; |
| break; |
| case X86::BI__builtin_ia32_fpclassps256_mask: |
| ID = Intrinsic::x86_avx512_fpclass_ps_256; |
| break; |
| case X86::BI__builtin_ia32_fpclassps512_mask: |
| ID = Intrinsic::x86_avx512_fpclass_ps_512; |
| break; |
| case X86::BI__builtin_ia32_fpclasspd128_mask: |
| ID = Intrinsic::x86_avx512_fpclass_pd_128; |
| break; |
| case X86::BI__builtin_ia32_fpclasspd256_mask: |
| ID = Intrinsic::x86_avx512_fpclass_pd_256; |
| break; |
| case X86::BI__builtin_ia32_fpclasspd512_mask: |
| ID = Intrinsic::x86_avx512_fpclass_pd_512; |
| break; |
| } |
| |
| Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); |
| return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn); |
| } |
| |
| // packed comparison intrinsics |
| case X86::BI__builtin_ia32_cmpeqps: |
| case X86::BI__builtin_ia32_cmpeqpd: |
| return getVectorFCmpIR(CmpInst::FCMP_OEQ); |
| case X86::BI__builtin_ia32_cmpltps: |
| case X86::BI__builtin_ia32_cmpltpd: |
| return getVectorFCmpIR(CmpInst::FCMP_OLT); |
| case X86::BI__builtin_ia32_cmpleps: |
| case X86::BI__builtin_ia32_cmplepd: |
| return getVectorFCmpIR(CmpInst::FCMP_OLE); |
| case X86::BI__builtin_ia32_cmpunordps: |
| case X86::BI__builtin_ia32_cmpunordpd: |
| return getVectorFCmpIR(CmpInst::FCMP_UNO); |
| case X86::BI__builtin_ia32_cmpneqps: |
| case X86::BI__builtin_ia32_cmpneqpd: |
| return getVectorFCmpIR(CmpInst::FCMP_UNE); |
| case X86::BI__builtin_ia32_cmpnltps: |
| case X86::BI__builtin_ia32_cmpnltpd: |
| return getVectorFCmpIR(CmpInst::FCMP_UGE); |
| case X86::BI__builtin_ia32_cmpnleps: |
| case X86::BI__builtin_ia32_cmpnlepd: |
| return getVectorFCmpIR(CmpInst::FCMP_UGT); |
| case X86::BI__builtin_ia32_cmpordps: |
| case X86::BI__builtin_ia32_cmpordpd: |
| return getVectorFCmpIR(CmpInst::FCMP_ORD); |
| case X86::BI__builtin_ia32_cmpps: |
| case X86::BI__builtin_ia32_cmpps256: |
| case X86::BI__builtin_ia32_cmppd: |
| case X86::BI__builtin_ia32_cmppd256: |
| case X86::BI__builtin_ia32_cmpps128_mask: |
| case X86::BI__builtin_ia32_cmpps256_mask: |
| case X86::BI__builtin_ia32_cmpps512_mask: |
| case X86::BI__builtin_ia32_cmppd128_mask: |
| case X86::BI__builtin_ia32_cmppd256_mask: |
| case X86::BI__builtin_ia32_cmppd512_mask: { |
| // Lowering vector comparisons to fcmp instructions, while |
| // ignoring signalling behaviour requested |
| // ignoring rounding mode requested |
| // This is is only possible as long as FENV_ACCESS is not implemented. |
| // See also: https://reviews.llvm.org/D45616 |
| |
| // The third argument is the comparison condition, and integer in the |
| // range [0, 31] |
| unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f; |
| |
| // Lowering to IR fcmp instruction. |
| // Ignoring requested signaling behaviour, |
| // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT. |
| FCmpInst::Predicate Pred; |
| switch (CC) { |
| case 0x00: Pred = FCmpInst::FCMP_OEQ; break; |
| case 0x01: Pred = FCmpInst::FCMP_OLT; break; |
| case 0x02: Pred = FCmpInst::FCMP_OLE; break; |
| case 0x03: Pred = FCmpInst::FCMP_UNO; break; |
| case 0x04: Pred = FCmpInst::FCMP_UNE; break; |
| case 0x05: Pred = FCmpInst::FCMP_UGE; break; |
| case 0x06: Pred = FCmpInst::FCMP_UGT; break; |
| case 0x07: Pred = FCmpInst::FCMP_ORD; break; |
| case 0x08: Pred = FCmpInst::FCMP_UEQ; break; |
| case 0x09: Pred = FCmpInst::FCMP_ULT; break; |
| case 0x0a: Pred = FCmpInst::FCMP_ULE; break; |
| case 0x0b: Pred = FCmpInst::FCMP_FALSE; break; |
| case 0x0c: Pred = FCmpInst::FCMP_ONE; break; |
| case 0x0d: Pred = FCmpInst::FCMP_OGE; break; |
| case 0x0e: Pred = FCmpInst::FCMP_OGT; break; |
| case 0x0f: Pred = FCmpInst::FCMP_TRUE; break; |
| case 0x10: Pred = FCmpInst::FCMP_OEQ; break; |
| case 0x11: Pred = FCmpInst::FCMP_OLT; break; |
| case 0x12: Pred = FCmpInst::FCMP_OLE; break; |
| case 0x13: Pred = FCmpInst::FCMP_UNO; break; |
| case 0x14: Pred = FCmpInst::FCMP_UNE; break; |
| case 0x15: Pred = FCmpInst::FCMP_UGE; break; |
| case 0x16: Pred = FCmpInst::FCMP_UGT; break; |
| case 0x17: Pred = FCmpInst::FCMP_ORD; break; |
| case 0x18: Pred = FCmpInst::FCMP_UEQ; break; |
| case 0x19: Pred = FCmpInst::FCMP_ULT; break; |
| case 0x1a: Pred = FCmpInst::FCMP_ULE; break; |
| case 0x1b: Pred = FCmpInst::FCMP_FALSE; break; |
| case 0x1c: Pred = FCmpInst::FCMP_ONE; break; |
| case 0x1d: Pred = FCmpInst::FCMP_OGE; break; |
| case 0x1e: Pred = FCmpInst::FCMP_OGT; break; |
| case 0x1f: Pred = FCmpInst::FCMP_TRUE; break; |
| default: llvm_unreachable("Unhandled CC"); |
| } |
| |
| // Builtins without the _mask suffix return a vector of integers |
| // of the same width as the input vectors |
| switch (BuiltinID) { |
| case X86::BI__builtin_ia32_cmpps512_mask: |
| case X86::BI__builtin_ia32_cmppd512_mask: |
| case X86::BI__builtin_ia32_cmpps128_mask: |
| case X86::BI__builtin_ia32_cmpps256_mask: |
| case X86::BI__builtin_ia32_cmppd128_mask: |
| case X86::BI__builtin_ia32_cmppd256_mask: { |
| unsigned NumElts = Ops[0]->getType()->getVectorNumElements(); |
| Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]); |
| return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]); |
| } |
| default: |
| return getVectorFCmpIR(Pred); |
| } |
| } |
| |
| // SSE scalar comparison intrinsics |
| case X86::BI__builtin_ia32_cmpeqss: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0); |
| case X86::BI__builtin_ia32_cmpltss: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1); |
| case X86::BI__builtin_ia32_cmpless: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2); |
| case X86::BI__builtin_ia32_cmpunordss: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3); |
| case X86::BI__builtin_ia32_cmpneqss: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4); |
| case X86::BI__builtin_ia32_cmpnltss: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5); |
| case X86::BI__builtin_ia32_cmpnless: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6); |
| case X86::BI__builtin_ia32_cmpordss: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7); |
| case X86::BI__builtin_ia32_cmpeqsd: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0); |
| case X86::BI__builtin_ia32_cmpltsd: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1); |
| case X86::BI__builtin_ia32_cmplesd: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2); |
| case X86::BI__builtin_ia32_cmpunordsd: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3); |
| case X86::BI__builtin_ia32_cmpneqsd: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4); |
| case X86::BI__builtin_ia32_cmpnltsd: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5); |
| case X86::BI__builtin_ia32_cmpnlesd: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6); |
| case X86::BI__builtin_ia32_cmpordsd: |
| return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7); |
| |
| case X86::BI__emul: |
| case X86::BI__emulu: { |
| llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64); |
| bool isSigned = (BuiltinID == X86::BI__emul); |
| Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned); |
| Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned); |
| return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned); |
| } |
| case X86::BI__mulh: |
| case X86::BI__umulh: |
| case X86::BI_mul128: |
| case X86::BI_umul128: { |
| llvm::Type *ResType = ConvertType(E->getType()); |
| llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); |
| |
| bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128); |
| Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned); |
| Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned); |
| |
| Value *MulResult, *HigherBits; |
| if (IsSigned) { |
| MulResult = Builder.CreateNSWMul(LHS, RHS); |
| HigherBits = Builder.CreateAShr(MulResult, 64); |
| } else { |
| MulResult = Builder.CreateNUWMul(LHS, RHS); |
| HigherBits = Builder.CreateLShr(MulResult, 64); |
| } |
| HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned); |
| |
| if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh) |
| return HigherBits; |
| |
| Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2)); |
| Builder.CreateStore(HigherBits, HighBitsAddress); |
| return Builder.CreateIntCast(MulResult, ResType, IsSigned); |
| } |
| |
| case X86::BI__faststorefence: { |
| return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, |
| llvm::SyncScope::System); |
| } |
| case X86::BI__shiftleft128: |
| case X86::BI__shiftright128: { |
| // FIXME: Once fshl/fshr no longer add an unneeded and and cmov, do this: |
| // llvm::Function *F = CGM.getIntrinsic( |
| // BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr, |
| // Int64Ty); |
| // Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); |
| // return Builder.CreateCall(F, Ops); |
| llvm::Type *Int128Ty = Builder.getInt128Ty(); |
| Value *Val = Builder.CreateOr( |
| Builder.CreateShl(Builder.CreateZExt(Ops[1], Int128Ty), 64), |
| Builder.CreateZExt(Ops[0], Int128Ty)); |
| Value *Amt = Builder.CreateAnd(Builder.CreateZExt(Ops[2], Int128Ty), |
| llvm::ConstantInt::get(Int128Ty, 0x3f)); |
| Value *Res; |
| if (BuiltinID == X86::BI__shiftleft128) |
| Res = Builder.CreateLShr(Builder.CreateShl(Val, Amt), 64); |
| else |
| Res = Builder.CreateLShr(Val, Amt); |
| return Builder.CreateTrunc(Res, Int64Ty); |
| } |
| case X86::BI_ReadWriteBarrier: |
| case X86::BI_ReadBarrier: |
| case X86::BI_WriteBarrier: { |
| return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, |
| llvm::SyncScope::SingleThread); |
| } |
| case X86::BI_BitScanForward: |
| case X86::BI_BitScanForward64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E); |
| case X86::BI_BitScanReverse: |
| case X86::BI_BitScanReverse64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E); |
| |
| case X86::BI_InterlockedAnd64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E); |
| case X86::BI_InterlockedExchange64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E); |
| case X86::BI_InterlockedExchangeAdd64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E); |
| case X86::BI_InterlockedExchangeSub64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E); |
| case X86::BI_InterlockedOr64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E); |
| case X86::BI_InterlockedXor64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E); |
| case X86::BI_InterlockedDecrement64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E); |
| case X86::BI_InterlockedIncrement64: |
| return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E); |
| case X86::BI_InterlockedCompareExchange128: { |
| // InterlockedCompareExchange128 doesn't directly refer to 128bit ints, |
| // instead it takes pointers to 64bit ints for Destination and |
| // ComparandResult, and exchange is taken as two 64bit ints (high & low). |
| // The previous value is written to ComparandResult, and success is |
| // returned. |
| |
| llvm::Type *Int128Ty = Builder.getInt128Ty(); |
| llvm::Type *Int128PtrTy = Int128Ty->getPointerTo(); |
| |
| Value *Destination = |
| Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PtrTy); |
| Value *ExchangeHigh128 = |
| Builder.CreateZExt(EmitScalarExpr(E->getArg(1)), Int128Ty); |
| Value *ExchangeLow128 = |
| Builder.CreateZExt(EmitScalarExpr(E->getArg(2)), Int128Ty); |
| Address ComparandResult( |
| Builder.CreateBitCast(EmitScalarExpr(E->getArg(3)), Int128PtrTy), |
| getContext().toCharUnitsFromBits(128)); |
| |
| Value *Exchange = Builder.CreateOr( |
| Builder.CreateShl(ExchangeHigh128, 64, "", false, false), |
| ExchangeLow128); |
| |
| Value *Comparand = Builder.CreateLoad(ComparandResult); |
| |
| AtomicCmpXchgInst *CXI = |
| Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, |
| AtomicOrdering::SequentiallyConsistent, |
| AtomicOrdering::SequentiallyConsistent); |
| CXI->setVolatile(true); |
| |
| // Write the result back to the inout pointer. |
| Builder.CreateStore(Builder.CreateExtractValue(CXI, 0), ComparandResult); |
| |
| // Get the success boolean and zero extend it to i8. |
| Value *Success = Builder.CreateExtractValue(CXI, 1); |
| return Builder.CreateZExt(Success, ConvertType(E->getType())); |
| } |
| |
| case X86::BI_AddressOfReturnAddress: { |
| Value *F = CGM.getIntrinsic(Intrinsic::addressofreturnaddress); |
| return Builder.CreateCall(F); |
| } |
| case X86::BI__stosb: { |
| // We treat __stosb as a volatile memset - it may not generate "rep stosb" |
| // instruction, but it will create a memset that won't be optimized away. |
| return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], 1, true); |
| } |
| case X86::BI__ud2: |
| // llvm.trap makes a ud2a instruction on x86. |
| return EmitTrapCall(Intrinsic::trap); |
| case X86::BI__int2c: { |
| // This syscall signals a driver assertion failure in x86 NT kernels. |
| llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); |
| llvm::InlineAsm *IA = |
| llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*SideEffects=*/true); |
| llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( |
| getLLVMContext(), llvm::AttributeList::FunctionIndex, |
| llvm::Attribute::NoReturn); |
| CallSite CS = Builder.CreateCall(IA); |
| CS.setAttributes(NoReturnAttr); |
| return CS.getInstruction(); |
| } |
| case X86::BI__readfsbyte: |
| case X86::BI__readfsword: |
| case X86::BI__readfsdword: |
| case X86::BI__readfsqword: { |
| llvm::Type *IntTy = ConvertType(E->getType()); |
| Value *Ptr = Builder.CreateIntToPtr(EmitScalarExpr(E->getArg(0)), |
| llvm::PointerType::get(IntTy, 257)); |
| LoadInst *Load = Builder.CreateAlignedLoad( |
| IntTy, Ptr, getContext().getTypeAlignInChars(E->getType())); |
| Load->setVolatile(true); |
| return Load; |
| } |
| case X86::BI__readgsbyte: |
| case X86::BI__readgsword: |
| case X86::BI__readgsdword: |
| case X86::BI__readgsqword: { |
| llvm::Type *IntTy = ConvertType(E->getType()); |
| Value *Ptr = Builder.CreateIntToPtr(EmitScalarExpr(E->getArg(0)), |
| llvm::PointerType::get(IntTy, 256)); |
| LoadInst *Load = Builder.CreateAlignedLoad( |
| IntTy, Ptr, getContext().getTypeAlignInChars(E->getType())); |
| Load->setVolatile(true); |
| return Load; |
| } |
| } |
| } |
| |
| |
| Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| SmallVector<Value*, 4> Ops; |
| |
| for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) |
| Ops.push_back(EmitScalarExpr(E->getArg(i))); |
| |
| Intrinsic::ID ID = Intrinsic::not_intrinsic; |
| |
| switch (BuiltinID) { |
| default: return nullptr; |
| |
| // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we |
| // call __builtin_readcyclecounter. |
| case PPC::BI__builtin_ppc_get_timebase: |
| return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter)); |
| |
| // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr |
| case PPC::BI__builtin_altivec_lvx: |
| case PPC::BI__builtin_altivec_lvxl: |
| case PPC::BI__builtin_altivec_lvebx: |
| case PPC::BI__builtin_altivec_lvehx: |
| case PPC::BI__builtin_altivec_lvewx: |
| case PPC::BI__builtin_altivec_lvsl: |
| case PPC::BI__builtin_altivec_lvsr: |
| case PPC::BI__builtin_vsx_lxvd2x: |
| case PPC::BI__builtin_vsx_lxvw4x: |
| case PPC::BI__builtin_vsx_lxvd2x_be: |
| case PPC::BI__builtin_vsx_lxvw4x_be: |
| case PPC::BI__builtin_vsx_lxvl: |
| case PPC::BI__builtin_vsx_lxvll: |
| { |
| if(BuiltinID == PPC::BI__builtin_vsx_lxvl || |
| BuiltinID == PPC::BI__builtin_vsx_lxvll){ |
| Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy); |
| }else { |
| Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); |
| Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]); |
| Ops.pop_back(); |
| } |
| |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!"); |
| case PPC::BI__builtin_altivec_lvx: |
| ID = Intrinsic::ppc_altivec_lvx; |
| break; |
| case PPC::BI__builtin_altivec_lvxl: |
| ID = Intrinsic::ppc_altivec_lvxl; |
| break; |
| case PPC::BI__builtin_altivec_lvebx: |
| ID = Intrinsic::ppc_altivec_lvebx; |
| break; |
| case PPC::BI__builtin_altivec_lvehx: |
| ID = Intrinsic::ppc_altivec_lvehx; |
| break; |
| case PPC::BI__builtin_altivec_lvewx: |
| ID = Intrinsic::ppc_altivec_lvewx; |
| break; |
| case PPC::BI__builtin_altivec_lvsl: |
| ID = Intrinsic::ppc_altivec_lvsl; |
| break; |
| case PPC::BI__builtin_altivec_lvsr: |
| ID = Intrinsic::ppc_altivec_lvsr; |
| break; |
| case PPC::BI__builtin_vsx_lxvd2x: |
| ID = Intrinsic::ppc_vsx_lxvd2x; |
| break; |
| case PPC::BI__builtin_vsx_lxvw4x: |
| ID = Intrinsic::ppc_vsx_lxvw4x; |
| break; |
| case PPC::BI__builtin_vsx_lxvd2x_be: |
| ID = Intrinsic::ppc_vsx_lxvd2x_be; |
| break; |
| case PPC::BI__builtin_vsx_lxvw4x_be: |
| ID = Intrinsic::ppc_vsx_lxvw4x_be; |
| break; |
| case PPC::BI__builtin_vsx_lxvl: |
| ID = Intrinsic::ppc_vsx_lxvl; |
| break; |
| case PPC::BI__builtin_vsx_lxvll: |
| ID = Intrinsic::ppc_vsx_lxvll; |
| break; |
| } |
| llvm::Function *F = CGM.getIntrinsic(ID); |
| return Builder.CreateCall(F, Ops, ""); |
| } |
| |
| // vec_st, vec_xst_be |
| case PPC::BI__builtin_altivec_stvx: |
| case PPC::BI__builtin_altivec_stvxl: |
| case PPC::BI__builtin_altivec_stvebx: |
| case PPC::BI__builtin_altivec_stvehx: |
| case PPC::BI__builtin_altivec_stvewx: |
| case PPC::BI__builtin_vsx_stxvd2x: |
| case PPC::BI__builtin_vsx_stxvw4x: |
| case PPC::BI__builtin_vsx_stxvd2x_be: |
| case PPC::BI__builtin_vsx_stxvw4x_be: |
| case PPC::BI__builtin_vsx_stxvl: |
| case PPC::BI__builtin_vsx_stxvll: |
| { |
| if(BuiltinID == PPC::BI__builtin_vsx_stxvl || |
| BuiltinID == PPC::BI__builtin_vsx_stxvll ){ |
| Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); |
| }else { |
| Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy); |
| Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]); |
| Ops.pop_back(); |
| } |
| |
| switch (BuiltinID) { |
| default: llvm_unreachable("Unsupported st intrinsic!"); |
| case PPC::BI__builtin_altivec_stvx: |
| ID = Intrinsic::ppc_altivec_stvx; |
| break; |
| case PPC::BI__builtin_altivec_stvxl: |
| ID = Intrinsic::ppc_altivec_stvxl; |
| break; |
| case PPC::BI__builtin_altivec_stvebx: |
| ID = Intrinsic::ppc_altivec_stvebx; |
| break; |
| case PPC::BI__builtin_altivec_stvehx: |
| ID = Intrinsic::ppc_altivec_stvehx; |
| break; |
| case PPC::BI__builtin_altivec_stvewx: |
| ID = Intrinsic::ppc_altivec_stvewx; |
| break; |
| case PPC::BI__builtin_vsx_stxvd2x: |
| ID = Intrinsic::ppc_vsx_stxvd2x; |
| break; |
| case PPC::BI__builtin_vsx_stxvw4x: |
| ID = Intrinsic::ppc_vsx_stxvw4x; |
| break; |
| case PPC::BI__builtin_vsx_stxvd2x_be: |
| ID = Intrinsic::ppc_vsx_stxvd2x_be; |
| break; |
| case PPC::BI__builtin_vsx_stxvw4x_be: |
| ID = Intrinsic::ppc_vsx_stxvw4x_be; |
| break; |
| case PPC::BI__builtin_vsx_stxvl: |
| ID = Intrinsic::ppc_vsx_stxvl; |
| break; |
| case PPC::BI__builtin_vsx_stxvll: |
| ID = Intrinsic::ppc_vsx_stxvll; |
| break; |
| } |
| llvm::Function *F = CGM.getIntrinsic(ID); |
| return Builder.CreateCall(F, Ops, ""); |
| } |
| // Square root |
| case PPC::BI__builtin_vsx_xvsqrtsp: |
| case PPC::BI__builtin_vsx_xvsqrtdp: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| ID = Intrinsic::sqrt; |
| llvm::Function *F = CGM.getIntrinsic(ID, ResultType); |
| return Builder.CreateCall(F, X); |
| } |
| // Count leading zeros |
| case PPC::BI__builtin_altivec_vclzb: |
| case PPC::BI__builtin_altivec_vclzh: |
| case PPC::BI__builtin_altivec_vclzw: |
| case PPC::BI__builtin_altivec_vclzd: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); |
| Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType); |
| return Builder.CreateCall(F, {X, Undef}); |
| } |
| case PPC::BI__builtin_altivec_vctzb: |
| case PPC::BI__builtin_altivec_vctzh: |
| case PPC::BI__builtin_altivec_vctzw: |
| case PPC::BI__builtin_altivec_vctzd: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); |
| Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType); |
| return Builder.CreateCall(F, {X, Undef}); |
| } |
| case PPC::BI__builtin_altivec_vpopcntb: |
| case PPC::BI__builtin_altivec_vpopcnth: |
| case PPC::BI__builtin_altivec_vpopcntw: |
| case PPC::BI__builtin_altivec_vpopcntd: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); |
| return Builder.CreateCall(F, X); |
| } |
| // Copy sign |
| case PPC::BI__builtin_vsx_xvcpsgnsp: |
| case PPC::BI__builtin_vsx_xvcpsgndp: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Y = EmitScalarExpr(E->getArg(1)); |
| ID = Intrinsic::copysign; |
| llvm::Function *F = CGM.getIntrinsic(ID, ResultType); |
| return Builder.CreateCall(F, {X, Y}); |
| } |
| // Rounding/truncation |
| case PPC::BI__builtin_vsx_xvrspip: |
| case PPC::BI__builtin_vsx_xvrdpip: |
| case PPC::BI__builtin_vsx_xvrdpim: |
| case PPC::BI__builtin_vsx_xvrspim: |
| case PPC::BI__builtin_vsx_xvrdpi: |
| case PPC::BI__builtin_vsx_xvrspi: |
| case PPC::BI__builtin_vsx_xvrdpic: |
| case PPC::BI__builtin_vsx_xvrspic: |
| case PPC::BI__builtin_vsx_xvrdpiz: |
| case PPC::BI__builtin_vsx_xvrspiz: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim || |
| BuiltinID == PPC::BI__builtin_vsx_xvrspim) |
| ID = Intrinsic::floor; |
| else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi || |
| BuiltinID == PPC::BI__builtin_vsx_xvrspi) |
| ID = Intrinsic::round; |
| else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic || |
| BuiltinID == PPC::BI__builtin_vsx_xvrspic) |
| ID = Intrinsic::nearbyint; |
| else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip || |
| BuiltinID == PPC::BI__builtin_vsx_xvrspip) |
| ID = Intrinsic::ceil; |
| else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz || |
| BuiltinID == PPC::BI__builtin_vsx_xvrspiz) |
| ID = Intrinsic::trunc; |
| llvm::Function *F = CGM.getIntrinsic(ID, ResultType); |
| return Builder.CreateCall(F, X); |
| } |
| |
| // Absolute value |
| case PPC::BI__builtin_vsx_xvabsdp: |
| case PPC::BI__builtin_vsx_xvabssp: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); |
| return Builder.CreateCall(F, X); |
| } |
| |
| // FMA variations |
| case PPC::BI__builtin_vsx_xvmaddadp: |
| case PPC::BI__builtin_vsx_xvmaddasp: |
| case PPC::BI__builtin_vsx_xvnmaddadp: |
| case PPC::BI__builtin_vsx_xvnmaddasp: |
| case PPC::BI__builtin_vsx_xvmsubadp: |
| case PPC::BI__builtin_vsx_xvmsubasp: |
| case PPC::BI__builtin_vsx_xvnmsubadp: |
| case PPC::BI__builtin_vsx_xvnmsubasp: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Y = EmitScalarExpr(E->getArg(1)); |
| Value *Z = EmitScalarExpr(E->getArg(2)); |
| Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType); |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); |
| switch (BuiltinID) { |
| case PPC::BI__builtin_vsx_xvmaddadp: |
| case PPC::BI__builtin_vsx_xvmaddasp: |
| return Builder.CreateCall(F, {X, Y, Z}); |
| case PPC::BI__builtin_vsx_xvnmaddadp: |
| case PPC::BI__builtin_vsx_xvnmaddasp: |
| return Builder.CreateFSub(Zero, |
| Builder.CreateCall(F, {X, Y, Z}), "sub"); |
| case PPC::BI__builtin_vsx_xvmsubadp: |
| case PPC::BI__builtin_vsx_xvmsubasp: |
| return Builder.CreateCall(F, |
| {X, Y, Builder.CreateFSub(Zero, Z, "sub")}); |
| case PPC::BI__builtin_vsx_xvnmsubadp: |
| case PPC::BI__builtin_vsx_xvnmsubasp: |
| Value *FsubRes = |
| Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")}); |
| return Builder.CreateFSub(Zero, FsubRes, "sub"); |
| } |
| llvm_unreachable("Unknown FMA operation"); |
| return nullptr; // Suppress no-return warning |
| } |
| |
| case PPC::BI__builtin_vsx_insertword: { |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw); |
| |
| // Third argument is a compile time constant int. It must be clamped to |
| // to the range [0, 12]. |
| ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); |
| assert(ArgCI && |
| "Third arg to xxinsertw intrinsic must be constant integer"); |
| const int64_t MaxIndex = 12; |
| int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex); |
| |
| // The builtin semantics don't exactly match the xxinsertw instructions |
| // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the |
| // word from the first argument, and inserts it in the second argument. The |
| // instruction extracts the word from its second input register and inserts |
| // it into its first input register, so swap the first and second arguments. |
| std::swap(Ops[0], Ops[1]); |
| |
| // Need to cast the second argument from a vector of unsigned int to a |
| // vector of long long. |
| Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2)); |
| |
| if (getTarget().isLittleEndian()) { |
| // Create a shuffle mask of (1, 0) |
| Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1), |
| ConstantInt::get(Int32Ty, 0) |
| }; |
| Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts); |
| |
| // Reverse the double words in the vector we will extract from. |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2)); |
| Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ShuffleMask); |
| |
| // Reverse the index. |
| Index = MaxIndex - Index; |
| } |
| |
| // Intrinsic expects the first arg to be a vector of int. |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4)); |
| Ops[2] = ConstantInt::getSigned(Int32Ty, Index); |
| return Builder.CreateCall(F, Ops); |
| } |
| |
| case PPC::BI__builtin_vsx_extractuword: { |
| llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw); |
| |
| // Intrinsic expects the first argument to be a vector of doublewords. |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2)); |
| |
| // The second argument is a compile time constant int that needs to |
| // be clamped to the range [0, 12]. |
| ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]); |
| assert(ArgCI && |
| "Second Arg to xxextractuw intrinsic must be a constant integer!"); |
| const int64_t MaxIndex = 12; |
| int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex); |
| |
| if (getTarget().isLittleEndian()) { |
| // Reverse the index. |
| Index = MaxIndex - Index; |
| Ops[1] = ConstantInt::getSigned(Int32Ty, Index); |
| |
| // Emit the call, then reverse the double words of the results vector. |
| Value *Call = Builder.CreateCall(F, Ops); |
| |
| // Create a shuffle mask of (1, 0) |
| Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1), |
| ConstantInt::get(Int32Ty, 0) |
| }; |
| Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts); |
| |
| Value *ShuffleCall = Builder.CreateShuffleVector(Call, Call, ShuffleMask); |
| return ShuffleCall; |
| } else { |
| Ops[1] = ConstantInt::getSigned(Int32Ty, Index); |
| return Builder.CreateCall(F, Ops); |
| } |
| } |
| |
| case PPC::BI__builtin_vsx_xxpermdi: { |
| ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); |
| assert(ArgCI && "Third arg must be constant integer!"); |
| |
| unsigned Index = ArgCI->getZExtValue(); |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2)); |
| Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2)); |
| |
| // Account for endianness by treating this as just a shuffle. So we use the |
| // same indices for both LE and BE in order to produce expected results in |
| // both cases. |
| unsigned ElemIdx0 = (Index & 2) >> 1; |
| unsigned ElemIdx1 = 2 + (Index & 1); |
| |
| Constant *ShuffleElts[2] = {ConstantInt::get(Int32Ty, ElemIdx0), |
| ConstantInt::get(Int32Ty, ElemIdx1)}; |
| Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts); |
| |
| Value *ShuffleCall = |
| Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask); |
| QualType BIRetType = E->getType(); |
| auto RetTy = ConvertType(BIRetType); |
| return Builder.CreateBitCast(ShuffleCall, RetTy); |
| } |
| |
| case PPC::BI__builtin_vsx_xxsldwi: { |
| ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); |
| assert(ArgCI && "Third argument must be a compile time constant"); |
| unsigned Index = ArgCI->getZExtValue() & 0x3; |
| Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4)); |
| Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int32Ty, 4)); |
| |
| // Create a shuffle mask |
| unsigned ElemIdx0; |
| unsigned ElemIdx1; |
| unsigned ElemIdx2; |
| unsigned ElemIdx3; |
| if (getTarget().isLittleEndian()) { |
| // Little endian element N comes from element 8+N-Index of the |
| // concatenated wide vector (of course, using modulo arithmetic on |
| // the total number of elements). |
| ElemIdx0 = (8 - Index) % 8; |
| ElemIdx1 = (9 - Index) % 8; |
| ElemIdx2 = (10 - Index) % 8; |
| ElemIdx3 = (11 - Index) % 8; |
| } else { |
| // Big endian ElemIdx<N> = Index + N |
| ElemIdx0 = Index; |
| ElemIdx1 = Index + 1; |
| ElemIdx2 = Index + 2; |
| ElemIdx3 = Index + 3; |
| } |
| |
| Constant *ShuffleElts[4] = {ConstantInt::get(Int32Ty, ElemIdx0), |
| ConstantInt::get(Int32Ty, ElemIdx1), |
| ConstantInt::get(Int32Ty, ElemIdx2), |
| ConstantInt::get(Int32Ty, ElemIdx3)}; |
| |
| Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts); |
| Value *ShuffleCall = |
| Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask); |
| QualType BIRetType = E->getType(); |
| auto RetTy = ConvertType(BIRetType); |
| return Builder.CreateBitCast(ShuffleCall, RetTy); |
| } |
| } |
| } |
| |
| Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| switch (BuiltinID) { |
| case AMDGPU::BI__builtin_amdgcn_div_scale: |
| case AMDGPU::BI__builtin_amdgcn_div_scalef: { |
| // Translate from the intrinsics's struct return to the builtin's out |
| // argument. |
| |
| Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3)); |
| |
| llvm::Value *X = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Y = EmitScalarExpr(E->getArg(1)); |
| llvm::Value *Z = EmitScalarExpr(E->getArg(2)); |
| |
| llvm::Value *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale, |
| X->getType()); |
| |
| llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z}); |
| |
| llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0); |
| llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1); |
| |
| llvm::Type *RealFlagType |
| = FlagOutPtr.getPointer()->getType()->getPointerElementType(); |
| |
| llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType); |
| Builder.CreateStore(FlagExt, FlagOutPtr); |
| return Result; |
| } |
| case AMDGPU::BI__builtin_amdgcn_div_fmas: |
| case AMDGPU::BI__builtin_amdgcn_div_fmasf: { |
| llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); |
| llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); |
| llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); |
| llvm::Value *Src3 = EmitScalarExpr(E->getArg(3)); |
| |
| llvm::Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas, |
| Src0->getType()); |
| llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3); |
| return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool}); |
| } |
| |
| case AMDGPU::BI__builtin_amdgcn_ds_swizzle: |
| return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle); |
| case AMDGPU::BI__builtin_amdgcn_mov_dpp: { |
| llvm::SmallVector<llvm::Value *, 5> Args; |
| for (unsigned I = 0; I != 5; ++I) |
| Args.push_back(EmitScalarExpr(E->getArg(I))); |
| Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_mov_dpp, |
| Args[0]->getType()); |
| return Builder.CreateCall(F, Args); |
| } |
| case AMDGPU::BI__builtin_amdgcn_div_fixup: |
| case AMDGPU::BI__builtin_amdgcn_div_fixupf: |
| case AMDGPU::BI__builtin_amdgcn_div_fixuph: |
| return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup); |
| case AMDGPU::BI__builtin_amdgcn_trig_preop: |
| case AMDGPU::BI__builtin_amdgcn_trig_preopf: |
| return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop); |
| case AMDGPU::BI__builtin_amdgcn_rcp: |
| case AMDGPU::BI__builtin_amdgcn_rcpf: |
| case AMDGPU::BI__builtin_amdgcn_rcph: |
| return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp); |
| case AMDGPU::BI__builtin_amdgcn_rsq: |
| case AMDGPU::BI__builtin_amdgcn_rsqf: |
| case AMDGPU::BI__builtin_amdgcn_rsqh: |
| return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq); |
| case AMDGPU::BI__builtin_amdgcn_rsq_clamp: |
| case AMDGPU::BI__builtin_amdgcn_rsq_clampf: |
| return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp); |
| case AMDGPU::BI__builtin_amdgcn_sinf: |
| case AMDGPU::BI__builtin_amdgcn_sinh: |
| return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin); |
| case AMDGPU::BI__builtin_amdgcn_cosf: |
| case AMDGPU::BI__builtin_amdgcn_cosh: |
| return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos); |
| case AMDGPU::BI__builtin_amdgcn_log_clampf: |
| return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp); |
| case AMDGPU::BI__builtin_amdgcn_ldexp: |
| case AMDGPU::BI__builtin_amdgcn_ldexpf: |
| case AMDGPU::BI__builtin_amdgcn_ldexph: |
| return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp); |
| case AMDGPU::BI__builtin_amdgcn_frexp_mant: |
| case AMDGPU::BI__builtin_amdgcn_frexp_mantf: |
| case AMDGPU::BI__builtin_amdgcn_frexp_manth: |
| return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant); |
| case AMDGPU::BI__builtin_amdgcn_frexp_exp: |
| case AMDGPU::BI__builtin_amdgcn_frexp_expf: { |
| Value *Src0 = EmitScalarExpr(E->getArg(0)); |
| Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp, |
| { Builder.getInt32Ty(), Src0->getType() }); |
| return Builder.CreateCall(F, Src0); |
| } |
| case AMDGPU::BI__builtin_amdgcn_frexp_exph: { |
| Value *Src0 = EmitScalarExpr(E->getArg(0)); |
| Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp, |
| { Builder.getInt16Ty(), Src0->getType() }); |
| return Builder.CreateCall(F, Src0); |
| } |
| case AMDGPU::BI__builtin_amdgcn_fract: |
| case AMDGPU::BI__builtin_amdgcn_fractf: |
| case AMDGPU::BI__builtin_amdgcn_fracth: |
| return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract); |
| case AMDGPU::BI__builtin_amdgcn_lerp: |
| return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp); |
| case AMDGPU::BI__builtin_amdgcn_uicmp: |
| case AMDGPU::BI__builtin_amdgcn_uicmpl: |
| case AMDGPU::BI__builtin_amdgcn_sicmp: |
| case AMDGPU::BI__builtin_amdgcn_sicmpl: |
| return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_icmp); |
| case AMDGPU::BI__builtin_amdgcn_fcmp: |
| case AMDGPU::BI__builtin_amdgcn_fcmpf: |
| return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fcmp); |
| case AMDGPU::BI__builtin_amdgcn_class: |
| case AMDGPU::BI__builtin_amdgcn_classf: |
| case AMDGPU::BI__builtin_amdgcn_classh: |
| return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class); |
| case AMDGPU::BI__builtin_amdgcn_fmed3f: |
| case AMDGPU::BI__builtin_amdgcn_fmed3h: |
| return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3); |
| case AMDGPU::BI__builtin_amdgcn_read_exec: { |
| CallInst *CI = cast<CallInst>( |
| EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, true, "exec")); |
| CI->setConvergent(); |
| return CI; |
| } |
| case AMDGPU::BI__builtin_amdgcn_read_exec_lo: |
| case AMDGPU::BI__builtin_amdgcn_read_exec_hi: { |
| StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ? |
| "exec_lo" : "exec_hi"; |
| CallInst *CI = cast<CallInst>( |
| EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, true, RegName)); |
| CI->setConvergent(); |
| return CI; |
| } |
| case AMDGPU::BI__builtin_amdgcn_ds_faddf: |
| case AMDGPU::BI__builtin_amdgcn_ds_fminf: |
| case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: { |
| llvm::SmallVector<llvm::Value *, 5> Args; |
| for (unsigned I = 0; I != 5; ++I) |
| Args.push_back(EmitScalarExpr(E->getArg(I))); |
| const llvm::Type *PtrTy = Args[0]->getType(); |
| // check pointer parameter |
| if (!PtrTy->isPointerTy() || |
| E->getArg(0) |
| ->getType() |
| ->getPointeeType() |
| .getQualifiers() |
| .getAddressSpace() != LangAS::opencl_local || |
| !PtrTy->getPointerElementType()->isFloatTy()) { |
| CGM.Error(E->getArg(0)->getLocStart(), |
| "parameter should have type \"local float*\""); |
| return nullptr; |
| } |
| // check float parameter |
| if (!Args[1]->getType()->isFloatTy()) { |
| CGM.Error(E->getArg(1)->getLocStart(), |
| "parameter should have type \"float\""); |
| return nullptr; |
| } |
| |
| Intrinsic::ID ID; |
| switch (BuiltinID) { |
| case AMDGPU::BI__builtin_amdgcn_ds_faddf: |
| ID = Intrinsic::amdgcn_ds_fadd; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_ds_fminf: |
| ID = Intrinsic::amdgcn_ds_fmin; |
| break; |
| case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: |
| ID = Intrinsic::amdgcn_ds_fmax; |
| break; |
| default: |
| llvm_unreachable("Unknown BuiltinID"); |
| } |
| Value *F = CGM.getIntrinsic(ID); |
| return Builder.CreateCall(F, Args); |
| } |
| |
| // amdgcn workitem |
| case AMDGPU::BI__builtin_amdgcn_workitem_id_x: |
| return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024); |
| case AMDGPU::BI__builtin_amdgcn_workitem_id_y: |
| return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024); |
| case AMDGPU::BI__builtin_amdgcn_workitem_id_z: |
| return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024); |
| |
| // r600 intrinsics |
| case AMDGPU::BI__builtin_r600_recipsqrt_ieee: |
| case AMDGPU::BI__builtin_r600_recipsqrt_ieeef: |
| return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee); |
| case AMDGPU::BI__builtin_r600_read_tidig_x: |
| return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024); |
| case AMDGPU::BI__builtin_r600_read_tidig_y: |
| return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024); |
| case AMDGPU::BI__builtin_r600_read_tidig_z: |
| return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024); |
| default: |
| return nullptr; |
| } |
| } |
| |
| /// Handle a SystemZ function in which the final argument is a pointer |
| /// to an int that receives the post-instruction CC value. At the LLVM level |
| /// this is represented as a function that returns a {result, cc} pair. |
| static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF, |
| unsigned IntrinsicID, |
| const CallExpr *E) { |
| unsigned NumArgs = E->getNumArgs() - 1; |
| SmallVector<Value *, 8> Args(NumArgs); |
| for (unsigned I = 0; I < NumArgs; ++I) |
| Args[I] = CGF.EmitScalarExpr(E->getArg(I)); |
| Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs)); |
| Value *F = CGF.CGM.getIntrinsic(IntrinsicID); |
| Value *Call = CGF.Builder.CreateCall(F, Args); |
| Value *CC = CGF.Builder.CreateExtractValue(Call, 1); |
| CGF.Builder.CreateStore(CC, CCPtr); |
| return CGF.Builder.CreateExtractValue(Call, 0); |
| } |
| |
| Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| switch (BuiltinID) { |
| case SystemZ::BI__builtin_tbegin: { |
| Value *TDB = EmitScalarExpr(E->getArg(0)); |
| Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c); |
| Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin); |
| return Builder.CreateCall(F, {TDB, Control}); |
| } |
| case SystemZ::BI__builtin_tbegin_nofloat: { |
| Value *TDB = EmitScalarExpr(E->getArg(0)); |
| Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c); |
| Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat); |
| return Builder.CreateCall(F, {TDB, Control}); |
| } |
| case SystemZ::BI__builtin_tbeginc: { |
| Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy); |
| Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08); |
| Value *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc); |
| return Builder.CreateCall(F, {TDB, Control}); |
| } |
| case SystemZ::BI__builtin_tabort: { |
| Value *Data = EmitScalarExpr(E->getArg(0)); |
| Value *F = CGM.getIntrinsic(Intrinsic::s390_tabort); |
| return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort")); |
| } |
| case SystemZ::BI__builtin_non_tx_store: { |
| Value *Address = EmitScalarExpr(E->getArg(0)); |
| Value *Data = EmitScalarExpr(E->getArg(1)); |
| Value *F = CGM.getIntrinsic(Intrinsic::s390_ntstg); |
| return Builder.CreateCall(F, {Data, Address}); |
| } |
| |
| // Vector builtins. Note that most vector builtins are mapped automatically |
| // to target-specific LLVM intrinsics. The ones handled specially here can |
| // be represented via standard LLVM IR, which is preferable to enable common |
| // LLVM optimizations. |
| |
| case SystemZ::BI__builtin_s390_vpopctb: |
| case SystemZ::BI__builtin_s390_vpopcth: |
| case SystemZ::BI__builtin_s390_vpopctf: |
| case SystemZ::BI__builtin_s390_vpopctg: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); |
| return Builder.CreateCall(F, X); |
| } |
| |
| case SystemZ::BI__builtin_s390_vclzb: |
| case SystemZ::BI__builtin_s390_vclzh: |
| case SystemZ::BI__builtin_s390_vclzf: |
| case SystemZ::BI__builtin_s390_vclzg: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); |
| Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType); |
| return Builder.CreateCall(F, {X, Undef}); |
| } |
| |
| case SystemZ::BI__builtin_s390_vctzb: |
| case SystemZ::BI__builtin_s390_vctzh: |
| case SystemZ::BI__builtin_s390_vctzf: |
| case SystemZ::BI__builtin_s390_vctzg: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); |
| Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType); |
| return Builder.CreateCall(F, {X, Undef}); |
| } |
| |
| case SystemZ::BI__builtin_s390_vfsqsb: |
| case SystemZ::BI__builtin_s390_vfsqdb: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType); |
| return Builder.CreateCall(F, X); |
| } |
| case SystemZ::BI__builtin_s390_vfmasb: |
| case SystemZ::BI__builtin_s390_vfmadb: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Y = EmitScalarExpr(E->getArg(1)); |
| Value *Z = EmitScalarExpr(E->getArg(2)); |
| Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); |
| return Builder.CreateCall(F, {X, Y, Z}); |
| } |
| case SystemZ::BI__builtin_s390_vfmssb: |
| case SystemZ::BI__builtin_s390_vfmsdb: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Y = EmitScalarExpr(E->getArg(1)); |
| Value *Z = EmitScalarExpr(E->getArg(2)); |
| Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType); |
| Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); |
| return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")}); |
| } |
| case SystemZ::BI__builtin_s390_vfnmasb: |
| case SystemZ::BI__builtin_s390_vfnmadb: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Y = EmitScalarExpr(E->getArg(1)); |
| Value *Z = EmitScalarExpr(E->getArg(2)); |
| Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType); |
| Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); |
| return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, Z}), "sub"); |
| } |
| case SystemZ::BI__builtin_s390_vfnmssb: |
| case SystemZ::BI__builtin_s390_vfnmsdb: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Y = EmitScalarExpr(E->getArg(1)); |
| Value *Z = EmitScalarExpr(E->getArg(2)); |
| Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType); |
| Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); |
| Value *NegZ = Builder.CreateFSub(Zero, Z, "sub"); |
| return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, NegZ})); |
| } |
| case SystemZ::BI__builtin_s390_vflpsb: |
| case SystemZ::BI__builtin_s390_vflpdb: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); |
| return Builder.CreateCall(F, X); |
| } |
| case SystemZ::BI__builtin_s390_vflnsb: |
| case SystemZ::BI__builtin_s390_vflndb: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType); |
| Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); |
| return Builder.CreateFSub(Zero, Builder.CreateCall(F, X), "sub"); |
| } |
| case SystemZ::BI__builtin_s390_vfisb: |
| case SystemZ::BI__builtin_s390_vfidb: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| // Constant-fold the M4 and M5 mask arguments. |
| llvm::APSInt M4, M5; |
| bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext()); |
| bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext()); |
| assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?"); |
| (void)IsConstM4; (void)IsConstM5; |
| // Check whether this instance can be represented via a LLVM standard |
| // intrinsic. We only support some combinations of M4 and M5. |
| Intrinsic::ID ID = Intrinsic::not_intrinsic; |
| switch (M4.getZExtValue()) { |
| default: break; |
| case 0: // IEEE-inexact exception allowed |
| switch (M5.getZExtValue()) { |
| default: break; |
| case 0: ID = Intrinsic::rint; break; |
| } |
| break; |
| case 4: // IEEE-inexact exception suppressed |
| switch (M5.getZExtValue()) { |
| default: break; |
| case 0: ID = Intrinsic::nearbyint; break; |
| case 1: ID = Intrinsic::round; break; |
| case 5: ID = Intrinsic::trunc; break; |
| case 6: ID = Intrinsic::ceil; break; |
| case 7: ID = Intrinsic::floor; break; |
| } |
| break; |
| } |
| if (ID != Intrinsic::not_intrinsic) { |
| Function *F = CGM.getIntrinsic(ID, ResultType); |
| return Builder.CreateCall(F, X); |
| } |
| switch (BuiltinID) { |
| case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break; |
| case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break; |
| default: llvm_unreachable("Unknown BuiltinID"); |
| } |
| Function *F = CGM.getIntrinsic(ID); |
| Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); |
| Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5); |
| return Builder.CreateCall(F, {X, M4Value, M5Value}); |
| } |
| case SystemZ::BI__builtin_s390_vfmaxsb: |
| case SystemZ::BI__builtin_s390_vfmaxdb: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Y = EmitScalarExpr(E->getArg(1)); |
| // Constant-fold the M4 mask argument. |
| llvm::APSInt M4; |
| bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext()); |
| assert(IsConstM4 && "Constant arg isn't actually constant?"); |
| (void)IsConstM4; |
| // Check whether this instance can be represented via a LLVM standard |
| // intrinsic. We only support some values of M4. |
| Intrinsic::ID ID = Intrinsic::not_intrinsic; |
| switch (M4.getZExtValue()) { |
| default: break; |
| case 4: ID = Intrinsic::maxnum; break; |
| } |
| if (ID != Intrinsic::not_intrinsic) { |
| Function *F = CGM.getIntrinsic(ID, ResultType); |
| return Builder.CreateCall(F, {X, Y}); |
| } |
| switch (BuiltinID) { |
| case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break; |
| case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break; |
| default: llvm_unreachable("Unknown BuiltinID"); |
| } |
| Function *F = CGM.getIntrinsic(ID); |
| Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); |
| return Builder.CreateCall(F, {X, Y, M4Value}); |
| } |
| case SystemZ::BI__builtin_s390_vfminsb: |
| case SystemZ::BI__builtin_s390_vfmindb: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Y = EmitScalarExpr(E->getArg(1)); |
| // Constant-fold the M4 mask argument. |
| llvm::APSInt M4; |
| bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext()); |
| assert(IsConstM4 && "Constant arg isn't actually constant?"); |
| (void)IsConstM4; |
| // Check whether this instance can be represented via a LLVM standard |
| // intrinsic. We only support some values of M4. |
| Intrinsic::ID ID = Intrinsic::not_intrinsic; |
| switch (M4.getZExtValue()) { |
| default: break; |
| case 4: ID = Intrinsic::minnum; break; |
| } |
| if (ID != Intrinsic::not_intrinsic) { |
| Function *F = CGM.getIntrinsic(ID, ResultType); |
| return Builder.CreateCall(F, {X, Y}); |
| } |
| switch (BuiltinID) { |
| case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break; |
| case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break; |
| default: llvm_unreachable("Unknown BuiltinID"); |
| } |
| Function *F = CGM.getIntrinsic(ID); |
| Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); |
| return Builder.CreateCall(F, {X, Y, M4Value}); |
| } |
| |
| // Vector intrisincs that output the post-instruction CC value. |
| |
| #define INTRINSIC_WITH_CC(NAME) \ |
| case SystemZ::BI__builtin_##NAME: \ |
| return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E) |
| |
| INTRINSIC_WITH_CC(s390_vpkshs); |
| INTRINSIC_WITH_CC(s390_vpksfs); |
| INTRINSIC_WITH_CC(s390_vpksgs); |
| |
| INTRINSIC_WITH_CC(s390_vpklshs); |
| INTRINSIC_WITH_CC(s390_vpklsfs); |
| INTRINSIC_WITH_CC(s390_vpklsgs); |
| |
| INTRINSIC_WITH_CC(s390_vceqbs); |
| INTRINSIC_WITH_CC(s390_vceqhs); |
| INTRINSIC_WITH_CC(s390_vceqfs); |
| INTRINSIC_WITH_CC(s390_vceqgs); |
| |
| INTRINSIC_WITH_CC(s390_vchbs); |
| INTRINSIC_WITH_CC(s390_vchhs); |
| INTRINSIC_WITH_CC(s390_vchfs); |
| INTRINSIC_WITH_CC(s390_vchgs); |
| |
| INTRINSIC_WITH_CC(s390_vchlbs); |
| INTRINSIC_WITH_CC(s390_vchlhs); |
| INTRINSIC_WITH_CC(s390_vchlfs); |
| INTRINSIC_WITH_CC(s390_vchlgs); |
| |
| INTRINSIC_WITH_CC(s390_vfaebs); |
| INTRINSIC_WITH_CC(s390_vfaehs); |
| INTRINSIC_WITH_CC(s390_vfaefs); |
| |
| INTRINSIC_WITH_CC(s390_vfaezbs); |
| INTRINSIC_WITH_CC(s390_vfaezhs); |
| INTRINSIC_WITH_CC(s390_vfaezfs); |
| |
| INTRINSIC_WITH_CC(s390_vfeebs); |
| INTRINSIC_WITH_CC(s390_vfeehs); |
| INTRINSIC_WITH_CC(s390_vfeefs); |
| |
| INTRINSIC_WITH_CC(s390_vfeezbs); |
| INTRINSIC_WITH_CC(s390_vfeezhs); |
| INTRINSIC_WITH_CC(s390_vfeezfs); |
| |
| INTRINSIC_WITH_CC(s390_vfenebs); |
| INTRINSIC_WITH_CC(s390_vfenehs); |
| INTRINSIC_WITH_CC(s390_vfenefs); |
| |
| INTRINSIC_WITH_CC(s390_vfenezbs); |
| INTRINSIC_WITH_CC(s390_vfenezhs); |
| INTRINSIC_WITH_CC(s390_vfenezfs); |
| |
| INTRINSIC_WITH_CC(s390_vistrbs); |
| INTRINSIC_WITH_CC(s390_vistrhs); |
| INTRINSIC_WITH_CC(s390_vistrfs); |
| |
| INTRINSIC_WITH_CC(s390_vstrcbs); |
| INTRINSIC_WITH_CC(s390_vstrchs); |
| INTRINSIC_WITH_CC(s390_vstrcfs); |
| |
| INTRINSIC_WITH_CC(s390_vstrczbs); |
| INTRINSIC_WITH_CC(s390_vstrczhs); |
| INTRINSIC_WITH_CC(s390_vstrczfs); |
| |
| INTRINSIC_WITH_CC(s390_vfcesbs); |
| INTRINSIC_WITH_CC(s390_vfcedbs); |
| INTRINSIC_WITH_CC(s390_vfchsbs); |
| INTRINSIC_WITH_CC(s390_vfchdbs); |
| INTRINSIC_WITH_CC(s390_vfchesbs); |
| INTRINSIC_WITH_CC(s390_vfchedbs); |
| |
| INTRINSIC_WITH_CC(s390_vftcisb); |
| INTRINSIC_WITH_CC(s390_vftcidb); |
| |
| #undef INTRINSIC_WITH_CC |
| |
| default: |
| return nullptr; |
| } |
| } |
| |
| Value *CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| auto MakeLdg = [&](unsigned IntrinsicID) { |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| clang::CharUnits Align = |
| getNaturalPointeeTypeAlignment(E->getArg(0)->getType()); |
| return Builder.CreateCall( |
| CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(), |
| Ptr->getType()}), |
| {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())}); |
| }; |
| auto MakeScopedAtomic = [&](unsigned IntrinsicID) { |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall( |
| CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(), |
| Ptr->getType()}), |
| {Ptr, EmitScalarExpr(E->getArg(1))}); |
| }; |
| switch (BuiltinID) { |
| case NVPTX::BI__nvvm_atom_add_gen_i: |
| case NVPTX::BI__nvvm_atom_add_gen_l: |
| case NVPTX::BI__nvvm_atom_add_gen_ll: |
| return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E); |
| |
| case NVPTX::BI__nvvm_atom_sub_gen_i: |
| case NVPTX::BI__nvvm_atom_sub_gen_l: |
| case NVPTX::BI__nvvm_atom_sub_gen_ll: |
| return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E); |
| |
| case NVPTX::BI__nvvm_atom_and_gen_i: |
| case NVPTX::BI__nvvm_atom_and_gen_l: |
| case NVPTX::BI__nvvm_atom_and_gen_ll: |
| return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E); |
| |
| case NVPTX::BI__nvvm_atom_or_gen_i: |
| case NVPTX::BI__nvvm_atom_or_gen_l: |
| case NVPTX::BI__nvvm_atom_or_gen_ll: |
| return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E); |
| |
| case NVPTX::BI__nvvm_atom_xor_gen_i: |
| case NVPTX::BI__nvvm_atom_xor_gen_l: |
| case NVPTX::BI__nvvm_atom_xor_gen_ll: |
| return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E); |
| |
| case NVPTX::BI__nvvm_atom_xchg_gen_i: |
| case NVPTX::BI__nvvm_atom_xchg_gen_l: |
| case NVPTX::BI__nvvm_atom_xchg_gen_ll: |
| return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E); |
| |
| case NVPTX::BI__nvvm_atom_max_gen_i: |
| case NVPTX::BI__nvvm_atom_max_gen_l: |
| case NVPTX::BI__nvvm_atom_max_gen_ll: |
| return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E); |
| |
| case NVPTX::BI__nvvm_atom_max_gen_ui: |
| case NVPTX::BI__nvvm_atom_max_gen_ul: |
| case NVPTX::BI__nvvm_atom_max_gen_ull: |
| return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E); |
| |
| case NVPTX::BI__nvvm_atom_min_gen_i: |
| case NVPTX::BI__nvvm_atom_min_gen_l: |
| case NVPTX::BI__nvvm_atom_min_gen_ll: |
| return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E); |
| |
| case NVPTX::BI__nvvm_atom_min_gen_ui: |
| case NVPTX::BI__nvvm_atom_min_gen_ul: |
| case NVPTX::BI__nvvm_atom_min_gen_ull: |
| return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E); |
| |
| case NVPTX::BI__nvvm_atom_cas_gen_i: |
| case NVPTX::BI__nvvm_atom_cas_gen_l: |
| case NVPTX::BI__nvvm_atom_cas_gen_ll: |
| // __nvvm_atom_cas_gen_* should return the old value rather than the |
| // success flag. |
| return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false); |
| |
| case NVPTX::BI__nvvm_atom_add_gen_f: { |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| Value *Val = EmitScalarExpr(E->getArg(1)); |
| // atomicrmw only deals with integer arguments so we need to use |
| // LLVM's nvvm_atomic_load_add_f32 intrinsic for that. |
| Value *FnALAF32 = |
| CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_add_f32, Ptr->getType()); |
| return Builder.CreateCall(FnALAF32, {Ptr, Val}); |
| } |
| |
| case NVPTX::BI__nvvm_atom_add_gen_d: { |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| Value *Val = EmitScalarExpr(E->getArg(1)); |
| // atomicrmw only deals with integer arguments, so we need to use |
| // LLVM's nvvm_atomic_load_add_f64 intrinsic. |
| Value *FnALAF64 = |
| CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_add_f64, Ptr->getType()); |
| return Builder.CreateCall(FnALAF64, {Ptr, Val}); |
| } |
| |
| case NVPTX::BI__nvvm_atom_inc_gen_ui: { |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| Value *Val = EmitScalarExpr(E->getArg(1)); |
| Value *FnALI32 = |
| CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType()); |
| return Builder.CreateCall(FnALI32, {Ptr, Val}); |
| } |
| |
| case NVPTX::BI__nvvm_atom_dec_gen_ui: { |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| Value *Val = EmitScalarExpr(E->getArg(1)); |
| Value *FnALD32 = |
| CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType()); |
| return Builder.CreateCall(FnALD32, {Ptr, Val}); |
| } |
| |
| case NVPTX::BI__nvvm_ldg_c: |
| case NVPTX::BI__nvvm_ldg_c2: |
| case NVPTX::BI__nvvm_ldg_c4: |
| case NVPTX::BI__nvvm_ldg_s: |
| case NVPTX::BI__nvvm_ldg_s2: |
| case NVPTX::BI__nvvm_ldg_s4: |
| case NVPTX::BI__nvvm_ldg_i: |
| case NVPTX::BI__nvvm_ldg_i2: |
| case NVPTX::BI__nvvm_ldg_i4: |
| case NVPTX::BI__nvvm_ldg_l: |
| case NVPTX::BI__nvvm_ldg_ll: |
| case NVPTX::BI__nvvm_ldg_ll2: |
| case NVPTX::BI__nvvm_ldg_uc: |
| case NVPTX::BI__nvvm_ldg_uc2: |
| case NVPTX::BI__nvvm_ldg_uc4: |
| case NVPTX::BI__nvvm_ldg_us: |
| case NVPTX::BI__nvvm_ldg_us2: |
| case NVPTX::BI__nvvm_ldg_us4: |
| case NVPTX::BI__nvvm_ldg_ui: |
| case NVPTX::BI__nvvm_ldg_ui2: |
| case NVPTX::BI__nvvm_ldg_ui4: |
| case NVPTX::BI__nvvm_ldg_ul: |
| case NVPTX::BI__nvvm_ldg_ull: |
| case NVPTX::BI__nvvm_ldg_ull2: |
| // PTX Interoperability section 2.2: "For a vector with an even number of |
| // elements, its alignment is set to number of elements times the alignment |
| // of its member: n*alignof(t)." |
| return MakeLdg(Intrinsic::nvvm_ldg_global_i); |
| case NVPTX::BI__nvvm_ldg_f: |
| case NVPTX::BI__nvvm_ldg_f2: |
| case NVPTX::BI__nvvm_ldg_f4: |
| case NVPTX::BI__nvvm_ldg_d: |
| case NVPTX::BI__nvvm_ldg_d2: |
| return MakeLdg(Intrinsic::nvvm_ldg_global_f); |
| |
| case NVPTX::BI__nvvm_atom_cta_add_gen_i: |
| case NVPTX::BI__nvvm_atom_cta_add_gen_l: |
| case NVPTX::BI__nvvm_atom_cta_add_gen_ll: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta); |
| case NVPTX::BI__nvvm_atom_sys_add_gen_i: |
| case NVPTX::BI__nvvm_atom_sys_add_gen_l: |
| case NVPTX::BI__nvvm_atom_sys_add_gen_ll: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys); |
| case NVPTX::BI__nvvm_atom_cta_add_gen_f: |
| case NVPTX::BI__nvvm_atom_cta_add_gen_d: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta); |
| case NVPTX::BI__nvvm_atom_sys_add_gen_f: |
| case NVPTX::BI__nvvm_atom_sys_add_gen_d: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys); |
| case NVPTX::BI__nvvm_atom_cta_xchg_gen_i: |
| case NVPTX::BI__nvvm_atom_cta_xchg_gen_l: |
| case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta); |
| case NVPTX::BI__nvvm_atom_sys_xchg_gen_i: |
| case NVPTX::BI__nvvm_atom_sys_xchg_gen_l: |
| case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys); |
| case NVPTX::BI__nvvm_atom_cta_max_gen_i: |
| case NVPTX::BI__nvvm_atom_cta_max_gen_ui: |
| case NVPTX::BI__nvvm_atom_cta_max_gen_l: |
| case NVPTX::BI__nvvm_atom_cta_max_gen_ul: |
| case NVPTX::BI__nvvm_atom_cta_max_gen_ll: |
| case NVPTX::BI__nvvm_atom_cta_max_gen_ull: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta); |
| case NVPTX::BI__nvvm_atom_sys_max_gen_i: |
| case NVPTX::BI__nvvm_atom_sys_max_gen_ui: |
| case NVPTX::BI__nvvm_atom_sys_max_gen_l: |
| case NVPTX::BI__nvvm_atom_sys_max_gen_ul: |
| case NVPTX::BI__nvvm_atom_sys_max_gen_ll: |
| case NVPTX::BI__nvvm_atom_sys_max_gen_ull: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys); |
| case NVPTX::BI__nvvm_atom_cta_min_gen_i: |
| case NVPTX::BI__nvvm_atom_cta_min_gen_ui: |
| case NVPTX::BI__nvvm_atom_cta_min_gen_l: |
| case NVPTX::BI__nvvm_atom_cta_min_gen_ul: |
| case NVPTX::BI__nvvm_atom_cta_min_gen_ll: |
| case NVPTX::BI__nvvm_atom_cta_min_gen_ull: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta); |
| case NVPTX::BI__nvvm_atom_sys_min_gen_i: |
| case NVPTX::BI__nvvm_atom_sys_min_gen_ui: |
| case NVPTX::BI__nvvm_atom_sys_min_gen_l: |
| case NVPTX::BI__nvvm_atom_sys_min_gen_ul: |
| case NVPTX::BI__nvvm_atom_sys_min_gen_ll: |
| case NVPTX::BI__nvvm_atom_sys_min_gen_ull: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys); |
| case NVPTX::BI__nvvm_atom_cta_inc_gen_ui: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta); |
| case NVPTX::BI__nvvm_atom_cta_dec_gen_ui: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta); |
| case NVPTX::BI__nvvm_atom_sys_inc_gen_ui: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys); |
| case NVPTX::BI__nvvm_atom_sys_dec_gen_ui: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys); |
| case NVPTX::BI__nvvm_atom_cta_and_gen_i: |
| case NVPTX::BI__nvvm_atom_cta_and_gen_l: |
| case NVPTX::BI__nvvm_atom_cta_and_gen_ll: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta); |
| case NVPTX::BI__nvvm_atom_sys_and_gen_i: |
| case NVPTX::BI__nvvm_atom_sys_and_gen_l: |
| case NVPTX::BI__nvvm_atom_sys_and_gen_ll: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys); |
| case NVPTX::BI__nvvm_atom_cta_or_gen_i: |
| case NVPTX::BI__nvvm_atom_cta_or_gen_l: |
| case NVPTX::BI__nvvm_atom_cta_or_gen_ll: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta); |
| case NVPTX::BI__nvvm_atom_sys_or_gen_i: |
| case NVPTX::BI__nvvm_atom_sys_or_gen_l: |
| case NVPTX::BI__nvvm_atom_sys_or_gen_ll: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys); |
| case NVPTX::BI__nvvm_atom_cta_xor_gen_i: |
| case NVPTX::BI__nvvm_atom_cta_xor_gen_l: |
| case NVPTX::BI__nvvm_atom_cta_xor_gen_ll: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta); |
| case NVPTX::BI__nvvm_atom_sys_xor_gen_i: |
| case NVPTX::BI__nvvm_atom_sys_xor_gen_l: |
| case NVPTX::BI__nvvm_atom_sys_xor_gen_ll: |
| return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys); |
| case NVPTX::BI__nvvm_atom_cta_cas_gen_i: |
| case NVPTX::BI__nvvm_atom_cta_cas_gen_l: |
| case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: { |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall( |
| CGM.getIntrinsic( |
| Intrinsic::nvvm_atomic_cas_gen_i_cta, |
| {Ptr->getType()->getPointerElementType(), Ptr->getType()}), |
| {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))}); |
| } |
| case NVPTX::BI__nvvm_atom_sys_cas_gen_i: |
| case NVPTX::BI__nvvm_atom_sys_cas_gen_l: |
| case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: { |
| Value *Ptr = EmitScalarExpr(E->getArg(0)); |
| return Builder.CreateCall( |
| CGM.getIntrinsic( |
| Intrinsic::nvvm_atomic_cas_gen_i_sys, |
| {Ptr->getType()->getPointerElementType(), Ptr->getType()}), |
| {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))}); |
| } |
| case NVPTX::BI__nvvm_match_all_sync_i32p: |
| case NVPTX::BI__nvvm_match_all_sync_i64p: { |
| Value *Mask = EmitScalarExpr(E->getArg(0)); |
| Value *Val = EmitScalarExpr(E->getArg(1)); |
| Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2)); |
| Value *ResultPair = Builder.CreateCall( |
| CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p |
| ? Intrinsic::nvvm_match_all_sync_i32p |
| : Intrinsic::nvvm_match_all_sync_i64p), |
| {Mask, Val}); |
| Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1), |
| PredOutPtr.getElementType()); |
| Builder.CreateStore(Pred, PredOutPtr); |
| return Builder.CreateExtractValue(ResultPair, 0); |
| } |
| case NVPTX::BI__hmma_m16n16k16_ld_a: |
| case NVPTX::BI__hmma_m16n16k16_ld_b: |
| case NVPTX::BI__hmma_m16n16k16_ld_c_f16: |
| case NVPTX::BI__hmma_m16n16k16_ld_c_f32: |
| case NVPTX::BI__hmma_m32n8k16_ld_a: |
| case NVPTX::BI__hmma_m32n8k16_ld_b: |
| case NVPTX::BI__hmma_m32n8k16_ld_c_f16: |
| case NVPTX::BI__hmma_m32n8k16_ld_c_f32: |
| case NVPTX::BI__hmma_m8n32k16_ld_a: |
| case NVPTX::BI__hmma_m8n32k16_ld_b: |
| case NVPTX::BI__hmma_m8n32k16_ld_c_f16: |
| case NVPTX::BI__hmma_m8n32k16_ld_c_f32: { |
| Address Dst = EmitPointerWithAlignment(E->getArg(0)); |
| Value *Src = EmitScalarExpr(E->getArg(1)); |
| Value *Ldm = EmitScalarExpr(E->getArg(2)); |
| llvm::APSInt isColMajorArg; |
| if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext())) |
| return nullptr; |
| bool isColMajor = isColMajorArg.getSExtValue(); |
| unsigned IID; |
| unsigned NumResults; |
| switch (BuiltinID) { |
| case NVPTX::BI__hmma_m16n16k16_ld_a: |
| IID = isColMajor ? Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride |
| : Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride; |
| NumResults = 8; |
| break; |
| case NVPTX::BI__hmma_m16n16k16_ld_b: |
| IID = isColMajor ? Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride |
| : Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride; |
| NumResults = 8; |
| break; |
| case NVPTX::BI__hmma_m16n16k16_ld_c_f16: |
| IID = isColMajor ? Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride |
| : Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride; |
| NumResults = 4; |
| break; |
| case NVPTX::BI__hmma_m16n16k16_ld_c_f32: |
| IID = isColMajor ? Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride |
| : Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride; |
| NumResults = 8; |
| break; |
| case NVPTX::BI__hmma_m32n8k16_ld_a: |
| IID = isColMajor ? Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride |
| : Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride; |
| NumResults = 8; |
| break; |
| case NVPTX::BI__hmma_m32n8k16_ld_b: |
| IID = isColMajor ? Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride |
| : Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride; |
| NumResults = 8; |
| break; |
| case NVPTX::BI__hmma_m32n8k16_ld_c_f16: |
| IID = isColMajor ? Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride |
| : Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride; |
| NumResults = 4; |
| break; |
| case NVPTX::BI__hmma_m32n8k16_ld_c_f32: |
| IID = isColMajor ? Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride |
| : Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride; |
| NumResults = 8; |
| break; |
| case NVPTX::BI__hmma_m8n32k16_ld_a: |
| IID = isColMajor ? Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride |
| : Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride; |
| NumResults = 8; |
| break; |
| case NVPTX::BI__hmma_m8n32k16_ld_b: |
| IID = isColMajor ? Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride |
| : Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride; |
| NumResults = 8; |
| break; |
| case NVPTX::BI__hmma_m8n32k16_ld_c_f16: |
| IID = isColMajor ? Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride |
| : Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride; |
| NumResults = 4; |
| break; |
| case NVPTX::BI__hmma_m8n32k16_ld_c_f32: |
| IID = isColMajor ? Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride |
| : Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride; |
| NumResults = 8; |
| break; |
| default: |
| llvm_unreachable("Unexpected builtin ID."); |
| } |
| Value *Result = |
| Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm}); |
| |
| // Save returned values. |
| for (unsigned i = 0; i < NumResults; ++i) { |
| Builder.CreateAlignedStore( |
| Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), |
| Dst.getElementType()), |
| Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)), |
| CharUnits::fromQuantity(4)); |
| } |
| return Result; |
| } |
| |
| case NVPTX::BI__hmma_m16n16k16_st_c_f16: |
| case NVPTX::BI__hmma_m16n16k16_st_c_f32: |
| case NVPTX::BI__hmma_m32n8k16_st_c_f16: |
| case NVPTX::BI__hmma_m32n8k16_st_c_f32: |
| case NVPTX::BI__hmma_m8n32k16_st_c_f16: |
| case NVPTX::BI__hmma_m8n32k16_st_c_f32: { |
| Value *Dst = EmitScalarExpr(E->getArg(0)); |
| Address Src = EmitPointerWithAlignment(E->getArg(1)); |
| Value *Ldm = EmitScalarExpr(E->getArg(2)); |
| llvm::APSInt isColMajorArg; |
| if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext())) |
| return nullptr; |
| bool isColMajor = isColMajorArg.getSExtValue(); |
| unsigned IID; |
| unsigned NumResults = 8; |
| // PTX Instructions (and LLVM instrinsics) are defined for slice _d_, yet |
| // for some reason nvcc builtins use _c_. |
| switch (BuiltinID) { |
| case NVPTX::BI__hmma_m16n16k16_st_c_f16: |
| IID = isColMajor ? Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride |
| : Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride; |
| NumResults = 4; |
| break; |
| case NVPTX::BI__hmma_m16n16k16_st_c_f32: |
| IID = isColMajor ? Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride |
| : Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride; |
| break; |
| case NVPTX::BI__hmma_m32n8k16_st_c_f16: |
| IID = isColMajor ? Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride |
| : Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride; |
| NumResults = 4; |
| break; |
| case NVPTX::BI__hmma_m32n8k16_st_c_f32: |
| IID = isColMajor ? Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride |
| : Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride; |
| break; |
| case NVPTX::BI__hmma_m8n32k16_st_c_f16: |
| IID = isColMajor ? Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride |
| : Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride; |
| NumResults = 4; |
| break; |
| case NVPTX::BI__hmma_m8n32k16_st_c_f32: |
| IID = isColMajor ? Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride |
| : Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride; |
| break; |
| default: |
| llvm_unreachable("Unexpected builtin ID."); |
| } |
| Function *Intrinsic = CGM.getIntrinsic(IID, Dst->getType()); |
| llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1); |
| SmallVector<Value *, 10> Values = {Dst}; |
| for (unsigned i = 0; i < NumResults; ++i) { |
| Value *V = Builder.CreateAlignedLoad( |
| Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)), |
| CharUnits::fromQuantity(4)); |
| Values.push_back(Builder.CreateBitCast(V, ParamType)); |
| } |
| Values.push_back(Ldm); |
| Value *Result = Builder.CreateCall(Intrinsic, Values); |
| return Result; |
| } |
| |
| // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) --> |
| // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf> |
| case NVPTX::BI__hmma_m16n16k16_mma_f16f16: |
| case NVPTX::BI__hmma_m16n16k16_mma_f32f16: |
| case NVPTX::BI__hmma_m16n16k16_mma_f32f32: |
| case NVPTX::BI__hmma_m16n16k16_mma_f16f32: |
| case NVPTX::BI__hmma_m32n8k16_mma_f16f16: |
| case NVPTX::BI__hmma_m32n8k16_mma_f32f16: |
| case NVPTX::BI__hmma_m32n8k16_mma_f32f32: |
| case NVPTX::BI__hmma_m32n8k16_mma_f16f32: |
| case NVPTX::BI__hmma_m8n32k16_mma_f16f16: |
| case NVPTX::BI__hmma_m8n32k16_mma_f32f16: |
| case NVPTX::BI__hmma_m8n32k16_mma_f32f32: |
| case NVPTX::BI__hmma_m8n32k16_mma_f16f32: { |
| Address Dst = EmitPointerWithAlignment(E->getArg(0)); |
| Address SrcA = EmitPointerWithAlignment(E->getArg(1)); |
| Address SrcB = EmitPointerWithAlignment(E->getArg(2)); |
| Address SrcC = EmitPointerWithAlignment(E->getArg(3)); |
| llvm::APSInt LayoutArg; |
| if (!E->getArg(4)->isIntegerConstantExpr(LayoutArg, getContext())) |
| return nullptr; |
| int Layout = LayoutArg.getSExtValue(); |
| if (Layout < 0 || Layout > 3) |
| return nullptr; |
| llvm::APSInt SatfArg; |
| if (!E->getArg(5)->isIntegerConstantExpr(SatfArg, getContext())) |
| return nullptr; |
| bool Satf = SatfArg.getSExtValue(); |
| |
| // clang-format off |
| #define MMA_VARIANTS(geom, type) {{ \ |
| Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \ |
| Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \ |
| Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ |
| Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \ |
| Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \ |
| Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \ |
| Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type, \ |
| Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite \ |
| }} |
| // clang-format on |
| |
| auto getMMAIntrinsic = [Layout, Satf](std::array<unsigned, 8> Variants) { |
| unsigned Index = Layout * 2 + Satf; |
| assert(Index < 8); |
| return Variants[Index]; |
| }; |
| unsigned IID; |
| unsigned NumEltsC; |
| unsigned NumEltsD; |
| switch (BuiltinID) { |
| case NVPTX::BI__hmma_m16n16k16_mma_f16f16: |
| IID = getMMAIntrinsic(MMA_VARIANTS(m16n16k16, f16_f16)); |
| NumEltsC = 4; |
| NumEltsD = 4; |
| break; |
| case NVPTX::BI__hmma_m16n16k16_mma_f32f16: |
| IID = getMMAIntrinsic(MMA_VARIANTS(m16n16k16, f32_f16)); |
| NumEltsC = 4; |
| NumEltsD = 8; |
| break; |
| case NVPTX::BI__hmma_m16n16k16_mma_f16f32: |
| IID = getMMAIntrinsic(MMA_VARIANTS(m16n16k16, f16_f32)); |
| NumEltsC = 8; |
| NumEltsD = 4; |
| break; |
| case NVPTX::BI__hmma_m16n16k16_mma_f32f32: |
| IID = getMMAIntrinsic(MMA_VARIANTS(m16n16k16, f32_f32)); |
| NumEltsC = 8; |
| NumEltsD = 8; |
| break; |
| case NVPTX::BI__hmma_m32n8k16_mma_f16f16: |
| IID = getMMAIntrinsic(MMA_VARIANTS(m32n8k16, f16_f16)); |
| NumEltsC = 4; |
| NumEltsD = 4; |
| break; |
| case NVPTX::BI__hmma_m32n8k16_mma_f32f16: |
| IID = getMMAIntrinsic(MMA_VARIANTS(m32n8k16, f32_f16)); |
| NumEltsC = 4; |
| NumEltsD = 8; |
| break; |
| case NVPTX::BI__hmma_m32n8k16_mma_f16f32: |
| IID = getMMAIntrinsic(MMA_VARIANTS(m32n8k16, f16_f32)); |
| NumEltsC = 8; |
| NumEltsD = 4; |
| break; |
| case NVPTX::BI__hmma_m32n8k16_mma_f32f32: |
| IID = getMMAIntrinsic(MMA_VARIANTS(m32n8k16, f32_f32)); |
| NumEltsC = 8; |
| NumEltsD = 8; |
| break; |
| case NVPTX::BI__hmma_m8n32k16_mma_f16f16: |
| IID = getMMAIntrinsic(MMA_VARIANTS(m8n32k16, f16_f16)); |
| NumEltsC = 4; |
| NumEltsD = 4; |
| break; |
| case NVPTX::BI__hmma_m8n32k16_mma_f32f16: |
| IID = getMMAIntrinsic(MMA_VARIANTS(m8n32k16, f32_f16)); |
| NumEltsC = 4; |
| NumEltsD = 8; |
| break; |
| case NVPTX::BI__hmma_m8n32k16_mma_f16f32: |
| IID = getMMAIntrinsic(MMA_VARIANTS(m8n32k16, f16_f32)); |
| NumEltsC = 8; |
| NumEltsD = 4; |
| break; |
| case NVPTX::BI__hmma_m8n32k16_mma_f32f32: |
| IID = getMMAIntrinsic(MMA_VARIANTS(m8n32k16, f32_f32)); |
| NumEltsC = 8; |
| NumEltsD = 8; |
| break; |
| default: |
| llvm_unreachable("Unexpected builtin ID."); |
| } |
| #undef MMA_VARIANTS |
| |
| SmallVector<Value *, 24> Values; |
| Function *Intrinsic = CGM.getIntrinsic(IID); |
| llvm::Type *ABType = Intrinsic->getFunctionType()->getParamType(0); |
| // Load A |
| for (unsigned i = 0; i < 8; ++i) { |
| Value *V = Builder.CreateAlignedLoad( |
| Builder.CreateGEP(SrcA.getPointer(), |
| llvm::ConstantInt::get(IntTy, i)), |
| CharUnits::fromQuantity(4)); |
| Values.push_back(Builder.CreateBitCast(V, ABType)); |
| } |
| // Load B |
| for (unsigned i = 0; i < 8; ++i) { |
| Value *V = Builder.CreateAlignedLoad( |
| Builder.CreateGEP(SrcB.getPointer(), |
| llvm::ConstantInt::get(IntTy, i)), |
| CharUnits::fromQuantity(4)); |
| Values.push_back(Builder.CreateBitCast(V, ABType)); |
| } |
| // Load C |
| llvm::Type *CType = Intrinsic->getFunctionType()->getParamType(16); |
| for (unsigned i = 0; i < NumEltsC; ++i) { |
| Value *V = Builder.CreateAlignedLoad( |
| Builder.CreateGEP(SrcC.getPointer(), |
| llvm::ConstantInt::get(IntTy, i)), |
| CharUnits::fromQuantity(4)); |
| Values.push_back(Builder.CreateBitCast(V, CType)); |
| } |
| Value *Result = Builder.CreateCall(Intrinsic, Values); |
| llvm::Type *DType = Dst.getElementType(); |
| for (unsigned i = 0; i < NumEltsD; ++i) |
| Builder.CreateAlignedStore( |
| Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType), |
| Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)), |
| CharUnits::fromQuantity(4)); |
| return Result; |
| } |
| default: |
| return nullptr; |
| } |
| } |
| |
| Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| switch (BuiltinID) { |
| case WebAssembly::BI__builtin_wasm_memory_size: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *I = EmitScalarExpr(E->getArg(0)); |
| Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType); |
| return Builder.CreateCall(Callee, I); |
| } |
| case WebAssembly::BI__builtin_wasm_memory_grow: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Args[] = { |
| EmitScalarExpr(E->getArg(0)), |
| EmitScalarExpr(E->getArg(1)) |
| }; |
| Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType); |
| return Builder.CreateCall(Callee, Args); |
| } |
| case WebAssembly::BI__builtin_wasm_mem_size: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *I = EmitScalarExpr(E->getArg(0)); |
| Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_mem_size, ResultType); |
| return Builder.CreateCall(Callee, I); |
| } |
| case WebAssembly::BI__builtin_wasm_mem_grow: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Args[] = { |
| EmitScalarExpr(E->getArg(0)), |
| EmitScalarExpr(E->getArg(1)) |
| }; |
| Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_mem_grow, ResultType); |
| return Builder.CreateCall(Callee, Args); |
| } |
| case WebAssembly::BI__builtin_wasm_current_memory: { |
| llvm::Type *ResultType = ConvertType(E->getType()); |
| Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_current_memory, ResultType); |
| return Builder.CreateCall(Callee); |
| } |
| case WebAssembly::BI__builtin_wasm_grow_memory: { |
| Value *X = EmitScalarExpr(E->getArg(0)); |
| Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_grow_memory, X->getType()); |
| return Builder.CreateCall(Callee, X); |
| } |
| case WebAssembly::BI__builtin_wasm_throw: { |
| Value *Tag = EmitScalarExpr(E->getArg(0)); |
| Value *Obj = EmitScalarExpr(E->getArg(1)); |
| Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw); |
| return Builder.CreateCall(Callee, {Tag, Obj}); |
| } |
| case WebAssembly::BI__builtin_wasm_rethrow: { |
| Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow); |
| return Builder.CreateCall(Callee); |
| } |
| |
| default: |
| return nullptr; |
| } |
| } |
| |
| Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID, |
| const CallExpr *E) { |
| SmallVector<llvm::Value *, 4> Ops; |
| Intrinsic::ID ID = Intrinsic::not_intrinsic; |
| |
| auto MakeCircLd = [&](unsigned IntID, bool HasImm) { |
| // The base pointer is passed by address, so it needs to be loaded. |
| Address BP = EmitPointerWithAlignment(E->getArg(0)); |
| BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy), |
| BP.getAlignment()); |
| llvm::Value *Base = Builder.CreateLoad(BP); |
| // Operands are Base, Increment, Modifier, Start. |
| if (HasImm) |
| Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), |
| EmitScalarExpr(E->getArg(3)) }; |
| else |
| Ops = { Base, EmitScalarExpr(E->getArg(1)), |
| EmitScalarExpr(E->getArg(2)) }; |
| |
| llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops); |
| llvm::Value *NewBase = Builder.CreateExtractValue(Result, 1); |
| llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), |
| NewBase->getType()->getPointerTo()); |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| // The intrinsic generates two results. The new value for the base pointer |
| // needs to be stored. |
| Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment()); |
| return Builder.CreateExtractValue(Result, 0); |
| }; |
| |
| auto MakeCircSt = [&](unsigned IntID, bool HasImm) { |
| // The base pointer is passed by address, so it needs to be loaded. |
| Address BP = EmitPointerWithAlignment(E->getArg(0)); |
| BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy), |
| BP.getAlignment()); |
| llvm::Value *Base = Builder.CreateLoad(BP); |
| // Operands are Base, Increment, Modifier, Value, Start. |
| if (HasImm) |
| Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), |
| EmitScalarExpr(E->getArg(3)), EmitScalarExpr(E->getArg(4)) }; |
| else |
| Ops = { Base, EmitScalarExpr(E->getArg(1)), |
| EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)) }; |
| |
| llvm::Value *NewBase = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops); |
| llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), |
| NewBase->getType()->getPointerTo()); |
| Address Dest = EmitPointerWithAlignment(E->getArg(0)); |
| // The intrinsic generates one result, which is the new value for the base |
| // pointer. It needs to be stored. |
| return Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment()); |
| }; |
| |
| // Handle the conversion of bit-reverse load intrinsics to bit code. |
| // The intrinsic call after this function only reads from memory and the |
| // write to memory is dealt by the store instruction. |
| auto MakeBrevLd = [&](unsigned IntID, llvm::Type *DestTy) { |
| // The intrinsic generates one result, which is the new value for the base |
| // pointer. It needs to be returned. The result of the load instruction is |
| // passed to intrinsic by address, so the value needs to be stored. |
| llvm::Value *BaseAddress = |
| Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy); |
| |
| // Expressions like &(*pt++) will be incremented per evaluation. |
| // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression |
| // per call. |
| Address DestAddr = EmitPointerWithAlignment(E->getArg(1)); |
| DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy), |
| DestAddr.getAlignment()); |
| llvm::Value *DestAddress = DestAddr.getPointer(); |
| |
| // Operands are Base, Dest, Modifier. |
| // The intrinsic format in LLVM IR is defined as |
| // { ValueType, i8* } (i8*, i32). |
| Ops = {BaseAddress, EmitScalarExpr(E->getArg(2))}; |
| |
| llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops); |
| // The value needs to be stored as the variable is passed by reference. |
| llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0); |
| |
| // The store needs to be truncated to fit the destination type. |
| // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs |
| // to be handled with stores of respective destination type. |
| DestVal = Builder.CreateTrunc(DestVal, DestTy); |
| |
| llvm::Value *DestForStore = |
| Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo()); |
| Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment()); |
| // The updated value of the base pointer is returned. |
| return Builder.CreateExtractValue(Result, 1); |
| }; |
| |
| switch (BuiltinID) { |
| case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry: |
| case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B: { |
| Address Dest = EmitPointerWithAlignment(E->getArg(2)); |
| unsigned Size; |
| if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vaddcarry) { |
| Size = 512; |
| ID = Intrinsic::hexagon_V6_vaddcarry; |
| } else { |
| Size = 1024; |
| ID = Intrinsic::hexagon_V6_vaddcarry_128B; |
| } |
| Dest = Builder.CreateBitCast(Dest, |
| llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0)); |
| LoadInst *QLd = Builder.CreateLoad(Dest); |
| Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd }; |
| llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); |
| llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1); |
| llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)), |
| Vprd->getType()->getPointerTo(0)); |
| Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment()); |
| return Builder.CreateExtractValue(Result, 0); |
| } |
| case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry: |
| case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: { |
| Address Dest = EmitPointerWithAlignment(E->getArg(2)); |
| unsigned Size; |
| if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vsubcarry) { |
| Size = 512; |
| ID = Intrinsic::hexagon_V6_vsubcarry; |
| } else { |
| Size = 1024; |
| ID = Intrinsic::hexagon_V6_vsubcarry_128B; |
| } |
| Dest = Builder.CreateBitCast(Dest, |
| llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0)); |
| LoadInst *QLd = Builder.CreateLoad(Dest); |
| Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd }; |
| llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); |
| llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1); |
| llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)), |
| Vprd->getType()->getPointerTo(0)); |
| Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment()); |
| return Builder.CreateExtractValue(Result, 0); |
| } |
| case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci: |
| return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pci, /*HasImm*/true); |
| case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci: |
| return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pci, /*HasImm*/true); |
| case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci: |
| return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pci, /*HasImm*/true); |
| case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci: |
| return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pci, /*HasImm*/true); |
| case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci: |
| return MakeCircLd(Intrinsic::hexagon_L2_loadri_pci, /*HasImm*/true); |
| case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci: |
| return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pci, /*HasImm*/true); |
| case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr: |
| return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pcr, /*HasImm*/false); |
| case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr: |
| return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pcr, /*HasImm*/false); |
| case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr: |
| return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pcr, /*HasImm*/false); |
| case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr: |
| return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pcr, /*HasImm*/false); |
| case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr: |
| return MakeCircLd(Intrinsic::hexagon_L2_loadri_pcr, /*HasImm*/false); |
| case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr: |
| return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pcr, /*HasImm*/false); |
| case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci: |
| return MakeCircSt(Intrinsic::hexagon_S2_storerb_pci, /*HasImm*/true); |
| case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci: |
| return MakeCircSt(Intrinsic::hexagon_S2_storerh_pci, /*HasImm*/true); |
| case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci: |
| return MakeCircSt(Intrinsic::hexagon_S2_storerf_pci, /*HasImm*/true); |
| case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci: |
| return MakeCircSt(Intrinsic::hexagon_S2_storeri_pci, /*HasImm*/true); |
| case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci: |
| return MakeCircSt(Intrinsic::hexagon_S2_storerd_pci, /*HasImm*/true); |
| case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr: |
| return MakeCircSt(Intrinsic::hexagon_S2_storerb_pcr, /*HasImm*/false); |
| case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr: |
| return MakeCircSt(Intrinsic::hexagon_S2_storerh_pcr, /*HasImm*/false); |
| case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr: |
| return MakeCircSt(Intrinsic::hexagon_S2_storerf_pcr, /*HasImm*/false); |
| case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr: |
| return MakeCircSt(Intrinsic::hexagon_S2_storeri_pcr, /*HasImm*/false); |
| case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr: |
| return MakeCircSt(Intrinsic::hexagon_S2_storerd_pcr, /*HasImm*/false); |
| case Hexagon::BI__builtin_brev_ldub: |
| return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty); |
| case Hexagon::BI__builtin_brev_ldb: |
| return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty); |
| case Hexagon::BI__builtin_brev_lduh: |
| return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty); |
| case Hexagon::BI__builtin_brev_ldh: |
| return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty); |
| case Hexagon::BI__builtin_brev_ldw: |
| return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty); |
| case Hexagon::BI__builtin_brev_ldd: |
| return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty); |
| default: |
| break; |
| } // switch |
| |
| return nullptr; |
| } |