| //===--- CGCall.cpp - Encapsulate calling convention details --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // These classes wrap the information about a call or function |
| // definition used to handle ABI compliancy. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGCall.h" |
| #include "ABIInfo.h" |
| #include "CGBlocks.h" |
| #include "CGCXXABI.h" |
| #include "CGCleanup.h" |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "TargetInfo.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/Basic/TargetBuiltins.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/CodeGen/CGFunctionInfo.h" |
| #include "clang/CodeGen/SwiftCallingConv.h" |
| #include "clang/Frontend/CodeGenOptions.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| using namespace clang; |
| using namespace CodeGen; |
| |
| /***/ |
| |
| unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { |
| switch (CC) { |
| default: return llvm::CallingConv::C; |
| case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; |
| case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; |
| case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; |
| case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; |
| case CC_Win64: return llvm::CallingConv::Win64; |
| case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; |
| case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; |
| case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; |
| case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; |
| // TODO: Add support for __pascal to LLVM. |
| case CC_X86Pascal: return llvm::CallingConv::C; |
| // TODO: Add support for __vectorcall to LLVM. |
| case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; |
| case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; |
| case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); |
| case CC_PreserveMost: return llvm::CallingConv::PreserveMost; |
| case CC_PreserveAll: return llvm::CallingConv::PreserveAll; |
| case CC_Swift: return llvm::CallingConv::Swift; |
| } |
| } |
| |
| /// Derives the 'this' type for codegen purposes, i.e. ignoring method |
| /// qualification. |
| /// FIXME: address space qualification? |
| static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { |
| QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); |
| return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); |
| } |
| |
| /// Returns the canonical formal type of the given C++ method. |
| static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { |
| return MD->getType()->getCanonicalTypeUnqualified() |
| .getAs<FunctionProtoType>(); |
| } |
| |
| /// Returns the "extra-canonicalized" return type, which discards |
| /// qualifiers on the return type. Codegen doesn't care about them, |
| /// and it makes ABI code a little easier to be able to assume that |
| /// all parameter and return types are top-level unqualified. |
| static CanQualType GetReturnType(QualType RetTy) { |
| return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); |
| } |
| |
| /// Arrange the argument and result information for a value of the given |
| /// unprototyped freestanding function type. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { |
| // When translating an unprototyped function type, always use a |
| // variadic type. |
| return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), |
| /*instanceMethod=*/false, |
| /*chainCall=*/false, None, |
| FTNP->getExtInfo(), {}, RequiredArgs(0)); |
| } |
| |
| static void addExtParameterInfosForCall( |
| llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, |
| const FunctionProtoType *proto, |
| unsigned prefixArgs, |
| unsigned totalArgs) { |
| assert(proto->hasExtParameterInfos()); |
| assert(paramInfos.size() <= prefixArgs); |
| assert(proto->getNumParams() + prefixArgs <= totalArgs); |
| |
| paramInfos.reserve(totalArgs); |
| |
| // Add default infos for any prefix args that don't already have infos. |
| paramInfos.resize(prefixArgs); |
| |
| // Add infos for the prototype. |
| for (const auto &ParamInfo : proto->getExtParameterInfos()) { |
| paramInfos.push_back(ParamInfo); |
| // pass_object_size params have no parameter info. |
| if (ParamInfo.hasPassObjectSize()) |
| paramInfos.emplace_back(); |
| } |
| |
| assert(paramInfos.size() <= totalArgs && |
| "Did we forget to insert pass_object_size args?"); |
| // Add default infos for the variadic and/or suffix arguments. |
| paramInfos.resize(totalArgs); |
| } |
| |
| /// Adds the formal parameters in FPT to the given prefix. If any parameter in |
| /// FPT has pass_object_size attrs, then we'll add parameters for those, too. |
| static void appendParameterTypes(const CodeGenTypes &CGT, |
| SmallVectorImpl<CanQualType> &prefix, |
| SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, |
| CanQual<FunctionProtoType> FPT) { |
| // Fast path: don't touch param info if we don't need to. |
| if (!FPT->hasExtParameterInfos()) { |
| assert(paramInfos.empty() && |
| "We have paramInfos, but the prototype doesn't?"); |
| prefix.append(FPT->param_type_begin(), FPT->param_type_end()); |
| return; |
| } |
| |
| unsigned PrefixSize = prefix.size(); |
| // In the vast majority of cases, we'll have precisely FPT->getNumParams() |
| // parameters; the only thing that can change this is the presence of |
| // pass_object_size. So, we preallocate for the common case. |
| prefix.reserve(prefix.size() + FPT->getNumParams()); |
| |
| auto ExtInfos = FPT->getExtParameterInfos(); |
| assert(ExtInfos.size() == FPT->getNumParams()); |
| for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { |
| prefix.push_back(FPT->getParamType(I)); |
| if (ExtInfos[I].hasPassObjectSize()) |
| prefix.push_back(CGT.getContext().getSizeType()); |
| } |
| |
| addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, |
| prefix.size()); |
| } |
| |
| /// Arrange the LLVM function layout for a value of the given function |
| /// type, on top of any implicit parameters already stored. |
| static const CGFunctionInfo & |
| arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, |
| SmallVectorImpl<CanQualType> &prefix, |
| CanQual<FunctionProtoType> FTP, |
| const FunctionDecl *FD) { |
| SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; |
| RequiredArgs Required = |
| RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD); |
| // FIXME: Kill copy. |
| appendParameterTypes(CGT, prefix, paramInfos, FTP); |
| CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); |
| |
| return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, |
| /*chainCall=*/false, prefix, |
| FTP->getExtInfo(), paramInfos, |
| Required); |
| } |
| |
| /// Arrange the argument and result information for a value of the |
| /// given freestanding function type. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, |
| const FunctionDecl *FD) { |
| SmallVector<CanQualType, 16> argTypes; |
| return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, |
| FTP, FD); |
| } |
| |
| static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { |
| // Set the appropriate calling convention for the Function. |
| if (D->hasAttr<StdCallAttr>()) |
| return CC_X86StdCall; |
| |
| if (D->hasAttr<FastCallAttr>()) |
| return CC_X86FastCall; |
| |
| if (D->hasAttr<RegCallAttr>()) |
| return CC_X86RegCall; |
| |
| if (D->hasAttr<ThisCallAttr>()) |
| return CC_X86ThisCall; |
| |
| if (D->hasAttr<VectorCallAttr>()) |
| return CC_X86VectorCall; |
| |
| if (D->hasAttr<PascalAttr>()) |
| return CC_X86Pascal; |
| |
| if (PcsAttr *PCS = D->getAttr<PcsAttr>()) |
| return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); |
| |
| if (D->hasAttr<IntelOclBiccAttr>()) |
| return CC_IntelOclBicc; |
| |
| if (D->hasAttr<MSABIAttr>()) |
| return IsWindows ? CC_C : CC_Win64; |
| |
| if (D->hasAttr<SysVABIAttr>()) |
| return IsWindows ? CC_X86_64SysV : CC_C; |
| |
| if (D->hasAttr<PreserveMostAttr>()) |
| return CC_PreserveMost; |
| |
| if (D->hasAttr<PreserveAllAttr>()) |
| return CC_PreserveAll; |
| |
| return CC_C; |
| } |
| |
| /// Arrange the argument and result information for a call to an |
| /// unknown C++ non-static member function of the given abstract type. |
| /// (Zero value of RD means we don't have any meaningful "this" argument type, |
| /// so fall back to a generic pointer type). |
| /// The member function must be an ordinary function, i.e. not a |
| /// constructor or destructor. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, |
| const FunctionProtoType *FTP, |
| const CXXMethodDecl *MD) { |
| SmallVector<CanQualType, 16> argTypes; |
| |
| // Add the 'this' pointer. |
| if (RD) |
| argTypes.push_back(GetThisType(Context, RD)); |
| else |
| argTypes.push_back(Context.VoidPtrTy); |
| |
| return ::arrangeLLVMFunctionInfo( |
| *this, true, argTypes, |
| FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); |
| } |
| |
| /// Set calling convention for CUDA/HIP kernel. |
| static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, |
| const FunctionDecl *FD) { |
| if (FD->hasAttr<CUDAGlobalAttr>()) { |
| const FunctionType *FT = FTy->getAs<FunctionType>(); |
| CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); |
| FTy = FT->getCanonicalTypeUnqualified(); |
| } |
| } |
| |
| /// Arrange the argument and result information for a declaration or |
| /// definition of the given C++ non-static member function. The |
| /// member function must be an ordinary function, i.e. not a |
| /// constructor or destructor. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { |
| assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); |
| assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); |
| |
| CanQualType FT = GetFormalType(MD).getAs<Type>(); |
| setCUDAKernelCallingConvention(FT, CGM, MD); |
| auto prototype = FT.getAs<FunctionProtoType>(); |
| |
| if (MD->isInstance()) { |
| // The abstract case is perfectly fine. |
| const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); |
| return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); |
| } |
| |
| return arrangeFreeFunctionType(prototype, MD); |
| } |
| |
| bool CodeGenTypes::inheritingCtorHasParams( |
| const InheritedConstructor &Inherited, CXXCtorType Type) { |
| // Parameters are unnecessary if we're constructing a base class subobject |
| // and the inherited constructor lives in a virtual base. |
| return Type == Ctor_Complete || |
| !Inherited.getShadowDecl()->constructsVirtualBase() || |
| !Target.getCXXABI().hasConstructorVariants(); |
| } |
| |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, |
| StructorType Type) { |
| |
| SmallVector<CanQualType, 16> argTypes; |
| SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; |
| argTypes.push_back(GetThisType(Context, MD->getParent())); |
| |
| bool PassParams = true; |
| |
| GlobalDecl GD; |
| if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { |
| GD = GlobalDecl(CD, toCXXCtorType(Type)); |
| |
| // A base class inheriting constructor doesn't get forwarded arguments |
| // needed to construct a virtual base (or base class thereof). |
| if (auto Inherited = CD->getInheritedConstructor()) |
| PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type)); |
| } else { |
| auto *DD = dyn_cast<CXXDestructorDecl>(MD); |
| GD = GlobalDecl(DD, toCXXDtorType(Type)); |
| } |
| |
| CanQual<FunctionProtoType> FTP = GetFormalType(MD); |
| |
| // Add the formal parameters. |
| if (PassParams) |
| appendParameterTypes(*this, argTypes, paramInfos, FTP); |
| |
| CGCXXABI::AddedStructorArgs AddedArgs = |
| TheCXXABI.buildStructorSignature(MD, Type, argTypes); |
| if (!paramInfos.empty()) { |
| // Note: prefix implies after the first param. |
| if (AddedArgs.Prefix) |
| paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, |
| FunctionProtoType::ExtParameterInfo{}); |
| if (AddedArgs.Suffix) |
| paramInfos.append(AddedArgs.Suffix, |
| FunctionProtoType::ExtParameterInfo{}); |
| } |
| |
| RequiredArgs required = |
| (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) |
| : RequiredArgs::All); |
| |
| FunctionType::ExtInfo extInfo = FTP->getExtInfo(); |
| CanQualType resultType = TheCXXABI.HasThisReturn(GD) |
| ? argTypes.front() |
| : TheCXXABI.hasMostDerivedReturn(GD) |
| ? CGM.getContext().VoidPtrTy |
| : Context.VoidTy; |
| return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, |
| /*chainCall=*/false, argTypes, extInfo, |
| paramInfos, required); |
| } |
| |
| static SmallVector<CanQualType, 16> |
| getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { |
| SmallVector<CanQualType, 16> argTypes; |
| for (auto &arg : args) |
| argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); |
| return argTypes; |
| } |
| |
| static SmallVector<CanQualType, 16> |
| getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { |
| SmallVector<CanQualType, 16> argTypes; |
| for (auto &arg : args) |
| argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); |
| return argTypes; |
| } |
| |
| static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> |
| getExtParameterInfosForCall(const FunctionProtoType *proto, |
| unsigned prefixArgs, unsigned totalArgs) { |
| llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; |
| if (proto->hasExtParameterInfos()) { |
| addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); |
| } |
| return result; |
| } |
| |
| /// Arrange a call to a C++ method, passing the given arguments. |
| /// |
| /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` |
| /// parameter. |
| /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of |
| /// args. |
| /// PassProtoArgs indicates whether `args` has args for the parameters in the |
| /// given CXXConstructorDecl. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, |
| const CXXConstructorDecl *D, |
| CXXCtorType CtorKind, |
| unsigned ExtraPrefixArgs, |
| unsigned ExtraSuffixArgs, |
| bool PassProtoArgs) { |
| // FIXME: Kill copy. |
| SmallVector<CanQualType, 16> ArgTypes; |
| for (const auto &Arg : args) |
| ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); |
| |
| // +1 for implicit this, which should always be args[0]. |
| unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; |
| |
| CanQual<FunctionProtoType> FPT = GetFormalType(D); |
| RequiredArgs Required = |
| RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D); |
| GlobalDecl GD(D, CtorKind); |
| CanQualType ResultType = TheCXXABI.HasThisReturn(GD) |
| ? ArgTypes.front() |
| : TheCXXABI.hasMostDerivedReturn(GD) |
| ? CGM.getContext().VoidPtrTy |
| : Context.VoidTy; |
| |
| FunctionType::ExtInfo Info = FPT->getExtInfo(); |
| llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; |
| // If the prototype args are elided, we should only have ABI-specific args, |
| // which never have param info. |
| if (PassProtoArgs && FPT->hasExtParameterInfos()) { |
| // ABI-specific suffix arguments are treated the same as variadic arguments. |
| addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, |
| ArgTypes.size()); |
| } |
| return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, |
| /*chainCall=*/false, ArgTypes, Info, |
| ParamInfos, Required); |
| } |
| |
| /// Arrange the argument and result information for the declaration or |
| /// definition of the given function. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) |
| if (MD->isInstance()) |
| return arrangeCXXMethodDeclaration(MD); |
| |
| CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); |
| |
| assert(isa<FunctionType>(FTy)); |
| setCUDAKernelCallingConvention(FTy, CGM, FD); |
| |
| // When declaring a function without a prototype, always use a |
| // non-variadic type. |
| if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { |
| return arrangeLLVMFunctionInfo( |
| noProto->getReturnType(), /*instanceMethod=*/false, |
| /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); |
| } |
| |
| return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD); |
| } |
| |
| /// Arrange the argument and result information for the declaration or |
| /// definition of an Objective-C method. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { |
| // It happens that this is the same as a call with no optional |
| // arguments, except also using the formal 'self' type. |
| return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); |
| } |
| |
| /// Arrange the argument and result information for the function type |
| /// through which to perform a send to the given Objective-C method, |
| /// using the given receiver type. The receiver type is not always |
| /// the 'self' type of the method or even an Objective-C pointer type. |
| /// This is *not* the right method for actually performing such a |
| /// message send, due to the possibility of optional arguments. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, |
| QualType receiverType) { |
| SmallVector<CanQualType, 16> argTys; |
| SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); |
| argTys.push_back(Context.getCanonicalParamType(receiverType)); |
| argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); |
| // FIXME: Kill copy? |
| for (const auto *I : MD->parameters()) { |
| argTys.push_back(Context.getCanonicalParamType(I->getType())); |
| auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( |
| I->hasAttr<NoEscapeAttr>()); |
| extParamInfos.push_back(extParamInfo); |
| } |
| |
| FunctionType::ExtInfo einfo; |
| bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); |
| einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); |
| |
| if (getContext().getLangOpts().ObjCAutoRefCount && |
| MD->hasAttr<NSReturnsRetainedAttr>()) |
| einfo = einfo.withProducesResult(true); |
| |
| RequiredArgs required = |
| (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); |
| |
| return arrangeLLVMFunctionInfo( |
| GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, |
| /*chainCall=*/false, argTys, einfo, extParamInfos, required); |
| } |
| |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, |
| const CallArgList &args) { |
| auto argTypes = getArgTypesForCall(Context, args); |
| FunctionType::ExtInfo einfo; |
| |
| return arrangeLLVMFunctionInfo( |
| GetReturnType(returnType), /*instanceMethod=*/false, |
| /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); |
| } |
| |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { |
| // FIXME: Do we need to handle ObjCMethodDecl? |
| const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); |
| |
| if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) |
| return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); |
| |
| if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) |
| return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); |
| |
| return arrangeFunctionDeclaration(FD); |
| } |
| |
| /// Arrange a thunk that takes 'this' as the first parameter followed by |
| /// varargs. Return a void pointer, regardless of the actual return type. |
| /// The body of the thunk will end in a musttail call to a function of the |
| /// correct type, and the caller will bitcast the function to the correct |
| /// prototype. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { |
| assert(MD->isVirtual() && "only methods have thunks"); |
| CanQual<FunctionProtoType> FTP = GetFormalType(MD); |
| CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; |
| return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, |
| /*chainCall=*/false, ArgTys, |
| FTP->getExtInfo(), {}, RequiredArgs(1)); |
| } |
| |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, |
| CXXCtorType CT) { |
| assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); |
| |
| CanQual<FunctionProtoType> FTP = GetFormalType(CD); |
| SmallVector<CanQualType, 2> ArgTys; |
| const CXXRecordDecl *RD = CD->getParent(); |
| ArgTys.push_back(GetThisType(Context, RD)); |
| if (CT == Ctor_CopyingClosure) |
| ArgTys.push_back(*FTP->param_type_begin()); |
| if (RD->getNumVBases() > 0) |
| ArgTys.push_back(Context.IntTy); |
| CallingConv CC = Context.getDefaultCallingConvention( |
| /*IsVariadic=*/false, /*IsCXXMethod=*/true); |
| return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, |
| /*chainCall=*/false, ArgTys, |
| FunctionType::ExtInfo(CC), {}, |
| RequiredArgs::All); |
| } |
| |
| /// Arrange a call as unto a free function, except possibly with an |
| /// additional number of formal parameters considered required. |
| static const CGFunctionInfo & |
| arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, |
| CodeGenModule &CGM, |
| const CallArgList &args, |
| const FunctionType *fnType, |
| unsigned numExtraRequiredArgs, |
| bool chainCall) { |
| assert(args.size() >= numExtraRequiredArgs); |
| |
| llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; |
| |
| // In most cases, there are no optional arguments. |
| RequiredArgs required = RequiredArgs::All; |
| |
| // If we have a variadic prototype, the required arguments are the |
| // extra prefix plus the arguments in the prototype. |
| if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { |
| if (proto->isVariadic()) |
| required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); |
| |
| if (proto->hasExtParameterInfos()) |
| addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, |
| args.size()); |
| |
| // If we don't have a prototype at all, but we're supposed to |
| // explicitly use the variadic convention for unprototyped calls, |
| // treat all of the arguments as required but preserve the nominal |
| // possibility of variadics. |
| } else if (CGM.getTargetCodeGenInfo() |
| .isNoProtoCallVariadic(args, |
| cast<FunctionNoProtoType>(fnType))) { |
| required = RequiredArgs(args.size()); |
| } |
| |
| // FIXME: Kill copy. |
| SmallVector<CanQualType, 16> argTypes; |
| for (const auto &arg : args) |
| argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); |
| return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), |
| /*instanceMethod=*/false, chainCall, |
| argTypes, fnType->getExtInfo(), paramInfos, |
| required); |
| } |
| |
| /// Figure out the rules for calling a function with the given formal |
| /// type using the given arguments. The arguments are necessary |
| /// because the function might be unprototyped, in which case it's |
| /// target-dependent in crazy ways. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, |
| const FunctionType *fnType, |
| bool chainCall) { |
| return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, |
| chainCall ? 1 : 0, chainCall); |
| } |
| |
| /// A block function is essentially a free function with an |
| /// extra implicit argument. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, |
| const FunctionType *fnType) { |
| return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, |
| /*chainCall=*/false); |
| } |
| |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, |
| const FunctionArgList ¶ms) { |
| auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); |
| auto argTypes = getArgTypesForDeclaration(Context, params); |
| |
| return arrangeLLVMFunctionInfo( |
| GetReturnType(proto->getReturnType()), |
| /*instanceMethod*/ false, /*chainCall*/ false, argTypes, |
| proto->getExtInfo(), paramInfos, |
| RequiredArgs::forPrototypePlus(proto, 1, nullptr)); |
| } |
| |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, |
| const CallArgList &args) { |
| // FIXME: Kill copy. |
| SmallVector<CanQualType, 16> argTypes; |
| for (const auto &Arg : args) |
| argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); |
| return arrangeLLVMFunctionInfo( |
| GetReturnType(resultType), /*instanceMethod=*/false, |
| /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), |
| /*paramInfos=*/ {}, RequiredArgs::All); |
| } |
| |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, |
| const FunctionArgList &args) { |
| auto argTypes = getArgTypesForDeclaration(Context, args); |
| |
| return arrangeLLVMFunctionInfo( |
| GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, |
| argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); |
| } |
| |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, |
| ArrayRef<CanQualType> argTypes) { |
| return arrangeLLVMFunctionInfo( |
| resultType, /*instanceMethod=*/false, /*chainCall=*/false, |
| argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); |
| } |
| |
| /// Arrange a call to a C++ method, passing the given arguments. |
| /// |
| /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It |
| /// does not count `this`. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, |
| const FunctionProtoType *proto, |
| RequiredArgs required, |
| unsigned numPrefixArgs) { |
| assert(numPrefixArgs + 1 <= args.size() && |
| "Emitting a call with less args than the required prefix?"); |
| // Add one to account for `this`. It's a bit awkward here, but we don't count |
| // `this` in similar places elsewhere. |
| auto paramInfos = |
| getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); |
| |
| // FIXME: Kill copy. |
| auto argTypes = getArgTypesForCall(Context, args); |
| |
| FunctionType::ExtInfo info = proto->getExtInfo(); |
| return arrangeLLVMFunctionInfo( |
| GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, |
| /*chainCall=*/false, argTypes, info, paramInfos, required); |
| } |
| |
| const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { |
| return arrangeLLVMFunctionInfo( |
| getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, |
| None, FunctionType::ExtInfo(), {}, RequiredArgs::All); |
| } |
| |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, |
| const CallArgList &args) { |
| assert(signature.arg_size() <= args.size()); |
| if (signature.arg_size() == args.size()) |
| return signature; |
| |
| SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; |
| auto sigParamInfos = signature.getExtParameterInfos(); |
| if (!sigParamInfos.empty()) { |
| paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); |
| paramInfos.resize(args.size()); |
| } |
| |
| auto argTypes = getArgTypesForCall(Context, args); |
| |
| assert(signature.getRequiredArgs().allowsOptionalArgs()); |
| return arrangeLLVMFunctionInfo(signature.getReturnType(), |
| signature.isInstanceMethod(), |
| signature.isChainCall(), |
| argTypes, |
| signature.getExtInfo(), |
| paramInfos, |
| signature.getRequiredArgs()); |
| } |
| |
| namespace clang { |
| namespace CodeGen { |
| void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); |
| } |
| } |
| |
| /// Arrange the argument and result information for an abstract value |
| /// of a given function type. This is the method which all of the |
| /// above functions ultimately defer to. |
| const CGFunctionInfo & |
| CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, |
| bool instanceMethod, |
| bool chainCall, |
| ArrayRef<CanQualType> argTypes, |
| FunctionType::ExtInfo info, |
| ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, |
| RequiredArgs required) { |
| assert(std::all_of(argTypes.begin(), argTypes.end(), |
| [](CanQualType T) { return T.isCanonicalAsParam(); })); |
| |
| // Lookup or create unique function info. |
| llvm::FoldingSetNodeID ID; |
| CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, |
| required, resultType, argTypes); |
| |
| void *insertPos = nullptr; |
| CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); |
| if (FI) |
| return *FI; |
| |
| unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); |
| |
| // Construct the function info. We co-allocate the ArgInfos. |
| FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, |
| paramInfos, resultType, argTypes, required); |
| FunctionInfos.InsertNode(FI, insertPos); |
| |
| bool inserted = FunctionsBeingProcessed.insert(FI).second; |
| (void)inserted; |
| assert(inserted && "Recursively being processed?"); |
| |
| // Compute ABI information. |
| if (CC == llvm::CallingConv::SPIR_KERNEL) { |
| // Force target independent argument handling for the host visible |
| // kernel functions. |
| computeSPIRKernelABIInfo(CGM, *FI); |
| } else if (info.getCC() == CC_Swift) { |
| swiftcall::computeABIInfo(CGM, *FI); |
| } else { |
| getABIInfo().computeInfo(*FI); |
| } |
| |
| // Loop over all of the computed argument and return value info. If any of |
| // them are direct or extend without a specified coerce type, specify the |
| // default now. |
| ABIArgInfo &retInfo = FI->getReturnInfo(); |
| if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) |
| retInfo.setCoerceToType(ConvertType(FI->getReturnType())); |
| |
| for (auto &I : FI->arguments()) |
| if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) |
| I.info.setCoerceToType(ConvertType(I.type)); |
| |
| bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; |
| assert(erased && "Not in set?"); |
| |
| return *FI; |
| } |
| |
| CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, |
| bool instanceMethod, |
| bool chainCall, |
| const FunctionType::ExtInfo &info, |
| ArrayRef<ExtParameterInfo> paramInfos, |
| CanQualType resultType, |
| ArrayRef<CanQualType> argTypes, |
| RequiredArgs required) { |
| assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); |
| |
| void *buffer = |
| operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( |
| argTypes.size() + 1, paramInfos.size())); |
| |
| CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); |
| FI->CallingConvention = llvmCC; |
| FI->EffectiveCallingConvention = llvmCC; |
| FI->ASTCallingConvention = info.getCC(); |
| FI->InstanceMethod = instanceMethod; |
| FI->ChainCall = chainCall; |
| FI->NoReturn = info.getNoReturn(); |
| FI->ReturnsRetained = info.getProducesResult(); |
| FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); |
| FI->NoCfCheck = info.getNoCfCheck(); |
| FI->Required = required; |
| FI->HasRegParm = info.getHasRegParm(); |
| FI->RegParm = info.getRegParm(); |
| FI->ArgStruct = nullptr; |
| FI->ArgStructAlign = 0; |
| FI->NumArgs = argTypes.size(); |
| FI->HasExtParameterInfos = !paramInfos.empty(); |
| FI->getArgsBuffer()[0].type = resultType; |
| for (unsigned i = 0, e = argTypes.size(); i != e; ++i) |
| FI->getArgsBuffer()[i + 1].type = argTypes[i]; |
| for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) |
| FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; |
| return FI; |
| } |
| |
| /***/ |
| |
| namespace { |
| // ABIArgInfo::Expand implementation. |
| |
| // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. |
| struct TypeExpansion { |
| enum TypeExpansionKind { |
| // Elements of constant arrays are expanded recursively. |
| TEK_ConstantArray, |
| // Record fields are expanded recursively (but if record is a union, only |
| // the field with the largest size is expanded). |
| TEK_Record, |
| // For complex types, real and imaginary parts are expanded recursively. |
| TEK_Complex, |
| // All other types are not expandable. |
| TEK_None |
| }; |
| |
| const TypeExpansionKind Kind; |
| |
| TypeExpansion(TypeExpansionKind K) : Kind(K) {} |
| virtual ~TypeExpansion() {} |
| }; |
| |
| struct ConstantArrayExpansion : TypeExpansion { |
| QualType EltTy; |
| uint64_t NumElts; |
| |
| ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) |
| : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} |
| static bool classof(const TypeExpansion *TE) { |
| return TE->Kind == TEK_ConstantArray; |
| } |
| }; |
| |
| struct RecordExpansion : TypeExpansion { |
| SmallVector<const CXXBaseSpecifier *, 1> Bases; |
| |
| SmallVector<const FieldDecl *, 1> Fields; |
| |
| RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, |
| SmallVector<const FieldDecl *, 1> &&Fields) |
| : TypeExpansion(TEK_Record), Bases(std::move(Bases)), |
| Fields(std::move(Fields)) {} |
| static bool classof(const TypeExpansion *TE) { |
| return TE->Kind == TEK_Record; |
| } |
| }; |
| |
| struct ComplexExpansion : TypeExpansion { |
| QualType EltTy; |
| |
| ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} |
| static bool classof(const TypeExpansion *TE) { |
| return TE->Kind == TEK_Complex; |
| } |
| }; |
| |
| struct NoExpansion : TypeExpansion { |
| NoExpansion() : TypeExpansion(TEK_None) {} |
| static bool classof(const TypeExpansion *TE) { |
| return TE->Kind == TEK_None; |
| } |
| }; |
| } // namespace |
| |
| static std::unique_ptr<TypeExpansion> |
| getTypeExpansion(QualType Ty, const ASTContext &Context) { |
| if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { |
| return llvm::make_unique<ConstantArrayExpansion>( |
| AT->getElementType(), AT->getSize().getZExtValue()); |
| } |
| if (const RecordType *RT = Ty->getAs<RecordType>()) { |
| SmallVector<const CXXBaseSpecifier *, 1> Bases; |
| SmallVector<const FieldDecl *, 1> Fields; |
| const RecordDecl *RD = RT->getDecl(); |
| assert(!RD->hasFlexibleArrayMember() && |
| "Cannot expand structure with flexible array."); |
| if (RD->isUnion()) { |
| // Unions can be here only in degenerative cases - all the fields are same |
| // after flattening. Thus we have to use the "largest" field. |
| const FieldDecl *LargestFD = nullptr; |
| CharUnits UnionSize = CharUnits::Zero(); |
| |
| for (const auto *FD : RD->fields()) { |
| if (FD->isZeroLengthBitField(Context)) |
| continue; |
| assert(!FD->isBitField() && |
| "Cannot expand structure with bit-field members."); |
| CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); |
| if (UnionSize < FieldSize) { |
| UnionSize = FieldSize; |
| LargestFD = FD; |
| } |
| } |
| if (LargestFD) |
| Fields.push_back(LargestFD); |
| } else { |
| if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
| assert(!CXXRD->isDynamicClass() && |
| "cannot expand vtable pointers in dynamic classes"); |
| for (const CXXBaseSpecifier &BS : CXXRD->bases()) |
| Bases.push_back(&BS); |
| } |
| |
| for (const auto *FD : RD->fields()) { |
| if (FD->isZeroLengthBitField(Context)) |
| continue; |
| assert(!FD->isBitField() && |
| "Cannot expand structure with bit-field members."); |
| Fields.push_back(FD); |
| } |
| } |
| return llvm::make_unique<RecordExpansion>(std::move(Bases), |
| std::move(Fields)); |
| } |
| if (const ComplexType *CT = Ty->getAs<ComplexType>()) { |
| return llvm::make_unique<ComplexExpansion>(CT->getElementType()); |
| } |
| return llvm::make_unique<NoExpansion>(); |
| } |
| |
| static int getExpansionSize(QualType Ty, const ASTContext &Context) { |
| auto Exp = getTypeExpansion(Ty, Context); |
| if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { |
| return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); |
| } |
| if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { |
| int Res = 0; |
| for (auto BS : RExp->Bases) |
| Res += getExpansionSize(BS->getType(), Context); |
| for (auto FD : RExp->Fields) |
| Res += getExpansionSize(FD->getType(), Context); |
| return Res; |
| } |
| if (isa<ComplexExpansion>(Exp.get())) |
| return 2; |
| assert(isa<NoExpansion>(Exp.get())); |
| return 1; |
| } |
| |
| void |
| CodeGenTypes::getExpandedTypes(QualType Ty, |
| SmallVectorImpl<llvm::Type *>::iterator &TI) { |
| auto Exp = getTypeExpansion(Ty, Context); |
| if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { |
| for (int i = 0, n = CAExp->NumElts; i < n; i++) { |
| getExpandedTypes(CAExp->EltTy, TI); |
| } |
| } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { |
| for (auto BS : RExp->Bases) |
| getExpandedTypes(BS->getType(), TI); |
| for (auto FD : RExp->Fields) |
| getExpandedTypes(FD->getType(), TI); |
| } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { |
| llvm::Type *EltTy = ConvertType(CExp->EltTy); |
| *TI++ = EltTy; |
| *TI++ = EltTy; |
| } else { |
| assert(isa<NoExpansion>(Exp.get())); |
| *TI++ = ConvertType(Ty); |
| } |
| } |
| |
| static void forConstantArrayExpansion(CodeGenFunction &CGF, |
| ConstantArrayExpansion *CAE, |
| Address BaseAddr, |
| llvm::function_ref<void(Address)> Fn) { |
| CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); |
| CharUnits EltAlign = |
| BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); |
| |
| for (int i = 0, n = CAE->NumElts; i < n; i++) { |
| llvm::Value *EltAddr = |
| CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); |
| Fn(Address(EltAddr, EltAlign)); |
| } |
| } |
| |
| void CodeGenFunction::ExpandTypeFromArgs( |
| QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { |
| assert(LV.isSimple() && |
| "Unexpected non-simple lvalue during struct expansion."); |
| |
| auto Exp = getTypeExpansion(Ty, getContext()); |
| if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { |
| forConstantArrayExpansion(*this, CAExp, LV.getAddress(), |
| [&](Address EltAddr) { |
| LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); |
| ExpandTypeFromArgs(CAExp->EltTy, LV, AI); |
| }); |
| } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { |
| Address This = LV.getAddress(); |
| for (const CXXBaseSpecifier *BS : RExp->Bases) { |
| // Perform a single step derived-to-base conversion. |
| Address Base = |
| GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, |
| /*NullCheckValue=*/false, SourceLocation()); |
| LValue SubLV = MakeAddrLValue(Base, BS->getType()); |
| |
| // Recurse onto bases. |
| ExpandTypeFromArgs(BS->getType(), SubLV, AI); |
| } |
| for (auto FD : RExp->Fields) { |
| // FIXME: What are the right qualifiers here? |
| LValue SubLV = EmitLValueForFieldInitialization(LV, FD); |
| ExpandTypeFromArgs(FD->getType(), SubLV, AI); |
| } |
| } else if (isa<ComplexExpansion>(Exp.get())) { |
| auto realValue = *AI++; |
| auto imagValue = *AI++; |
| EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); |
| } else { |
| assert(isa<NoExpansion>(Exp.get())); |
| EmitStoreThroughLValue(RValue::get(*AI++), LV); |
| } |
| } |
| |
| void CodeGenFunction::ExpandTypeToArgs( |
| QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, |
| SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { |
| auto Exp = getTypeExpansion(Ty, getContext()); |
| if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { |
| Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() |
| : Arg.getKnownRValue().getAggregateAddress(); |
| forConstantArrayExpansion( |
| *this, CAExp, Addr, [&](Address EltAddr) { |
| CallArg EltArg = CallArg( |
| convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), |
| CAExp->EltTy); |
| ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, |
| IRCallArgPos); |
| }); |
| } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { |
| Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() |
| : Arg.getKnownRValue().getAggregateAddress(); |
| for (const CXXBaseSpecifier *BS : RExp->Bases) { |
| // Perform a single step derived-to-base conversion. |
| Address Base = |
| GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, |
| /*NullCheckValue=*/false, SourceLocation()); |
| CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); |
| |
| // Recurse onto bases. |
| ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, |
| IRCallArgPos); |
| } |
| |
| LValue LV = MakeAddrLValue(This, Ty); |
| for (auto FD : RExp->Fields) { |
| CallArg FldArg = |
| CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); |
| ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, |
| IRCallArgPos); |
| } |
| } else if (isa<ComplexExpansion>(Exp.get())) { |
| ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); |
| IRCallArgs[IRCallArgPos++] = CV.first; |
| IRCallArgs[IRCallArgPos++] = CV.second; |
| } else { |
| assert(isa<NoExpansion>(Exp.get())); |
| auto RV = Arg.getKnownRValue(); |
| assert(RV.isScalar() && |
| "Unexpected non-scalar rvalue during struct expansion."); |
| |
| // Insert a bitcast as needed. |
| llvm::Value *V = RV.getScalarVal(); |
| if (IRCallArgPos < IRFuncTy->getNumParams() && |
| V->getType() != IRFuncTy->getParamType(IRCallArgPos)) |
| V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); |
| |
| IRCallArgs[IRCallArgPos++] = V; |
| } |
| } |
| |
| /// Create a temporary allocation for the purposes of coercion. |
| static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, |
| CharUnits MinAlign) { |
| // Don't use an alignment that's worse than what LLVM would prefer. |
| auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); |
| CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); |
| |
| return CGF.CreateTempAlloca(Ty, Align); |
| } |
| |
| /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are |
| /// accessing some number of bytes out of it, try to gep into the struct to get |
| /// at its inner goodness. Dive as deep as possible without entering an element |
| /// with an in-memory size smaller than DstSize. |
| static Address |
| EnterStructPointerForCoercedAccess(Address SrcPtr, |
| llvm::StructType *SrcSTy, |
| uint64_t DstSize, CodeGenFunction &CGF) { |
| // We can't dive into a zero-element struct. |
| if (SrcSTy->getNumElements() == 0) return SrcPtr; |
| |
| llvm::Type *FirstElt = SrcSTy->getElementType(0); |
| |
| // If the first elt is at least as large as what we're looking for, or if the |
| // first element is the same size as the whole struct, we can enter it. The |
| // comparison must be made on the store size and not the alloca size. Using |
| // the alloca size may overstate the size of the load. |
| uint64_t FirstEltSize = |
| CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); |
| if (FirstEltSize < DstSize && |
| FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) |
| return SrcPtr; |
| |
| // GEP into the first element. |
| SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); |
| |
| // If the first element is a struct, recurse. |
| llvm::Type *SrcTy = SrcPtr.getElementType(); |
| if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) |
| return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); |
| |
| return SrcPtr; |
| } |
| |
| /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both |
| /// are either integers or pointers. This does a truncation of the value if it |
| /// is too large or a zero extension if it is too small. |
| /// |
| /// This behaves as if the value were coerced through memory, so on big-endian |
| /// targets the high bits are preserved in a truncation, while little-endian |
| /// targets preserve the low bits. |
| static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, |
| llvm::Type *Ty, |
| CodeGenFunction &CGF) { |
| if (Val->getType() == Ty) |
| return Val; |
| |
| if (isa<llvm::PointerType>(Val->getType())) { |
| // If this is Pointer->Pointer avoid conversion to and from int. |
| if (isa<llvm::PointerType>(Ty)) |
| return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); |
| |
| // Convert the pointer to an integer so we can play with its width. |
| Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); |
| } |
| |
| llvm::Type *DestIntTy = Ty; |
| if (isa<llvm::PointerType>(DestIntTy)) |
| DestIntTy = CGF.IntPtrTy; |
| |
| if (Val->getType() != DestIntTy) { |
| const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); |
| if (DL.isBigEndian()) { |
| // Preserve the high bits on big-endian targets. |
| // That is what memory coercion does. |
| uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); |
| uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); |
| |
| if (SrcSize > DstSize) { |
| Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); |
| Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); |
| } else { |
| Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); |
| Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); |
| } |
| } else { |
| // Little-endian targets preserve the low bits. No shifts required. |
| Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); |
| } |
| } |
| |
| if (isa<llvm::PointerType>(Ty)) |
| Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); |
| return Val; |
| } |
| |
| |
| |
| /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as |
| /// a pointer to an object of type \arg Ty, known to be aligned to |
| /// \arg SrcAlign bytes. |
| /// |
| /// This safely handles the case when the src type is smaller than the |
| /// destination type; in this situation the values of bits which not |
| /// present in the src are undefined. |
| static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, |
| CodeGenFunction &CGF) { |
| llvm::Type *SrcTy = Src.getElementType(); |
| |
| // If SrcTy and Ty are the same, just do a load. |
| if (SrcTy == Ty) |
| return CGF.Builder.CreateLoad(Src); |
| |
| uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); |
| |
| if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { |
| Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); |
| SrcTy = Src.getType()->getElementType(); |
| } |
| |
| uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); |
| |
| // If the source and destination are integer or pointer types, just do an |
| // extension or truncation to the desired type. |
| if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && |
| (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { |
| llvm::Value *Load = CGF.Builder.CreateLoad(Src); |
| return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); |
| } |
| |
| // If load is legal, just bitcast the src pointer. |
| if (SrcSize >= DstSize) { |
| // Generally SrcSize is never greater than DstSize, since this means we are |
| // losing bits. However, this can happen in cases where the structure has |
| // additional padding, for example due to a user specified alignment. |
| // |
| // FIXME: Assert that we aren't truncating non-padding bits when have access |
| // to that information. |
| Src = CGF.Builder.CreateBitCast(Src, |
| Ty->getPointerTo(Src.getAddressSpace())); |
| return CGF.Builder.CreateLoad(Src); |
| } |
| |
| // Otherwise do coercion through memory. This is stupid, but simple. |
| Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); |
| Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.AllocaInt8PtrTy); |
| Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.AllocaInt8PtrTy); |
| CGF.Builder.CreateMemCpy(Casted, SrcCasted, |
| llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), |
| false); |
| return CGF.Builder.CreateLoad(Tmp); |
| } |
| |
| // Function to store a first-class aggregate into memory. We prefer to |
| // store the elements rather than the aggregate to be more friendly to |
| // fast-isel. |
| // FIXME: Do we need to recurse here? |
| static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, |
| Address Dest, bool DestIsVolatile) { |
| // Prefer scalar stores to first-class aggregate stores. |
| if (llvm::StructType *STy = |
| dyn_cast<llvm::StructType>(Val->getType())) { |
| const llvm::StructLayout *Layout = |
| CGF.CGM.getDataLayout().getStructLayout(STy); |
| |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); |
| Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); |
| llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); |
| CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); |
| } |
| } else { |
| CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); |
| } |
| } |
| |
| /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, |
| /// where the source and destination may have different types. The |
| /// destination is known to be aligned to \arg DstAlign bytes. |
| /// |
| /// This safely handles the case when the src type is larger than the |
| /// destination type; the upper bits of the src will be lost. |
| static void CreateCoercedStore(llvm::Value *Src, |
| Address Dst, |
| bool DstIsVolatile, |
| CodeGenFunction &CGF) { |
| llvm::Type *SrcTy = Src->getType(); |
| llvm::Type *DstTy = Dst.getType()->getElementType(); |
| if (SrcTy == DstTy) { |
| CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); |
| return; |
| } |
| |
| uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); |
| |
| if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { |
| Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); |
| DstTy = Dst.getType()->getElementType(); |
| } |
| |
| // If the source and destination are integer or pointer types, just do an |
| // extension or truncation to the desired type. |
| if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && |
| (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { |
| Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); |
| CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); |
| return; |
| } |
| |
| uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); |
| |
| // If store is legal, just bitcast the src pointer. |
| if (SrcSize <= DstSize) { |
| Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); |
| BuildAggStore(CGF, Src, Dst, DstIsVolatile); |
| } else { |
| // Otherwise do coercion through memory. This is stupid, but |
| // simple. |
| |
| // Generally SrcSize is never greater than DstSize, since this means we are |
| // losing bits. However, this can happen in cases where the structure has |
| // additional padding, for example due to a user specified alignment. |
| // |
| // FIXME: Assert that we aren't truncating non-padding bits when have access |
| // to that information. |
| Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); |
| CGF.Builder.CreateStore(Src, Tmp); |
| Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.AllocaInt8PtrTy); |
| Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.AllocaInt8PtrTy); |
| CGF.Builder.CreateMemCpy(DstCasted, Casted, |
| llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), |
| false); |
| } |
| } |
| |
| static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, |
| const ABIArgInfo &info) { |
| if (unsigned offset = info.getDirectOffset()) { |
| addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); |
| addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, |
| CharUnits::fromQuantity(offset)); |
| addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); |
| } |
| return addr; |
| } |
| |
| namespace { |
| |
| /// Encapsulates information about the way function arguments from |
| /// CGFunctionInfo should be passed to actual LLVM IR function. |
| class ClangToLLVMArgMapping { |
| static const unsigned InvalidIndex = ~0U; |
| unsigned InallocaArgNo; |
| unsigned SRetArgNo; |
| unsigned TotalIRArgs; |
| |
| /// Arguments of LLVM IR function corresponding to single Clang argument. |
| struct IRArgs { |
| unsigned PaddingArgIndex; |
| // Argument is expanded to IR arguments at positions |
| // [FirstArgIndex, FirstArgIndex + NumberOfArgs). |
| unsigned FirstArgIndex; |
| unsigned NumberOfArgs; |
| |
| IRArgs() |
| : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), |
| NumberOfArgs(0) {} |
| }; |
| |
| SmallVector<IRArgs, 8> ArgInfo; |
| |
| public: |
| ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, |
| bool OnlyRequiredArgs = false) |
| : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), |
| ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { |
| construct(Context, FI, OnlyRequiredArgs); |
| } |
| |
| bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } |
| unsigned getInallocaArgNo() const { |
| assert(hasInallocaArg()); |
| return InallocaArgNo; |
| } |
| |
| bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } |
| unsigned getSRetArgNo() const { |
| assert(hasSRetArg()); |
| return SRetArgNo; |
| } |
| |
| unsigned totalIRArgs() const { return TotalIRArgs; } |
| |
| bool hasPaddingArg(unsigned ArgNo) const { |
| assert(ArgNo < ArgInfo.size()); |
| return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; |
| } |
| unsigned getPaddingArgNo(unsigned ArgNo) const { |
| assert(hasPaddingArg(ArgNo)); |
| return ArgInfo[ArgNo].PaddingArgIndex; |
| } |
| |
| /// Returns index of first IR argument corresponding to ArgNo, and their |
| /// quantity. |
| std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { |
| assert(ArgNo < ArgInfo.size()); |
| return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, |
| ArgInfo[ArgNo].NumberOfArgs); |
| } |
| |
| private: |
| void construct(const ASTContext &Context, const CGFunctionInfo &FI, |
| bool OnlyRequiredArgs); |
| }; |
| |
| void ClangToLLVMArgMapping::construct(const ASTContext &Context, |
| const CGFunctionInfo &FI, |
| bool OnlyRequiredArgs) { |
| unsigned IRArgNo = 0; |
| bool SwapThisWithSRet = false; |
| const ABIArgInfo &RetAI = FI.getReturnInfo(); |
| |
| if (RetAI.getKind() == ABIArgInfo::Indirect) { |
| SwapThisWithSRet = RetAI.isSRetAfterThis(); |
| SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; |
| } |
| |
| unsigned ArgNo = 0; |
| unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); |
| for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; |
| ++I, ++ArgNo) { |
| assert(I != FI.arg_end()); |
| QualType ArgType = I->type; |
| const ABIArgInfo &AI = I->info; |
| // Collect data about IR arguments corresponding to Clang argument ArgNo. |
| auto &IRArgs = ArgInfo[ArgNo]; |
| |
| if (AI.getPaddingType()) |
| IRArgs.PaddingArgIndex = IRArgNo++; |
| |
| switch (AI.getKind()) { |
| case ABIArgInfo::Extend: |
| case ABIArgInfo::Direct: { |
| // FIXME: handle sseregparm someday... |
| llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); |
| if (AI.isDirect() && AI.getCanBeFlattened() && STy) { |
| IRArgs.NumberOfArgs = STy->getNumElements(); |
| } else { |
| IRArgs.NumberOfArgs = 1; |
| } |
| break; |
| } |
| case ABIArgInfo::Indirect: |
| IRArgs.NumberOfArgs = 1; |
| break; |
| case ABIArgInfo::Ignore: |
| case ABIArgInfo::InAlloca: |
| // ignore and inalloca doesn't have matching LLVM parameters. |
| IRArgs.NumberOfArgs = 0; |
| break; |
| case ABIArgInfo::CoerceAndExpand: |
| IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); |
| break; |
| case ABIArgInfo::Expand: |
| IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); |
| break; |
| } |
| |
| if (IRArgs.NumberOfArgs > 0) { |
| IRArgs.FirstArgIndex = IRArgNo; |
| IRArgNo += IRArgs.NumberOfArgs; |
| } |
| |
| // Skip over the sret parameter when it comes second. We already handled it |
| // above. |
| if (IRArgNo == 1 && SwapThisWithSRet) |
| IRArgNo++; |
| } |
| assert(ArgNo == ArgInfo.size()); |
| |
| if (FI.usesInAlloca()) |
| InallocaArgNo = IRArgNo++; |
| |
| TotalIRArgs = IRArgNo; |
| } |
| } // namespace |
| |
| /***/ |
| |
| bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { |
| const auto &RI = FI.getReturnInfo(); |
| return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); |
| } |
| |
| bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { |
| return ReturnTypeUsesSRet(FI) && |
| getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); |
| } |
| |
| bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { |
| if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { |
| switch (BT->getKind()) { |
| default: |
| return false; |
| case BuiltinType::Float: |
| return getTarget().useObjCFPRetForRealType(TargetInfo::Float); |
| case BuiltinType::Double: |
| return getTarget().useObjCFPRetForRealType(TargetInfo::Double); |
| case BuiltinType::LongDouble: |
| return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); |
| } |
| } |
| |
| return false; |
| } |
| |
| bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { |
| if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { |
| if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { |
| if (BT->getKind() == BuiltinType::LongDouble) |
| return getTarget().useObjCFP2RetForComplexLongDouble(); |
| } |
| } |
| |
| return false; |
| } |
| |
| llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { |
| const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); |
| return GetFunctionType(FI); |
| } |
| |
| llvm::FunctionType * |
| CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { |
| |
| bool Inserted = FunctionsBeingProcessed.insert(&FI).second; |
| (void)Inserted; |
| assert(Inserted && "Recursively being processed?"); |
| |
| llvm::Type *resultType = nullptr; |
| const ABIArgInfo &retAI = FI.getReturnInfo(); |
| switch (retAI.getKind()) { |
| case ABIArgInfo::Expand: |
| llvm_unreachable("Invalid ABI kind for return argument"); |
| |
| case ABIArgInfo::Extend: |
| case ABIArgInfo::Direct: |
| resultType = retAI.getCoerceToType(); |
| break; |
| |
| case ABIArgInfo::InAlloca: |
| if (retAI.getInAllocaSRet()) { |
| // sret things on win32 aren't void, they return the sret pointer. |
| QualType ret = FI.getReturnType(); |
| llvm::Type *ty = ConvertType(ret); |
| unsigned addressSpace = Context.getTargetAddressSpace(ret); |
| resultType = llvm::PointerType::get(ty, addressSpace); |
| } else { |
| resultType = llvm::Type::getVoidTy(getLLVMContext()); |
| } |
| break; |
| |
| case ABIArgInfo::Indirect: |
| case ABIArgInfo::Ignore: |
| resultType = llvm::Type::getVoidTy(getLLVMContext()); |
| break; |
| |
| case ABIArgInfo::CoerceAndExpand: |
| resultType = retAI.getUnpaddedCoerceAndExpandType(); |
| break; |
| } |
| |
| ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); |
| SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); |
| |
| // Add type for sret argument. |
| if (IRFunctionArgs.hasSRetArg()) { |
| QualType Ret = FI.getReturnType(); |
| llvm::Type *Ty = ConvertType(Ret); |
| unsigned AddressSpace = Context.getTargetAddressSpace(Ret); |
| ArgTypes[IRFunctionArgs.getSRetArgNo()] = |
| llvm::PointerType::get(Ty, AddressSpace); |
| } |
| |
| // Add type for inalloca argument. |
| if (IRFunctionArgs.hasInallocaArg()) { |
| auto ArgStruct = FI.getArgStruct(); |
| assert(ArgStruct); |
| ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); |
| } |
| |
| // Add in all of the required arguments. |
| unsigned ArgNo = 0; |
| CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), |
| ie = it + FI.getNumRequiredArgs(); |
| for (; it != ie; ++it, ++ArgNo) { |
| const ABIArgInfo &ArgInfo = it->info; |
| |
| // Insert a padding type to ensure proper alignment. |
| if (IRFunctionArgs.hasPaddingArg(ArgNo)) |
| ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = |
| ArgInfo.getPaddingType(); |
| |
| unsigned FirstIRArg, NumIRArgs; |
| std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); |
| |
| switch (ArgInfo.getKind()) { |
| case ABIArgInfo::Ignore: |
| case ABIArgInfo::InAlloca: |
| assert(NumIRArgs == 0); |
| break; |
| |
| case ABIArgInfo::Indirect: { |
| assert(NumIRArgs == 1); |
| // indirect arguments are always on the stack, which is alloca addr space. |
| llvm::Type *LTy = ConvertTypeForMem(it->type); |
| ArgTypes[FirstIRArg] = LTy->getPointerTo( |
| CGM.getDataLayout().getAllocaAddrSpace()); |
| break; |
| } |
| |
| case ABIArgInfo::Extend: |
| case ABIArgInfo::Direct: { |
| // Fast-isel and the optimizer generally like scalar values better than |
| // FCAs, so we flatten them if this is safe to do for this argument. |
| llvm::Type *argType = ArgInfo.getCoerceToType(); |
| llvm::StructType *st = dyn_cast<llvm::StructType>(argType); |
| if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { |
| assert(NumIRArgs == st->getNumElements()); |
| for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) |
| ArgTypes[FirstIRArg + i] = st->getElementType(i); |
| } else { |
| assert(NumIRArgs == 1); |
| ArgTypes[FirstIRArg] = argType; |
| } |
| break; |
| } |
| |
| case ABIArgInfo::CoerceAndExpand: { |
| auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; |
| for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { |
| *ArgTypesIter++ = EltTy; |
| } |
| assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); |
| break; |
| } |
| |
| case ABIArgInfo::Expand: |
| auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; |
| getExpandedTypes(it->type, ArgTypesIter); |
| assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); |
| break; |
| } |
| } |
| |
| bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; |
| assert(Erased && "Not in set?"); |
| |
| return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); |
| } |
| |
| llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { |
| const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); |
| const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); |
| |
| if (!isFuncTypeConvertible(FPT)) |
| return llvm::StructType::get(getLLVMContext()); |
| |
| const CGFunctionInfo *Info; |
| if (isa<CXXDestructorDecl>(MD)) |
| Info = |
| &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); |
| else |
| Info = &arrangeCXXMethodDeclaration(MD); |
| return GetFunctionType(*Info); |
| } |
| |
| static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, |
| llvm::AttrBuilder &FuncAttrs, |
| const FunctionProtoType *FPT) { |
| if (!FPT) |
| return; |
| |
| if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && |
| FPT->isNothrow()) |
| FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); |
| } |
| |
| void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, |
| bool AttrOnCallSite, |
| llvm::AttrBuilder &FuncAttrs) { |
| // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. |
| if (!HasOptnone) { |
| if (CodeGenOpts.OptimizeSize) |
| FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); |
| if (CodeGenOpts.OptimizeSize == 2) |
| FuncAttrs.addAttribute(llvm::Attribute::MinSize); |
| } |
| |
| if (CodeGenOpts.DisableRedZone) |
| FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); |
| if (CodeGenOpts.NoImplicitFloat) |
| FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); |
| |
| if (AttrOnCallSite) { |
| // Attributes that should go on the call site only. |
| if (!CodeGenOpts.SimplifyLibCalls || |
| CodeGenOpts.isNoBuiltinFunc(Name.data())) |
| FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); |
| if (!CodeGenOpts.TrapFuncName.empty()) |
| FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); |
| } else { |
| // Attributes that should go on the function, but not the call site. |
| if (!CodeGenOpts.DisableFPElim) { |
| FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); |
| } else if (CodeGenOpts.OmitLeafFramePointer) { |
| FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); |
| FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); |
| } else { |
| FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); |
| FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); |
| } |
| |
| FuncAttrs.addAttribute("less-precise-fpmad", |
| llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); |
| |
| if (CodeGenOpts.NullPointerIsValid) |
| FuncAttrs.addAttribute("null-pointer-is-valid", "true"); |
| if (!CodeGenOpts.FPDenormalMode.empty()) |
| FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode); |
| |
| FuncAttrs.addAttribute("no-trapping-math", |
| llvm::toStringRef(CodeGenOpts.NoTrappingMath)); |
| |
| // Strict (compliant) code is the default, so only add this attribute to |
| // indicate that we are trying to workaround a problem case. |
| if (!CodeGenOpts.StrictFloatCastOverflow) |
| FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); |
| |
| // TODO: Are these all needed? |
| // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. |
| FuncAttrs.addAttribute("no-infs-fp-math", |
| llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); |
| FuncAttrs.addAttribute("no-nans-fp-math", |
| llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); |
| FuncAttrs.addAttribute("unsafe-fp-math", |
| llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); |
| FuncAttrs.addAttribute("use-soft-float", |
| llvm::toStringRef(CodeGenOpts.SoftFloat)); |
| FuncAttrs.addAttribute("stack-protector-buffer-size", |
| llvm::utostr(CodeGenOpts.SSPBufferSize)); |
| FuncAttrs.addAttribute("no-signed-zeros-fp-math", |
| llvm::toStringRef(CodeGenOpts.NoSignedZeros)); |
| FuncAttrs.addAttribute( |
| "correctly-rounded-divide-sqrt-fp-math", |
| llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); |
| |
| if (getLangOpts().OpenCL) |
| FuncAttrs.addAttribute("denorms-are-zero", |
| llvm::toStringRef(CodeGenOpts.FlushDenorm)); |
| |
| // TODO: Reciprocal estimate codegen options should apply to instructions? |
| const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; |
| if (!Recips.empty()) |
| FuncAttrs.addAttribute("reciprocal-estimates", |
| llvm::join(Recips, ",")); |
| |
| if (!CodeGenOpts.PreferVectorWidth.empty() && |
| CodeGenOpts.PreferVectorWidth != "none") |
| FuncAttrs.addAttribute("prefer-vector-width", |
| CodeGenOpts.PreferVectorWidth); |
| |
| if (CodeGenOpts.StackRealignment) |
| FuncAttrs.addAttribute("stackrealign"); |
| if (CodeGenOpts.Backchain) |
| FuncAttrs.addAttribute("backchain"); |
| } |
| |
| if (getLangOpts().assumeFunctionsAreConvergent()) { |
| // Conservatively, mark all functions and calls in CUDA and OpenCL as |
| // convergent (meaning, they may call an intrinsically convergent op, such |
| // as __syncthreads() / barrier(), and so can't have certain optimizations |
| // applied around them). LLVM will remove this attribute where it safely |
| // can. |
| FuncAttrs.addAttribute(llvm::Attribute::Convergent); |
| } |
| |
| if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { |
| // Exceptions aren't supported in CUDA device code. |
| FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); |
| |
| // Respect -fcuda-flush-denormals-to-zero. |
| if (CodeGenOpts.FlushDenorm) |
| FuncAttrs.addAttribute("nvptx-f32ftz", "true"); |
| } |
| } |
| |
| void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { |
| llvm::AttrBuilder FuncAttrs; |
| ConstructDefaultFnAttrList(F.getName(), |
| F.hasFnAttribute(llvm::Attribute::OptimizeNone), |
| /* AttrOnCallsite = */ false, FuncAttrs); |
| F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); |
| } |
| |
| void CodeGenModule::ConstructAttributeList( |
| StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, |
| llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { |
| llvm::AttrBuilder FuncAttrs; |
| llvm::AttrBuilder RetAttrs; |
| |
| CallingConv = FI.getEffectiveCallingConvention(); |
| if (FI.isNoReturn()) |
| FuncAttrs.addAttribute(llvm::Attribute::NoReturn); |
| |
| // If we have information about the function prototype, we can learn |
| // attributes from there. |
| AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, |
| CalleeInfo.getCalleeFunctionProtoType()); |
| |
| const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); |
| |
| bool HasOptnone = false; |
| // FIXME: handle sseregparm someday... |
| if (TargetDecl) { |
| if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) |
| FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); |
| if (TargetDecl->hasAttr<NoThrowAttr>()) |
| FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); |
| if (TargetDecl->hasAttr<NoReturnAttr>()) |
| FuncAttrs.addAttribute(llvm::Attribute::NoReturn); |
| if (TargetDecl->hasAttr<ColdAttr>()) |
| FuncAttrs.addAttribute(llvm::Attribute::Cold); |
| if (TargetDecl->hasAttr<NoDuplicateAttr>()) |
| FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); |
| if (TargetDecl->hasAttr<ConvergentAttr>()) |
| FuncAttrs.addAttribute(llvm::Attribute::Convergent); |
| |
| if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { |
| AddAttributesFromFunctionProtoType( |
| getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); |
| // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. |
| // These attributes are not inherited by overloads. |
| const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); |
| if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) |
| FuncAttrs.addAttribute(llvm::Attribute::NoReturn); |
| } |
| |
| // 'const', 'pure' and 'noalias' attributed functions are also nounwind. |
| if (TargetDecl->hasAttr<ConstAttr>()) { |
| FuncAttrs.addAttribute(llvm::Attribute::ReadNone); |
| FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); |
| } else if (TargetDecl->hasAttr<PureAttr>()) { |
| FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); |
| FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); |
| } else if (TargetDecl->hasAttr<NoAliasAttr>()) { |
| FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); |
| FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); |
| } |
| if (TargetDecl->hasAttr<RestrictAttr>()) |
| RetAttrs.addAttribute(llvm::Attribute::NoAlias); |
| if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && |
| !CodeGenOpts.NullPointerIsValid) |
| RetAttrs.addAttribute(llvm::Attribute::NonNull); |
| if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) |
| FuncAttrs.addAttribute("no_caller_saved_registers"); |
| if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) |
| FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); |
| |
| HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); |
| if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { |
| Optional<unsigned> NumElemsParam; |
| if (AllocSize->getNumElemsParam().isValid()) |
| NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); |
| FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), |
| NumElemsParam); |
| } |
| } |
| |
| ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); |
| |
| if (CodeGenOpts.EnableSegmentedStacks && |
| !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) |
| FuncAttrs.addAttribute("split-stack"); |
| |
| // Add NonLazyBind attribute to function declarations when -fno-plt |
| // is used. |
| if (TargetDecl && CodeGenOpts.NoPLT) { |
| if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { |
| if (!Fn->isDefined() && !AttrOnCallSite) { |
| FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); |
| } |
| } |
| } |
| |
| if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) { |
| if (getLangOpts().OpenCLVersion <= 120) { |
| // OpenCL v1.2 Work groups are always uniform |
| FuncAttrs.addAttribute("uniform-work-group-size", "true"); |
| } else { |
| // OpenCL v2.0 Work groups may be whether uniform or not. |
| // '-cl-uniform-work-group-size' compile option gets a hint |
| // to the compiler that the global work-size be a multiple of |
| // the work-group size specified to clEnqueueNDRangeKernel |
| // (i.e. work groups are uniform). |
| FuncAttrs.addAttribute("uniform-work-group-size", |
| llvm::toStringRef(CodeGenOpts.UniformWGSize)); |
| } |
| } |
| |
| if (!AttrOnCallSite) { |
| bool DisableTailCalls = false; |
| |
| if (CodeGenOpts.DisableTailCalls) |
| DisableTailCalls = true; |
| else if (TargetDecl) { |
| if (TargetDecl->hasAttr<DisableTailCallsAttr>() || |
| TargetDecl->hasAttr<AnyX86InterruptAttr>()) |
| DisableTailCalls = true; |
| else if (CodeGenOpts.NoEscapingBlockTailCalls) { |
| if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) |
| if (!BD->doesNotEscape()) |
| DisableTailCalls = true; |
| } |
| } |
| |
| FuncAttrs.addAttribute("disable-tail-calls", |
| llvm::toStringRef(DisableTailCalls)); |
| GetCPUAndFeaturesAttributes(TargetDecl, FuncAttrs); |
| } |
| |
| ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); |
| |
| QualType RetTy = FI.getReturnType(); |
| const ABIArgInfo &RetAI = FI.getReturnInfo(); |
| switch (RetAI.getKind()) { |
| case ABIArgInfo::Extend: |
| if (RetAI.isSignExt()) |
| RetAttrs.addAttribute(llvm::Attribute::SExt); |
| else |
| RetAttrs.addAttribute(llvm::Attribute::ZExt); |
| LLVM_FALLTHROUGH; |
| case ABIArgInfo::Direct: |
| if (RetAI.getInReg()) |
| RetAttrs.addAttribute(llvm::Attribute::InReg); |
| break; |
| case ABIArgInfo::Ignore: |
| break; |
| |
| case ABIArgInfo::InAlloca: |
| case ABIArgInfo::Indirect: { |
| // inalloca and sret disable readnone and readonly |
| FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) |
| .removeAttribute(llvm::Attribute::ReadNone); |
| break; |
| } |
| |
| case ABIArgInfo::CoerceAndExpand: |
| break; |
| |
| case ABIArgInfo::Expand: |
| llvm_unreachable("Invalid ABI kind for return argument"); |
| } |
| |
| if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { |
| QualType PTy = RefTy->getPointeeType(); |
| if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) |
| RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) |
| .getQuantity()); |
| else if (getContext().getTargetAddressSpace(PTy) == 0 && |
| !CodeGenOpts.NullPointerIsValid) |
| RetAttrs.addAttribute(llvm::Attribute::NonNull); |
| } |
| |
| bool hasUsedSRet = false; |
| SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); |
| |
| // Attach attributes to sret. |
| if (IRFunctionArgs.hasSRetArg()) { |
| llvm::AttrBuilder SRETAttrs; |
| if (!RetAI.getSuppressSRet()) |
| SRETAttrs.addAttribute(llvm::Attribute::StructRet); |
| hasUsedSRet = true; |
| if (RetAI.getInReg()) |
| SRETAttrs.addAttribute(llvm::Attribute::InReg); |
| ArgAttrs[IRFunctionArgs.getSRetArgNo()] = |
| llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); |
| } |
| |
| // Attach attributes to inalloca argument. |
| if (IRFunctionArgs.hasInallocaArg()) { |
| llvm::AttrBuilder Attrs; |
| Attrs.addAttribute(llvm::Attribute::InAlloca); |
| ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = |
| llvm::AttributeSet::get(getLLVMContext(), Attrs); |
| } |
| |
| unsigned ArgNo = 0; |
| for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), |
| E = FI.arg_end(); |
| I != E; ++I, ++ArgNo) { |
| QualType ParamType = I->type; |
| const ABIArgInfo &AI = I->info; |
| llvm::AttrBuilder Attrs; |
| |
| // Add attribute for padding argument, if necessary. |
| if (IRFunctionArgs.hasPaddingArg(ArgNo)) { |
| if (AI.getPaddingInReg()) { |
| ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = |
| llvm::AttributeSet::get( |
| getLLVMContext(), |
| llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); |
| } |
| } |
| |
| // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we |
| // have the corresponding parameter variable. It doesn't make |
| // sense to do it here because parameters are so messed up. |
| switch (AI.getKind()) { |
| case ABIArgInfo::Extend: |
| if (AI.isSignExt()) |
| Attrs.addAttribute(llvm::Attribute::SExt); |
| else |
| Attrs.addAttribute(llvm::Attribute::ZExt); |
| LLVM_FALLTHROUGH; |
| case ABIArgInfo::Direct: |
| if (ArgNo == 0 && FI.isChainCall()) |
| Attrs.addAttribute(llvm::Attribute::Nest); |
| else if (AI.getInReg()) |
| Attrs.addAttribute(llvm::Attribute::InReg); |
| break; |
| |
| case ABIArgInfo::Indirect: { |
| if (AI.getInReg()) |
| Attrs.addAttribute(llvm::Attribute::InReg); |
| |
| if (AI.getIndirectByVal()) |
| Attrs.addAttribute(llvm::Attribute::ByVal); |
| |
| CharUnits Align = AI.getIndirectAlign(); |
| |
| // In a byval argument, it is important that the required |
| // alignment of the type is honored, as LLVM might be creating a |
| // *new* stack object, and needs to know what alignment to give |
| // it. (Sometimes it can deduce a sensible alignment on its own, |
| // but not if clang decides it must emit a packed struct, or the |
| // user specifies increased alignment requirements.) |
| // |
| // This is different from indirect *not* byval, where the object |
| // exists already, and the align attribute is purely |
| // informative. |
| assert(!Align.isZero()); |
| |
| // For now, only add this when we have a byval argument. |
| // TODO: be less lazy about updating test cases. |
| if (AI.getIndirectByVal()) |
| Attrs.addAlignmentAttr(Align.getQuantity()); |
| |
| // byval disables readnone and readonly. |
| FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) |
| .removeAttribute(llvm::Attribute::ReadNone); |
| break; |
| } |
| case ABIArgInfo::Ignore: |
| case ABIArgInfo::Expand: |
| case ABIArgInfo::CoerceAndExpand: |
| break; |
| |
| case ABIArgInfo::InAlloca: |
| // inalloca disables readnone and readonly. |
| FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) |
| .removeAttribute(llvm::Attribute::ReadNone); |
| continue; |
| } |
| |
| if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { |
| QualType PTy = RefTy->getPointeeType(); |
| if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) |
| Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) |
| .getQuantity()); |
| else if (getContext().getTargetAddressSpace(PTy) == 0 && |
| !CodeGenOpts.NullPointerIsValid) |
| Attrs.addAttribute(llvm::Attribute::NonNull); |
| } |
| |
| switch (FI.getExtParameterInfo(ArgNo).getABI()) { |
| case ParameterABI::Ordinary: |
| break; |
| |
| case ParameterABI::SwiftIndirectResult: { |
| // Add 'sret' if we haven't already used it for something, but |
| // only if the result is void. |
| if (!hasUsedSRet && RetTy->isVoidType()) { |
| Attrs.addAttribute(llvm::Attribute::StructRet); |
| hasUsedSRet = true; |
| } |
| |
| // Add 'noalias' in either case. |
| Attrs.addAttribute(llvm::Attribute::NoAlias); |
| |
| // Add 'dereferenceable' and 'alignment'. |
| auto PTy = ParamType->getPointeeType(); |
| if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { |
| auto info = getContext().getTypeInfoInChars(PTy); |
| Attrs.addDereferenceableAttr(info.first.getQuantity()); |
| Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(), |
| info.second.getQuantity())); |
| } |
| break; |
| } |
| |
| case ParameterABI::SwiftErrorResult: |
| Attrs.addAttribute(llvm::Attribute::SwiftError); |
| break; |
| |
| case ParameterABI::SwiftContext: |
| Attrs.addAttribute(llvm::Attribute::SwiftSelf); |
| break; |
| } |
| |
| if (FI.getExtParameterInfo(ArgNo).isNoEscape()) |
| Attrs.addAttribute(llvm::Attribute::NoCapture); |
| |
| if (Attrs.hasAttributes()) { |
| unsigned FirstIRArg, NumIRArgs; |
| std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); |
| for (unsigned i = 0; i < NumIRArgs; i++) |
| ArgAttrs[FirstIRArg + i] = |
| llvm::AttributeSet::get(getLLVMContext(), Attrs); |
| } |
| } |
| assert(ArgNo == FI.arg_size()); |
| |
| AttrList = llvm::AttributeList::get( |
| getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), |
| llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); |
| } |
| |
| /// An argument came in as a promoted argument; demote it back to its |
| /// declared type. |
| static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, |
| const VarDecl *var, |
| llvm::Value *value) { |
| llvm::Type *varType = CGF.ConvertType(var->getType()); |
| |
| // This can happen with promotions that actually don't change the |
| // underlying type, like the enum promotions. |
| if (value->getType() == varType) return value; |
| |
| assert((varType->isIntegerTy() || varType->isFloatingPointTy()) |
| && "unexpected promotion type"); |
| |
| if (isa<llvm::IntegerType>(varType)) |
| return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); |
| |
| return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); |
| } |
| |
| /// Returns the attribute (either parameter attribute, or function |
| /// attribute), which declares argument ArgNo to be non-null. |
| static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, |
| QualType ArgType, unsigned ArgNo) { |
| // FIXME: __attribute__((nonnull)) can also be applied to: |
| // - references to pointers, where the pointee is known to be |
| // nonnull (apparently a Clang extension) |
| // - transparent unions containing pointers |
| // In the former case, LLVM IR cannot represent the constraint. In |
| // the latter case, we have no guarantee that the transparent union |
| // is in fact passed as a pointer. |
| if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) |
| return nullptr; |
| // First, check attribute on parameter itself. |
| if (PVD) { |
| if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) |
| return ParmNNAttr; |
| } |
| // Check function attributes. |
| if (!FD) |
| return nullptr; |
| for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { |
| if (NNAttr->isNonNull(ArgNo)) |
| return NNAttr; |
| } |
| return nullptr; |
| } |
| |
| namespace { |
| struct CopyBackSwiftError final : EHScopeStack::Cleanup { |
| Address Temp; |
| Address Arg; |
| CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} |
| void Emit(CodeGenFunction &CGF, Flags flags) override { |
| llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); |
| CGF.Builder.CreateStore(errorValue, Arg); |
| } |
| }; |
| } |
| |
| void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, |
| llvm::Function *Fn, |
| const FunctionArgList &Args) { |
| if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) |
| // Naked functions don't have prologues. |
| return; |
| |
| // If this is an implicit-return-zero function, go ahead and |
| // initialize the return value. TODO: it might be nice to have |
| // a more general mechanism for this that didn't require synthesized |
| // return statements. |
| if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { |
| if (FD->hasImplicitReturnZero()) { |
| QualType RetTy = FD->getReturnType().getUnqualifiedType(); |
| llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); |
| llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); |
| Builder.CreateStore(Zero, ReturnValue); |
| } |
| } |
| |
| // FIXME: We no longer need the types from FunctionArgList; lift up and |
| // simplify. |
| |
| ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); |
| // Flattened function arguments. |
| SmallVector<llvm::Value *, 16> FnArgs; |
| FnArgs.reserve(IRFunctionArgs.totalIRArgs()); |
| for (auto &Arg : Fn->args()) { |
| FnArgs.push_back(&Arg); |
| } |
| assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); |
| |
| // If we're using inalloca, all the memory arguments are GEPs off of the last |
| // parameter, which is a pointer to the complete memory area. |
| Address ArgStruct = Address::invalid(); |
| const llvm::StructLayout *ArgStructLayout = nullptr; |
| if (IRFunctionArgs.hasInallocaArg()) { |
| ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); |
| ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], |
| FI.getArgStructAlignment()); |
| |
| assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); |
| } |
| |
| // Name the struct return parameter. |
| if (IRFunctionArgs.hasSRetArg()) { |
| auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); |
| AI->setName("agg.result"); |
| AI->addAttr(llvm::Attribute::NoAlias); |
| } |
| |
| // Track if we received the parameter as a pointer (indirect, byval, or |
| // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it |
| // into a local alloca for us. |
| SmallVector<ParamValue, 16> ArgVals; |
| ArgVals.reserve(Args.size()); |
| |
| // Create a pointer value for every parameter declaration. This usually |
| // entails copying one or more LLVM IR arguments into an alloca. Don't push |
| // any cleanups or do anything that might unwind. We do that separately, so |
| // we can push the cleanups in the correct order for the ABI. |
| assert(FI.arg_size() == Args.size() && |
| "Mismatch between function signature & arguments."); |
| unsigned ArgNo = 0; |
| CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); |
| for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); |
| i != e; ++i, ++info_it, ++ArgNo) { |
| const VarDecl *Arg = *i; |
| const ABIArgInfo &ArgI = info_it->info; |
| |
| bool isPromoted = |
| isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); |
| // We are converting from ABIArgInfo type to VarDecl type directly, unless |
| // the parameter is promoted. In this case we convert to |
| // CGFunctionInfo::ArgInfo type with subsequent argument demotion. |
| QualType Ty = isPromoted ? info_it->type : Arg->getType(); |
| assert(hasScalarEvaluationKind(Ty) == |
| hasScalarEvaluationKind(Arg->getType())); |
| |
| unsigned FirstIRArg, NumIRArgs; |
| std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); |
| |
| switch (ArgI.getKind()) { |
| case ABIArgInfo::InAlloca: { |
| assert(NumIRArgs == 0); |
| auto FieldIndex = ArgI.getInAllocaFieldIndex(); |
| CharUnits FieldOffset = |
| CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); |
| Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, |
| Arg->getName()); |
| ArgVals.push_back(ParamValue::forIndirect(V)); |
| break; |
| } |
| |
| case ABIArgInfo::Indirect: { |
| assert(NumIRArgs == 1); |
| Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); |
| |
| if (!hasScalarEvaluationKind(Ty)) { |
| // Aggregates and complex variables are accessed by reference. All we |
| // need to do is realign the value, if requested. |
| Address V = ParamAddr; |
| if (ArgI.getIndirectRealign()) { |
| Address AlignedTemp = CreateMemTemp(Ty, "coerce"); |
| |
| // Copy from the incoming argument pointer to the temporary with the |
| // appropriate alignment. |
| // |
| // FIXME: We should have a common utility for generating an aggregate |
| // copy. |
| CharUnits Size = getContext().getTypeSizeInChars(Ty); |
| auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); |
| Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); |
| Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); |
| Builder.CreateMemCpy(Dst, Src, SizeVal, false); |
| V = AlignedTemp; |
| } |
| ArgVals.push_back(ParamValue::forIndirect(V)); |
| } else { |
| // Load scalar value from indirect argument. |
| llvm::Value *V = |
| EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart()); |
| |
| if (isPromoted) |
| V = emitArgumentDemotion(*this, Arg, V); |
| ArgVals.push_back(ParamValue::forDirect(V)); |
| } |
| break; |
| } |
| |
| case ABIArgInfo::Extend: |
| case ABIArgInfo::Direct: { |
| |
| // If we have the trivial case, handle it with no muss and fuss. |
| if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && |
| ArgI.getCoerceToType() == ConvertType(Ty) && |
| ArgI.getDirectOffset() == 0) { |
| assert(NumIRArgs == 1); |
| llvm::Value *V = FnArgs[FirstIRArg]; |
| auto AI = cast<llvm::Argument>(V); |
| |
| if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { |
| if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), |
| PVD->getFunctionScopeIndex()) && |
| !CGM.getCodeGenOpts().NullPointerIsValid) |
| AI->addAttr(llvm::Attribute::NonNull); |
| |
| QualType OTy = PVD->getOriginalType(); |
| if (const auto *ArrTy = |
| getContext().getAsConstantArrayType(OTy)) { |
| // A C99 array parameter declaration with the static keyword also |
| // indicates dereferenceability, and if the size is constant we can |
| // use the dereferenceable attribute (which requires the size in |
| // bytes). |
| if (ArrTy->getSizeModifier() == ArrayType::Static) { |
| QualType ETy = ArrTy->getElementType(); |
| uint64_t ArrSize = ArrTy->getSize().getZExtValue(); |
| if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && |
| ArrSize) { |
| llvm::AttrBuilder Attrs; |
| Attrs.addDereferenceableAttr( |
| getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); |
| AI->addAttrs(Attrs); |
| } else if (getContext().getTargetAddressSpace(ETy) == 0 && |
| !CGM.getCodeGenOpts().NullPointerIsValid) { |
| AI->addAttr(llvm::Attribute::NonNull); |
| } |
| } |
| } else if (const auto *ArrTy = |
| getContext().getAsVariableArrayType(OTy)) { |
| // For C99 VLAs with the static keyword, we don't know the size so |
| // we can't use the dereferenceable attribute, but in addrspace(0) |
| // we know that it must be nonnull. |
| if (ArrTy->getSizeModifier() == VariableArrayType::Static && |
| !getContext().getTargetAddressSpace(ArrTy->getElementType()) && |
| !CGM.getCodeGenOpts().NullPointerIsValid) |
| AI->addAttr(llvm::Attribute::NonNull); |
| } |
| |
| const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); |
| if (!AVAttr) |
| if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) |
| AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); |
| if (AVAttr) { |
| llvm::Value *AlignmentValue = |
| EmitScalarExpr(AVAttr->getAlignment()); |
| llvm::ConstantInt *AlignmentCI = |
| cast<llvm::ConstantInt>(AlignmentValue); |
| unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(), |
| +llvm::Value::MaximumAlignment); |
| AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); |
| } |
| } |
| |
| if (Arg->getType().isRestrictQualified()) |
| AI->addAttr(llvm::Attribute::NoAlias); |
| |
| // LLVM expects swifterror parameters to be used in very restricted |
| // ways. Copy the value into a less-restricted temporary. |
| if (FI.getExtParameterInfo(ArgNo).getABI() |
| == ParameterABI::SwiftErrorResult) { |
| QualType pointeeTy = Ty->getPointeeType(); |
| assert(pointeeTy->isPointerType()); |
| Address temp = |
| CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); |
| Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); |
| llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); |
| Builder.CreateStore(incomingErrorValue, temp); |
| V = temp.getPointer(); |
| |
| // Push a cleanup to copy the value back at the end of the function. |
| // The convention does not guarantee that the value will be written |
| // back if the function exits with an unwind exception. |
| EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); |
| } |
| |
| // Ensure the argument is the correct type. |
| if (V->getType() != ArgI.getCoerceToType()) |
| V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); |
| |
| if (isPromoted) |
| V = emitArgumentDemotion(*this, Arg, V); |
| |
| // Because of merging of function types from multiple decls it is |
| // possible for the type of an argument to not match the corresponding |
| // type in the function type. Since we are codegening the callee |
| // in here, add a cast to the argument type. |
| llvm::Type *LTy = ConvertType(Arg->getType()); |
| if (V->getType() != LTy) |
| V = Builder.CreateBitCast(V, LTy); |
| |
| ArgVals.push_back(ParamValue::forDirect(V)); |
| break; |
| } |
| |
| Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), |
| Arg->getName()); |
| |
| // Pointer to store into. |
| Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); |
| |
| // Fast-isel and the optimizer generally like scalar values better than |
| // FCAs, so we flatten them if this is safe to do for this argument. |
| llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); |
| if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && |
| STy->getNumElements() > 1) { |
| auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); |
| uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); |
| llvm::Type *DstTy = Ptr.getElementType(); |
| uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); |
| |
| Address AddrToStoreInto = Address::invalid(); |
| if (SrcSize <= DstSize) { |
| AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); |
| } else { |
| AddrToStoreInto = |
| CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); |
| } |
| |
| assert(STy->getNumElements() == NumIRArgs); |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| auto AI = FnArgs[FirstIRArg + i]; |
| AI->setName(Arg->getName() + ".coerce" + Twine(i)); |
| auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); |
| Address EltPtr = |
| Builder.CreateStructGEP(AddrToStoreInto, i, Offset); |
| Builder.CreateStore(AI, EltPtr); |
| } |
| |
| if (SrcSize > DstSize) { |
| Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); |
| } |
| |
| } else { |
| // Simple case, just do a coerced store of the argument into the alloca. |
| assert(NumIRArgs == 1); |
| auto AI = FnArgs[FirstIRArg]; |
| AI->setName(Arg->getName() + ".coerce"); |
| CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); |
| } |
| |
| // Match to what EmitParmDecl is expecting for this type. |
| if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { |
| llvm::Value *V = |
| EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart()); |
| if (isPromoted) |
| V = emitArgumentDemotion(*this, Arg, V); |
| ArgVals.push_back(ParamValue::forDirect(V)); |
| } else { |
| ArgVals.push_back(ParamValue::forIndirect(Alloca)); |
| } |
| break; |
| } |
| |
| case ABIArgInfo::CoerceAndExpand: { |
| // Reconstruct into a temporary. |
| Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); |
| ArgVals.push_back(ParamValue::forIndirect(alloca)); |
| |
| auto coercionType = ArgI.getCoerceAndExpandType(); |
| alloca = Builder.CreateElementBitCast(alloca, coercionType); |
| auto layout = CGM.getDataLayout().getStructLayout(coercionType); |
| |
| unsigned argIndex = FirstIRArg; |
| for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { |
| llvm::Type *eltType = coercionType->getElementType(i); |
| if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) |
| continue; |
| |
| auto eltAddr = Builder.CreateStructGEP(alloca, i, layout); |
| auto elt = FnArgs[argIndex++]; |
| Builder.CreateStore(elt, eltAddr); |
| } |
| assert(argIndex == FirstIRArg + NumIRArgs); |
| break; |
| } |
| |
| case ABIArgInfo::Expand: { |
| // If this structure was expanded into multiple arguments then |
| // we need to create a temporary and reconstruct it from the |
| // arguments. |
| Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); |
| LValue LV = MakeAddrLValue(Alloca, Ty); |
| ArgVals.push_back(ParamValue::forIndirect(Alloca)); |
| |
| auto FnArgIter = FnArgs.begin() + FirstIRArg; |
| ExpandTypeFromArgs(Ty, LV, FnArgIter); |
| assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); |
| for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { |
| auto AI = FnArgs[FirstIRArg + i]; |
| AI->setName(Arg->getName() + "." + Twine(i)); |
| } |
| break; |
| } |
| |
| case ABIArgInfo::Ignore: |
| assert(NumIRArgs == 0); |
| // Initialize the local variable appropriately. |
| if (!hasScalarEvaluationKind(Ty)) { |
| ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); |
| } else { |
| llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); |
| ArgVals.push_back(ParamValue::forDirect(U)); |
| } |
| break; |
| } |
| } |
| |
| if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { |
| for (int I = Args.size() - 1; I >= 0; --I) |
| EmitParmDecl(*Args[I], ArgVals[I], I + 1); |
| } else { |
| for (unsigned I = 0, E = Args.size(); I != E; ++I) |
| EmitParmDecl(*Args[I], ArgVals[I], I + 1); |
| } |
| } |
| |
| static void eraseUnusedBitCasts(llvm::Instruction *insn) { |
| while (insn->use_empty()) { |
| llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); |
| if (!bitcast) return; |
| |
| // This is "safe" because we would have used a ConstantExpr otherwise. |
| insn = cast<llvm::Instruction>(bitcast->getOperand(0)); |
| bitcast->eraseFromParent(); |
| } |
| } |
| |
| /// Try to emit a fused autorelease of a return result. |
| static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, |
| llvm::Value *result) { |
| // We must be immediately followed the cast. |
| llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); |
| if (BB->empty()) return nullptr; |
| if (&BB->back() != result) return nullptr; |
| |
| llvm::Type *resultType = result->getType(); |
| |
| // result is in a BasicBlock and is therefore an Instruction. |
| llvm::Instruction *generator = cast<llvm::Instruction>(result); |
| |
| SmallVector<llvm::Instruction *, 4> InstsToKill; |
| |
| // Look for: |
| // %generator = bitcast %type1* %generator2 to %type2* |
| while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { |
| // We would have emitted this as a constant if the operand weren't |
| // an Instruction. |
| generator = cast<llvm::Instruction>(bitcast->getOperand(0)); |
| |
| // Require the generator to be immediately followed by the cast. |
| if (generator->getNextNode() != bitcast) |
| return nullptr; |
| |
| InstsToKill.push_back(bitcast); |
| } |
| |
| // Look for: |
| // %generator = call i8* @objc_retain(i8* %originalResult) |
| // or |
| // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) |
| llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); |
| if (!call) return nullptr; |
| |
| bool doRetainAutorelease; |
| |
| if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { |
| doRetainAutorelease = true; |
| } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() |
| .objc_retainAutoreleasedReturnValue) { |
| doRetainAutorelease = false; |
| |
| // If we emitted an assembly marker for this call (and the |
| // ARCEntrypoints field should have been set if so), go looking |
| // for that call. If we can't find it, we can't do this |
| // optimization. But it should always be the immediately previous |
| // instruction, unless we needed bitcasts around the call. |
| if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { |
| llvm::Instruction *prev = call->getPrevNode(); |
| assert(prev); |
| if (isa<llvm::BitCastInst>(prev)) { |
| prev = prev->getPrevNode(); |
| assert(prev); |
| } |
| assert(isa<llvm::CallInst>(prev)); |
| assert(cast<llvm::CallInst>(prev)->getCalledValue() == |
| CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); |
| InstsToKill.push_back(prev); |
| } |
| } else { |
| return nullptr; |
| } |
| |
| result = call->getArgOperand(0); |
| InstsToKill.push_back(call); |
| |
| // Keep killing bitcasts, for sanity. Note that we no longer care |
| // about precise ordering as long as there's exactly one use. |
| while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { |
| if (!bitcast->hasOneUse()) break; |
| InstsToKill.push_back(bitcast); |
| result = bitcast->getOperand(0); |
| } |
| |
| // Delete all the unnecessary instructions, from latest to earliest. |
| for (auto *I : InstsToKill) |
| I->eraseFromParent(); |
| |
| // Do the fused retain/autorelease if we were asked to. |
| if (doRetainAutorelease) |
| result = CGF.EmitARCRetainAutoreleaseReturnValue(result); |
| |
| // Cast back to the result type. |
| return CGF.Builder.CreateBitCast(result, resultType); |
| } |
| |
| /// If this is a +1 of the value of an immutable 'self', remove it. |
| static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, |
| llvm::Value *result) { |
| // This is only applicable to a method with an immutable 'self'. |
| const ObjCMethodDecl *method = |
| dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); |
| if (!method) return nullptr; |
| const VarDecl *self = method->getSelfDecl(); |
| if (!self->getType().isConstQualified()) return nullptr; |
| |
| // Look for a retain call. |
| llvm::CallInst *retainCall = |
| dyn_cast<llvm::CallInst>(result->stripPointerCasts()); |
| if (!retainCall || |
| retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) |
| return nullptr; |
| |
| // Look for an ordinary load of 'self'. |
| llvm::Value *retainedValue = retainCall->getArgOperand(0); |
| llvm::LoadInst *load = |
| dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); |
| if (!load || load->isAtomic() || load->isVolatile() || |
| load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) |
| return nullptr; |
| |
| // Okay! Burn it all down. This relies for correctness on the |
| // assumption that the retain is emitted as part of the return and |
| // that thereafter everything is used "linearly". |
| llvm::Type *resultType = result->getType(); |
| eraseUnusedBitCasts(cast<llvm::Instruction>(result)); |
| assert(retainCall->use_empty()); |
| retainCall->eraseFromParent(); |
| eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); |
| |
| return CGF.Builder.CreateBitCast(load, resultType); |
| } |
| |
| /// Emit an ARC autorelease of the result of a function. |
| /// |
| /// \return the value to actually return from the function |
| static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, |
| llvm::Value *result) { |
| // If we're returning 'self', kill the initial retain. This is a |
| // heuristic attempt to "encourage correctness" in the really unfortunate |
| // case where we have a return of self during a dealloc and we desperately |
| // need to avoid the possible autorelease. |
| if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) |
| return self; |
| |
| // At -O0, try to emit a fused retain/autorelease. |
| if (CGF.shouldUseFusedARCCalls()) |
| if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) |
| return fused; |
| |
| return CGF.EmitARCAutoreleaseReturnValue(result); |
| } |
| |
| /// Heuristically search for a dominating store to the return-value slot. |
| static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { |
| // Check if a User is a store which pointerOperand is the ReturnValue. |
| // We are looking for stores to the ReturnValue, not for stores of the |
| // ReturnValue to some other location. |
| auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { |
| auto *SI = dyn_cast<llvm::StoreInst>(U); |
| if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) |
| return nullptr; |
| // These aren't actually possible for non-coerced returns, and we |
| // only care about non-coerced returns on this code path. |
| assert(!SI->isAtomic() && !SI->isVolatile()); |
| return SI; |
| }; |
| // If there are multiple uses of the return-value slot, just check |
| // for something immediately preceding the IP. Sometimes this can |
| // happen with how we generate implicit-returns; it can also happen |
| // with noreturn cleanups. |
| if (!CGF.ReturnValue.getPointer()->hasOneUse()) { |
| llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); |
| if (IP->empty()) return nullptr; |
| llvm::Instruction *I = &IP->back(); |
| |
| // Skip lifetime markers |
| for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), |
| IE = IP->rend(); |
| II != IE; ++II) { |
| if (llvm::IntrinsicInst *Intrinsic = |
| dyn_cast<llvm::IntrinsicInst>(&*II)) { |
| if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { |
| const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); |
| ++II; |
| if (II == IE) |
| break; |
| if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) |
| continue; |
| } |
| } |
| I = &*II; |
| break; |
| } |
| |
| return GetStoreIfValid(I); |
| } |
| |
| llvm::StoreInst *store = |
| GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); |
| if (!store) return nullptr; |
| |
| // Now do a first-and-dirty dominance check: just walk up the |
| // single-predecessors chain from the current insertion point. |
| llvm::BasicBlock *StoreBB = store->getParent(); |
| llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); |
| while (IP != StoreBB) { |
| if (!(IP = IP->getSinglePredecessor())) |
| return nullptr; |
| } |
| |
| // Okay, the store's basic block dominates the insertion point; we |
| // can do our thing. |
| return store; |
| } |
| |
| void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, |
| bool EmitRetDbgLoc, |
| SourceLocation EndLoc) { |
| if (FI.isNoReturn()) { |
| // Noreturn functions don't return. |
| EmitUnreachable(EndLoc); |
| return; |
| } |
| |
| if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { |
| // Naked functions don't have epilogues. |
| Builder.CreateUnreachable(); |
| return; |
| } |
| |
| // Functions with no result always return void. |
| if (!ReturnValue.isValid()) { |
| Builder.CreateRetVoid(); |
| return; |
| } |
| |
| llvm::DebugLoc RetDbgLoc; |
| llvm::Value *RV = nullptr; |
| QualType RetTy = FI.getReturnType(); |
| const ABIArgInfo &RetAI = FI.getReturnInfo(); |
| |
| switch (RetAI.getKind()) { |
| case ABIArgInfo::InAlloca: |
| // Aggregrates get evaluated directly into the destination. Sometimes we |
| // need to return the sret value in a register, though. |
| assert(hasAggregateEvaluationKind(RetTy)); |
| if (RetAI.getInAllocaSRet()) { |
| llvm::Function::arg_iterator EI = CurFn->arg_end(); |
| --EI; |
| llvm::Value *ArgStruct = &*EI; |
| llvm::Value *SRet = Builder.CreateStructGEP( |
| nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); |
| RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); |
| } |
| break; |
| |
| case ABIArgInfo::Indirect: { |
| auto AI = CurFn->arg_begin(); |
| if (RetAI.isSRetAfterThis()) |
| ++AI; |
| switch (getEvaluationKind(RetTy)) { |
| case TEK_Complex: { |
| ComplexPairTy RT = |
| EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); |
| EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), |
| /*isInit*/ true); |
| break; |
| } |
| case TEK_Aggregate: |
| // Do nothing; aggregrates get evaluated directly into the destination. |
| break; |
| case TEK_Scalar: |
| EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), |
| MakeNaturalAlignAddrLValue(&*AI, RetTy), |
| /*isInit*/ true); |
| break; |
| } |
| break; |
| } |
| |
| case ABIArgInfo::Extend: |
| case ABIArgInfo::Direct: |
| if (RetAI.getCoerceToType() == ConvertType(RetTy) && |
| RetAI.getDirectOffset() == 0) { |
| // The internal return value temp always will have pointer-to-return-type |
| // type, just do a load. |
| |
| // If there is a dominating store to ReturnValue, we can elide |
| // the load, zap the store, and usually zap the alloca. |
| if (llvm::StoreInst *SI = |
| findDominatingStoreToReturnValue(*this)) { |
| // Reuse the debug location from the store unless there is |
| // cleanup code to be emitted between the store and return |
| // instruction. |
| if (EmitRetDbgLoc && !AutoreleaseResult) |
| RetDbgLoc = SI->getDebugLoc(); |
| // Get the stored value and nuke the now-dead store. |
| RV = SI->getValueOperand(); |
| SI->eraseFromParent(); |
| |
| // If that was the only use of the return value, nuke it as well now. |
| auto returnValueInst = ReturnValue.getPointer(); |
| if (returnValueInst->use_empty()) { |
| if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { |
| alloca->eraseFromParent(); |
| ReturnValue = Address::invalid(); |
| } |
| } |
| |
| // Otherwise, we have to do a simple load. |
| } else { |
| RV = Builder.CreateLoad(ReturnValue); |
| } |
| } else { |
| // If the value is offset in memory, apply the offset now. |
| Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); |
| |
| RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); |
| } |
| |
| // In ARC, end functions that return a retainable type with a call |
| // to objc_autoreleaseReturnValue. |
| if (AutoreleaseResult) { |
| #ifndef NDEBUG |
| // Type::isObjCRetainabletype has to be called on a QualType that hasn't |
| // been stripped of the typedefs, so we cannot use RetTy here. Get the |
| // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from |
| // CurCodeDecl or BlockInfo. |
| QualType RT; |
| |
| if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) |
| RT = FD->getReturnType(); |
| else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) |
| RT = MD->getReturnType(); |
| else if (isa<BlockDecl>(CurCodeDecl)) |
| RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); |
| else |
| llvm_unreachable("Unexpected function/method type"); |
| |
| assert(getLangOpts().ObjCAutoRefCount && |
| !FI.isReturnsRetained() && |
| RT->isObjCRetainableType()); |
| #endif |
| RV = emitAutoreleaseOfResult(*this, RV); |
| } |
| |
| break; |
| |
| case ABIArgInfo::Ignore: |
| break; |
| |
| case ABIArgInfo::CoerceAndExpand: { |
| auto coercionType = RetAI.getCoerceAndExpandType(); |
| auto layout = CGM.getDataLayout().getStructLayout(coercionType); |
| |
| // Load all of the coerced elements out into results. |
| llvm::SmallVector<llvm::Value*, 4> results; |
| Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); |
| for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { |
| auto coercedEltType = coercionType->getElementType(i); |
| if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) |
| continue; |
| |
| auto eltAddr = Builder.CreateStructGEP(addr, i, layout); |
| auto elt = Builder.CreateLoad(eltAddr); |
| results.push_back(elt); |
| } |
| |
| // If we have one result, it's the single direct result type. |
| if (results.size() == 1) { |
| RV = results[0]; |
| |
| // Otherwise, we need to make a first-class aggregate. |
| } else { |
| // Construct a return type that lacks padding elements. |
| llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); |
| |
| RV = llvm::UndefValue::get(returnType); |
| for (unsigned i = 0, e = results.size(); i != e; ++i) { |
| RV = Builder.CreateInsertValue(RV, results[i], i); |
| } |
| } |
| break; |
| } |
| |
| case ABIArgInfo::Expand: |
| llvm_unreachable("Invalid ABI kind for return argument"); |
| } |
| |
| llvm::Instruction *Ret; |
| if (RV) { |
| EmitReturnValueCheck(RV); |
| Ret = Builder.CreateRet(RV); |
| } else { |
| Ret = Builder.CreateRetVoid(); |
| } |
| |
| if (RetDbgLoc) |
| Ret->setDebugLoc(std::move(RetDbgLoc)); |
| } |
| |
| void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { |
| // A current decl may not be available when emitting vtable thunks. |
| if (!CurCodeDecl) |
| return; |
| |
| ReturnsNonNullAttr *RetNNAttr = nullptr; |
| if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) |
| RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); |
| |
| if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) |
| return; |
| |
| // Prefer the returns_nonnull attribute if it's present. |
| SourceLocation AttrLoc; |
| SanitizerMask CheckKind; |
| SanitizerHandler Handler; |
| if (RetNNAttr) { |
| assert(!requiresReturnValueNullabilityCheck() && |
| "Cannot check nullability and the nonnull attribute"); |
| AttrLoc = RetNNAttr->getLocation(); |
| CheckKind = SanitizerKind::ReturnsNonnullAttribute; |
| Handler = SanitizerHandler::NonnullReturn; |
| } else { |
| if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) |
| if (auto *TSI = DD->getTypeSourceInfo()) |
| if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>()) |
| AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); |
| CheckKind = SanitizerKind::NullabilityReturn; |
| Handler = SanitizerHandler::NullabilityReturn; |
| } |
| |
| SanitizerScope SanScope(this); |
| |
| // Make sure the "return" source location is valid. If we're checking a |
| // nullability annotation, make sure the preconditions for the check are met. |
| llvm::BasicBlock *Check = createBasicBlock("nullcheck"); |
| llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); |
| llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); |
| llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); |
| if (requiresReturnValueNullabilityCheck()) |
| CanNullCheck = |
| Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); |
| Builder.CreateCondBr(CanNullCheck, Check, NoCheck); |
| EmitBlock(Check); |
| |
| // Now do the null check. |
| llvm::Value *Cond = Builder.CreateIsNotNull(RV); |
| llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; |
| llvm::Value *DynamicData[] = {SLocPtr}; |
| EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); |
| |
| EmitBlock(NoCheck); |
| |
| #ifndef NDEBUG |
| // The return location should not be used after the check has been emitted. |
| ReturnLocation = Address::invalid(); |
| #endif |
| } |
| |
| static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { |
| const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); |
| return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; |
| } |
| |
| static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, |
| QualType Ty) { |
| // FIXME: Generate IR in one pass, rather than going back and fixing up these |
| // placeholders. |
| llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); |
| llvm::Type *IRPtrTy = IRTy->getPointerTo(); |
| llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); |
| |
| // FIXME: When we generate this IR in one pass, we shouldn't need |
| // this win32-specific alignment hack. |
| CharUnits Align = CharUnits::fromQuantity(4); |
| Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); |
| |
| return AggValueSlot::forAddr(Address(Placeholder, Align), |
| Ty.getQualifiers(), |
| AggValueSlot::IsNotDestructed, |
| AggValueSlot::DoesNotNeedGCBarriers, |
| AggValueSlot::IsNotAliased, |
| AggValueSlot::DoesNotOverlap); |
| } |
| |
| void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, |
| const VarDecl *param, |
| SourceLocation loc) { |
| // StartFunction converted the ABI-lowered parameter(s) into a |
| // local alloca. We need to turn that into an r-value suitable |
| // for EmitCall. |
| Address local = GetAddrOfLocalVar(param); |
| |
| QualType type = param->getType(); |
| |
| assert(!isInAllocaArgument(CGM.getCXXABI(), type) && |
| "cannot emit delegate call arguments for inalloca arguments!"); |
| |
| // GetAddrOfLocalVar returns a pointer-to-pointer for references, |
| // but the argument needs to be the original pointer. |
| if (type->isReferenceType()) { |
| args.add(RValue::get(Builder.CreateLoad(local)), type); |
| |
| // In ARC, move out of consumed arguments so that the release cleanup |
| // entered by StartFunction doesn't cause an over-release. This isn't |
| // optimal -O0 code generation, but it should get cleaned up when |
| // optimization is enabled. This also assumes that delegate calls are |
| // performed exactly once for a set of arguments, but that should be safe. |
| } else if (getLangOpts().ObjCAutoRefCount && |
| param->hasAttr<NSConsumedAttr>() && |
| type->isObjCRetainableType()) { |
| llvm::Value *ptr = Builder.CreateLoad(local); |
| auto null = |
| llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); |
| Builder.CreateStore(null, local); |
| args.add(RValue::get(ptr), type); |
| |
| // For the most part, we just need to load the alloca, except that |
| // aggregate r-values are actually pointers to temporaries. |
| } else { |
| args.add(convertTempToRValue(local, type, loc), type); |
| } |
| |
| // Deactivate the cleanup for the callee-destructed param that was pushed. |
| if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && |
| type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && |
| type.isDestructedType()) { |
| EHScopeStack::stable_iterator cleanup = |
| CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); |
| assert(cleanup.isValid() && |
| "cleanup for callee-destructed param not recorded"); |
| // This unreachable is a temporary marker which will be removed later. |
| llvm::Instruction *isActive = Builder.CreateUnreachable(); |
| args.addArgCleanupDeactivation(cleanup, isActive); |
| } |
| } |
| |
| static bool isProvablyNull(llvm::Value *addr) { |
| return isa<llvm::ConstantPointerNull>(addr); |
| } |
| |
| /// Emit the actual writing-back of a writeback. |
| static void emitWriteback(CodeGenFunction &CGF, |
| const CallArgList::Writeback &writeback) { |
| const LValue &srcLV = writeback.Source; |
| Address srcAddr = srcLV.getAddress(); |
| assert(!isProvablyNull(srcAddr.getPointer()) && |
| "shouldn't have writeback for provably null argument"); |
| |
| llvm::BasicBlock *contBB = nullptr; |
| |
| // If the argument wasn't provably non-null, we need to null check |
| // before doing the store. |
| bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), |
| CGF.CGM.getDataLayout()); |
| if (!provablyNonNull) { |
| llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); |
| contBB = CGF.createBasicBlock("icr.done"); |
| |
| llvm::Value *isNull = |
| CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); |
| CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); |
| CGF.EmitBlock(writebackBB); |
| } |
| |
| // Load the value to writeback. |
| llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); |
| |
| // Cast it back, in case we're writing an id to a Foo* or something. |
| value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), |
| "icr.writeback-cast"); |
| |
| // Perform the writeback. |
| |
| // If we have a "to use" value, it's something we need to emit a use |
| // of. This has to be carefully threaded in: if it's done after the |
| // release it's potentially undefined behavior (and the optimizer |
| // will ignore it), and if it happens before the retain then the |
| // optimizer could move the release there. |
| if (writeback.ToUse) { |
| assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); |
| |
| // Retain the new value. No need to block-copy here: the block's |
| // being passed up the stack. |
| value = CGF.EmitARCRetainNonBlock(value); |
| |
| // Emit the intrinsic use here. |
| CGF.EmitARCIntrinsicUse(writeback.ToUse); |
| |
| // Load the old value (primitively). |
| llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); |
| |
| // Put the new value in place (primitively). |
| CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); |
| |
| // Release the old value. |
| CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); |
| |
| // Otherwise, we can just do a normal lvalue store. |
| } else { |
| CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); |
| } |
| |
| // Jump to the continuation block. |
| if (!provablyNonNull) |
| CGF.EmitBlock(contBB); |
| } |
| |
| static void emitWritebacks(CodeGenFunction &CGF, |
| const CallArgList &args) { |
| for (const auto &I : args.writebacks()) |
| emitWriteback(CGF, I); |
| } |
| |
| static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, |
| const CallArgList &CallArgs) { |
| ArrayRef<CallArgList::CallArgCleanup> Cleanups = |
| CallArgs.getCleanupsToDeactivate(); |
| // Iterate in reverse to increase the likelihood of popping the cleanup. |
| for (const auto &I : llvm::reverse(Cleanups)) { |
| CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); |
| I.IsActiveIP->eraseFromParent(); |
| } |
| } |
| |
| static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { |
| if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) |
| if (uop->getOpcode() == UO_AddrOf) |
| return uop->getSubExpr(); |
| return nullptr; |
| } |
| |
| /// Emit an argument that's being passed call-by-writeback. That is, |
| /// we are passing the address of an __autoreleased temporary; it |
| /// might be copy-initialized with the current value of the given |
| /// address, but it will definitely be copied out of after the call. |
| static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, |
| const ObjCIndirectCopyRestoreExpr *CRE) { |
| LValue srcLV; |
| |
| // Make an optimistic effort to emit the address as an l-value. |
| // This can fail if the argument expression is more complicated. |
| if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { |
| srcLV = CGF.EmitLValue(lvExpr); |
| |
| // Otherwise, just emit it as a scalar. |
| } else { |
| Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); |
| |
| QualType srcAddrType = |
| CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); |
| srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); |
| } |
| Address srcAddr = srcLV.getAddress(); |
| |
| // The dest and src types don't necessarily match in LLVM terms |
| // because of the crazy ObjC compatibility rules. |
| |
| llvm::PointerType *destType = |
| cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); |
| |
| // If the address is a constant null, just pass the appropriate null. |
| if (isProvablyNull(srcAddr.getPointer())) { |
| args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), |
| CRE->getType()); |
| return; |
| } |
| |
| // Create the temporary. |
| Address temp = CGF.CreateTempAlloca(destType->getElementType(), |
| CGF.getPointerAlign(), |
| "icr.temp"); |
| // Loading an l-value can introduce a cleanup if the l-value is __weak, |
| // and that cleanup will be conditional if we can't prove that the l-value |
| // isn't null, so we need to register a dominating point so that the cleanups |
| // system will make valid IR. |
| CodeGenFunction::ConditionalEvaluation condEval(CGF); |
| |
| // Zero-initialize it if we're not doing a copy-initialization. |
| bool shouldCopy = CRE->shouldCopy(); |
| if (!shouldCopy) { |
| llvm::Value *null = |
| llvm::ConstantPointerNull::get( |
| cast<llvm::PointerType>(destType->getElementType())); |
| CGF.Builder.CreateStore(null, temp); |
| } |
| |
| llvm::BasicBlock *contBB = nullptr; |
| llvm::BasicBlock *originBB = nullptr; |
| |
| // If the address is *not* known to be non-null, we need to switch. |
| llvm::Value *finalArgument; |
| |
| bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), |
| CGF.CGM.getDataLayout()); |
| if (provablyNonNull) { |
| finalArgument = temp.getPointer(); |
| } else { |
| llvm::Value *isNull = |
| CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); |
| |
| finalArgument = CGF.Builder.CreateSelect(isNull, |
| llvm::ConstantPointerNull::get(destType), |
| temp.getPointer(), "icr.argument"); |
| |
| // If we need to copy, then the load has to be conditional, which |
| // means we need control flow. |
| if (shouldCopy) { |
| originBB = CGF.Builder.GetInsertBlock(); |
| contBB = CGF.createBasicBlock("icr.cont"); |
| llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); |
| CGF.Builder.CreateCondBr(isNull, contBB, copyBB); |
| CGF.EmitBlock(copyBB); |
| condEval.begin(CGF); |
| } |
| } |
| |
| llvm::Value *valueToUse = nullptr; |
| |
| // Perform a copy if necessary. |
| if (shouldCopy) { |
| RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); |
| assert(srcRV.isScalar()); |
| |
| llvm::Value *src = srcRV.getScalarVal(); |
| src = CGF.Builder.CreateBitCast(src, destType->getElementType(), |
| "icr.cast"); |
| |
| // Use an ordinary store, not a store-to-lvalue. |
| CGF.Builder.CreateStore(src, temp); |
| |
| // If optimization is enabled, and the value was held in a |
| // __strong variable, we need to tell the optimizer that this |
| // value has to stay alive until we're doing the store back. |
| // This is because the temporary is effectively unretained, |
| // and so otherwise we can violate the high-level semantics. |
| if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && |
| srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { |
| valueToUse = src; |
| } |
| } |
| |
| // Finish the control flow if we needed it. |
| if (shouldCopy && !provablyNonNull) { |
| llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); |
| CGF.EmitBlock(contBB); |
| |
| // Make a phi for the value to intrinsically use. |
| if (valueToUse) { |
| llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, |
| "icr.to-use"); |
| phiToUse->addIncoming(valueToUse, copyBB); |
| phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), |
| originBB); |
| valueToUse = phiToUse; |
| } |
| |
| condEval.end(CGF); |
| } |
| |
| args.addWriteback(srcLV, temp, valueToUse); |
| args.add(RValue::get(finalArgument), CRE->getType()); |
| } |
| |
| void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { |
| assert(!StackBase); |
| |
| // Save the stack. |
| llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); |
| StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); |
| } |
| |
| void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { |
| if (StackBase) { |
| // Restore the stack after the call. |
| llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); |
| CGF.Builder.CreateCall(F, StackBase); |
| } |
| } |
| |
| void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, |
| SourceLocation ArgLoc, |
| AbstractCallee AC, |
| unsigned ParmNum) { |
| if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || |
| SanOpts.has(SanitizerKind::NullabilityArg))) |
| return; |
| |
| // The param decl may be missing in a variadic function. |
| auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; |
| unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; |
| |
| // Prefer the nonnull attribute if it's present. |
| const NonNullAttr *NNAttr = nullptr; |
| if (SanOpts.has(SanitizerKind::NonnullAttribute)) |
| NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); |
| |
| bool CanCheckNullability = false; |
| if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { |
| auto Nullability = PVD->getType()->getNullability(getContext()); |
| CanCheckNullability = Nullability && |
| *Nullability == NullabilityKind::NonNull && |
| PVD->getTypeSourceInfo(); |
| } |
| |
| if (!NNAttr && !CanCheckNullability) |
| return; |
| |
| SourceLocation AttrLoc; |
| SanitizerMask CheckKind; |
| SanitizerHandler Handler; |
| if (NNAttr) { |
| AttrLoc = NNAttr->getLocation(); |
| CheckKind = SanitizerKind::NonnullAttribute; |
| Handler = SanitizerHandler::NonnullArg; |
| } else { |
| AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); |
| CheckKind = SanitizerKind::NullabilityArg; |
| Handler = SanitizerHandler::NullabilityArg; |
| } |
| |
| SanitizerScope SanScope(this); |
| assert(RV.isScalar()); |
| llvm::Value *V = RV.getScalarVal(); |
| llvm::Value *Cond = |
| Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); |
| llvm::Constant *StaticData[] = { |
| EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), |
| llvm::ConstantInt::get(Int32Ty, ArgNo + 1), |
| }; |
| EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); |
| } |
| |
| void CodeGenFunction::EmitCallArgs( |
| CallArgList &Args, ArrayRef<QualType> ArgTypes, |
| llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, |
| AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { |
| assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); |
| |
| // We *have* to evaluate arguments from right to left in the MS C++ ABI, |
| // because arguments are destroyed left to right in the callee. As a special |
| // case, there are certain language constructs that require left-to-right |
| // evaluation, and in those cases we consider the evaluation order requirement |
| // to trump the "destruction order is reverse construction order" guarantee. |
| bool LeftToRight = |
| CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() |
| ? Order == EvaluationOrder::ForceLeftToRight |
| : Order != EvaluationOrder::ForceRightToLeft; |
| |
| auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, |
| RValue EmittedArg) { |
| if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) |
| return; |
| auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); |
| if (PS == nullptr) |
| return; |
| |
| const auto &Context = getContext(); |
| auto SizeTy = Context.getSizeType(); |
| auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); |
| assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); |
| llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, |
| EmittedArg.getScalarVal()); |
| Args.add(RValue::get(V), SizeTy); |
| // If we're emitting args in reverse, be sure to do so with |
| // pass_object_size, as well. |
| if (!LeftToRight) |
| std::swap(Args.back(), *(&Args.back() - 1)); |
| }; |
| |
| // Insert a stack save if we're going to need any inalloca args. |
| bool HasInAllocaArgs = false; |
| if (CGM.getTarget().getCXXABI().isMicrosoft()) { |
| for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); |
| I != E && !HasInAllocaArgs; ++I) |
| HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); |
| if (HasInAllocaArgs) { |
| assert(getTarget().getTriple().getArch() == llvm::Triple::x86); |
| Args.allocateArgumentMemory(*this); |
| } |
| } |
| |
| // Evaluate each argument in the appropriate order. |
| size_t CallArgsStart = Args.size(); |
| for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { |
| unsigned Idx = LeftToRight ? I : E - I - 1; |
| CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; |
| unsigned InitialArgSize = Args.size(); |
| // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of |
| // the argument and parameter match or the objc method is parameterized. |
| assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || |
| getContext().hasSameUnqualifiedType((*Arg)->getType(), |
| ArgTypes[Idx]) || |
| (isa<ObjCMethodDecl>(AC.getDecl()) && |
| isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && |
| "Argument and parameter types don't match"); |
| EmitCallArg(Args, *Arg, ArgTypes[Idx]); |
| // In particular, we depend on it being the last arg in Args, and the |
| // objectsize bits depend on there only being one arg if !LeftToRight. |
| assert(InitialArgSize + 1 == Args.size() && |
| "The code below depends on only adding one arg per EmitCallArg"); |
| (void)InitialArgSize; |
| // Since pointer argument are never emitted as LValue, it is safe to emit |
| // non-null argument check for r-value only. |
| if (!Args.back().hasLValue()) { |
| RValue RVArg = Args.back().getKnownRValue(); |
| EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, |
| ParamsToSkip + Idx); |
| // @llvm.objectsize should never have side-effects and shouldn't need |
| // destruction/cleanups, so we can safely "emit" it after its arg, |
| // regardless of right-to-leftness |
| MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); |
| } |
| } |
| |
| if (!LeftToRight) { |
| // Un-reverse the arguments we just evaluated so they match up with the LLVM |
| // IR function. |
| std::reverse(Args.begin() + CallArgsStart, Args.end()); |
| } |
| } |
| |
| namespace { |
| |
| struct DestroyUnpassedArg final : EHScopeStack::Cleanup { |
| DestroyUnpassedArg(Address Addr, QualType Ty) |
| : Addr(Addr), Ty(Ty) {} |
| |
| Address Addr; |
| QualType Ty; |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) override { |
| QualType::DestructionKind DtorKind = Ty.isDestructedType(); |
| if (DtorKind == QualType::DK_cxx_destructor) { |
| const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); |
| assert(!Dtor->isTrivial()); |
| CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, |
| /*Delegating=*/false, Addr); |
| } else { |
| CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); |
| } |
| } |
| }; |
| |
| struct DisableDebugLocationUpdates { |
| CodeGenFunction &CGF; |
| bool disabledDebugInfo; |
| DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { |
| if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) |
| CGF.disableDebugInfo(); |
| } |
| ~DisableDebugLocationUpdates() { |
| if (disabledDebugInfo) |
| CGF.enableDebugInfo(); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| RValue CallArg::getRValue(CodeGenFunction &CGF) const { |
| if (!HasLV) |
| return RV; |
| LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); |
| CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, |
| LV.isVolatile()); |
| IsUsed = true; |
| return RValue::getAggregate(Copy.getAddress()); |
| } |
| |
| void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { |
| LValue Dst = CGF.MakeAddrLValue(Addr, Ty); |
| if (!HasLV && RV.isScalar()) |
| CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true); |
| else if (!HasLV && RV.isComplex()) |
| CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); |
| else { |
| auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress(); |
| LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); |
| // We assume that call args are never copied into subobjects. |
| CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, |
| HasLV ? LV.isVolatileQualified() |
| : RV.isVolatileQualified()); |
| } |
| IsUsed = true; |
| } |
| |
| void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, |
| QualType type) { |
| DisableDebugLocationUpdates Dis(*this, E); |
| if (const ObjCIndirectCopyRestoreExpr *CRE |
| = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { |
| assert(getLangOpts().ObjCAutoRefCount); |
| return emitWritebackArg(*this, args, CRE); |
| } |
| |
| assert(type->isReferenceType() == E->isGLValue() && |
| "reference binding to unmaterialized r-value!"); |
| |
| if (E->isGLValue()) { |
| assert(E->getObjectKind() == OK_Ordinary); |
| return args.add(EmitReferenceBindingToExpr(E), type); |
| } |
| |
| bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); |
| |
| // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. |
| // However, we still have to push an EH-only cleanup in case we unwind before |
| // we make it to the call. |
| if (HasAggregateEvalKind && |
| type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { |
| // If we're using inalloca, use the argument memory. Otherwise, use a |
| // temporary. |
| AggValueSlot Slot; |
| if (args.isUsingInAlloca()) |
| Slot = createPlaceholderSlot(*this, type); |
| else |
| Slot = CreateAggTemp(type, "agg.tmp"); |
| |
| bool DestroyedInCallee = true, NeedsEHCleanup = true; |
| if (const auto *RD = type->getAsCXXRecordDecl()) |
| DestroyedInCallee = RD->hasNonTrivialDestructor(); |
| else |
| NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); |
| |
| if (DestroyedInCallee) |
| Slot.setExternallyDestructed(); |
| |
| EmitAggExpr(E, Slot); |
| RValue RV = Slot.asRValue(); |
| args.add(RV, type); |
| |
| if (DestroyedInCallee && NeedsEHCleanup) { |
| // Create a no-op GEP between the placeholder and the cleanup so we can |
| // RAUW it successfully. It also serves as a marker of the first |
| // instruction where the cleanup is active. |
| pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), |
| type); |
| // This unreachable is a temporary marker which will be removed later. |
| llvm::Instruction *IsActive = Builder.CreateUnreachable(); |
| args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); |
| } |
| return; |
| } |
| |
| if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && |
| cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { |
| LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); |
| assert(L.isSimple()); |
| args.addUncopiedAggregate(L, type); |
| return; |
| } |
| |
| args.add(EmitAnyExprToTemp(E), type); |
| } |
| |
| QualType CodeGenFunction::getVarArgType(const Expr *Arg) { |
| // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC |
| // implicitly widens null pointer constants that are arguments to varargs |
| // functions to pointer-sized ints. |
| if (!getTarget().getTriple().isOSWindows()) |
| return Arg->getType(); |
| |
| if (Arg->getType()->isIntegerType() && |
| getContext().getTypeSize(Arg->getType()) < |
| getContext().getTargetInfo().getPointerWidth(0) && |
| Arg->isNullPointerConstant(getContext(), |
| Expr::NPC_ValueDependentIsNotNull)) { |
| return getContext().getIntPtrType(); |
| } |
| |
| return Arg->getType(); |
| } |
| |
| // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC |
| // optimizer it can aggressively ignore unwind edges. |
| void |
| CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { |
| if (CGM.getCodeGenOpts().OptimizationLevel != 0 && |
| !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) |
| Inst->setMetadata("clang.arc.no_objc_arc_exceptions", |
| CGM.getNoObjCARCExceptionsMetadata()); |
| } |
| |
| /// Emits a call to the given no-arguments nounwind runtime function. |
| llvm::CallInst * |
| CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, |
| const llvm::Twine &name) { |
| return EmitNounwindRuntimeCall(callee, None, name); |
| } |
| |
| /// Emits a call to the given nounwind runtime function. |
| llvm::CallInst * |
| CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, |
| ArrayRef<llvm::Value*> args, |
| const llvm::Twine &name) { |
| llvm::CallInst *call = EmitRuntimeCall(callee, args, name); |
| call->setDoesNotThrow(); |
| return call; |
| } |
| |
| /// Emits a simple call (never an invoke) to the given no-arguments |
| /// runtime function. |
| llvm::CallInst * |
| CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, |
| const llvm::Twine &name) { |
| return EmitRuntimeCall(callee, None, name); |
| } |
| |
| // Calls which may throw must have operand bundles indicating which funclet |
| // they are nested within. |
| SmallVector<llvm::OperandBundleDef, 1> |
| CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { |
| SmallVector<llvm::OperandBundleDef, 1> BundleList; |
| // There is no need for a funclet operand bundle if we aren't inside a |
| // funclet. |
| if (!CurrentFuncletPad) |
| return BundleList; |
| |
| // Skip intrinsics which cannot throw. |
| auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); |
| if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) |
| return BundleList; |
| |
| BundleList.emplace_back("funclet", CurrentFuncletPad); |
| return BundleList; |
| } |
| |
| /// Emits a simple call (never an invoke) to the given runtime function. |
| llvm::CallInst * |
| CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, |
| ArrayRef<llvm::Value*> args, |
| const llvm::Twine &name) { |
| llvm::CallInst *call = |
| Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name); |
| call->setCallingConv(getRuntimeCC()); |
| return call; |
| } |
| |
| /// Emits a call or invoke to the given noreturn runtime function. |
| void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, |
| ArrayRef<llvm::Value*> args) { |
| SmallVector<llvm::OperandBundleDef, 1> BundleList = |
| getBundlesForFunclet(callee); |
| |
| if (getInvokeDest()) { |
| llvm::InvokeInst *invoke = |
| Builder.CreateInvoke(callee, |
| getUnreachableBlock(), |
| getInvokeDest(), |
| args, |
| BundleList); |
| invoke->setDoesNotReturn(); |
| invoke->setCallingConv(getRuntimeCC()); |
| } else { |
| llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); |
| call->setDoesNotReturn(); |
| call->setCallingConv(getRuntimeCC()); |
| Builder.CreateUnreachable(); |
| } |
| } |
| |
| /// Emits a call or invoke instruction to the given nullary runtime function. |
| llvm::CallSite |
| CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, |
| const Twine &name) { |
| return EmitRuntimeCallOrInvoke(callee, None, name); |
| } |
| |
| /// Emits a call or invoke instruction to the given runtime function. |
| llvm::CallSite |
| CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, |
| ArrayRef<llvm::Value*> args, |
| const Twine &name) { |
| llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); |
| callSite.setCallingConv(getRuntimeCC()); |
| return callSite; |
| } |
| |
| /// Emits a call or invoke instruction to the given function, depending |
| /// on the current state of the EH stack. |
| llvm::CallSite |
| CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, |
| ArrayRef<llvm::Value *> Args, |
| const Twine &Name) { |
| llvm::BasicBlock *InvokeDest = getInvokeDest(); |
| SmallVector<llvm::OperandBundleDef, 1> BundleList = |
| getBundlesForFunclet(Callee); |
| |
| llvm::Instruction *Inst; |
| if (!InvokeDest) |
| Inst = Builder.CreateCall(Callee, Args, BundleList, Name); |
| else { |
| llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); |
| Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, |
| Name); |
| EmitBlock(ContBB); |
| } |
| |
| // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC |
| // optimizer it can aggressively ignore unwind edges. |
| if (CGM.getLangOpts().ObjCAutoRefCount) |
| AddObjCARCExceptionMetadata(Inst); |
| |
| return llvm::CallSite(Inst); |
| } |
| |
| void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, |
| llvm::Value *New) { |
| DeferredReplacements.push_back(std::make_pair(Old, New)); |
| } |
| |
| RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, |
| const CGCallee &Callee, |
| ReturnValueSlot ReturnValue, |
| const CallArgList &CallArgs, |
| llvm::Instruction **callOrInvoke, |
| SourceLocation Loc) { |
| // FIXME: We no longer need the types from CallArgs; lift up and simplify. |
| |
| assert(Callee.isOrdinary() || Callee.isVirtual()); |
| |
| // Handle struct-return functions by passing a pointer to the |
| // location that we would like to return into. |
| QualType RetTy = CallInfo.getReturnType(); |
| const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); |
| |
| llvm::FunctionType *IRFuncTy = Callee.getFunctionType(); |
| |
| // 1. Set up the arguments. |
| |
| // If we're using inalloca, insert the allocation after the stack save. |
| // FIXME: Do this earlier rather than hacking it in here! |
| Address ArgMemory = Address::invalid(); |
| const llvm::StructLayout *ArgMemoryLayout = nullptr; |
| if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { |
| const llvm::DataLayout &DL = CGM.getDataLayout(); |
| ArgMemoryLayout = DL.getStructLayout(ArgStruct); |
| llvm::Instruction *IP = CallArgs.getStackBase(); |
| llvm::AllocaInst *AI; |
| if (IP) { |
| IP = IP->getNextNode(); |
| AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), |
| "argmem", IP); |
| } else { |
| AI = CreateTempAlloca(ArgStruct, "argmem"); |
| } |
| auto Align = CallInfo.getArgStructAlignment(); |
| AI->setAlignment(Align.getQuantity()); |
| AI->setUsedWithInAlloca(true); |
| assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); |
| ArgMemory = Address(AI, Align); |
| } |
| |
| // Helper function to drill into the inalloca allocation. |
| auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { |
| auto FieldOffset = |
| CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); |
| return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); |
| }; |
| |
| ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); |
| SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); |
| |
| // If the call returns a temporary with struct return, create a temporary |
| // alloca to hold the result, unless one is given to us. |
| Address SRetPtr = Address::invalid(); |
| Address SRetAlloca = Address::invalid(); |
| llvm::Value *UnusedReturnSizePtr = nullptr; |
| if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { |
| if (!ReturnValue.isNull()) { |
| SRetPtr = ReturnValue.getValue(); |
| } else { |
| SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); |
| if (HaveInsertPoint() && ReturnValue.isUnused()) { |
| uint64_t size = |
| CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); |
| UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); |
| } |
| } |
| if (IRFunctionArgs.hasSRetArg()) { |
| IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); |
| } else if (RetAI.isInAlloca()) { |
| Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); |
| Builder.CreateStore(SRetPtr.getPointer(), Addr); |
| } |
| } |
| |
| Address swiftErrorTemp = Address::invalid(); |
| Address swiftErrorArg = Address::invalid(); |
| |
| // Translate all of the arguments as necessary to match the IR lowering. |
| assert(CallInfo.arg_size() == CallArgs.size() && |
| "Mismatch between function signature & arguments."); |
| unsigned ArgNo = 0; |
| CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); |
| for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); |
| I != E; ++I, ++info_it, ++ArgNo) { |
| const ABIArgInfo &ArgInfo = info_it->info; |
| |
| // Insert a padding argument to ensure proper alignment. |
| if (IRFunctionArgs.hasPaddingArg(ArgNo)) |
| IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = |
| llvm::UndefValue::get(ArgInfo.getPaddingType()); |
| |
| unsigned FirstIRArg, NumIRArgs; |
| std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); |
| |
| switch (ArgInfo.getKind()) { |
| case ABIArgInfo::InAlloca: { |
| assert(NumIRArgs == 0); |
| assert(getTarget().getTriple().getArch() == llvm::Triple::x86); |
| if (I->isAggregate()) { |
| // Replace the placeholder with the appropriate argument slot GEP. |
| Address Addr = I->hasLValue() |
| ? I->getKnownLValue().getAddress() |
| : I->getKnownRValue().getAggregateAddress(); |
| llvm::Instruction *Placeholder = |
| cast<llvm::Instruction>(Addr.getPointer()); |
| CGBuilderTy::InsertPoint IP = Builder.saveIP(); |
| Builder.SetInsertPoint(Placeholder); |
| Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); |
| Builder.restoreIP(IP); |
| deferPlaceholderReplacement(Placeholder, Addr.getPointer()); |
| } else { |
| // Store the RValue into the argument struct. |
| Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); |
| unsigned AS = Addr.getType()->getPointerAddressSpace(); |
| llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); |
| // There are some cases where a trivial bitcast is not avoidable. The |
| // definition of a type later in a translation unit may change it's type |
| // from {}* to (%struct.foo*)*. |
| if (Addr.getType() != MemType) |
| Addr = Builder.CreateBitCast(Addr, MemType); |
| I->copyInto(*this, Addr); |
| } |
| break; |
| } |
| |
| case ABIArgInfo::Indirect: { |
| assert(NumIRArgs == 1); |
| if (!I->isAggregate()) { |
| // Make a temporary alloca to pass the argument. |
| Address Addr = CreateMemTempWithoutCast( |
| I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); |
| IRCallArgs[FirstIRArg] = Addr.getPointer(); |
| |
| I->copyInto(*this, Addr); |
| } else { |
| // We want to avoid creating an unnecessary temporary+copy here; |
| // however, we need one in three cases: |
| // 1. If the argument is not byval, and we are required to copy the |
| // source. (This case doesn't occur on any common architecture.) |
| // 2. If the argument is byval, RV is not sufficiently aligned, and |
| // we cannot force it to be sufficiently aligned. |
| // 3. If the argument is byval, but RV is not located in default |
| // or alloca address space. |
| Address Addr = I->hasLValue() |
| ? I->getKnownLValue().getAddress() |
| : I->getKnownRValue().getAggregateAddress(); |
| llvm::Value *V = Addr.getPointer(); |
| CharUnits Align = ArgInfo.getIndirectAlign(); |
| const llvm::DataLayout *TD = &CGM.getDataLayout(); |
| |
| assert((FirstIRArg >= IRFuncTy->getNumParams() || |
| IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == |
| TD->getAllocaAddrSpace()) && |
| "indirect argument must be in alloca address space"); |
| |
| bool NeedCopy = false; |
| |
| if (Addr.getAlignment() < Align && |
| llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) < |
| Align.getQuantity()) { |
| NeedCopy = true; |
| } else if (I->hasLValue()) { |
| auto LV = I->getKnownLValue(); |
| auto AS = LV.getAddressSpace(); |
| if ((!ArgInfo.getIndirectByVal() && |
| (LV.getAlignment() >= |
| getContext().getTypeAlignInChars(I->Ty))) || |
| (ArgInfo.getIndirectByVal() && |
| ((AS != LangAS::Default && AS != LangAS::opencl_private && |
| AS != CGM.getASTAllocaAddressSpace())))) { |
| NeedCopy = true; |
| } |
| } |
| if (NeedCopy) { |
| // Create an aligned temporary, and copy to it. |
| Address AI = CreateMemTempWithoutCast( |
| I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); |
| IRCallArgs[FirstIRArg] = AI.getPointer(); |
| I->copyInto(*this, AI); |
| } else { |
| // Skip the extra memcpy call. |
| auto *T = V->getType()->getPointerElementType()->getPointerTo( |
| CGM.getDataLayout().getAllocaAddrSpace()); |
| IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( |
| *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, |
| true); |
| } |
| } |
| break; |
| } |
| |
| case ABIArgInfo::Ignore: |
| assert(NumIRArgs == 0); |
| break; |
| |
| case ABIArgInfo::Extend: |
| case ABIArgInfo::Direct: { |
| if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && |
| ArgInfo.getCoerceToType() == ConvertType(info_it->type) && |
| ArgInfo.getDirectOffset() == 0) { |
| assert(NumIRArgs == 1); |
| llvm::Value *V; |
| if (!I->isAggregate()) |
| V = I->getKnownRValue().getScalarVal(); |
| else |
| V = Builder.CreateLoad( |
| I->hasLValue() ? I->getKnownLValue().getAddress() |
| : I->getKnownRValue().getAggregateAddress()); |
| |
| // Implement swifterror by copying into a new swifterror argument. |
| // We'll write back in the normal path out of the call. |
| if (CallInfo.getExtParameterInfo(ArgNo).getABI() |
| == ParameterABI::SwiftErrorResult) { |
| assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); |
| |
| QualType pointeeTy = I->Ty->getPointeeType(); |
| swiftErrorArg = |
| Address(V, getContext().getTypeAlignInChars(pointeeTy)); |
| |
| swiftErrorTemp = |
| CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); |
| V = swiftErrorTemp.getPointer(); |
| cast<llvm::AllocaInst>(V)->setSwiftError(true); |
| |
| llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); |
| Builder.CreateStore(errorValue, swiftErrorTemp); |
| } |
| |
| // We might have to widen integers, but we should never truncate. |
| if (ArgInfo.getCoerceToType() != V->getType() && |
| V->getType()->isIntegerTy()) |
| V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); |
| |
| // If the argument doesn't match, perform a bitcast to coerce it. This |
| // can happen due to trivial type mismatches. |
| if (FirstIRArg < IRFuncTy->getNumParams() && |
| V->getType() != IRFuncTy->getParamType(FirstIRArg)) |
| V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); |
| |
| IRCallArgs[FirstIRArg] = V; |
| break; |
| } |
| |
| // FIXME: Avoid the conversion through memory if possible. |
| Address Src = Address::invalid(); |
| if (!I->isAggregate()) { |
| Src = CreateMemTemp(I->Ty, "coerce"); |
| I->copyInto(*this, Src); |
| } else { |
| Src = I->hasLValue() ? I->getKnownLValue().getAddress() |
| : I->getKnownRValue().getAggregateAddress(); |
| } |
| |
| // If the value is offset in memory, apply the offset now. |
| Src = emitAddressAtOffset(*this, Src, ArgInfo); |
| |
| // Fast-isel and the optimizer generally like scalar values better than |
| // FCAs, so we flatten them if this is safe to do for this argument. |
| llvm::StructType *STy = |
| dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); |
| if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { |
| llvm::Type *SrcTy = Src.getType()->getElementType(); |
| uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); |
| uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); |
| |
| // If the source type is smaller than the destination type of the |
| // coerce-to logic, copy the source value into a temp alloca the size |
| // of the destination type to allow loading all of it. The bits past |
| // the source value are left undef. |
| if (SrcSize < DstSize) { |
| Address TempAlloca |
| = CreateTempAlloca(STy, Src.getAlignment(), |
| Src.getName() + ".coerce"); |
| Builder.CreateMemCpy(TempAlloca, Src, SrcSize); |
| Src = TempAlloca; |
| } else { |
| Src = Builder.CreateBitCast(Src, |
| STy->getPointerTo(Src.getAddressSpace())); |
| } |
| |
| auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); |
| assert(NumIRArgs == STy->getNumElements()); |
| for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
| auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); |
| Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); |
| llvm::Value *LI = Builder.CreateLoad(EltPtr); |
| IRCallArgs[FirstIRArg + i] = LI; |
| } |
| } else { |
| // In the simple case, just pass the coerced loaded value. |
| assert(NumIRArgs == 1); |
| IRCallArgs[FirstIRArg] = |
| CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); |
| } |
| |
| break; |
| } |
| |
| case ABIArgInfo::CoerceAndExpand: { |
| auto coercionType = ArgInfo.getCoerceAndExpandType(); |
| auto layout = CGM.getDataLayout().getStructLayout(coercionType); |
| |
| llvm::Value *tempSize = nullptr; |
| Address addr = Address::invalid(); |
| Address AllocaAddr = Address::invalid(); |
| if (I->isAggregate()) { |
| addr = I->hasLValue() ? I->getKnownLValue().getAddress() |
| : I->getKnownRValue().getAggregateAddress(); |
| |
| } else { |
| RValue RV = I->getKnownRValue(); |
| assert(RV.isScalar()); // complex should always just be direct |
| |
| llvm::Type *scalarType = RV.getScalarVal()->getType(); |
| auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); |
| auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); |
| |
| // Materialize to a temporary. |
| addr = CreateTempAlloca(RV.getScalarVal()->getType(), |
| CharUnits::fromQuantity(std::max( |
| layout->getAlignment(), scalarAlign)), |
| "tmp", |
| /*ArraySize=*/nullptr, &AllocaAddr); |
| tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); |
| |
| Builder.CreateStore(RV.getScalarVal(), addr); |
| } |
| |
| addr = Builder.CreateElementBitCast(addr, coercionType); |
| |
| unsigned IRArgPos = FirstIRArg; |
| for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { |
| llvm::Type *eltType = coercionType->getElementType(i); |
| if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; |
| Address eltAddr = Builder.CreateStructGEP(addr, i, layout); |
| llvm::Value *elt = Builder.CreateLoad(eltAddr); |
| IRCallArgs[IRArgPos++] = elt; |
| } |
| assert(IRArgPos == FirstIRArg + NumIRArgs); |
| |
| if (tempSize) { |
| EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); |
| } |
| |
| break; |
| } |
| |
| case ABIArgInfo::Expand: |
| unsigned IRArgPos = FirstIRArg; |
| ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); |
| assert(IRArgPos == FirstIRArg + NumIRArgs); |
| break; |
| } |
| } |
| |
| const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); |
| llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); |
| |
| // If we're using inalloca, set up that argument. |
| if (ArgMemory.isValid()) { |
| llvm::Value *Arg = ArgMemory.getPointer(); |
| if (CallInfo.isVariadic()) { |
| // When passing non-POD arguments by value to variadic functions, we will |
| // end up with a variadic prototype and an inalloca call site. In such |
| // cases, we can't do any parameter mismatch checks. Give up and bitcast |
| // the callee. |
| unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); |
| auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS); |
| CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy); |
| } else { |
| llvm::Type *LastParamTy = |
| IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); |
| if (Arg->getType() != LastParamTy) { |
| #ifndef NDEBUG |
| // Assert that these structs have equivalent element types. |
| llvm::StructType *FullTy = CallInfo.getArgStruct(); |
| llvm::StructType *DeclaredTy = cast<llvm::StructType>( |
| cast<llvm::PointerType>(LastParamTy)->getElementType()); |
| assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); |
| for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), |
| DE = DeclaredTy->element_end(), |
| FI = FullTy->element_begin(); |
| DI != DE; ++DI, ++FI) |
| assert(*DI == *FI); |
| #endif |
| Arg = Builder.CreateBitCast(Arg, LastParamTy); |
| } |
| } |
| assert(IRFunctionArgs.hasInallocaArg()); |
| IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; |
| } |
| |
| // 2. Prepare the function pointer. |
| |
| // If the callee is a bitcast of a non-variadic function to have a |
| // variadic function pointer type, check to see if we can remove the |
| // bitcast. This comes up with unprototyped functions. |
| // |
| // This makes the IR nicer, but more importantly it ensures that we |
| // can inline the function at -O0 if it is marked always_inline. |
| auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* { |
| llvm::FunctionType *CalleeFT = |
| cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType()); |
| if (!CalleeFT->isVarArg()) |
| return Ptr; |
| |
| llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr); |
| if (!CE || CE->getOpcode() != llvm::Instruction::BitCast) |
| return Ptr; |
| |
| llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0)); |
| if (!OrigFn) |
| return Ptr; |
| |
| llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); |
| |
| // If the original type is variadic, or if any of the component types |
| // disagree, we cannot remove the cast. |
| if (OrigFT->isVarArg() || |
| OrigFT->getNumParams() != CalleeFT->getNumParams() || |
| OrigFT->getReturnType() != CalleeFT->getReturnType()) |
| return Ptr; |
| |
| for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) |
| if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) |
| return Ptr; |
| |
| return OrigFn; |
| }; |
| CalleePtr = simplifyVariadicCallee(CalleePtr); |
| |
| // 3. Perform the actual call. |
| |
| // Deactivate any cleanups that we're supposed to do immediately before |
| // the call. |
| if (!CallArgs.getCleanupsToDeactivate().empty()) |
| deactivateArgCleanupsBeforeCall(*this, CallArgs); |
| |
| // Assert that the arguments we computed match up. The IR verifier |
| // will catch this, but this is a common enough source of problems |
| // during IRGen changes that it's way better for debugging to catch |
| // it ourselves here. |
| #ifndef NDEBUG |
| assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); |
| for (unsigned i = 0; i < IRCallArgs.size(); ++i) { |
| // Inalloca argument can have different type. |
| if (IRFunctionArgs.hasInallocaArg() && |
| i == IRFunctionArgs.getInallocaArgNo()) |
| continue; |
| if (i < IRFuncTy->getNumParams()) |
| assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); |
| } |
| #endif |
| |
| // Compute the calling convention and attributes. |
| unsigned CallingConv; |
| llvm::AttributeList Attrs; |
| CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, |
| Callee.getAbstractInfo(), Attrs, CallingConv, |
| /*AttrOnCallSite=*/true); |
| |
| // Apply some call-site-specific attributes. |
| // TODO: work this into building the attribute set. |
| |
| // Apply always_inline to all calls within flatten functions. |
| // FIXME: should this really take priority over __try, below? |
| if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && |
| !(Callee.getAbstractInfo().getCalleeDecl() && |
| Callee.getAbstractInfo().getCalleeDecl()->hasAttr<NoInlineAttr>())) { |
| Attrs = |
| Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, |
| llvm::Attribute::AlwaysInline); |
| } |
| |
| // Disable inlining inside SEH __try blocks. |
| if (isSEHTryScope()) { |
| Attrs = |
| Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, |
| llvm::Attribute::NoInline); |
| } |
| |
| // Decide whether to use a call or an invoke. |
| bool CannotThrow; |
| if (currentFunctionUsesSEHTry()) { |
| // SEH cares about asynchronous exceptions, so everything can "throw." |
| CannotThrow = false; |
| } else if (isCleanupPadScope() && |
| EHPersonality::get(*this).isMSVCXXPersonality()) { |
| // The MSVC++ personality will implicitly terminate the program if an |
| // exception is thrown during a cleanup outside of a try/catch. |
| // We don't need to model anything in IR to get this behavior. |
| CannotThrow = true; |
| } else { |
| // Otherwise, nounwind call sites will never throw. |
| CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, |
| llvm::Attribute::NoUnwind); |
| } |
| |
| // If we made a temporary, be sure to clean up after ourselves. Note that we |
| // can't depend on being inside of an ExprWithCleanups, so we need to manually |
| // pop this cleanup later on. Being eager about this is OK, since this |
| // temporary is 'invisible' outside of the callee. |
| if (UnusedReturnSizePtr) |
| pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, |
| UnusedReturnSizePtr); |
| |
| llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); |
| |
| SmallVector<llvm::OperandBundleDef, 1> BundleList = |
| getBundlesForFunclet(CalleePtr); |
| |
| // Emit the actual call/invoke instruction. |
| llvm::CallSite CS; |
| if (!InvokeDest) { |
| CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList); |
| } else { |
| llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); |
| CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs, |
| BundleList); |
| EmitBlock(Cont); |
| } |
| llvm::Instruction *CI = CS.getInstruction(); |
| if (callOrInvoke) |
| *callOrInvoke = CI; |
| |
| // Apply the attributes and calling convention. |
| CS.setAttributes(Attrs); |
| CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); |
| |
| // Apply various metadata. |
| |
| if (!CI->getType()->isVoidTy()) |
| CI->setName("call"); |
| |
| // Insert instrumentation or attach profile metadata at indirect call sites. |
| // For more details, see the comment before the definition of |
| // IPVK_IndirectCallTarget in InstrProfData.inc. |
| if (!CS.getCalledFunction()) |
| PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, |
| CI, CalleePtr); |
| |
| // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC |
| // optimizer it can aggressively ignore unwind edges. |
| if (CGM.getLangOpts().ObjCAutoRefCount) |
| AddObjCARCExceptionMetadata(CI); |
| |
| // Suppress tail calls if requested. |
| if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { |
| const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); |
| if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) |
| Call->setTailCallKind(llvm::CallInst::TCK_NoTail); |
| } |
| |
| // 4. Finish the call. |
| |
| // If the call doesn't return, finish the basic block and clear the |
| // insertion point; this allows the rest of IRGen to discard |
| // unreachable code. |
| if (CS.doesNotReturn()) { |
| if (UnusedReturnSizePtr) |
| PopCleanupBlock(); |
| |
| // Strip away the noreturn attribute to better diagnose unreachable UB. |
| if (SanOpts.has(SanitizerKind::Unreachable)) { |
| if (auto *F = CS.getCalledFunction()) |
| F->removeFnAttr(llvm::Attribute::NoReturn); |
| CS.removeAttribute(llvm::AttributeList::FunctionIndex, |
| llvm::Attribute::NoReturn); |
| } |
| |
| EmitUnreachable(Loc); |
| Builder.ClearInsertionPoint(); |
| |
| // FIXME: For now, emit a dummy basic block because expr emitters in |
| // generally are not ready to handle emitting expressions at unreachable |
| // points. |
| EnsureInsertPoint(); |
| |
| // Return a reasonable RValue. |
| return GetUndefRValue(RetTy); |
| } |
| |
| // Perform the swifterror writeback. |
| if (swiftErrorTemp.isValid()) { |
| llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); |
| Builder.CreateStore(errorResult, swiftErrorArg); |
| } |
| |
| // Emit any call-associated writebacks immediately. Arguably this |
| // should happen after any return-value munging. |
| if (CallArgs.hasWritebacks()) |
| emitWritebacks(*this, CallArgs); |
| |
| // The stack cleanup for inalloca arguments has to run out of the normal |
| // lexical order, so deactivate it and run it manually here. |
| CallArgs.freeArgumentMemory(*this); |
| |
| // Extract the return value. |
| RValue Ret = [&] { |
| switch (RetAI.getKind()) { |
| case ABIArgInfo::CoerceAndExpand: { |
| auto coercionType = RetAI.getCoerceAndExpandType(); |
| auto layout = CGM.getDataLayout().getStructLayout(coercionType); |
| |
| Address addr = SRetPtr; |
| addr = Builder.CreateElementBitCast(addr, coercionType); |
| |
| assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); |
| bool requiresExtract = isa<llvm::StructType>(CI->getType()); |
| |
| unsigned unpaddedIndex = 0; |
| for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { |
| llvm::Type *eltType = coercionType->getElementType(i); |
| if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; |
| Address eltAddr = Builder.CreateStructGEP(addr, i, layout); |
| llvm::Value *elt = CI; |
| if (requiresExtract) |
| elt = Builder.CreateExtractValue(elt, unpaddedIndex++); |
| else |
| assert(unpaddedIndex == 0); |
| Builder.CreateStore(elt, eltAddr); |
| } |
| // FALLTHROUGH |
| LLVM_FALLTHROUGH; |
| } |
| |
| case ABIArgInfo::InAlloca: |
| case ABIArgInfo::Indirect: { |
| RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); |
| if (UnusedReturnSizePtr) |
| PopCleanupBlock(); |
| return ret; |
| } |
| |
| case ABIArgInfo::Ignore: |
| // If we are ignoring an argument that had a result, make sure to |
| // construct the appropriate return value for our caller. |
| return GetUndefRValue(RetTy); |
| |
| case ABIArgInfo::Extend: |
| case ABIArgInfo::Direct: { |
| llvm::Type *RetIRTy = ConvertType(RetTy); |
| if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { |
| switch (getEvaluationKind(RetTy)) { |
| case TEK_Complex: { |
| llvm::Value *Real = Builder.CreateExtractValue(CI, 0); |
| llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); |
| return RValue::getComplex(std::make_pair(Real, Imag)); |
| } |
| case TEK_Aggregate: { |
| Address DestPtr = ReturnValue.getValue(); |
| bool DestIsVolatile = ReturnValue.isVolatile(); |
| |
| if (!DestPtr.isValid()) { |
| DestPtr = CreateMemTemp(RetTy, "agg.tmp"); |
| DestIsVolatile = false; |
| } |
| BuildAggStore(*this, CI, DestPtr, DestIsVolatile); |
| return RValue::getAggregate(DestPtr); |
| } |
| case TEK_Scalar: { |
| // If the argument doesn't match, perform a bitcast to coerce it. This |
| // can happen due to trivial type mismatches. |
| llvm::Value *V = CI; |
| if (V->getType() != RetIRTy) |
| V = Builder.CreateBitCast(V, RetIRTy); |
| return RValue::get(V); |
| } |
| } |
| llvm_unreachable("bad evaluation kind"); |
| } |
| |
| Address DestPtr = ReturnValue.getValue(); |
| bool DestIsVolatile = ReturnValue.isVolatile(); |
| |
| if (!DestPtr.isValid()) { |
| DestPtr = CreateMemTemp(RetTy, "coerce"); |
| DestIsVolatile = false; |
| } |
| |
| // If the value is offset in memory, apply the offset now. |
| Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); |
| CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); |
| |
| return convertTempToRValue(DestPtr, RetTy, SourceLocation()); |
| } |
| |
| case ABIArgInfo::Expand: |
| llvm_unreachable("Invalid ABI kind for return argument"); |
| } |
| |
| llvm_unreachable("Unhandled ABIArgInfo::Kind"); |
| } (); |
| |
| // Emit the assume_aligned check on the return value. |
| const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); |
| if (Ret.isScalar() && TargetDecl) { |
| if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { |
| llvm::Value *OffsetValue = nullptr; |
| if (const auto *Offset = AA->getOffset()) |
| OffsetValue = EmitScalarExpr(Offset); |
| |
| llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); |
| llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); |
| EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), |
| OffsetValue); |
| } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) { |
| llvm::Value *ParamVal = |
| CallArgs[AA->getParamIndex().getLLVMIndex()].getRValue( |
| *this).getScalarVal(); |
| EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal); |
| } |
| } |
| |
| return Ret; |
| } |
| |
| CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { |
| if (isVirtual()) { |
| const CallExpr *CE = getVirtualCallExpr(); |
| return CGF.CGM.getCXXABI().getVirtualFunctionPointer( |
| CGF, getVirtualMethodDecl(), getThisAddress(), |
| getFunctionType(), CE ? CE->getLocStart() : SourceLocation()); |
| } |
| |
| return *this; |
| } |
| |
| /* VarArg handling */ |
| |
| Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { |
| VAListAddr = VE->isMicrosoftABI() |
| ? EmitMSVAListRef(VE->getSubExpr()) |
| : EmitVAListRef(VE->getSubExpr()); |
| QualType Ty = VE->getType(); |
| if (VE->isMicrosoftABI()) |
| return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); |
| return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); |
| } |