| //===------ CGGPUBuiltin.cpp - Codegen for GPU builtins -------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Generates code for built-in GPU calls which are not runtime-specific. |
| // (Runtime-specific codegen lives in programming model specific files.) |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenFunction.h" |
| #include "clang/Basic/Builtins.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/Support/MathExtras.h" |
| |
| using namespace clang; |
| using namespace CodeGen; |
| |
| static llvm::Function *GetVprintfDeclaration(llvm::Module &M) { |
| llvm::Type *ArgTypes[] = {llvm::Type::getInt8PtrTy(M.getContext()), |
| llvm::Type::getInt8PtrTy(M.getContext())}; |
| llvm::FunctionType *VprintfFuncType = llvm::FunctionType::get( |
| llvm::Type::getInt32Ty(M.getContext()), ArgTypes, false); |
| |
| if (auto* F = M.getFunction("vprintf")) { |
| // Our CUDA system header declares vprintf with the right signature, so |
| // nobody else should have been able to declare vprintf with a bogus |
| // signature. |
| assert(F->getFunctionType() == VprintfFuncType); |
| return F; |
| } |
| |
| // vprintf doesn't already exist; create a declaration and insert it into the |
| // module. |
| return llvm::Function::Create( |
| VprintfFuncType, llvm::GlobalVariable::ExternalLinkage, "vprintf", &M); |
| } |
| |
| // Transforms a call to printf into a call to the NVPTX vprintf syscall (which |
| // isn't particularly special; it's invoked just like a regular function). |
| // vprintf takes two args: A format string, and a pointer to a buffer containing |
| // the varargs. |
| // |
| // For example, the call |
| // |
| // printf("format string", arg1, arg2, arg3); |
| // |
| // is converted into something resembling |
| // |
| // struct Tmp { |
| // Arg1 a1; |
| // Arg2 a2; |
| // Arg3 a3; |
| // }; |
| // char* buf = alloca(sizeof(Tmp)); |
| // *(Tmp*)buf = {a1, a2, a3}; |
| // vprintf("format string", buf); |
| // |
| // buf is aligned to the max of {alignof(Arg1), ...}. Furthermore, each of the |
| // args is itself aligned to its preferred alignment. |
| // |
| // Note that by the time this function runs, E's args have already undergone the |
| // standard C vararg promotion (short -> int, float -> double, etc.). |
| RValue |
| CodeGenFunction::EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, |
| ReturnValueSlot ReturnValue) { |
| assert(getTarget().getTriple().isNVPTX()); |
| assert(E->getBuiltinCallee() == Builtin::BIprintf); |
| assert(E->getNumArgs() >= 1); // printf always has at least one arg. |
| |
| const llvm::DataLayout &DL = CGM.getDataLayout(); |
| llvm::LLVMContext &Ctx = CGM.getLLVMContext(); |
| |
| CallArgList Args; |
| EmitCallArgs(Args, |
| E->getDirectCallee()->getType()->getAs<FunctionProtoType>(), |
| E->arguments(), E->getDirectCallee(), |
| /* ParamsToSkip = */ 0); |
| |
| // We don't know how to emit non-scalar varargs. |
| if (std::any_of(Args.begin() + 1, Args.end(), [&](const CallArg &A) { |
| return !A.getRValue(*this).isScalar(); |
| })) { |
| CGM.ErrorUnsupported(E, "non-scalar arg to printf"); |
| return RValue::get(llvm::ConstantInt::get(IntTy, 0)); |
| } |
| |
| // Construct and fill the args buffer that we'll pass to vprintf. |
| llvm::Value *BufferPtr; |
| if (Args.size() <= 1) { |
| // If there are no args, pass a null pointer to vprintf. |
| BufferPtr = llvm::ConstantPointerNull::get(llvm::Type::getInt8PtrTy(Ctx)); |
| } else { |
| llvm::SmallVector<llvm::Type *, 8> ArgTypes; |
| for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I) |
| ArgTypes.push_back(Args[I].getRValue(*this).getScalarVal()->getType()); |
| |
| // Using llvm::StructType is correct only because printf doesn't accept |
| // aggregates. If we had to handle aggregates here, we'd have to manually |
| // compute the offsets within the alloca -- we wouldn't be able to assume |
| // that the alignment of the llvm type was the same as the alignment of the |
| // clang type. |
| llvm::Type *AllocaTy = llvm::StructType::create(ArgTypes, "printf_args"); |
| llvm::Value *Alloca = CreateTempAlloca(AllocaTy); |
| |
| for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I) { |
| llvm::Value *P = Builder.CreateStructGEP(AllocaTy, Alloca, I - 1); |
| llvm::Value *Arg = Args[I].getRValue(*this).getScalarVal(); |
| Builder.CreateAlignedStore(Arg, P, DL.getPrefTypeAlignment(Arg->getType())); |
| } |
| BufferPtr = Builder.CreatePointerCast(Alloca, llvm::Type::getInt8PtrTy(Ctx)); |
| } |
| |
| // Invoke vprintf and return. |
| llvm::Function* VprintfFunc = GetVprintfDeclaration(CGM.getModule()); |
| return RValue::get(Builder.CreateCall( |
| VprintfFunc, {Args[0].getRValue(*this).getScalarVal(), BufferPtr})); |
| } |