| //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // These classes wrap the information about a call or function |
| // definition used to handle ABI compliancy. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "TargetInfo.h" |
| #include "ABIInfo.h" |
| #include "CGBlocks.h" |
| #include "CGCXXABI.h" |
| #include "CGValue.h" |
| #include "CodeGenFunction.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/CodeGen/CGFunctionInfo.h" |
| #include "clang/CodeGen/SwiftCallingConv.h" |
| #include "clang/Frontend/CodeGenOptions.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> // std::sort |
| |
| using namespace clang; |
| using namespace CodeGen; |
| |
| // Helper for coercing an aggregate argument or return value into an integer |
| // array of the same size (including padding) and alignment. This alternate |
| // coercion happens only for the RenderScript ABI and can be removed after |
| // runtimes that rely on it are no longer supported. |
| // |
| // RenderScript assumes that the size of the argument / return value in the IR |
| // is the same as the size of the corresponding qualified type. This helper |
| // coerces the aggregate type into an array of the same size (including |
| // padding). This coercion is used in lieu of expansion of struct members or |
| // other canonical coercions that return a coerced-type of larger size. |
| // |
| // Ty - The argument / return value type |
| // Context - The associated ASTContext |
| // LLVMContext - The associated LLVMContext |
| static ABIArgInfo coerceToIntArray(QualType Ty, |
| ASTContext &Context, |
| llvm::LLVMContext &LLVMContext) { |
| // Alignment and Size are measured in bits. |
| const uint64_t Size = Context.getTypeSize(Ty); |
| const uint64_t Alignment = Context.getTypeAlign(Ty); |
| llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); |
| const uint64_t NumElements = (Size + Alignment - 1) / Alignment; |
| return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); |
| } |
| |
| static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, |
| llvm::Value *Array, |
| llvm::Value *Value, |
| unsigned FirstIndex, |
| unsigned LastIndex) { |
| // Alternatively, we could emit this as a loop in the source. |
| for (unsigned I = FirstIndex; I <= LastIndex; ++I) { |
| llvm::Value *Cell = |
| Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); |
| Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); |
| } |
| } |
| |
| static bool isAggregateTypeForABI(QualType T) { |
| return !CodeGenFunction::hasScalarEvaluationKind(T) || |
| T->isMemberFunctionPointerType(); |
| } |
| |
| ABIArgInfo |
| ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, |
| llvm::Type *Padding) const { |
| return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), |
| ByRef, Realign, Padding); |
| } |
| |
| ABIArgInfo |
| ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { |
| return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), |
| /*ByRef*/ false, Realign); |
| } |
| |
| Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const { |
| return Address::invalid(); |
| } |
| |
| ABIInfo::~ABIInfo() {} |
| |
| /// Does the given lowering require more than the given number of |
| /// registers when expanded? |
| /// |
| /// This is intended to be the basis of a reasonable basic implementation |
| /// of should{Pass,Return}IndirectlyForSwift. |
| /// |
| /// For most targets, a limit of four total registers is reasonable; this |
| /// limits the amount of code required in order to move around the value |
| /// in case it wasn't produced immediately prior to the call by the caller |
| /// (or wasn't produced in exactly the right registers) or isn't used |
| /// immediately within the callee. But some targets may need to further |
| /// limit the register count due to an inability to support that many |
| /// return registers. |
| static bool occupiesMoreThan(CodeGenTypes &cgt, |
| ArrayRef<llvm::Type*> scalarTypes, |
| unsigned maxAllRegisters) { |
| unsigned intCount = 0, fpCount = 0; |
| for (llvm::Type *type : scalarTypes) { |
| if (type->isPointerTy()) { |
| intCount++; |
| } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { |
| auto ptrWidth = cgt.getTarget().getPointerWidth(0); |
| intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; |
| } else { |
| assert(type->isVectorTy() || type->isFloatingPointTy()); |
| fpCount++; |
| } |
| } |
| |
| return (intCount + fpCount > maxAllRegisters); |
| } |
| |
| bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, |
| llvm::Type *eltTy, |
| unsigned numElts) const { |
| // The default implementation of this assumes that the target guarantees |
| // 128-bit SIMD support but nothing more. |
| return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); |
| } |
| |
| static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, |
| CGCXXABI &CXXABI) { |
| const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); |
| if (!RD) { |
| if (!RT->getDecl()->canPassInRegisters()) |
| return CGCXXABI::RAA_Indirect; |
| return CGCXXABI::RAA_Default; |
| } |
| return CXXABI.getRecordArgABI(RD); |
| } |
| |
| static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, |
| CGCXXABI &CXXABI) { |
| const RecordType *RT = T->getAs<RecordType>(); |
| if (!RT) |
| return CGCXXABI::RAA_Default; |
| return getRecordArgABI(RT, CXXABI); |
| } |
| |
| static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, |
| const ABIInfo &Info) { |
| QualType Ty = FI.getReturnType(); |
| |
| if (const auto *RT = Ty->getAs<RecordType>()) |
| if (!isa<CXXRecordDecl>(RT->getDecl()) && |
| !RT->getDecl()->canPassInRegisters()) { |
| FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); |
| return true; |
| } |
| |
| return CXXABI.classifyReturnType(FI); |
| } |
| |
| /// Pass transparent unions as if they were the type of the first element. Sema |
| /// should ensure that all elements of the union have the same "machine type". |
| static QualType useFirstFieldIfTransparentUnion(QualType Ty) { |
| if (const RecordType *UT = Ty->getAsUnionType()) { |
| const RecordDecl *UD = UT->getDecl(); |
| if (UD->hasAttr<TransparentUnionAttr>()) { |
| assert(!UD->field_empty() && "sema created an empty transparent union"); |
| return UD->field_begin()->getType(); |
| } |
| } |
| return Ty; |
| } |
| |
| CGCXXABI &ABIInfo::getCXXABI() const { |
| return CGT.getCXXABI(); |
| } |
| |
| ASTContext &ABIInfo::getContext() const { |
| return CGT.getContext(); |
| } |
| |
| llvm::LLVMContext &ABIInfo::getVMContext() const { |
| return CGT.getLLVMContext(); |
| } |
| |
| const llvm::DataLayout &ABIInfo::getDataLayout() const { |
| return CGT.getDataLayout(); |
| } |
| |
| const TargetInfo &ABIInfo::getTarget() const { |
| return CGT.getTarget(); |
| } |
| |
| const CodeGenOptions &ABIInfo::getCodeGenOpts() const { |
| return CGT.getCodeGenOpts(); |
| } |
| |
| bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } |
| |
| bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { |
| return false; |
| } |
| |
| bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, |
| uint64_t Members) const { |
| return false; |
| } |
| |
| LLVM_DUMP_METHOD void ABIArgInfo::dump() const { |
| raw_ostream &OS = llvm::errs(); |
| OS << "(ABIArgInfo Kind="; |
| switch (TheKind) { |
| case Direct: |
| OS << "Direct Type="; |
| if (llvm::Type *Ty = getCoerceToType()) |
| Ty->print(OS); |
| else |
| OS << "null"; |
| break; |
| case Extend: |
| OS << "Extend"; |
| break; |
| case Ignore: |
| OS << "Ignore"; |
| break; |
| case InAlloca: |
| OS << "InAlloca Offset=" << getInAllocaFieldIndex(); |
| break; |
| case Indirect: |
| OS << "Indirect Align=" << getIndirectAlign().getQuantity() |
| << " ByVal=" << getIndirectByVal() |
| << " Realign=" << getIndirectRealign(); |
| break; |
| case Expand: |
| OS << "Expand"; |
| break; |
| case CoerceAndExpand: |
| OS << "CoerceAndExpand Type="; |
| getCoerceAndExpandType()->print(OS); |
| break; |
| } |
| OS << ")\n"; |
| } |
| |
| // Dynamically round a pointer up to a multiple of the given alignment. |
| static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, |
| llvm::Value *Ptr, |
| CharUnits Align) { |
| llvm::Value *PtrAsInt = Ptr; |
| // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; |
| PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); |
| PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, |
| llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); |
| PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, |
| llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); |
| PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, |
| Ptr->getType(), |
| Ptr->getName() + ".aligned"); |
| return PtrAsInt; |
| } |
| |
| /// Emit va_arg for a platform using the common void* representation, |
| /// where arguments are simply emitted in an array of slots on the stack. |
| /// |
| /// This version implements the core direct-value passing rules. |
| /// |
| /// \param SlotSize - The size and alignment of a stack slot. |
| /// Each argument will be allocated to a multiple of this number of |
| /// slots, and all the slots will be aligned to this value. |
| /// \param AllowHigherAlign - The slot alignment is not a cap; |
| /// an argument type with an alignment greater than the slot size |
| /// will be emitted on a higher-alignment address, potentially |
| /// leaving one or more empty slots behind as padding. If this |
| /// is false, the returned address might be less-aligned than |
| /// DirectAlign. |
| static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, |
| Address VAListAddr, |
| llvm::Type *DirectTy, |
| CharUnits DirectSize, |
| CharUnits DirectAlign, |
| CharUnits SlotSize, |
| bool AllowHigherAlign) { |
| // Cast the element type to i8* if necessary. Some platforms define |
| // va_list as a struct containing an i8* instead of just an i8*. |
| if (VAListAddr.getElementType() != CGF.Int8PtrTy) |
| VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); |
| |
| llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); |
| |
| // If the CC aligns values higher than the slot size, do so if needed. |
| Address Addr = Address::invalid(); |
| if (AllowHigherAlign && DirectAlign > SlotSize) { |
| Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), |
| DirectAlign); |
| } else { |
| Addr = Address(Ptr, SlotSize); |
| } |
| |
| // Advance the pointer past the argument, then store that back. |
| CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); |
| llvm::Value *NextPtr = |
| CGF.Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), FullDirectSize, |
| "argp.next"); |
| CGF.Builder.CreateStore(NextPtr, VAListAddr); |
| |
| // If the argument is smaller than a slot, and this is a big-endian |
| // target, the argument will be right-adjusted in its slot. |
| if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && |
| !DirectTy->isStructTy()) { |
| Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); |
| } |
| |
| Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); |
| return Addr; |
| } |
| |
| /// Emit va_arg for a platform using the common void* representation, |
| /// where arguments are simply emitted in an array of slots on the stack. |
| /// |
| /// \param IsIndirect - Values of this type are passed indirectly. |
| /// \param ValueInfo - The size and alignment of this type, generally |
| /// computed with getContext().getTypeInfoInChars(ValueTy). |
| /// \param SlotSizeAndAlign - The size and alignment of a stack slot. |
| /// Each argument will be allocated to a multiple of this number of |
| /// slots, and all the slots will be aligned to this value. |
| /// \param AllowHigherAlign - The slot alignment is not a cap; |
| /// an argument type with an alignment greater than the slot size |
| /// will be emitted on a higher-alignment address, potentially |
| /// leaving one or more empty slots behind as padding. |
| static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType ValueTy, bool IsIndirect, |
| std::pair<CharUnits, CharUnits> ValueInfo, |
| CharUnits SlotSizeAndAlign, |
| bool AllowHigherAlign) { |
| // The size and alignment of the value that was passed directly. |
| CharUnits DirectSize, DirectAlign; |
| if (IsIndirect) { |
| DirectSize = CGF.getPointerSize(); |
| DirectAlign = CGF.getPointerAlign(); |
| } else { |
| DirectSize = ValueInfo.first; |
| DirectAlign = ValueInfo.second; |
| } |
| |
| // Cast the address we've calculated to the right type. |
| llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); |
| if (IsIndirect) |
| DirectTy = DirectTy->getPointerTo(0); |
| |
| Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, |
| DirectSize, DirectAlign, |
| SlotSizeAndAlign, |
| AllowHigherAlign); |
| |
| if (IsIndirect) { |
| Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); |
| } |
| |
| return Addr; |
| |
| } |
| |
| static Address emitMergePHI(CodeGenFunction &CGF, |
| Address Addr1, llvm::BasicBlock *Block1, |
| Address Addr2, llvm::BasicBlock *Block2, |
| const llvm::Twine &Name = "") { |
| assert(Addr1.getType() == Addr2.getType()); |
| llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); |
| PHI->addIncoming(Addr1.getPointer(), Block1); |
| PHI->addIncoming(Addr2.getPointer(), Block2); |
| CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); |
| return Address(PHI, Align); |
| } |
| |
| TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } |
| |
| // If someone can figure out a general rule for this, that would be great. |
| // It's probably just doomed to be platform-dependent, though. |
| unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { |
| // Verified for: |
| // x86-64 FreeBSD, Linux, Darwin |
| // x86-32 FreeBSD, Linux, Darwin |
| // PowerPC Linux, Darwin |
| // ARM Darwin (*not* EABI) |
| // AArch64 Linux |
| return 32; |
| } |
| |
| bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, |
| const FunctionNoProtoType *fnType) const { |
| // The following conventions are known to require this to be false: |
| // x86_stdcall |
| // MIPS |
| // For everything else, we just prefer false unless we opt out. |
| return false; |
| } |
| |
| void |
| TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, |
| llvm::SmallString<24> &Opt) const { |
| // This assumes the user is passing a library name like "rt" instead of a |
| // filename like "librt.a/so", and that they don't care whether it's static or |
| // dynamic. |
| Opt = "-l"; |
| Opt += Lib; |
| } |
| |
| unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { |
| // OpenCL kernels are called via an explicit runtime API with arguments |
| // set with clSetKernelArg(), not as normal sub-functions. |
| // Return SPIR_KERNEL by default as the kernel calling convention to |
| // ensure the fingerprint is fixed such way that each OpenCL argument |
| // gets one matching argument in the produced kernel function argument |
| // list to enable feasible implementation of clSetKernelArg() with |
| // aggregates etc. In case we would use the default C calling conv here, |
| // clSetKernelArg() might break depending on the target-specific |
| // conventions; different targets might split structs passed as values |
| // to multiple function arguments etc. |
| return llvm::CallingConv::SPIR_KERNEL; |
| } |
| |
| llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, |
| llvm::PointerType *T, QualType QT) const { |
| return llvm::ConstantPointerNull::get(T); |
| } |
| |
| LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, |
| const VarDecl *D) const { |
| assert(!CGM.getLangOpts().OpenCL && |
| !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && |
| "Address space agnostic languages only"); |
| return D ? D->getType().getAddressSpace() : LangAS::Default; |
| } |
| |
| llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( |
| CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, |
| LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { |
| // Since target may map different address spaces in AST to the same address |
| // space, an address space conversion may end up as a bitcast. |
| if (auto *C = dyn_cast<llvm::Constant>(Src)) |
| return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); |
| return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DestTy); |
| } |
| |
| llvm::Constant * |
| TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, |
| LangAS SrcAddr, LangAS DestAddr, |
| llvm::Type *DestTy) const { |
| // Since target may map different address spaces in AST to the same address |
| // space, an address space conversion may end up as a bitcast. |
| return llvm::ConstantExpr::getPointerCast(Src, DestTy); |
| } |
| |
| llvm::SyncScope::ID |
| TargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, llvm::LLVMContext &C) const { |
| return C.getOrInsertSyncScopeID(""); /* default sync scope */ |
| } |
| |
| static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); |
| |
| /// isEmptyField - Return true iff a the field is "empty", that is it |
| /// is an unnamed bit-field or an (array of) empty record(s). |
| static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, |
| bool AllowArrays) { |
| if (FD->isUnnamedBitfield()) |
| return true; |
| |
| QualType FT = FD->getType(); |
| |
| // Constant arrays of empty records count as empty, strip them off. |
| // Constant arrays of zero length always count as empty. |
| if (AllowArrays) |
| while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { |
| if (AT->getSize() == 0) |
| return true; |
| FT = AT->getElementType(); |
| } |
| |
| const RecordType *RT = FT->getAs<RecordType>(); |
| if (!RT) |
| return false; |
| |
| // C++ record fields are never empty, at least in the Itanium ABI. |
| // |
| // FIXME: We should use a predicate for whether this behavior is true in the |
| // current ABI. |
| if (isa<CXXRecordDecl>(RT->getDecl())) |
| return false; |
| |
| return isEmptyRecord(Context, FT, AllowArrays); |
| } |
| |
| /// isEmptyRecord - Return true iff a structure contains only empty |
| /// fields. Note that a structure with a flexible array member is not |
| /// considered empty. |
| static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { |
| const RecordType *RT = T->getAs<RecordType>(); |
| if (!RT) |
| return false; |
| const RecordDecl *RD = RT->getDecl(); |
| if (RD->hasFlexibleArrayMember()) |
| return false; |
| |
| // If this is a C++ record, check the bases first. |
| if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) |
| for (const auto &I : CXXRD->bases()) |
| if (!isEmptyRecord(Context, I.getType(), true)) |
| return false; |
| |
| for (const auto *I : RD->fields()) |
| if (!isEmptyField(Context, I, AllowArrays)) |
| return false; |
| return true; |
| } |
| |
| /// isSingleElementStruct - Determine if a structure is a "single |
| /// element struct", i.e. it has exactly one non-empty field or |
| /// exactly one field which is itself a single element |
| /// struct. Structures with flexible array members are never |
| /// considered single element structs. |
| /// |
| /// \return The field declaration for the single non-empty field, if |
| /// it exists. |
| static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { |
| const RecordType *RT = T->getAs<RecordType>(); |
| if (!RT) |
| return nullptr; |
| |
| const RecordDecl *RD = RT->getDecl(); |
| if (RD->hasFlexibleArrayMember()) |
| return nullptr; |
| |
| const Type *Found = nullptr; |
| |
| // If this is a C++ record, check the bases first. |
| if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
| for (const auto &I : CXXRD->bases()) { |
| // Ignore empty records. |
| if (isEmptyRecord(Context, I.getType(), true)) |
| continue; |
| |
| // If we already found an element then this isn't a single-element struct. |
| if (Found) |
| return nullptr; |
| |
| // If this is non-empty and not a single element struct, the composite |
| // cannot be a single element struct. |
| Found = isSingleElementStruct(I.getType(), Context); |
| if (!Found) |
| return nullptr; |
| } |
| } |
| |
| // Check for single element. |
| for (const auto *FD : RD->fields()) { |
| QualType FT = FD->getType(); |
| |
| // Ignore empty fields. |
| if (isEmptyField(Context, FD, true)) |
| continue; |
| |
| // If we already found an element then this isn't a single-element |
| // struct. |
| if (Found) |
| return nullptr; |
| |
| // Treat single element arrays as the element. |
| while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { |
| if (AT->getSize().getZExtValue() != 1) |
| break; |
| FT = AT->getElementType(); |
| } |
| |
| if (!isAggregateTypeForABI(FT)) { |
| Found = FT.getTypePtr(); |
| } else { |
| Found = isSingleElementStruct(FT, Context); |
| if (!Found) |
| return nullptr; |
| } |
| } |
| |
| // We don't consider a struct a single-element struct if it has |
| // padding beyond the element type. |
| if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) |
| return nullptr; |
| |
| return Found; |
| } |
| |
| namespace { |
| Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, |
| const ABIArgInfo &AI) { |
| // This default implementation defers to the llvm backend's va_arg |
| // instruction. It can handle only passing arguments directly |
| // (typically only handled in the backend for primitive types), or |
| // aggregates passed indirectly by pointer (NOTE: if the "byval" |
| // flag has ABI impact in the callee, this implementation cannot |
| // work.) |
| |
| // Only a few cases are covered here at the moment -- those needed |
| // by the default abi. |
| llvm::Value *Val; |
| |
| if (AI.isIndirect()) { |
| assert(!AI.getPaddingType() && |
| "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); |
| assert( |
| !AI.getIndirectRealign() && |
| "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); |
| |
| auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); |
| CharUnits TyAlignForABI = TyInfo.second; |
| |
| llvm::Type *BaseTy = |
| llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); |
| llvm::Value *Addr = |
| CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); |
| return Address(Addr, TyAlignForABI); |
| } else { |
| assert((AI.isDirect() || AI.isExtend()) && |
| "Unexpected ArgInfo Kind in generic VAArg emitter!"); |
| |
| assert(!AI.getInReg() && |
| "Unexpected InReg seen in arginfo in generic VAArg emitter!"); |
| assert(!AI.getPaddingType() && |
| "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); |
| assert(!AI.getDirectOffset() && |
| "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); |
| assert(!AI.getCoerceToType() && |
| "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); |
| |
| Address Temp = CGF.CreateMemTemp(Ty, "varet"); |
| Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); |
| CGF.Builder.CreateStore(Val, Temp); |
| return Temp; |
| } |
| } |
| |
| /// DefaultABIInfo - The default implementation for ABI specific |
| /// details. This implementation provides information which results in |
| /// self-consistent and sensible LLVM IR generation, but does not |
| /// conform to any particular ABI. |
| class DefaultABIInfo : public ABIInfo { |
| public: |
| DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} |
| |
| ABIArgInfo classifyReturnType(QualType RetTy) const; |
| ABIArgInfo classifyArgumentType(QualType RetTy) const; |
| |
| void computeInfo(CGFunctionInfo &FI) const override { |
| if (!getCXXABI().classifyReturnType(FI)) |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
| for (auto &I : FI.arguments()) |
| I.info = classifyArgumentType(I.type); |
| } |
| |
| Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const override { |
| return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); |
| } |
| }; |
| |
| class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) |
| : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} |
| }; |
| |
| ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { |
| Ty = useFirstFieldIfTransparentUnion(Ty); |
| |
| if (isAggregateTypeForABI(Ty)) { |
| // Records with non-trivial destructors/copy-constructors should not be |
| // passed by value. |
| if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) |
| return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
| |
| return getNaturalAlignIndirect(Ty); |
| } |
| |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| |
| return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) |
| : ABIArgInfo::getDirect()); |
| } |
| |
| ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { |
| if (RetTy->isVoidType()) |
| return ABIArgInfo::getIgnore(); |
| |
| if (isAggregateTypeForABI(RetTy)) |
| return getNaturalAlignIndirect(RetTy); |
| |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
| RetTy = EnumTy->getDecl()->getIntegerType(); |
| |
| return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) |
| : ABIArgInfo::getDirect()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // WebAssembly ABI Implementation |
| // |
| // This is a very simple ABI that relies a lot on DefaultABIInfo. |
| //===----------------------------------------------------------------------===// |
| |
| class WebAssemblyABIInfo final : public DefaultABIInfo { |
| public: |
| explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) |
| : DefaultABIInfo(CGT) {} |
| |
| private: |
| ABIArgInfo classifyReturnType(QualType RetTy) const; |
| ABIArgInfo classifyArgumentType(QualType Ty) const; |
| |
| // DefaultABIInfo's classifyReturnType and classifyArgumentType are |
| // non-virtual, but computeInfo and EmitVAArg are virtual, so we |
| // overload them. |
| void computeInfo(CGFunctionInfo &FI) const override { |
| if (!getCXXABI().classifyReturnType(FI)) |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
| for (auto &Arg : FI.arguments()) |
| Arg.info = classifyArgumentType(Arg.type); |
| } |
| |
| Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const override; |
| }; |
| |
| class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { |
| public: |
| explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) |
| : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} |
| |
| void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &CGM) const override { |
| if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { |
| llvm::Function *Fn = cast<llvm::Function>(GV); |
| if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) |
| Fn->addFnAttr("no-prototype"); |
| } |
| } |
| }; |
| |
| /// Classify argument of given type \p Ty. |
| ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { |
| Ty = useFirstFieldIfTransparentUnion(Ty); |
| |
| if (isAggregateTypeForABI(Ty)) { |
| // Records with non-trivial destructors/copy-constructors should not be |
| // passed by value. |
| if (auto RAA = getRecordArgABI(Ty, getCXXABI())) |
| return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
| // Ignore empty structs/unions. |
| if (isEmptyRecord(getContext(), Ty, true)) |
| return ABIArgInfo::getIgnore(); |
| // Lower single-element structs to just pass a regular value. TODO: We |
| // could do reasonable-size multiple-element structs too, using getExpand(), |
| // though watch out for things like bitfields. |
| if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) |
| return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); |
| } |
| |
| // Otherwise just do the default thing. |
| return DefaultABIInfo::classifyArgumentType(Ty); |
| } |
| |
| ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { |
| if (isAggregateTypeForABI(RetTy)) { |
| // Records with non-trivial destructors/copy-constructors should not be |
| // returned by value. |
| if (!getRecordArgABI(RetTy, getCXXABI())) { |
| // Ignore empty structs/unions. |
| if (isEmptyRecord(getContext(), RetTy, true)) |
| return ABIArgInfo::getIgnore(); |
| // Lower single-element structs to just return a regular value. TODO: We |
| // could do reasonable-size multiple-element structs too, using |
| // ABIArgInfo::getDirect(). |
| if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) |
| return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); |
| } |
| } |
| |
| // Otherwise just do the default thing. |
| return DefaultABIInfo::classifyReturnType(RetTy); |
| } |
| |
| Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const { |
| return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect=*/ false, |
| getContext().getTypeInfoInChars(Ty), |
| CharUnits::fromQuantity(4), |
| /*AllowHigherAlign=*/ true); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // le32/PNaCl bitcode ABI Implementation |
| // |
| // This is a simplified version of the x86_32 ABI. Arguments and return values |
| // are always passed on the stack. |
| //===----------------------------------------------------------------------===// |
| |
| class PNaClABIInfo : public ABIInfo { |
| public: |
| PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} |
| |
| ABIArgInfo classifyReturnType(QualType RetTy) const; |
| ABIArgInfo classifyArgumentType(QualType RetTy) const; |
| |
| void computeInfo(CGFunctionInfo &FI) const override; |
| Address EmitVAArg(CodeGenFunction &CGF, |
| Address VAListAddr, QualType Ty) const override; |
| }; |
| |
| class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) |
| : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} |
| }; |
| |
| void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { |
| if (!getCXXABI().classifyReturnType(FI)) |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
| |
| for (auto &I : FI.arguments()) |
| I.info = classifyArgumentType(I.type); |
| } |
| |
| Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const { |
| // The PNaCL ABI is a bit odd, in that varargs don't use normal |
| // function classification. Structs get passed directly for varargs |
| // functions, through a rewriting transform in |
| // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows |
| // this target to actually support a va_arg instructions with an |
| // aggregate type, unlike other targets. |
| return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); |
| } |
| |
| /// Classify argument of given type \p Ty. |
| ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { |
| if (isAggregateTypeForABI(Ty)) { |
| if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) |
| return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
| return getNaturalAlignIndirect(Ty); |
| } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { |
| // Treat an enum type as its underlying type. |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| } else if (Ty->isFloatingType()) { |
| // Floating-point types don't go inreg. |
| return ABIArgInfo::getDirect(); |
| } |
| |
| return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) |
| : ABIArgInfo::getDirect()); |
| } |
| |
| ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { |
| if (RetTy->isVoidType()) |
| return ABIArgInfo::getIgnore(); |
| |
| // In the PNaCl ABI we always return records/structures on the stack. |
| if (isAggregateTypeForABI(RetTy)) |
| return getNaturalAlignIndirect(RetTy); |
| |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
| RetTy = EnumTy->getDecl()->getIntegerType(); |
| |
| return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) |
| : ABIArgInfo::getDirect()); |
| } |
| |
| /// IsX86_MMXType - Return true if this is an MMX type. |
| bool IsX86_MMXType(llvm::Type *IRType) { |
| // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. |
| return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && |
| cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && |
| IRType->getScalarSizeInBits() != 64; |
| } |
| |
| static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, |
| StringRef Constraint, |
| llvm::Type* Ty) { |
| bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) |
| .Cases("y", "&y", "^Ym", true) |
| .Default(false); |
| if (IsMMXCons && Ty->isVectorTy()) { |
| if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { |
| // Invalid MMX constraint |
| return nullptr; |
| } |
| |
| return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); |
| } |
| |
| // No operation needed |
| return Ty; |
| } |
| |
| /// Returns true if this type can be passed in SSE registers with the |
| /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. |
| static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { |
| if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { |
| if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { |
| if (BT->getKind() == BuiltinType::LongDouble) { |
| if (&Context.getTargetInfo().getLongDoubleFormat() == |
| &llvm::APFloat::x87DoubleExtended()) |
| return false; |
| } |
| return true; |
| } |
| } else if (const VectorType *VT = Ty->getAs<VectorType>()) { |
| // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX |
| // registers specially. |
| unsigned VecSize = Context.getTypeSize(VT); |
| if (VecSize == 128 || VecSize == 256 || VecSize == 512) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Returns true if this aggregate is small enough to be passed in SSE registers |
| /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. |
| static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { |
| return NumMembers <= 4; |
| } |
| |
| /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. |
| static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { |
| auto AI = ABIArgInfo::getDirect(T); |
| AI.setInReg(true); |
| AI.setCanBeFlattened(false); |
| return AI; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86-32 ABI Implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// Similar to llvm::CCState, but for Clang. |
| struct CCState { |
| CCState(unsigned CC) : CC(CC), FreeRegs(0), FreeSSERegs(0) {} |
| |
| unsigned CC; |
| unsigned FreeRegs; |
| unsigned FreeSSERegs; |
| }; |
| |
| enum { |
| // Vectorcall only allows the first 6 parameters to be passed in registers. |
| VectorcallMaxParamNumAsReg = 6 |
| }; |
| |
| /// X86_32ABIInfo - The X86-32 ABI information. |
| class X86_32ABIInfo : public SwiftABIInfo { |
| enum Class { |
| Integer, |
| Float |
| }; |
| |
| static const unsigned MinABIStackAlignInBytes = 4; |
| |
| bool IsDarwinVectorABI; |
| bool IsRetSmallStructInRegABI; |
| bool IsWin32StructABI; |
| bool IsSoftFloatABI; |
| bool IsMCUABI; |
| unsigned DefaultNumRegisterParameters; |
| |
| static bool isRegisterSize(unsigned Size) { |
| return (Size == 8 || Size == 16 || Size == 32 || Size == 64); |
| } |
| |
| bool isHomogeneousAggregateBaseType(QualType Ty) const override { |
| // FIXME: Assumes vectorcall is in use. |
| return isX86VectorTypeForVectorCall(getContext(), Ty); |
| } |
| |
| bool isHomogeneousAggregateSmallEnough(const Type *Ty, |
| uint64_t NumMembers) const override { |
| // FIXME: Assumes vectorcall is in use. |
| return isX86VectorCallAggregateSmallEnough(NumMembers); |
| } |
| |
| bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; |
| |
| /// getIndirectResult - Give a source type \arg Ty, return a suitable result |
| /// such that the argument will be passed in memory. |
| ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; |
| |
| ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; |
| |
| /// Return the alignment to use for the given type on the stack. |
| unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; |
| |
| Class classify(QualType Ty) const; |
| ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; |
| ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; |
| |
| /// Updates the number of available free registers, returns |
| /// true if any registers were allocated. |
| bool updateFreeRegs(QualType Ty, CCState &State) const; |
| |
| bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, |
| bool &NeedsPadding) const; |
| bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; |
| |
| bool canExpandIndirectArgument(QualType Ty) const; |
| |
| /// Rewrite the function info so that all memory arguments use |
| /// inalloca. |
| void rewriteWithInAlloca(CGFunctionInfo &FI) const; |
| |
| void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, |
| CharUnits &StackOffset, ABIArgInfo &Info, |
| QualType Type) const; |
| void computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, |
| bool &UsedInAlloca) const; |
| |
| public: |
| |
| void computeInfo(CGFunctionInfo &FI) const override; |
| Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const override; |
| |
| X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, |
| bool RetSmallStructInRegABI, bool Win32StructABI, |
| unsigned NumRegisterParameters, bool SoftFloatABI) |
| : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), |
| IsRetSmallStructInRegABI(RetSmallStructInRegABI), |
| IsWin32StructABI(Win32StructABI), |
| IsSoftFloatABI(SoftFloatABI), |
| IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), |
| DefaultNumRegisterParameters(NumRegisterParameters) {} |
| |
| bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, |
| bool asReturnValue) const override { |
| // LLVM's x86-32 lowering currently only assigns up to three |
| // integer registers and three fp registers. Oddly, it'll use up to |
| // four vector registers for vectors, but those can overlap with the |
| // scalar registers. |
| return occupiesMoreThan(CGT, scalars, /*total*/ 3); |
| } |
| |
| bool isSwiftErrorInRegister() const override { |
| // x86-32 lowering does not support passing swifterror in a register. |
| return false; |
| } |
| }; |
| |
| class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, |
| bool RetSmallStructInRegABI, bool Win32StructABI, |
| unsigned NumRegisterParameters, bool SoftFloatABI) |
| : TargetCodeGenInfo(new X86_32ABIInfo( |
| CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, |
| NumRegisterParameters, SoftFloatABI)) {} |
| |
| static bool isStructReturnInRegABI( |
| const llvm::Triple &Triple, const CodeGenOptions &Opts); |
| |
| void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &CGM) const override; |
| |
| int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { |
| // Darwin uses different dwarf register numbers for EH. |
| if (CGM.getTarget().getTriple().isOSDarwin()) return 5; |
| return 4; |
| } |
| |
| bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const override; |
| |
| llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, |
| StringRef Constraint, |
| llvm::Type* Ty) const override { |
| return X86AdjustInlineAsmType(CGF, Constraint, Ty); |
| } |
| |
| void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, |
| std::string &Constraints, |
| std::vector<llvm::Type *> &ResultRegTypes, |
| std::vector<llvm::Type *> &ResultTruncRegTypes, |
| std::vector<LValue> &ResultRegDests, |
| std::string &AsmString, |
| unsigned NumOutputs) const override; |
| |
| llvm::Constant * |
| getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { |
| unsigned Sig = (0xeb << 0) | // jmp rel8 |
| (0x06 << 8) | // .+0x08 |
| ('v' << 16) | |
| ('2' << 24); |
| return llvm::ConstantInt::get(CGM.Int32Ty, Sig); |
| } |
| |
| StringRef getARCRetainAutoreleasedReturnValueMarker() const override { |
| return "movl\t%ebp, %ebp" |
| "\t\t// marker for objc_retainAutoreleaseReturnValue"; |
| } |
| }; |
| |
| } |
| |
| /// Rewrite input constraint references after adding some output constraints. |
| /// In the case where there is one output and one input and we add one output, |
| /// we need to replace all operand references greater than or equal to 1: |
| /// mov $0, $1 |
| /// mov eax, $1 |
| /// The result will be: |
| /// mov $0, $2 |
| /// mov eax, $2 |
| static void rewriteInputConstraintReferences(unsigned FirstIn, |
| unsigned NumNewOuts, |
| std::string &AsmString) { |
| std::string Buf; |
| llvm::raw_string_ostream OS(Buf); |
| size_t Pos = 0; |
| while (Pos < AsmString.size()) { |
| size_t DollarStart = AsmString.find('$', Pos); |
| if (DollarStart == std::string::npos) |
| DollarStart = AsmString.size(); |
| size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); |
| if (DollarEnd == std::string::npos) |
| DollarEnd = AsmString.size(); |
| OS << StringRef(&AsmString[Pos], DollarEnd - Pos); |
| Pos = DollarEnd; |
| size_t NumDollars = DollarEnd - DollarStart; |
| if (NumDollars % 2 != 0 && Pos < AsmString.size()) { |
| // We have an operand reference. |
| size_t DigitStart = Pos; |
| size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); |
| if (DigitEnd == std::string::npos) |
| DigitEnd = AsmString.size(); |
| StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); |
| unsigned OperandIndex; |
| if (!OperandStr.getAsInteger(10, OperandIndex)) { |
| if (OperandIndex >= FirstIn) |
| OperandIndex += NumNewOuts; |
| OS << OperandIndex; |
| } else { |
| OS << OperandStr; |
| } |
| Pos = DigitEnd; |
| } |
| } |
| AsmString = std::move(OS.str()); |
| } |
| |
| /// Add output constraints for EAX:EDX because they are return registers. |
| void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( |
| CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, |
| std::vector<llvm::Type *> &ResultRegTypes, |
| std::vector<llvm::Type *> &ResultTruncRegTypes, |
| std::vector<LValue> &ResultRegDests, std::string &AsmString, |
| unsigned NumOutputs) const { |
| uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); |
| |
| // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is |
| // larger. |
| if (!Constraints.empty()) |
| Constraints += ','; |
| if (RetWidth <= 32) { |
| Constraints += "={eax}"; |
| ResultRegTypes.push_back(CGF.Int32Ty); |
| } else { |
| // Use the 'A' constraint for EAX:EDX. |
| Constraints += "=A"; |
| ResultRegTypes.push_back(CGF.Int64Ty); |
| } |
| |
| // Truncate EAX or EAX:EDX to an integer of the appropriate size. |
| llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); |
| ResultTruncRegTypes.push_back(CoerceTy); |
| |
| // Coerce the integer by bitcasting the return slot pointer. |
| ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(), |
| CoerceTy->getPointerTo())); |
| ResultRegDests.push_back(ReturnSlot); |
| |
| rewriteInputConstraintReferences(NumOutputs, 1, AsmString); |
| } |
| |
| /// shouldReturnTypeInRegister - Determine if the given type should be |
| /// returned in a register (for the Darwin and MCU ABI). |
| bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, |
| ASTContext &Context) const { |
| uint64_t Size = Context.getTypeSize(Ty); |
| |
| // For i386, type must be register sized. |
| // For the MCU ABI, it only needs to be <= 8-byte |
| if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) |
| return false; |
| |
| if (Ty->isVectorType()) { |
| // 64- and 128- bit vectors inside structures are not returned in |
| // registers. |
| if (Size == 64 || Size == 128) |
| return false; |
| |
| return true; |
| } |
| |
| // If this is a builtin, pointer, enum, complex type, member pointer, or |
| // member function pointer it is ok. |
| if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || |
| Ty->isAnyComplexType() || Ty->isEnumeralType() || |
| Ty->isBlockPointerType() || Ty->isMemberPointerType()) |
| return true; |
| |
| // Arrays are treated like records. |
| if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) |
| return shouldReturnTypeInRegister(AT->getElementType(), Context); |
| |
| // Otherwise, it must be a record type. |
| const RecordType *RT = Ty->getAs<RecordType>(); |
| if (!RT) return false; |
| |
| // FIXME: Traverse bases here too. |
| |
| // Structure types are passed in register if all fields would be |
| // passed in a register. |
| for (const auto *FD : RT->getDecl()->fields()) { |
| // Empty fields are ignored. |
| if (isEmptyField(Context, FD, true)) |
| continue; |
| |
| // Check fields recursively. |
| if (!shouldReturnTypeInRegister(FD->getType(), Context)) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { |
| // Treat complex types as the element type. |
| if (const ComplexType *CTy = Ty->getAs<ComplexType>()) |
| Ty = CTy->getElementType(); |
| |
| // Check for a type which we know has a simple scalar argument-passing |
| // convention without any padding. (We're specifically looking for 32 |
| // and 64-bit integer and integer-equivalents, float, and double.) |
| if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && |
| !Ty->isEnumeralType() && !Ty->isBlockPointerType()) |
| return false; |
| |
| uint64_t Size = Context.getTypeSize(Ty); |
| return Size == 32 || Size == 64; |
| } |
| |
| static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, |
| uint64_t &Size) { |
| for (const auto *FD : RD->fields()) { |
| // Scalar arguments on the stack get 4 byte alignment on x86. If the |
| // argument is smaller than 32-bits, expanding the struct will create |
| // alignment padding. |
| if (!is32Or64BitBasicType(FD->getType(), Context)) |
| return false; |
| |
| // FIXME: Reject bit-fields wholesale; there are two problems, we don't know |
| // how to expand them yet, and the predicate for telling if a bitfield still |
| // counts as "basic" is more complicated than what we were doing previously. |
| if (FD->isBitField()) |
| return false; |
| |
| Size += Context.getTypeSize(FD->getType()); |
| } |
| return true; |
| } |
| |
| static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, |
| uint64_t &Size) { |
| // Don't do this if there are any non-empty bases. |
| for (const CXXBaseSpecifier &Base : RD->bases()) { |
| if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), |
| Size)) |
| return false; |
| } |
| if (!addFieldSizes(Context, RD, Size)) |
| return false; |
| return true; |
| } |
| |
| /// Test whether an argument type which is to be passed indirectly (on the |
| /// stack) would have the equivalent layout if it was expanded into separate |
| /// arguments. If so, we prefer to do the latter to avoid inhibiting |
| /// optimizations. |
| bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { |
| // We can only expand structure types. |
| const RecordType *RT = Ty->getAs<RecordType>(); |
| if (!RT) |
| return false; |
| const RecordDecl *RD = RT->getDecl(); |
| uint64_t Size = 0; |
| if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
| if (!IsWin32StructABI) { |
| // On non-Windows, we have to conservatively match our old bitcode |
| // prototypes in order to be ABI-compatible at the bitcode level. |
| if (!CXXRD->isCLike()) |
| return false; |
| } else { |
| // Don't do this for dynamic classes. |
| if (CXXRD->isDynamicClass()) |
| return false; |
| } |
| if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) |
| return false; |
| } else { |
| if (!addFieldSizes(getContext(), RD, Size)) |
| return false; |
| } |
| |
| // We can do this if there was no alignment padding. |
| return Size == getContext().getTypeSize(Ty); |
| } |
| |
| ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { |
| // If the return value is indirect, then the hidden argument is consuming one |
| // integer register. |
| if (State.FreeRegs) { |
| --State.FreeRegs; |
| if (!IsMCUABI) |
| return getNaturalAlignIndirectInReg(RetTy); |
| } |
| return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); |
| } |
| |
| ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, |
| CCState &State) const { |
| if (RetTy->isVoidType()) |
| return ABIArgInfo::getIgnore(); |
| |
| const Type *Base = nullptr; |
| uint64_t NumElts = 0; |
| if ((State.CC == llvm::CallingConv::X86_VectorCall || |
| State.CC == llvm::CallingConv::X86_RegCall) && |
| isHomogeneousAggregate(RetTy, Base, NumElts)) { |
| // The LLVM struct type for such an aggregate should lower properly. |
| return ABIArgInfo::getDirect(); |
| } |
| |
| if (const VectorType *VT = RetTy->getAs<VectorType>()) { |
| // On Darwin, some vectors are returned in registers. |
| if (IsDarwinVectorABI) { |
| uint64_t Size = getContext().getTypeSize(RetTy); |
| |
| // 128-bit vectors are a special case; they are returned in |
| // registers and we need to make sure to pick a type the LLVM |
| // backend will like. |
| if (Size == 128) |
| return ABIArgInfo::getDirect(llvm::VectorType::get( |
| llvm::Type::getInt64Ty(getVMContext()), 2)); |
| |
| // Always return in register if it fits in a general purpose |
| // register, or if it is 64 bits and has a single element. |
| if ((Size == 8 || Size == 16 || Size == 32) || |
| (Size == 64 && VT->getNumElements() == 1)) |
| return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), |
| Size)); |
| |
| return getIndirectReturnResult(RetTy, State); |
| } |
| |
| return ABIArgInfo::getDirect(); |
| } |
| |
| if (isAggregateTypeForABI(RetTy)) { |
| if (const RecordType *RT = RetTy->getAs<RecordType>()) { |
| // Structures with flexible arrays are always indirect. |
| if (RT->getDecl()->hasFlexibleArrayMember()) |
| return getIndirectReturnResult(RetTy, State); |
| } |
| |
| // If specified, structs and unions are always indirect. |
| if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) |
| return getIndirectReturnResult(RetTy, State); |
| |
| // Ignore empty structs/unions. |
| if (isEmptyRecord(getContext(), RetTy, true)) |
| return ABIArgInfo::getIgnore(); |
| |
| // Small structures which are register sized are generally returned |
| // in a register. |
| if (shouldReturnTypeInRegister(RetTy, getContext())) { |
| uint64_t Size = getContext().getTypeSize(RetTy); |
| |
| // As a special-case, if the struct is a "single-element" struct, and |
| // the field is of type "float" or "double", return it in a |
| // floating-point register. (MSVC does not apply this special case.) |
| // We apply a similar transformation for pointer types to improve the |
| // quality of the generated IR. |
| if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) |
| if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) |
| || SeltTy->hasPointerRepresentation()) |
| return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); |
| |
| // FIXME: We should be able to narrow this integer in cases with dead |
| // padding. |
| return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); |
| } |
| |
| return getIndirectReturnResult(RetTy, State); |
| } |
| |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
| RetTy = EnumTy->getDecl()->getIntegerType(); |
| |
| return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) |
| : ABIArgInfo::getDirect()); |
| } |
| |
| static bool isSSEVectorType(ASTContext &Context, QualType Ty) { |
| return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; |
| } |
| |
| static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { |
| const RecordType *RT = Ty->getAs<RecordType>(); |
| if (!RT) |
| return 0; |
| const RecordDecl *RD = RT->getDecl(); |
| |
| // If this is a C++ record, check the bases first. |
| if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) |
| for (const auto &I : CXXRD->bases()) |
| if (!isRecordWithSSEVectorType(Context, I.getType())) |
| return false; |
| |
| for (const auto *i : RD->fields()) { |
| QualType FT = i->getType(); |
| |
| if (isSSEVectorType(Context, FT)) |
| return true; |
| |
| if (isRecordWithSSEVectorType(Context, FT)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, |
| unsigned Align) const { |
| // Otherwise, if the alignment is less than or equal to the minimum ABI |
| // alignment, just use the default; the backend will handle this. |
| if (Align <= MinABIStackAlignInBytes) |
| return 0; // Use default alignment. |
| |
| // On non-Darwin, the stack type alignment is always 4. |
| if (!IsDarwinVectorABI) { |
| // Set explicit alignment, since we may need to realign the top. |
| return MinABIStackAlignInBytes; |
| } |
| |
| // Otherwise, if the type contains an SSE vector type, the alignment is 16. |
| if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || |
| isRecordWithSSEVectorType(getContext(), Ty))) |
| return 16; |
| |
| return MinABIStackAlignInBytes; |
| } |
| |
| ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, |
| CCState &State) const { |
| if (!ByVal) { |
| if (State.FreeRegs) { |
| --State.FreeRegs; // Non-byval indirects just use one pointer. |
| if (!IsMCUABI) |
| return getNaturalAlignIndirectInReg(Ty); |
| } |
| return getNaturalAlignIndirect(Ty, false); |
| } |
| |
| // Compute the byval alignment. |
| unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; |
| unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); |
| if (StackAlign == 0) |
| return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); |
| |
| // If the stack alignment is less than the type alignment, realign the |
| // argument. |
| bool Realign = TypeAlign > StackAlign; |
| return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), |
| /*ByVal=*/true, Realign); |
| } |
| |
| X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { |
| const Type *T = isSingleElementStruct(Ty, getContext()); |
| if (!T) |
| T = Ty.getTypePtr(); |
| |
| if (const BuiltinType *BT = T->getAs<BuiltinType>()) { |
| BuiltinType::Kind K = BT->getKind(); |
| if (K == BuiltinType::Float || K == BuiltinType::Double) |
| return Float; |
| } |
| return Integer; |
| } |
| |
| bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { |
| if (!IsSoftFloatABI) { |
| Class C = classify(Ty); |
| if (C == Float) |
| return false; |
| } |
| |
| unsigned Size = getContext().getTypeSize(Ty); |
| unsigned SizeInRegs = (Size + 31) / 32; |
| |
| if (SizeInRegs == 0) |
| return false; |
| |
| if (!IsMCUABI) { |
| if (SizeInRegs > State.FreeRegs) { |
| State.FreeRegs = 0; |
| return false; |
| } |
| } else { |
| // The MCU psABI allows passing parameters in-reg even if there are |
| // earlier parameters that are passed on the stack. Also, |
| // it does not allow passing >8-byte structs in-register, |
| // even if there are 3 free registers available. |
| if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) |
| return false; |
| } |
| |
| State.FreeRegs -= SizeInRegs; |
| return true; |
| } |
| |
| bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, |
| bool &InReg, |
| bool &NeedsPadding) const { |
| // On Windows, aggregates other than HFAs are never passed in registers, and |
| // they do not consume register slots. Homogenous floating-point aggregates |
| // (HFAs) have already been dealt with at this point. |
| if (IsWin32StructABI && isAggregateTypeForABI(Ty)) |
| return false; |
| |
| NeedsPadding = false; |
| InReg = !IsMCUABI; |
| |
| if (!updateFreeRegs(Ty, State)) |
| return false; |
| |
| if (IsMCUABI) |
| return true; |
| |
| if (State.CC == llvm::CallingConv::X86_FastCall || |
| State.CC == llvm::CallingConv::X86_VectorCall || |
| State.CC == llvm::CallingConv::X86_RegCall) { |
| if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) |
| NeedsPadding = true; |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { |
| if (!updateFreeRegs(Ty, State)) |
| return false; |
| |
| if (IsMCUABI) |
| return false; |
| |
| if (State.CC == llvm::CallingConv::X86_FastCall || |
| State.CC == llvm::CallingConv::X86_VectorCall || |
| State.CC == llvm::CallingConv::X86_RegCall) { |
| if (getContext().getTypeSize(Ty) > 32) |
| return false; |
| |
| return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || |
| Ty->isReferenceType()); |
| } |
| |
| return true; |
| } |
| |
| ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, |
| CCState &State) const { |
| // FIXME: Set alignment on indirect arguments. |
| |
| Ty = useFirstFieldIfTransparentUnion(Ty); |
| |
| // Check with the C++ ABI first. |
| const RecordType *RT = Ty->getAs<RecordType>(); |
| if (RT) { |
| CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); |
| if (RAA == CGCXXABI::RAA_Indirect) { |
| return getIndirectResult(Ty, false, State); |
| } else if (RAA == CGCXXABI::RAA_DirectInMemory) { |
| // The field index doesn't matter, we'll fix it up later. |
| return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); |
| } |
| } |
| |
| // Regcall uses the concept of a homogenous vector aggregate, similar |
| // to other targets. |
| const Type *Base = nullptr; |
| uint64_t NumElts = 0; |
| if (State.CC == llvm::CallingConv::X86_RegCall && |
| isHomogeneousAggregate(Ty, Base, NumElts)) { |
| |
| if (State.FreeSSERegs >= NumElts) { |
| State.FreeSSERegs -= NumElts; |
| if (Ty->isBuiltinType() || Ty->isVectorType()) |
| return ABIArgInfo::getDirect(); |
| return ABIArgInfo::getExpand(); |
| } |
| return getIndirectResult(Ty, /*ByVal=*/false, State); |
| } |
| |
| if (isAggregateTypeForABI(Ty)) { |
| // Structures with flexible arrays are always indirect. |
| // FIXME: This should not be byval! |
| if (RT && RT->getDecl()->hasFlexibleArrayMember()) |
| return getIndirectResult(Ty, true, State); |
| |
| // Ignore empty structs/unions on non-Windows. |
| if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) |
| return ABIArgInfo::getIgnore(); |
| |
| llvm::LLVMContext &LLVMContext = getVMContext(); |
| llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); |
| bool NeedsPadding = false; |
| bool InReg; |
| if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { |
| unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; |
| SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); |
| llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); |
| if (InReg) |
| return ABIArgInfo::getDirectInReg(Result); |
| else |
| return ABIArgInfo::getDirect(Result); |
| } |
| llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; |
| |
| // Expand small (<= 128-bit) record types when we know that the stack layout |
| // of those arguments will match the struct. This is important because the |
| // LLVM backend isn't smart enough to remove byval, which inhibits many |
| // optimizations. |
| // Don't do this for the MCU if there are still free integer registers |
| // (see X86_64 ABI for full explanation). |
| if (getContext().getTypeSize(Ty) <= 4 * 32 && |
| (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) |
| return ABIArgInfo::getExpandWithPadding( |
| State.CC == llvm::CallingConv::X86_FastCall || |
| State.CC == llvm::CallingConv::X86_VectorCall || |
| State.CC == llvm::CallingConv::X86_RegCall, |
| PaddingType); |
| |
| return getIndirectResult(Ty, true, State); |
| } |
| |
| if (const VectorType *VT = Ty->getAs<VectorType>()) { |
| // On Darwin, some vectors are passed in memory, we handle this by passing |
| // it as an i8/i16/i32/i64. |
| if (IsDarwinVectorABI) { |
| uint64_t Size = getContext().getTypeSize(Ty); |
| if ((Size == 8 || Size == 16 || Size == 32) || |
| (Size == 64 && VT->getNumElements() == 1)) |
| return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), |
| Size)); |
| } |
| |
| if (IsX86_MMXType(CGT.ConvertType(Ty))) |
| return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); |
| |
| return ABIArgInfo::getDirect(); |
| } |
| |
| |
| if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| |
| bool InReg = shouldPrimitiveUseInReg(Ty, State); |
| |
| if (Ty->isPromotableIntegerType()) { |
| if (InReg) |
| return ABIArgInfo::getExtendInReg(Ty); |
| return ABIArgInfo::getExtend(Ty); |
| } |
| |
| if (InReg) |
| return ABIArgInfo::getDirectInReg(); |
| return ABIArgInfo::getDirect(); |
| } |
| |
| void X86_32ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, CCState &State, |
| bool &UsedInAlloca) const { |
| // Vectorcall x86 works subtly different than in x64, so the format is |
| // a bit different than the x64 version. First, all vector types (not HVAs) |
| // are assigned, with the first 6 ending up in the YMM0-5 or XMM0-5 registers. |
| // This differs from the x64 implementation, where the first 6 by INDEX get |
| // registers. |
| // After that, integers AND HVAs are assigned Left to Right in the same pass. |
| // Integers are passed as ECX/EDX if one is available (in order). HVAs will |
| // first take up the remaining YMM/XMM registers. If insufficient registers |
| // remain but an integer register (ECX/EDX) is available, it will be passed |
| // in that, else, on the stack. |
| for (auto &I : FI.arguments()) { |
| // First pass do all the vector types. |
| const Type *Base = nullptr; |
| uint64_t NumElts = 0; |
| const QualType& Ty = I.type; |
| if ((Ty->isVectorType() || Ty->isBuiltinType()) && |
| isHomogeneousAggregate(Ty, Base, NumElts)) { |
| if (State.FreeSSERegs >= NumElts) { |
| State.FreeSSERegs -= NumElts; |
| I.info = ABIArgInfo::getDirect(); |
| } else { |
| I.info = classifyArgumentType(Ty, State); |
| } |
| UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); |
| } |
| } |
| |
| for (auto &I : FI.arguments()) { |
| // Second pass, do the rest! |
| const Type *Base = nullptr; |
| uint64_t NumElts = 0; |
| const QualType& Ty = I.type; |
| bool IsHva = isHomogeneousAggregate(Ty, Base, NumElts); |
| |
| if (IsHva && !Ty->isVectorType() && !Ty->isBuiltinType()) { |
| // Assign true HVAs (non vector/native FP types). |
| if (State.FreeSSERegs >= NumElts) { |
| State.FreeSSERegs -= NumElts; |
| I.info = getDirectX86Hva(); |
| } else { |
| I.info = getIndirectResult(Ty, /*ByVal=*/false, State); |
| } |
| } else if (!IsHva) { |
| // Assign all Non-HVAs, so this will exclude Vector/FP args. |
| I.info = classifyArgumentType(Ty, State); |
| UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); |
| } |
| } |
| } |
| |
| void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { |
| CCState State(FI.getCallingConvention()); |
| if (IsMCUABI) |
| State.FreeRegs = 3; |
| else if (State.CC == llvm::CallingConv::X86_FastCall) |
| State.FreeRegs = 2; |
| else if (State.CC == llvm::CallingConv::X86_VectorCall) { |
| State.FreeRegs = 2; |
| State.FreeSSERegs = 6; |
| } else if (FI.getHasRegParm()) |
| State.FreeRegs = FI.getRegParm(); |
| else if (State.CC == llvm::CallingConv::X86_RegCall) { |
| State.FreeRegs = 5; |
| State.FreeSSERegs = 8; |
| } else |
| State.FreeRegs = DefaultNumRegisterParameters; |
| |
| if (!::classifyReturnType(getCXXABI(), FI, *this)) { |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); |
| } else if (FI.getReturnInfo().isIndirect()) { |
| // The C++ ABI is not aware of register usage, so we have to check if the |
| // return value was sret and put it in a register ourselves if appropriate. |
| if (State.FreeRegs) { |
| --State.FreeRegs; // The sret parameter consumes a register. |
| if (!IsMCUABI) |
| FI.getReturnInfo().setInReg(true); |
| } |
| } |
| |
| // The chain argument effectively gives us another free register. |
| if (FI.isChainCall()) |
| ++State.FreeRegs; |
| |
| bool UsedInAlloca = false; |
| if (State.CC == llvm::CallingConv::X86_VectorCall) { |
| computeVectorCallArgs(FI, State, UsedInAlloca); |
| } else { |
| // If not vectorcall, revert to normal behavior. |
| for (auto &I : FI.arguments()) { |
| I.info = classifyArgumentType(I.type, State); |
| UsedInAlloca |= (I.info.getKind() == ABIArgInfo::InAlloca); |
| } |
| } |
| |
| // If we needed to use inalloca for any argument, do a second pass and rewrite |
| // all the memory arguments to use inalloca. |
| if (UsedInAlloca) |
| rewriteWithInAlloca(FI); |
| } |
| |
| void |
| X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, |
| CharUnits &StackOffset, ABIArgInfo &Info, |
| QualType Type) const { |
| // Arguments are always 4-byte-aligned. |
| CharUnits FieldAlign = CharUnits::fromQuantity(4); |
| |
| assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); |
| Info = ABIArgInfo::getInAlloca(FrameFields.size()); |
| FrameFields.push_back(CGT.ConvertTypeForMem(Type)); |
| StackOffset += getContext().getTypeSizeInChars(Type); |
| |
| // Insert padding bytes to respect alignment. |
| CharUnits FieldEnd = StackOffset; |
| StackOffset = FieldEnd.alignTo(FieldAlign); |
| if (StackOffset != FieldEnd) { |
| CharUnits NumBytes = StackOffset - FieldEnd; |
| llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); |
| Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); |
| FrameFields.push_back(Ty); |
| } |
| } |
| |
| static bool isArgInAlloca(const ABIArgInfo &Info) { |
| // Leave ignored and inreg arguments alone. |
| switch (Info.getKind()) { |
| case ABIArgInfo::InAlloca: |
| return true; |
| case ABIArgInfo::Indirect: |
| assert(Info.getIndirectByVal()); |
| return true; |
| case ABIArgInfo::Ignore: |
| return false; |
| case ABIArgInfo::Direct: |
| case ABIArgInfo::Extend: |
| if (Info.getInReg()) |
| return false; |
| return true; |
| case ABIArgInfo::Expand: |
| case ABIArgInfo::CoerceAndExpand: |
| // These are aggregate types which are never passed in registers when |
| // inalloca is involved. |
| return true; |
| } |
| llvm_unreachable("invalid enum"); |
| } |
| |
| void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { |
| assert(IsWin32StructABI && "inalloca only supported on win32"); |
| |
| // Build a packed struct type for all of the arguments in memory. |
| SmallVector<llvm::Type *, 6> FrameFields; |
| |
| // The stack alignment is always 4. |
| CharUnits StackAlign = CharUnits::fromQuantity(4); |
| |
| CharUnits StackOffset; |
| CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); |
| |
| // Put 'this' into the struct before 'sret', if necessary. |
| bool IsThisCall = |
| FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; |
| ABIArgInfo &Ret = FI.getReturnInfo(); |
| if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && |
| isArgInAlloca(I->info)) { |
| addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); |
| ++I; |
| } |
| |
| // Put the sret parameter into the inalloca struct if it's in memory. |
| if (Ret.isIndirect() && !Ret.getInReg()) { |
| CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); |
| addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); |
| // On Windows, the hidden sret parameter is always returned in eax. |
| Ret.setInAllocaSRet(IsWin32StructABI); |
| } |
| |
| // Skip the 'this' parameter in ecx. |
| if (IsThisCall) |
| ++I; |
| |
| // Put arguments passed in memory into the struct. |
| for (; I != E; ++I) { |
| if (isArgInAlloca(I->info)) |
| addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); |
| } |
| |
| FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, |
| /*isPacked=*/true), |
| StackAlign); |
| } |
| |
| Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, |
| Address VAListAddr, QualType Ty) const { |
| |
| auto TypeInfo = getContext().getTypeInfoInChars(Ty); |
| |
| // x86-32 changes the alignment of certain arguments on the stack. |
| // |
| // Just messing with TypeInfo like this works because we never pass |
| // anything indirectly. |
| TypeInfo.second = CharUnits::fromQuantity( |
| getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); |
| |
| return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, |
| TypeInfo, CharUnits::fromQuantity(4), |
| /*AllowHigherAlign*/ true); |
| } |
| |
| bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( |
| const llvm::Triple &Triple, const CodeGenOptions &Opts) { |
| assert(Triple.getArch() == llvm::Triple::x86); |
| |
| switch (Opts.getStructReturnConvention()) { |
| case CodeGenOptions::SRCK_Default: |
| break; |
| case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return |
| return false; |
| case CodeGenOptions::SRCK_InRegs: // -freg-struct-return |
| return true; |
| } |
| |
| if (Triple.isOSDarwin() || Triple.isOSIAMCU()) |
| return true; |
| |
| switch (Triple.getOS()) { |
| case llvm::Triple::DragonFly: |
| case llvm::Triple::FreeBSD: |
| case llvm::Triple::OpenBSD: |
| case llvm::Triple::Win32: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| void X86_32TargetCodeGenInfo::setTargetAttributes( |
| const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { |
| if (GV->isDeclaration()) |
| return; |
| if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { |
| if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { |
| llvm::Function *Fn = cast<llvm::Function>(GV); |
| Fn->addFnAttr("stackrealign"); |
| } |
| if (FD->hasAttr<AnyX86InterruptAttr>()) { |
| llvm::Function *Fn = cast<llvm::Function>(GV); |
| Fn->setCallingConv(llvm::CallingConv::X86_INTR); |
| } |
| } |
| } |
| |
| bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( |
| CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const { |
| CodeGen::CGBuilderTy &Builder = CGF.Builder; |
| |
| llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); |
| |
| // 0-7 are the eight integer registers; the order is different |
| // on Darwin (for EH), but the range is the same. |
| // 8 is %eip. |
| AssignToArrayRange(Builder, Address, Four8, 0, 8); |
| |
| if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { |
| // 12-16 are st(0..4). Not sure why we stop at 4. |
| // These have size 16, which is sizeof(long double) on |
| // platforms with 8-byte alignment for that type. |
| llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); |
| AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); |
| |
| } else { |
| // 9 is %eflags, which doesn't get a size on Darwin for some |
| // reason. |
| Builder.CreateAlignedStore( |
| Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), |
| CharUnits::One()); |
| |
| // 11-16 are st(0..5). Not sure why we stop at 5. |
| // These have size 12, which is sizeof(long double) on |
| // platforms with 4-byte alignment for that type. |
| llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); |
| AssignToArrayRange(Builder, Address, Twelve8, 11, 16); |
| } |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // X86-64 ABI Implementation |
| //===----------------------------------------------------------------------===// |
| |
| |
| namespace { |
| /// The AVX ABI level for X86 targets. |
| enum class X86AVXABILevel { |
| None, |
| AVX, |
| AVX512 |
| }; |
| |
| /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. |
| static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { |
| switch (AVXLevel) { |
| case X86AVXABILevel::AVX512: |
| return 512; |
| case X86AVXABILevel::AVX: |
| return 256; |
| case X86AVXABILevel::None: |
| return 128; |
| } |
| llvm_unreachable("Unknown AVXLevel"); |
| } |
| |
| /// X86_64ABIInfo - The X86_64 ABI information. |
| class X86_64ABIInfo : public SwiftABIInfo { |
| enum Class { |
| Integer = 0, |
| SSE, |
| SSEUp, |
| X87, |
| X87Up, |
| ComplexX87, |
| NoClass, |
| Memory |
| }; |
| |
| /// merge - Implement the X86_64 ABI merging algorithm. |
| /// |
| /// Merge an accumulating classification \arg Accum with a field |
| /// classification \arg Field. |
| /// |
| /// \param Accum - The accumulating classification. This should |
| /// always be either NoClass or the result of a previous merge |
| /// call. In addition, this should never be Memory (the caller |
| /// should just return Memory for the aggregate). |
| static Class merge(Class Accum, Class Field); |
| |
| /// postMerge - Implement the X86_64 ABI post merging algorithm. |
| /// |
| /// Post merger cleanup, reduces a malformed Hi and Lo pair to |
| /// final MEMORY or SSE classes when necessary. |
| /// |
| /// \param AggregateSize - The size of the current aggregate in |
| /// the classification process. |
| /// |
| /// \param Lo - The classification for the parts of the type |
| /// residing in the low word of the containing object. |
| /// |
| /// \param Hi - The classification for the parts of the type |
| /// residing in the higher words of the containing object. |
| /// |
| void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; |
| |
| /// classify - Determine the x86_64 register classes in which the |
| /// given type T should be passed. |
| /// |
| /// \param Lo - The classification for the parts of the type |
| /// residing in the low word of the containing object. |
| /// |
| /// \param Hi - The classification for the parts of the type |
| /// residing in the high word of the containing object. |
| /// |
| /// \param OffsetBase - The bit offset of this type in the |
| /// containing object. Some parameters are classified different |
| /// depending on whether they straddle an eightbyte boundary. |
| /// |
| /// \param isNamedArg - Whether the argument in question is a "named" |
| /// argument, as used in AMD64-ABI 3.5.7. |
| /// |
| /// If a word is unused its result will be NoClass; if a type should |
| /// be passed in Memory then at least the classification of \arg Lo |
| /// will be Memory. |
| /// |
| /// The \arg Lo class will be NoClass iff the argument is ignored. |
| /// |
| /// If the \arg Lo class is ComplexX87, then the \arg Hi class will |
| /// also be ComplexX87. |
| void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, |
| bool isNamedArg) const; |
| |
| llvm::Type *GetByteVectorType(QualType Ty) const; |
| llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, |
| unsigned IROffset, QualType SourceTy, |
| unsigned SourceOffset) const; |
| llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, |
| unsigned IROffset, QualType SourceTy, |
| unsigned SourceOffset) const; |
| |
| /// getIndirectResult - Give a source type \arg Ty, return a suitable result |
| /// such that the argument will be returned in memory. |
| ABIArgInfo getIndirectReturnResult(QualType Ty) const; |
| |
| /// getIndirectResult - Give a source type \arg Ty, return a suitable result |
| /// such that the argument will be passed in memory. |
| /// |
| /// \param freeIntRegs - The number of free integer registers remaining |
| /// available. |
| ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; |
| |
| ABIArgInfo classifyReturnType(QualType RetTy) const; |
| |
| ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, |
| unsigned &neededInt, unsigned &neededSSE, |
| bool isNamedArg) const; |
| |
| ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, |
| unsigned &NeededSSE) const; |
| |
| ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, |
| unsigned &NeededSSE) const; |
| |
| bool IsIllegalVectorType(QualType Ty) const; |
| |
| /// The 0.98 ABI revision clarified a lot of ambiguities, |
| /// unfortunately in ways that were not always consistent with |
| /// certain previous compilers. In particular, platforms which |
| /// required strict binary compatibility with older versions of GCC |
| /// may need to exempt themselves. |
| bool honorsRevision0_98() const { |
| return !getTarget().getTriple().isOSDarwin(); |
| } |
| |
| /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to |
| /// classify it as INTEGER (for compatibility with older clang compilers). |
| bool classifyIntegerMMXAsSSE() const { |
| // Clang <= 3.8 did not do this. |
| if (getContext().getLangOpts().getClangABICompat() <= |
| LangOptions::ClangABI::Ver3_8) |
| return false; |
| |
| const llvm::Triple &Triple = getTarget().getTriple(); |
| if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) |
| return false; |
| if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) |
| return false; |
| return true; |
| } |
| |
| X86AVXABILevel AVXLevel; |
| // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on |
| // 64-bit hardware. |
| bool Has64BitPointers; |
| |
| public: |
| X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : |
| SwiftABIInfo(CGT), AVXLevel(AVXLevel), |
| Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { |
| } |
| |
| bool isPassedUsingAVXType(QualType type) const { |
| unsigned neededInt, neededSSE; |
| // The freeIntRegs argument doesn't matter here. |
| ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, |
| /*isNamedArg*/true); |
| if (info.isDirect()) { |
| llvm::Type *ty = info.getCoerceToType(); |
| if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) |
| return (vectorTy->getBitWidth() > 128); |
| } |
| return false; |
| } |
| |
| void computeInfo(CGFunctionInfo &FI) const override; |
| |
| Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const override; |
| Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const override; |
| |
| bool has64BitPointers() const { |
| return Has64BitPointers; |
| } |
| |
| bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, |
| bool asReturnValue) const override { |
| return occupiesMoreThan(CGT, scalars, /*total*/ 4); |
| } |
| bool isSwiftErrorInRegister() const override { |
| return true; |
| } |
| }; |
| |
| /// WinX86_64ABIInfo - The Windows X86_64 ABI information. |
| class WinX86_64ABIInfo : public SwiftABIInfo { |
| public: |
| WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) |
| : SwiftABIInfo(CGT), |
| IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} |
| |
| void computeInfo(CGFunctionInfo &FI) const override; |
| |
| Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const override; |
| |
| bool isHomogeneousAggregateBaseType(QualType Ty) const override { |
| // FIXME: Assumes vectorcall is in use. |
| return isX86VectorTypeForVectorCall(getContext(), Ty); |
| } |
| |
| bool isHomogeneousAggregateSmallEnough(const Type *Ty, |
| uint64_t NumMembers) const override { |
| // FIXME: Assumes vectorcall is in use. |
| return isX86VectorCallAggregateSmallEnough(NumMembers); |
| } |
| |
| bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, |
| bool asReturnValue) const override { |
| return occupiesMoreThan(CGT, scalars, /*total*/ 4); |
| } |
| |
| bool isSwiftErrorInRegister() const override { |
| return true; |
| } |
| |
| private: |
| ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, |
| bool IsVectorCall, bool IsRegCall) const; |
| ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, |
| const ABIArgInfo ¤t) const; |
| void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, |
| bool IsVectorCall, bool IsRegCall) const; |
| |
| bool IsMingw64; |
| }; |
| |
| class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) |
| : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} |
| |
| const X86_64ABIInfo &getABIInfo() const { |
| return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); |
| } |
| |
| int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { |
| return 7; |
| } |
| |
| bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const override { |
| llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); |
| |
| // 0-15 are the 16 integer registers. |
| // 16 is %rip. |
| AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); |
| return false; |
| } |
| |
| llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, |
| StringRef Constraint, |
| llvm::Type* Ty) const override { |
| return X86AdjustInlineAsmType(CGF, Constraint, Ty); |
| } |
| |
| bool isNoProtoCallVariadic(const CallArgList &args, |
| const FunctionNoProtoType *fnType) const override { |
| // The default CC on x86-64 sets %al to the number of SSA |
| // registers used, and GCC sets this when calling an unprototyped |
| // function, so we override the default behavior. However, don't do |
| // that when AVX types are involved: the ABI explicitly states it is |
| // undefined, and it doesn't work in practice because of how the ABI |
| // defines varargs anyway. |
| if (fnType->getCallConv() == CC_C) { |
| bool HasAVXType = false; |
| for (CallArgList::const_iterator |
| it = args.begin(), ie = args.end(); it != ie; ++it) { |
| if (getABIInfo().isPassedUsingAVXType(it->Ty)) { |
| HasAVXType = true; |
| break; |
| } |
| } |
| |
| if (!HasAVXType) |
| return true; |
| } |
| |
| return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); |
| } |
| |
| llvm::Constant * |
| getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { |
| unsigned Sig = (0xeb << 0) | // jmp rel8 |
| (0x06 << 8) | // .+0x08 |
| ('v' << 16) | |
| ('2' << 24); |
| return llvm::ConstantInt::get(CGM.Int32Ty, Sig); |
| } |
| |
| void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &CGM) const override { |
| if (GV->isDeclaration()) |
| return; |
| if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { |
| if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { |
| llvm::Function *Fn = cast<llvm::Function>(GV); |
| Fn->addFnAttr("stackrealign"); |
| } |
| if (FD->hasAttr<AnyX86InterruptAttr>()) { |
| llvm::Function *Fn = cast<llvm::Function>(GV); |
| Fn->setCallingConv(llvm::CallingConv::X86_INTR); |
| } |
| } |
| } |
| }; |
| |
| class PS4TargetCodeGenInfo : public X86_64TargetCodeGenInfo { |
| public: |
| PS4TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) |
| : X86_64TargetCodeGenInfo(CGT, AVXLevel) {} |
| |
| void getDependentLibraryOption(llvm::StringRef Lib, |
| llvm::SmallString<24> &Opt) const override { |
| Opt = "\01"; |
| // If the argument contains a space, enclose it in quotes. |
| if (Lib.find(" ") != StringRef::npos) |
| Opt += "\"" + Lib.str() + "\""; |
| else |
| Opt += Lib; |
| } |
| }; |
| |
| static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { |
| // If the argument does not end in .lib, automatically add the suffix. |
| // If the argument contains a space, enclose it in quotes. |
| // This matches the behavior of MSVC. |
| bool Quote = (Lib.find(" ") != StringRef::npos); |
| std::string ArgStr = Quote ? "\"" : ""; |
| ArgStr += Lib; |
| if (!Lib.endswith_lower(".lib")) |
| ArgStr += ".lib"; |
| ArgStr += Quote ? "\"" : ""; |
| return ArgStr; |
| } |
| |
| class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { |
| public: |
| WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, |
| bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, |
| unsigned NumRegisterParameters) |
| : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, |
| Win32StructABI, NumRegisterParameters, false) {} |
| |
| void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &CGM) const override; |
| |
| void getDependentLibraryOption(llvm::StringRef Lib, |
| llvm::SmallString<24> &Opt) const override { |
| Opt = "/DEFAULTLIB:"; |
| Opt += qualifyWindowsLibrary(Lib); |
| } |
| |
| void getDetectMismatchOption(llvm::StringRef Name, |
| llvm::StringRef Value, |
| llvm::SmallString<32> &Opt) const override { |
| Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; |
| } |
| }; |
| |
| static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &CGM) { |
| if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { |
| |
| if (CGM.getCodeGenOpts().StackProbeSize != 4096) |
| Fn->addFnAttr("stack-probe-size", |
| llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); |
| if (CGM.getCodeGenOpts().NoStackArgProbe) |
| Fn->addFnAttr("no-stack-arg-probe"); |
| } |
| } |
| |
| void WinX86_32TargetCodeGenInfo::setTargetAttributes( |
| const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { |
| X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); |
| if (GV->isDeclaration()) |
| return; |
| addStackProbeTargetAttributes(D, GV, CGM); |
| } |
| |
| class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, |
| X86AVXABILevel AVXLevel) |
| : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {} |
| |
| void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &CGM) const override; |
| |
| int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { |
| return 7; |
| } |
| |
| bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const override { |
| llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); |
| |
| // 0-15 are the 16 integer registers. |
| // 16 is %rip. |
| AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); |
| return false; |
| } |
| |
| void getDependentLibraryOption(llvm::StringRef Lib, |
| llvm::SmallString<24> &Opt) const override { |
| Opt = "/DEFAULTLIB:"; |
| Opt += qualifyWindowsLibrary(Lib); |
| } |
| |
| void getDetectMismatchOption(llvm::StringRef Name, |
| llvm::StringRef Value, |
| llvm::SmallString<32> &Opt) const override { |
| Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; |
| } |
| }; |
| |
| void WinX86_64TargetCodeGenInfo::setTargetAttributes( |
| const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { |
| TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); |
| if (GV->isDeclaration()) |
| return; |
| if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { |
| if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { |
| llvm::Function *Fn = cast<llvm::Function>(GV); |
| Fn->addFnAttr("stackrealign"); |
| } |
| if (FD->hasAttr<AnyX86InterruptAttr>()) { |
| llvm::Function *Fn = cast<llvm::Function>(GV); |
| Fn->setCallingConv(llvm::CallingConv::X86_INTR); |
| } |
| } |
| |
| addStackProbeTargetAttributes(D, GV, CGM); |
| } |
| } |
| |
| void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, |
| Class &Hi) const { |
| // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: |
| // |
| // (a) If one of the classes is Memory, the whole argument is passed in |
| // memory. |
| // |
| // (b) If X87UP is not preceded by X87, the whole argument is passed in |
| // memory. |
| // |
| // (c) If the size of the aggregate exceeds two eightbytes and the first |
| // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole |
| // argument is passed in memory. NOTE: This is necessary to keep the |
| // ABI working for processors that don't support the __m256 type. |
| // |
| // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. |
| // |
| // Some of these are enforced by the merging logic. Others can arise |
| // only with unions; for example: |
| // union { _Complex double; unsigned; } |
| // |
| // Note that clauses (b) and (c) were added in 0.98. |
| // |
| if (Hi == Memory) |
| Lo = Memory; |
| if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) |
| Lo = Memory; |
| if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) |
| Lo = Memory; |
| if (Hi == SSEUp && Lo != SSE) |
| Hi = SSE; |
| } |
| |
| X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { |
| // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is |
| // classified recursively so that always two fields are |
| // considered. The resulting class is calculated according to |
| // the classes of the fields in the eightbyte: |
| // |
| // (a) If both classes are equal, this is the resulting class. |
| // |
| // (b) If one of the classes is NO_CLASS, the resulting class is |
| // the other class. |
| // |
| // (c) If one of the classes is MEMORY, the result is the MEMORY |
| // class. |
| // |
| // (d) If one of the classes is INTEGER, the result is the |
| // INTEGER. |
| // |
| // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, |
| // MEMORY is used as class. |
| // |
| // (f) Otherwise class SSE is used. |
| |
| // Accum should never be memory (we should have returned) or |
| // ComplexX87 (because this cannot be passed in a structure). |
| assert((Accum != Memory && Accum != ComplexX87) && |
| "Invalid accumulated classification during merge."); |
| if (Accum == Field || Field == NoClass) |
| return Accum; |
| if (Field == Memory) |
| return Memory; |
| if (Accum == NoClass) |
| return Field; |
| if (Accum == Integer || Field == Integer) |
| return Integer; |
| if (Field == X87 || Field == X87Up || Field == ComplexX87 || |
| Accum == X87 || Accum == X87Up) |
| return Memory; |
| return SSE; |
| } |
| |
| void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, |
| Class &Lo, Class &Hi, bool isNamedArg) const { |
| // FIXME: This code can be simplified by introducing a simple value class for |
| // Class pairs with appropriate constructor methods for the various |
| // situations. |
| |
| // FIXME: Some of the split computations are wrong; unaligned vectors |
| // shouldn't be passed in registers for example, so there is no chance they |
| // can straddle an eightbyte. Verify & simplify. |
| |
| Lo = Hi = NoClass; |
| |
| Class &Current = OffsetBase < 64 ? Lo : Hi; |
| Current = Memory; |
| |
| if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { |
| BuiltinType::Kind k = BT->getKind(); |
| |
| if (k == BuiltinType::Void) { |
| Current = NoClass; |
| } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { |
| Lo = Integer; |
| Hi = Integer; |
| } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { |
| Current = Integer; |
| } else if (k == BuiltinType::Float || k == BuiltinType::Double) { |
| Current = SSE; |
| } else if (k == BuiltinType::LongDouble) { |
| const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); |
| if (LDF == &llvm::APFloat::IEEEquad()) { |
| Lo = SSE; |
| Hi = SSEUp; |
| } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { |
| Lo = X87; |
| Hi = X87Up; |
| } else if (LDF == &llvm::APFloat::IEEEdouble()) { |
| Current = SSE; |
| } else |
| llvm_unreachable("unexpected long double representation!"); |
| } |
| // FIXME: _Decimal32 and _Decimal64 are SSE. |
| // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). |
| return; |
| } |
| |
| if (const EnumType *ET = Ty->getAs<EnumType>()) { |
| // Classify the underlying integer type. |
| classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); |
| return; |
| } |
| |
| if (Ty->hasPointerRepresentation()) { |
| Current = Integer; |
| return; |
| } |
| |
| if (Ty->isMemberPointerType()) { |
| if (Ty->isMemberFunctionPointerType()) { |
| if (Has64BitPointers) { |
| // If Has64BitPointers, this is an {i64, i64}, so classify both |
| // Lo and Hi now. |
| Lo = Hi = Integer; |
| } else { |
| // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that |
| // straddles an eightbyte boundary, Hi should be classified as well. |
| uint64_t EB_FuncPtr = (OffsetBase) / 64; |
| uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; |
| if (EB_FuncPtr != EB_ThisAdj) { |
| Lo = Hi = Integer; |
| } else { |
| Current = Integer; |
| } |
| } |
| } else { |
| Current = Integer; |
| } |
| return; |
| } |
| |
| if (const VectorType *VT = Ty->getAs<VectorType>()) { |
| uint64_t Size = getContext().getTypeSize(VT); |
| if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { |
| // gcc passes the following as integer: |
| // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> |
| // 2 bytes - <2 x char>, <1 x short> |
| // 1 byte - <1 x char> |
| Current = Integer; |
| |
| // If this type crosses an eightbyte boundary, it should be |
| // split. |
| uint64_t EB_Lo = (OffsetBase) / 64; |
| uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; |
| if (EB_Lo != EB_Hi) |
| Hi = Lo; |
| } else if (Size == 64) { |
| QualType ElementType = VT->getElementType(); |
| |
| // gcc passes <1 x double> in memory. :( |
| if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) |
| return; |
| |
| // gcc passes <1 x long long> as SSE but clang used to unconditionally |
| // pass them as integer. For platforms where clang is the de facto |
| // platform compiler, we must continue to use integer. |
| if (!classifyIntegerMMXAsSSE() && |
| (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || |
| ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || |
| ElementType->isSpecificBuiltinType(BuiltinType::Long) || |
| ElementType->isSpecificBuiltinType(BuiltinType::ULong))) |
| Current = Integer; |
| else |
| Current = SSE; |
| |
| // If this type crosses an eightbyte boundary, it should be |
| // split. |
| if (OffsetBase && OffsetBase != 64) |
| Hi = Lo; |
| } else if (Size == 128 || |
| (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { |
| // Arguments of 256-bits are split into four eightbyte chunks. The |
| // least significant one belongs to class SSE and all the others to class |
| // SSEUP. The original Lo and Hi design considers that types can't be |
| // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. |
| // This design isn't correct for 256-bits, but since there're no cases |
| // where the upper parts would need to be inspected, avoid adding |
| // complexity and just consider Hi to match the 64-256 part. |
| // |
| // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in |
| // registers if they are "named", i.e. not part of the "..." of a |
| // variadic function. |
| // |
| // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are |
| // split into eight eightbyte chunks, one SSE and seven SSEUP. |
| Lo = SSE; |
| Hi = SSEUp; |
| } |
| return; |
| } |
| |
| if (const ComplexType *CT = Ty->getAs<ComplexType>()) { |
| QualType ET = getContext().getCanonicalType(CT->getElementType()); |
| |
| uint64_t Size = getContext().getTypeSize(Ty); |
| if (ET->isIntegralOrEnumerationType()) { |
| if (Size <= 64) |
| Current = Integer; |
| else if (Size <= 128) |
| Lo = Hi = Integer; |
| } else if (ET == getContext().FloatTy) { |
| Current = SSE; |
| } else if (ET == getContext().DoubleTy) { |
| Lo = Hi = SSE; |
| } else if (ET == getContext().LongDoubleTy) { |
| const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); |
| if (LDF == &llvm::APFloat::IEEEquad()) |
| Current = Memory; |
| else if (LDF == &llvm::APFloat::x87DoubleExtended()) |
| Current = ComplexX87; |
| else if (LDF == &llvm::APFloat::IEEEdouble()) |
| Lo = Hi = SSE; |
| else |
| llvm_unreachable("unexpected long double representation!"); |
| } |
| |
| // If this complex type crosses an eightbyte boundary then it |
| // should be split. |
| uint64_t EB_Real = (OffsetBase) / 64; |
| uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; |
| if (Hi == NoClass && EB_Real != EB_Imag) |
| Hi = Lo; |
| |
| return; |
| } |
| |
| if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { |
| // Arrays are treated like structures. |
| |
| uint64_t Size = getContext().getTypeSize(Ty); |
| |
| // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger |
| // than eight eightbytes, ..., it has class MEMORY. |
| if (Size > 512) |
| return; |
| |
| // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned |
| // fields, it has class MEMORY. |
| // |
| // Only need to check alignment of array base. |
| if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) |
| return; |
| |
| // Otherwise implement simplified merge. We could be smarter about |
| // this, but it isn't worth it and would be harder to verify. |
| Current = NoClass; |
| uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); |
| uint64_t ArraySize = AT->getSize().getZExtValue(); |
| |
| // The only case a 256-bit wide vector could be used is when the array |
| // contains a single 256-bit element. Since Lo and Hi logic isn't extended |
| // to work for sizes wider than 128, early check and fallback to memory. |
| // |
| if (Size > 128 && |
| (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) |
| return; |
| |
| for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { |
| Class FieldLo, FieldHi; |
| classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); |
| Lo = merge(Lo, FieldLo); |
| Hi = merge(Hi, FieldHi); |
| if (Lo == Memory || Hi == Memory) |
| break; |
| } |
| |
| postMerge(Size, Lo, Hi); |
| assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); |
| return; |
| } |
| |
| if (const RecordType *RT = Ty->getAs<RecordType>()) { |
| uint64_t Size = getContext().getTypeSize(Ty); |
| |
| // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger |
| // than eight eightbytes, ..., it has class MEMORY. |
| if (Size > 512) |
| return; |
| |
| // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial |
| // copy constructor or a non-trivial destructor, it is passed by invisible |
| // reference. |
| if (getRecordArgABI(RT, getCXXABI())) |
| return; |
| |
| const RecordDecl *RD = RT->getDecl(); |
| |
| // Assume variable sized types are passed in memory. |
| if (RD->hasFlexibleArrayMember()) |
| return; |
| |
| const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); |
| |
| // Reset Lo class, this will be recomputed. |
| Current = NoClass; |
| |
| // If this is a C++ record, classify the bases first. |
| if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
| for (const auto &I : CXXRD->bases()) { |
| assert(!I.isVirtual() && !I.getType()->isDependentType() && |
| "Unexpected base class!"); |
| const CXXRecordDecl *Base = |
| cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); |
| |
| // Classify this field. |
| // |
| // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a |
| // single eightbyte, each is classified separately. Each eightbyte gets |
| // initialized to class NO_CLASS. |
| Class FieldLo, FieldHi; |
| uint64_t Offset = |
| OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); |
| classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); |
| Lo = merge(Lo, FieldLo); |
| Hi = merge(Hi, FieldHi); |
| if (Lo == Memory || Hi == Memory) { |
| postMerge(Size, Lo, Hi); |
| return; |
| } |
| } |
| } |
| |
| // Classify the fields one at a time, merging the results. |
| unsigned idx = 0; |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i, ++idx) { |
| uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); |
| bool BitField = i->isBitField(); |
| |
| // Ignore padding bit-fields. |
| if (BitField && i->isUnnamedBitfield()) |
| continue; |
| |
| // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than |
| // four eightbytes, or it contains unaligned fields, it has class MEMORY. |
| // |
| // The only case a 256-bit wide vector could be used is when the struct |
| // contains a single 256-bit element. Since Lo and Hi logic isn't extended |
| // to work for sizes wider than 128, early check and fallback to memory. |
| // |
| if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || |
| Size > getNativeVectorSizeForAVXABI(AVXLevel))) { |
| Lo = Memory; |
| postMerge(Size, Lo, Hi); |
| return; |
| } |
| // Note, skip this test for bit-fields, see below. |
| if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { |
| Lo = Memory; |
| postMerge(Size, Lo, Hi); |
| return; |
| } |
| |
| // Classify this field. |
| // |
| // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate |
| // exceeds a single eightbyte, each is classified |
| // separately. Each eightbyte gets initialized to class |
| // NO_CLASS. |
| Class FieldLo, FieldHi; |
| |
| // Bit-fields require special handling, they do not force the |
| // structure to be passed in memory even if unaligned, and |
| // therefore they can straddle an eightbyte. |
| if (BitField) { |
| assert(!i->isUnnamedBitfield()); |
| uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); |
| uint64_t Size = i->getBitWidthValue(getContext()); |
| |
| uint64_t EB_Lo = Offset / 64; |
| uint64_t EB_Hi = (Offset + Size - 1) / 64; |
| |
| if (EB_Lo) { |
| assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); |
| FieldLo = NoClass; |
| FieldHi = Integer; |
| } else { |
| FieldLo = Integer; |
| FieldHi = EB_Hi ? Integer : NoClass; |
| } |
| } else |
| classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); |
| Lo = merge(Lo, FieldLo); |
| Hi = merge(Hi, FieldHi); |
| if (Lo == Memory || Hi == Memory) |
| break; |
| } |
| |
| postMerge(Size, Lo, Hi); |
| } |
| } |
| |
| ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { |
| // If this is a scalar LLVM value then assume LLVM will pass it in the right |
| // place naturally. |
| if (!isAggregateTypeForABI(Ty)) { |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| |
| return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) |
| : ABIArgInfo::getDirect()); |
| } |
| |
| return getNaturalAlignIndirect(Ty); |
| } |
| |
| bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { |
| if (const VectorType *VecTy = Ty->getAs<VectorType>()) { |
| uint64_t Size = getContext().getTypeSize(VecTy); |
| unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); |
| if (Size <= 64 || Size > LargestVector) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, |
| unsigned freeIntRegs) const { |
| // If this is a scalar LLVM value then assume LLVM will pass it in the right |
| // place naturally. |
| // |
| // This assumption is optimistic, as there could be free registers available |
| // when we need to pass this argument in memory, and LLVM could try to pass |
| // the argument in the free register. This does not seem to happen currently, |
| // but this code would be much safer if we could mark the argument with |
| // 'onstack'. See PR12193. |
| if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| |
| return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) |
| : ABIArgInfo::getDirect()); |
| } |
| |
| if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) |
| return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
| |
| // Compute the byval alignment. We specify the alignment of the byval in all |
| // cases so that the mid-level optimizer knows the alignment of the byval. |
| unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); |
| |
| // Attempt to avoid passing indirect results using byval when possible. This |
| // is important for good codegen. |
| // |
| // We do this by coercing the value into a scalar type which the backend can |
| // handle naturally (i.e., without using byval). |
| // |
| // For simplicity, we currently only do this when we have exhausted all of the |
| // free integer registers. Doing this when there are free integer registers |
| // would require more care, as we would have to ensure that the coerced value |
| // did not claim the unused register. That would require either reording the |
| // arguments to the function (so that any subsequent inreg values came first), |
| // or only doing this optimization when there were no following arguments that |
| // might be inreg. |
| // |
| // We currently expect it to be rare (particularly in well written code) for |
| // arguments to be passed on the stack when there are still free integer |
| // registers available (this would typically imply large structs being passed |
| // by value), so this seems like a fair tradeoff for now. |
| // |
| // We can revisit this if the backend grows support for 'onstack' parameter |
| // attributes. See PR12193. |
| if (freeIntRegs == 0) { |
| uint64_t Size = getContext().getTypeSize(Ty); |
| |
| // If this type fits in an eightbyte, coerce it into the matching integral |
| // type, which will end up on the stack (with alignment 8). |
| if (Align == 8 && Size <= 64) |
| return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), |
| Size)); |
| } |
| |
| return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); |
| } |
| |
| /// The ABI specifies that a value should be passed in a full vector XMM/YMM |
| /// register. Pick an LLVM IR type that will be passed as a vector register. |
| llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { |
| // Wrapper structs/arrays that only contain vectors are passed just like |
| // vectors; strip them off if present. |
| if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) |
| Ty = QualType(InnerTy, 0); |
| |
| llvm::Type *IRType = CGT.ConvertType(Ty); |
| if (isa<llvm::VectorType>(IRType) || |
| IRType->getTypeID() == llvm::Type::FP128TyID) |
| return IRType; |
| |
| // We couldn't find the preferred IR vector type for 'Ty'. |
| uint64_t Size = getContext().getTypeSize(Ty); |
| assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); |
| |
| // Return a LLVM IR vector type based on the size of 'Ty'. |
| return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), |
| Size / 64); |
| } |
| |
| /// BitsContainNoUserData - Return true if the specified [start,end) bit range |
| /// is known to either be off the end of the specified type or being in |
| /// alignment padding. The user type specified is known to be at most 128 bits |
| /// in size, and have passed through X86_64ABIInfo::classify with a successful |
| /// classification that put one of the two halves in the INTEGER class. |
| /// |
| /// It is conservatively correct to return false. |
| static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, |
| unsigned EndBit, ASTContext &Context) { |
| // If the bytes being queried are off the end of the type, there is no user |
| // data hiding here. This handles analysis of builtins, vectors and other |
| // types that don't contain interesting padding. |
| unsigned TySize = (unsigned)Context.getTypeSize(Ty); |
| if (TySize <= StartBit) |
| return true; |
| |
| if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { |
| unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); |
| unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); |
| |
| // Check each element to see if the element overlaps with the queried range. |
| for (unsigned i = 0; i != NumElts; ++i) { |
| // If the element is after the span we care about, then we're done.. |
| unsigned EltOffset = i*EltSize; |
| if (EltOffset >= EndBit) break; |
| |
| unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; |
| if (!BitsContainNoUserData(AT->getElementType(), EltStart, |
| EndBit-EltOffset, Context)) |
| return false; |
| } |
| // If it overlaps no elements, then it is safe to process as padding. |
| return true; |
| } |
| |
| if (const RecordType *RT = Ty->getAs<RecordType>()) { |
| const RecordDecl *RD = RT->getDecl(); |
| const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
| |
| // If this is a C++ record, check the bases first. |
| if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
| for (const auto &I : CXXRD->bases()) { |
| assert(!I.isVirtual() && !I.getType()->isDependentType() && |
| "Unexpected base class!"); |
| const CXXRecordDecl *Base = |
| cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); |
| |
| // If the base is after the span we care about, ignore it. |
| unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); |
| if (BaseOffset >= EndBit) continue; |
| |
| unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; |
| if (!BitsContainNoUserData(I.getType(), BaseStart, |
| EndBit-BaseOffset, Context)) |
| return false; |
| } |
| } |
| |
| // Verify that no field has data that overlaps the region of interest. Yes |
| // this could be sped up a lot by being smarter about queried fields, |
| // however we're only looking at structs up to 16 bytes, so we don't care |
| // much. |
| unsigned idx = 0; |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i, ++idx) { |
| unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); |
| |
| // If we found a field after the region we care about, then we're done. |
| if (FieldOffset >= EndBit) break; |
| |
| unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; |
| if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, |
| Context)) |
| return false; |
| } |
| |
| // If nothing in this record overlapped the area of interest, then we're |
| // clean. |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a |
| /// float member at the specified offset. For example, {int,{float}} has a |
| /// float at offset 4. It is conservatively correct for this routine to return |
| /// false. |
| static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, |
| const llvm::DataLayout &TD) { |
| // Base case if we find a float. |
| if (IROffset == 0 && IRType->isFloatTy()) |
| return true; |
| |
| // If this is a struct, recurse into the field at the specified offset. |
| if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { |
| const llvm::StructLayout *SL = TD.getStructLayout(STy); |
| unsigned Elt = SL->getElementContainingOffset(IROffset); |
| IROffset -= SL->getElementOffset(Elt); |
| return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); |
| } |
| |
| // If this is an array, recurse into the field at the specified offset. |
| if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { |
| llvm::Type *EltTy = ATy->getElementType(); |
| unsigned EltSize = TD.getTypeAllocSize(EltTy); |
| IROffset -= IROffset/EltSize*EltSize; |
| return ContainsFloatAtOffset(EltTy, IROffset, TD); |
| } |
| |
| return false; |
| } |
| |
| |
| /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the |
| /// low 8 bytes of an XMM register, corresponding to the SSE class. |
| llvm::Type *X86_64ABIInfo:: |
| GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, |
| QualType SourceTy, unsigned SourceOffset) const { |
| // The only three choices we have are either double, <2 x float>, or float. We |
| // pass as float if the last 4 bytes is just padding. This happens for |
| // structs that contain 3 floats. |
| if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, |
| SourceOffset*8+64, getContext())) |
| return llvm::Type::getFloatTy(getVMContext()); |
| |
| // We want to pass as <2 x float> if the LLVM IR type contains a float at |
| // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the |
| // case. |
| if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && |
| ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) |
| return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); |
| |
| return llvm::Type::getDoubleTy(getVMContext()); |
| } |
| |
| |
| /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in |
| /// an 8-byte GPR. This means that we either have a scalar or we are talking |
| /// about the high or low part of an up-to-16-byte struct. This routine picks |
| /// the best LLVM IR type to represent this, which may be i64 or may be anything |
| /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, |
| /// etc). |
| /// |
| /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for |
| /// the source type. IROffset is an offset in bytes into the LLVM IR type that |
| /// the 8-byte value references. PrefType may be null. |
| /// |
| /// SourceTy is the source-level type for the entire argument. SourceOffset is |
| /// an offset into this that we're processing (which is always either 0 or 8). |
| /// |
| llvm::Type *X86_64ABIInfo:: |
| GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, |
| QualType SourceTy, unsigned SourceOffset) const { |
| // If we're dealing with an un-offset LLVM IR type, then it means that we're |
| // returning an 8-byte unit starting with it. See if we can safely use it. |
| if (IROffset == 0) { |
| // Pointers and int64's always fill the 8-byte unit. |
| if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || |
| IRType->isIntegerTy(64)) |
| return IRType; |
| |
| // If we have a 1/2/4-byte integer, we can use it only if the rest of the |
| // goodness in the source type is just tail padding. This is allowed to |
| // kick in for struct {double,int} on the int, but not on |
| // struct{double,int,int} because we wouldn't return the second int. We |
| // have to do this analysis on the source type because we can't depend on |
| // unions being lowered a specific way etc. |
| if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || |
| IRType->isIntegerTy(32) || |
| (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { |
| unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : |
| cast<llvm::IntegerType>(IRType)->getBitWidth(); |
| |
| if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, |
| SourceOffset*8+64, getContext())) |
| return IRType; |
| } |
| } |
| |
| if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { |
| // If this is a struct, recurse into the field at the specified offset. |
| const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); |
| if (IROffset < SL->getSizeInBytes()) { |
| unsigned FieldIdx = SL->getElementContainingOffset(IROffset); |
| IROffset -= SL->getElementOffset(FieldIdx); |
| |
| return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, |
| SourceTy, SourceOffset); |
| } |
| } |
| |
| if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { |
| llvm::Type *EltTy = ATy->getElementType(); |
| unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); |
| unsigned EltOffset = IROffset/EltSize*EltSize; |
| return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, |
| SourceOffset); |
| } |
| |
| // Okay, we don't have any better idea of what to pass, so we pass this in an |
| // integer register that isn't too big to fit the rest of the struct. |
| unsigned TySizeInBytes = |
| (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); |
| |
| assert(TySizeInBytes != SourceOffset && "Empty field?"); |
| |
| // It is always safe to classify this as an integer type up to i64 that |
| // isn't larger than the structure. |
| return llvm::IntegerType::get(getVMContext(), |
| std::min(TySizeInBytes-SourceOffset, 8U)*8); |
| } |
| |
| |
| /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally |
| /// be used as elements of a two register pair to pass or return, return a |
| /// first class aggregate to represent them. For example, if the low part of |
| /// a by-value argument should be passed as i32* and the high part as float, |
| /// return {i32*, float}. |
| static llvm::Type * |
| GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, |
| const llvm::DataLayout &TD) { |
| // In order to correctly satisfy the ABI, we need to the high part to start |
| // at offset 8. If the high and low parts we inferred are both 4-byte types |
| // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have |
| // the second element at offset 8. Check for this: |
| unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); |
| unsigned HiAlign = TD.getABITypeAlignment(Hi); |
| unsigned HiStart = llvm::alignTo(LoSize, HiAlign); |
| assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); |
| |
| // To handle this, we have to increase the size of the low part so that the |
| // second element will start at an 8 byte offset. We can't increase the size |
| // of the second element because it might make us access off the end of the |
| // struct. |
| if (HiStart != 8) { |
| // There are usually two sorts of types the ABI generation code can produce |
| // for the low part of a pair that aren't 8 bytes in size: float or |
| // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and |
| // NaCl). |
| // Promote these to a larger type. |
| if (Lo->isFloatTy()) |
| Lo = llvm::Type::getDoubleTy(Lo->getContext()); |
| else { |
| assert((Lo->isIntegerTy() || Lo->isPointerTy()) |
| && "Invalid/unknown lo type"); |
| Lo = llvm::Type::getInt64Ty(Lo->getContext()); |
| } |
| } |
| |
| llvm::StructType *Result = llvm::StructType::get(Lo, Hi); |
| |
| // Verify that the second element is at an 8-byte offset. |
| assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && |
| "Invalid x86-64 argument pair!"); |
| return Result; |
| } |
| |
| ABIArgInfo X86_64ABIInfo:: |
| classifyReturnType(QualType RetTy) const { |
| // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the |
| // classification algorithm. |
| X86_64ABIInfo::Class Lo, Hi; |
| classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); |
| |
| // Check some invariants. |
| assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); |
| assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); |
| |
| llvm::Type *ResType = nullptr; |
| switch (Lo) { |
| case NoClass: |
| if (Hi == NoClass) |
| return ABIArgInfo::getIgnore(); |
| // If the low part is just padding, it takes no register, leave ResType |
| // null. |
| assert((Hi == SSE || Hi == Integer || Hi == X87Up) && |
| "Unknown missing lo part"); |
| break; |
| |
| case SSEUp: |
| case X87Up: |
| llvm_unreachable("Invalid classification for lo word."); |
| |
| // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via |
| // hidden argument. |
| case Memory: |
| return getIndirectReturnResult(RetTy); |
| |
| // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next |
| // available register of the sequence %rax, %rdx is used. |
| case Integer: |
| ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); |
| |
| // If we have a sign or zero extended integer, make sure to return Extend |
| // so that the parameter gets the right LLVM IR attributes. |
| if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
| RetTy = EnumTy->getDecl()->getIntegerType(); |
| |
| if (RetTy->isIntegralOrEnumerationType() && |
| RetTy->isPromotableIntegerType()) |
| return ABIArgInfo::getExtend(RetTy); |
| } |
| break; |
| |
| // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next |
| // available SSE register of the sequence %xmm0, %xmm1 is used. |
| case SSE: |
| ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); |
| break; |
| |
| // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is |
| // returned on the X87 stack in %st0 as 80-bit x87 number. |
| case X87: |
| ResType = llvm::Type::getX86_FP80Ty(getVMContext()); |
| break; |
| |
| // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real |
| // part of the value is returned in %st0 and the imaginary part in |
| // %st1. |
| case ComplexX87: |
| assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); |
| ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), |
| llvm::Type::getX86_FP80Ty(getVMContext())); |
| break; |
| } |
| |
| llvm::Type *HighPart = nullptr; |
| switch (Hi) { |
| // Memory was handled previously and X87 should |
| // never occur as a hi class. |
| case Memory: |
| case X87: |
| llvm_unreachable("Invalid classification for hi word."); |
| |
| case ComplexX87: // Previously handled. |
| case NoClass: |
| break; |
| |
| case Integer: |
| HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); |
| if (Lo == NoClass) // Return HighPart at offset 8 in memory. |
| return ABIArgInfo::getDirect(HighPart, 8); |
| break; |
| case SSE: |
| HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); |
| if (Lo == NoClass) // Return HighPart at offset 8 in memory. |
| return ABIArgInfo::getDirect(HighPart, 8); |
| break; |
| |
| // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte |
| // is passed in the next available eightbyte chunk if the last used |
| // vector register. |
| // |
| // SSEUP should always be preceded by SSE, just widen. |
| case SSEUp: |
| assert(Lo == SSE && "Unexpected SSEUp classification."); |
| ResType = GetByteVectorType(RetTy); |
| break; |
| |
| // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is |
| // returned together with the previous X87 value in %st0. |
| case X87Up: |
| // If X87Up is preceded by X87, we don't need to do |
| // anything. However, in some cases with unions it may not be |
| // preceded by X87. In such situations we follow gcc and pass the |
| // extra bits in an SSE reg. |
| if (Lo != X87) { |
| HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); |
| if (Lo == NoClass) // Return HighPart at offset 8 in memory. |
| return ABIArgInfo::getDirect(HighPart, 8); |
| } |
| break; |
| } |
| |
| // If a high part was specified, merge it together with the low part. It is |
| // known to pass in the high eightbyte of the result. We do this by forming a |
| // first class struct aggregate with the high and low part: {low, high} |
| if (HighPart) |
| ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); |
| |
| return ABIArgInfo::getDirect(ResType); |
| } |
| |
| ABIArgInfo X86_64ABIInfo::classifyArgumentType( |
| QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, |
| bool isNamedArg) |
| const |
| { |
| Ty = useFirstFieldIfTransparentUnion(Ty); |
| |
| X86_64ABIInfo::Class Lo, Hi; |
| classify(Ty, 0, Lo, Hi, isNamedArg); |
| |
| // Check some invariants. |
| // FIXME: Enforce these by construction. |
| assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); |
| assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); |
| |
| neededInt = 0; |
| neededSSE = 0; |
| llvm::Type *ResType = nullptr; |
| switch (Lo) { |
| case NoClass: |
| if (Hi == NoClass) |
| return ABIArgInfo::getIgnore(); |
| // If the low part is just padding, it takes no register, leave ResType |
| // null. |
| assert((Hi == SSE || Hi == Integer || Hi == X87Up) && |
| "Unknown missing lo part"); |
| break; |
| |
| // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument |
| // on the stack. |
| case Memory: |
| |
| // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or |
| // COMPLEX_X87, it is passed in memory. |
| case X87: |
| case ComplexX87: |
| if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) |
| ++neededInt; |
| return getIndirectResult(Ty, freeIntRegs); |
| |
| case SSEUp: |
| case X87Up: |
| llvm_unreachable("Invalid classification for lo word."); |
| |
| // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next |
| // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 |
| // and %r9 is used. |
| case Integer: |
| ++neededInt; |
| |
| // Pick an 8-byte type based on the preferred type. |
| ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); |
| |
| // If we have a sign or zero extended integer, make sure to return Extend |
| // so that the parameter gets the right LLVM IR attributes. |
| if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| |
| if (Ty->isIntegralOrEnumerationType() && |
| Ty->isPromotableIntegerType()) |
| return ABIArgInfo::getExtend(Ty); |
| } |
| |
| break; |
| |
| // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next |
| // available SSE register is used, the registers are taken in the |
| // order from %xmm0 to %xmm7. |
| case SSE: { |
| llvm::Type *IRType = CGT.ConvertType(Ty); |
| ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); |
| ++neededSSE; |
| break; |
| } |
| } |
| |
| llvm::Type *HighPart = nullptr; |
| switch (Hi) { |
| // Memory was handled previously, ComplexX87 and X87 should |
| // never occur as hi classes, and X87Up must be preceded by X87, |
| // which is passed in memory. |
| case Memory: |
| case X87: |
| case ComplexX87: |
| llvm_unreachable("Invalid classification for hi word."); |
| |
| case NoClass: break; |
| |
| case Integer: |
| ++neededInt; |
| // Pick an 8-byte type based on the preferred type. |
| HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); |
| |
| if (Lo == NoClass) // Pass HighPart at offset 8 in memory. |
| return ABIArgInfo::getDirect(HighPart, 8); |
| break; |
| |
| // X87Up generally doesn't occur here (long double is passed in |
| // memory), except in situations involving unions. |
| case X87Up: |
| case SSE: |
| HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); |
| |
| if (Lo == NoClass) // Pass HighPart at offset 8 in memory. |
| return ABIArgInfo::getDirect(HighPart, 8); |
| |
| ++neededSSE; |
| break; |
| |
| // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the |
| // eightbyte is passed in the upper half of the last used SSE |
| // register. This only happens when 128-bit vectors are passed. |
| case SSEUp: |
| assert(Lo == SSE && "Unexpected SSEUp classification"); |
| ResType = GetByteVectorType(Ty); |
| break; |
| } |
| |
| // If a high part was specified, merge it together with the low part. It is |
| // known to pass in the high eightbyte of the result. We do this by forming a |
| // first class struct aggregate with the high and low part: {low, high} |
| if (HighPart) |
| ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); |
| |
| return ABIArgInfo::getDirect(ResType); |
| } |
| |
| ABIArgInfo |
| X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, |
| unsigned &NeededSSE) const { |
| auto RT = Ty->getAs<RecordType>(); |
| assert(RT && "classifyRegCallStructType only valid with struct types"); |
| |
| if (RT->getDecl()->hasFlexibleArrayMember()) |
| return getIndirectReturnResult(Ty); |
| |
| // Sum up bases |
| if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { |
| if (CXXRD->isDynamicClass()) { |
| NeededInt = NeededSSE = 0; |
| return getIndirectReturnResult(Ty); |
| } |
| |
| for (const auto &I : CXXRD->bases()) |
| if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) |
| .isIndirect()) { |
| NeededInt = NeededSSE = 0; |
| return getIndirectReturnResult(Ty); |
| } |
| } |
| |
| // Sum up members |
| for (const auto *FD : RT->getDecl()->fields()) { |
| if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { |
| if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) |
| .isIndirect()) { |
| NeededInt = NeededSSE = 0; |
| return getIndirectReturnResult(Ty); |
| } |
| } else { |
| unsigned LocalNeededInt, LocalNeededSSE; |
| if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, |
| LocalNeededSSE, true) |
| .isIndirect()) { |
| NeededInt = NeededSSE = 0; |
| return getIndirectReturnResult(Ty); |
| } |
| NeededInt += LocalNeededInt; |
| NeededSSE += LocalNeededSSE; |
| } |
| } |
| |
| return ABIArgInfo::getDirect(); |
| } |
| |
| ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, |
| unsigned &NeededInt, |
| unsigned &NeededSSE) const { |
| |
| NeededInt = 0; |
| NeededSSE = 0; |
| |
| return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); |
| } |
| |
| void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { |
| |
| const unsigned CallingConv = FI.getCallingConvention(); |
| // It is possible to force Win64 calling convention on any x86_64 target by |
| // using __attribute__((ms_abi)). In such case to correctly emit Win64 |
| // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. |
| if (CallingConv == llvm::CallingConv::Win64) { |
| WinX86_64ABIInfo Win64ABIInfo(CGT); |
| Win64ABIInfo.computeInfo(FI); |
| return; |
| } |
| |
| bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; |
| |
| // Keep track of the number of assigned registers. |
| unsigned FreeIntRegs = IsRegCall ? 11 : 6; |
| unsigned FreeSSERegs = IsRegCall ? 16 : 8; |
| unsigned NeededInt, NeededSSE; |
| |
| if (!::classifyReturnType(getCXXABI(), FI, *this)) { |
| if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && |
| !FI.getReturnType()->getTypePtr()->isUnionType()) { |
| FI.getReturnInfo() = |
| classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); |
| if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { |
| FreeIntRegs -= NeededInt; |
| FreeSSERegs -= NeededSSE; |
| } else { |
| FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); |
| } |
| } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { |
| // Complex Long Double Type is passed in Memory when Regcall |
| // calling convention is used. |
| const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); |
| if (getContext().getCanonicalType(CT->getElementType()) == |
| getContext().LongDoubleTy) |
| FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); |
| } else |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
| } |
| |
| // If the return value is indirect, then the hidden argument is consuming one |
| // integer register. |
| if (FI.getReturnInfo().isIndirect()) |
| --FreeIntRegs; |
| |
| // The chain argument effectively gives us another free register. |
| if (FI.isChainCall()) |
| ++FreeIntRegs; |
| |
| unsigned NumRequiredArgs = FI.getNumRequiredArgs(); |
| // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers |
| // get assigned (in left-to-right order) for passing as follows... |
| unsigned ArgNo = 0; |
| for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
| it != ie; ++it, ++ArgNo) { |
| bool IsNamedArg = ArgNo < NumRequiredArgs; |
| |
| if (IsRegCall && it->type->isStructureOrClassType()) |
| it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); |
| else |
| it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, |
| NeededSSE, IsNamedArg); |
| |
| // AMD64-ABI 3.2.3p3: If there are no registers available for any |
| // eightbyte of an argument, the whole argument is passed on the |
| // stack. If registers have already been assigned for some |
| // eightbytes of such an argument, the assignments get reverted. |
| if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { |
| FreeIntRegs -= NeededInt; |
| FreeSSERegs -= NeededSSE; |
| } else { |
| it->info = getIndirectResult(it->type, FreeIntRegs); |
| } |
| } |
| } |
| |
| static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, |
| Address VAListAddr, QualType Ty) { |
| Address overflow_arg_area_p = CGF.Builder.CreateStructGEP( |
| VAListAddr, 2, CharUnits::fromQuantity(8), "overflow_arg_area_p"); |
| llvm::Value *overflow_arg_area = |
| CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); |
| |
| // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 |
| // byte boundary if alignment needed by type exceeds 8 byte boundary. |
| // It isn't stated explicitly in the standard, but in practice we use |
| // alignment greater than 16 where necessary. |
| CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); |
| if (Align > CharUnits::fromQuantity(8)) { |
| overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, |
| Align); |
| } |
| |
| // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. |
| llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); |
| llvm::Value *Res = |
| CGF.Builder.CreateBitCast(overflow_arg_area, |
| llvm::PointerType::getUnqual(LTy)); |
| |
| // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: |
| // l->overflow_arg_area + sizeof(type). |
| // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to |
| // an 8 byte boundary. |
| |
| uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; |
| llvm::Value *Offset = |
| llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); |
| overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, |
| "overflow_arg_area.next"); |
| CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); |
| |
| // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. |
| return Address(Res, Align); |
| } |
| |
| Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const { |
| // Assume that va_list type is correct; should be pointer to LLVM type: |
| // struct { |
| // i32 gp_offset; |
| // i32 fp_offset; |
| // i8* overflow_arg_area; |
| // i8* reg_save_area; |
| // }; |
| unsigned neededInt, neededSSE; |
| |
| Ty = getContext().getCanonicalType(Ty); |
| ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, |
| /*isNamedArg*/false); |
| |
| // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed |
| // in the registers. If not go to step 7. |
| if (!neededInt && !neededSSE) |
| return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); |
| |
| // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of |
| // general purpose registers needed to pass type and num_fp to hold |
| // the number of floating point registers needed. |
| |
| // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into |
| // registers. In the case: l->gp_offset > 48 - num_gp * 8 or |
| // l->fp_offset > 304 - num_fp * 16 go to step 7. |
| // |
| // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of |
| // register save space). |
| |
| llvm::Value *InRegs = nullptr; |
| Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); |
| llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; |
| if (neededInt) { |
| gp_offset_p = |
| CGF.Builder.CreateStructGEP(VAListAddr, 0, CharUnits::Zero(), |
| "gp_offset_p"); |
| gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); |
| InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); |
| InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); |
| } |
| |
| if (neededSSE) { |
| fp_offset_p = |
| CGF.Builder.CreateStructGEP(VAListAddr, 1, CharUnits::fromQuantity(4), |
| "fp_offset_p"); |
| fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); |
| llvm::Value *FitsInFP = |
| llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); |
| FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); |
| InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; |
| } |
| |
| llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); |
| llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); |
| llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); |
| CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); |
| |
| // Emit code to load the value if it was passed in registers. |
| |
| CGF.EmitBlock(InRegBlock); |
| |
| // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with |
| // an offset of l->gp_offset and/or l->fp_offset. This may require |
| // copying to a temporary location in case the parameter is passed |
| // in different register classes or requires an alignment greater |
| // than 8 for general purpose registers and 16 for XMM registers. |
| // |
| // FIXME: This really results in shameful code when we end up needing to |
| // collect arguments from different places; often what should result in a |
| // simple assembling of a structure from scattered addresses has many more |
| // loads than necessary. Can we clean this up? |
| llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); |
| llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( |
| CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(16)), |
| "reg_save_area"); |
| |
| Address RegAddr = Address::invalid(); |
| if (neededInt && neededSSE) { |
| // FIXME: Cleanup. |
| assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); |
| llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); |
| Address Tmp = CGF.CreateMemTemp(Ty); |
| Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); |
| assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); |
| llvm::Type *TyLo = ST->getElementType(0); |
| llvm::Type *TyHi = ST->getElementType(1); |
| assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && |
| "Unexpected ABI info for mixed regs"); |
| llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); |
| llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); |
| llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); |
| llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); |
| llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; |
| llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; |
| |
| // Copy the first element. |
| // FIXME: Our choice of alignment here and below is probably pessimistic. |
| llvm::Value *V = CGF.Builder.CreateAlignedLoad( |
| TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), |
| CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); |
| CGF.Builder.CreateStore(V, |
| CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); |
| |
| // Copy the second element. |
| V = CGF.Builder.CreateAlignedLoad( |
| TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), |
| CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); |
| CharUnits Offset = CharUnits::fromQuantity( |
| getDataLayout().getStructLayout(ST)->getElementOffset(1)); |
| CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1, Offset)); |
| |
| RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); |
| } else if (neededInt) { |
| RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), |
| CharUnits::fromQuantity(8)); |
| RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); |
| |
| // Copy to a temporary if necessary to ensure the appropriate alignment. |
| std::pair<CharUnits, CharUnits> SizeAlign = |
| getContext().getTypeInfoInChars(Ty); |
| uint64_t TySize = SizeAlign.first.getQuantity(); |
| CharUnits TyAlign = SizeAlign.second; |
| |
| // Copy into a temporary if the type is more aligned than the |
| // register save area. |
| if (TyAlign.getQuantity() > 8) { |
| Address Tmp = CGF.CreateMemTemp(Ty); |
| CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); |
| RegAddr = Tmp; |
| } |
| |
| } else if (neededSSE == 1) { |
| RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), |
| CharUnits::fromQuantity(16)); |
| RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); |
| } else { |
| assert(neededSSE == 2 && "Invalid number of needed registers!"); |
| // SSE registers are spaced 16 bytes apart in the register save |
| // area, we need to collect the two eightbytes together. |
| // The ABI isn't explicit about this, but it seems reasonable |
| // to assume that the slots are 16-byte aligned, since the stack is |
| // naturally 16-byte aligned and the prologue is expected to store |
| // all the SSE registers to the RSA. |
| Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), |
| CharUnits::fromQuantity(16)); |
| Address RegAddrHi = |
| CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, |
| CharUnits::fromQuantity(16)); |
| llvm::Type *ST = AI.canHaveCoerceToType() |
| ? AI.getCoerceToType() |
| : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); |
| llvm::Value *V; |
| Address Tmp = CGF.CreateMemTemp(Ty); |
| Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); |
| V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( |
| RegAddrLo, ST->getStructElementType(0))); |
| CGF.Builder.CreateStore(V, |
| CGF.Builder.CreateStructGEP(Tmp, 0, CharUnits::Zero())); |
| V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( |
| RegAddrHi, ST->getStructElementType(1))); |
| CGF.Builder.CreateStore(V, |
| CGF.Builder.CreateStructGEP(Tmp, 1, CharUnits::fromQuantity(8))); |
| |
| RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); |
| } |
| |
| // AMD64-ABI 3.5.7p5: Step 5. Set: |
| // l->gp_offset = l->gp_offset + num_gp * 8 |
| // l->fp_offset = l->fp_offset + num_fp * 16. |
| if (neededInt) { |
| llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); |
| CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), |
| gp_offset_p); |
| } |
| if (neededSSE) { |
| llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); |
| CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), |
| fp_offset_p); |
| } |
| CGF.EmitBranch(ContBlock); |
| |
| // Emit code to load the value if it was passed in memory. |
| |
| CGF.EmitBlock(InMemBlock); |
| Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); |
| |
| // Return the appropriate result. |
| |
| CGF.EmitBlock(ContBlock); |
| Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, |
| "vaarg.addr"); |
| return ResAddr; |
| } |
| |
| Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const { |
| return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, |
| CGF.getContext().getTypeInfoInChars(Ty), |
| CharUnits::fromQuantity(8), |
| /*allowHigherAlign*/ false); |
| } |
| |
| ABIArgInfo |
| WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, |
| const ABIArgInfo ¤t) const { |
| // Assumes vectorCall calling convention. |
| const Type *Base = nullptr; |
| uint64_t NumElts = 0; |
| |
| if (!Ty->isBuiltinType() && !Ty->isVectorType() && |
| isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { |
| FreeSSERegs -= NumElts; |
| return getDirectX86Hva(); |
| } |
| return current; |
| } |
| |
| ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, |
| bool IsReturnType, bool IsVectorCall, |
| bool IsRegCall) const { |
| |
| if (Ty->isVoidType()) |
| return ABIArgInfo::getIgnore(); |
| |
| if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| |
| TypeInfo Info = getContext().getTypeInfo(Ty); |
| uint64_t Width = Info.Width; |
| CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); |
| |
| const RecordType *RT = Ty->getAs<RecordType>(); |
| if (RT) { |
| if (!IsReturnType) { |
| if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) |
| return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
| } |
| |
| if (RT->getDecl()->hasFlexibleArrayMember()) |
| return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
| |
| } |
| |
| const Type *Base = nullptr; |
| uint64_t NumElts = 0; |
| // vectorcall adds the concept of a homogenous vector aggregate, similar to |
| // other targets. |
| if ((IsVectorCall || IsRegCall) && |
| isHomogeneousAggregate(Ty, Base, NumElts)) { |
| if (IsRegCall) { |
| if (FreeSSERegs >= NumElts) { |
| FreeSSERegs -= NumElts; |
| if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) |
| return ABIArgInfo::getDirect(); |
| return ABIArgInfo::getExpand(); |
| } |
| return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); |
| } else if (IsVectorCall) { |
| if (FreeSSERegs >= NumElts && |
| (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { |
| FreeSSERegs -= NumElts; |
| return ABIArgInfo::getDirect(); |
| } else if (IsReturnType) { |
| return ABIArgInfo::getExpand(); |
| } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { |
| // HVAs are delayed and reclassified in the 2nd step. |
| return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); |
| } |
| } |
| } |
| |
| if (Ty->isMemberPointerType()) { |
| // If the member pointer is represented by an LLVM int or ptr, pass it |
| // directly. |
| llvm::Type *LLTy = CGT.ConvertType(Ty); |
| if (LLTy->isPointerTy() || LLTy->isIntegerTy()) |
| return ABIArgInfo::getDirect(); |
| } |
| |
| if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { |
| // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is |
| // not 1, 2, 4, or 8 bytes, must be passed by reference." |
| if (Width > 64 || !llvm::isPowerOf2_64(Width)) |
| return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
| |
| // Otherwise, coerce it to a small integer. |
| return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); |
| } |
| |
| // Bool type is always extended to the ABI, other builtin types are not |
| // extended. |
| const BuiltinType *BT = Ty->getAs<BuiltinType>(); |
| if (BT && BT->getKind() == BuiltinType::Bool) |
| return ABIArgInfo::getExtend(Ty); |
| |
| // Mingw64 GCC uses the old 80 bit extended precision floating point unit. It |
| // passes them indirectly through memory. |
| if (IsMingw64 && BT && BT->getKind() == BuiltinType::LongDouble) { |
| const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); |
| if (LDF == &llvm::APFloat::x87DoubleExtended()) |
| return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); |
| } |
| |
| return ABIArgInfo::getDirect(); |
| } |
| |
| void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, |
| unsigned FreeSSERegs, |
| bool IsVectorCall, |
| bool IsRegCall) const { |
| unsigned Count = 0; |
| for (auto &I : FI.arguments()) { |
| // Vectorcall in x64 only permits the first 6 arguments to be passed |
| // as XMM/YMM registers. |
| if (Count < VectorcallMaxParamNumAsReg) |
| I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); |
| else { |
| // Since these cannot be passed in registers, pretend no registers |
| // are left. |
| unsigned ZeroSSERegsAvail = 0; |
| I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, |
| IsVectorCall, IsRegCall); |
| } |
| ++Count; |
| } |
| |
| for (auto &I : FI.arguments()) { |
| I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); |
| } |
| } |
| |
| void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { |
| bool IsVectorCall = |
| FI.getCallingConvention() == llvm::CallingConv::X86_VectorCall; |
| bool IsRegCall = FI.getCallingConvention() == llvm::CallingConv::X86_RegCall; |
| |
| unsigned FreeSSERegs = 0; |
| if (IsVectorCall) { |
| // We can use up to 4 SSE return registers with vectorcall. |
| FreeSSERegs = 4; |
| } else if (IsRegCall) { |
| // RegCall gives us 16 SSE registers. |
| FreeSSERegs = 16; |
| } |
| |
| if (!getCXXABI().classifyReturnType(FI)) |
| FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, |
| IsVectorCall, IsRegCall); |
| |
| if (IsVectorCall) { |
| // We can use up to 6 SSE register parameters with vectorcall. |
| FreeSSERegs = 6; |
| } else if (IsRegCall) { |
| // RegCall gives us 16 SSE registers, we can reuse the return registers. |
| FreeSSERegs = 16; |
| } |
| |
| if (IsVectorCall) { |
| computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); |
| } else { |
| for (auto &I : FI.arguments()) |
| I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); |
| } |
| |
| } |
| |
| Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const { |
| |
| bool IsIndirect = false; |
| |
| // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is |
| // not 1, 2, 4, or 8 bytes, must be passed by reference." |
| if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { |
| uint64_t Width = getContext().getTypeSize(Ty); |
| IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); |
| } |
| |
| return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, |
| CGF.getContext().getTypeInfoInChars(Ty), |
| CharUnits::fromQuantity(8), |
| /*allowHigherAlign*/ false); |
| } |
| |
| // PowerPC-32 |
| namespace { |
| /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. |
| class PPC32_SVR4_ABIInfo : public DefaultABIInfo { |
| bool IsSoftFloatABI; |
| |
| CharUnits getParamTypeAlignment(QualType Ty) const; |
| |
| public: |
| PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI) |
| : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI) {} |
| |
| Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const override; |
| }; |
| |
| class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI) |
| : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI)) {} |
| |
| int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
| // This is recovered from gcc output. |
| return 1; // r1 is the dedicated stack pointer |
| } |
| |
| bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const override; |
| }; |
| } |
| |
| CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { |
| // Complex types are passed just like their elements |
| if (const ComplexType *CTy = Ty->getAs<ComplexType>()) |
| Ty = CTy->getElementType(); |
| |
| if (Ty->isVectorType()) |
| return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 |
| : 4); |
| |
| // For single-element float/vector structs, we consider the whole type |
| // to have the same alignment requirements as its single element. |
| const Type *AlignTy = nullptr; |
| if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { |
| const BuiltinType *BT = EltType->getAs<BuiltinType>(); |
| if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || |
| (BT && BT->isFloatingPoint())) |
| AlignTy = EltType; |
| } |
| |
| if (AlignTy) |
| return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); |
| return CharUnits::fromQuantity(4); |
| } |
| |
| // TODO: this implementation is now likely redundant with |
| // DefaultABIInfo::EmitVAArg. |
| Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, |
| QualType Ty) const { |
| if (getTarget().getTriple().isOSDarwin()) { |
| auto TI = getContext().getTypeInfoInChars(Ty); |
| TI.second = getParamTypeAlignment(Ty); |
| |
| CharUnits SlotSize = CharUnits::fromQuantity(4); |
| return emitVoidPtrVAArg(CGF, VAList, Ty, |
| classifyArgumentType(Ty).isIndirect(), TI, SlotSize, |
| /*AllowHigherAlign=*/true); |
| } |
| |
| const unsigned OverflowLimit = 8; |
| if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { |
| // TODO: Implement this. For now ignore. |
| (void)CTy; |
| return Address::invalid(); // FIXME? |
| } |
| |
| // struct __va_list_tag { |
| // unsigned char gpr; |
| // unsigned char fpr; |
| // unsigned short reserved; |
| // void *overflow_arg_area; |
| // void *reg_save_area; |
| // }; |
| |
| bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; |
| bool isInt = |
| Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); |
| bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; |
| |
| // All aggregates are passed indirectly? That doesn't seem consistent |
| // with the argument-lowering code. |
| bool isIndirect = Ty->isAggregateType(); |
| |
| CGBuilderTy &Builder = CGF.Builder; |
| |
| // The calling convention either uses 1-2 GPRs or 1 FPR. |
| Address NumRegsAddr = Address::invalid(); |
| if (isInt || IsSoftFloatABI) { |
| NumRegsAddr = Builder.CreateStructGEP(VAList, 0, CharUnits::Zero(), "gpr"); |
| } else { |
| NumRegsAddr = Builder.CreateStructGEP(VAList, 1, CharUnits::One(), "fpr"); |
| } |
| |
| llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); |
| |
| // "Align" the register count when TY is i64. |
| if (isI64 || (isF64 && IsSoftFloatABI)) { |
| NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); |
| NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); |
| } |
| |
| llvm::Value *CC = |
| Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); |
| |
| llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); |
| llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); |
| llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); |
| |
| Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); |
| |
| llvm::Type *DirectTy = CGF.ConvertType(Ty); |
| if (isIndirect) DirectTy = DirectTy->getPointerTo(0); |
| |
| // Case 1: consume registers. |
| Address RegAddr = Address::invalid(); |
| { |
| CGF.EmitBlock(UsingRegs); |
| |
| Address RegSaveAreaPtr = |
| Builder.CreateStructGEP(VAList, 4, CharUnits::fromQuantity(8)); |
| RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), |
| CharUnits::fromQuantity(8)); |
| assert(RegAddr.getElementType() == CGF.Int8Ty); |
| |
| // Floating-point registers start after the general-purpose registers. |
| if (!(isInt || IsSoftFloatABI)) { |
| RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, |
| CharUnits::fromQuantity(32)); |
| } |
| |
| // Get the address of the saved value by scaling the number of |
| // registers we've used by the number of |
| CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); |
| llvm::Value *RegOffset = |
| Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); |
| RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, |
| RegAddr.getPointer(), RegOffset), |
| RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); |
| RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); |
| |
| // Increase the used-register count. |
| NumRegs = |
| Builder.CreateAdd(NumRegs, |
| Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); |
| Builder.CreateStore(NumRegs, NumRegsAddr); |
| |
| CGF.EmitBranch(Cont); |
| } |
| |
| // Case 2: consume space in the overflow area. |
| Address MemAddr = Address::invalid(); |
| { |
| CGF.EmitBlock(UsingOverflow); |
| |
| Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); |
| |
| // Everything in the overflow area is rounded up to a size of at least 4. |
| CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); |
| |
| CharUnits Size; |
| if (!isIndirect) { |
| auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); |
| Size = TypeInfo.first.alignTo(OverflowAreaAlign); |
| } else { |
| Size = CGF.getPointerSize(); |
| } |
| |
| Address OverflowAreaAddr = |
| Builder.CreateStructGEP(VAList, 3, CharUnits::fromQuantity(4)); |
| Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), |
| OverflowAreaAlign); |
| // Round up address of argument to alignment |
| CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); |
| if (Align > OverflowAreaAlign) { |
| llvm::Value *Ptr = OverflowArea.getPointer(); |
| OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), |
| Align); |
| } |
| |
| MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); |
| |
| // Increase the overflow area. |
| OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); |
| Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); |
| CGF.EmitBranch(Cont); |
| } |
| |
| CGF.EmitBlock(Cont); |
| |
| // Merge the cases with a phi. |
| Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, |
| "vaarg.addr"); |
| |
| // Load the pointer if the argument was passed indirectly. |
| if (isIndirect) { |
| Result = Address(Builder.CreateLoad(Result, "aggr"), |
| getContext().getTypeAlignInChars(Ty)); |
| } |
| |
| return Result; |
| } |
| |
| bool |
| PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const { |
| // This is calculated from the LLVM and GCC tables and verified |
| // against gcc output. AFAIK all ABIs use the same encoding. |
| |
| CodeGen::CGBuilderTy &Builder = CGF.Builder; |
| |
| llvm::IntegerType *i8 = CGF.Int8Ty; |
| llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); |
| llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); |
| llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); |
| |
| // 0-31: r0-31, the 4-byte general-purpose registers |
| AssignToArrayRange(Builder, Address, Four8, 0, 31); |
| |
| // 32-63: fp0-31, the 8-byte floating-point registers |
| AssignToArrayRange(Builder, Address, Eight8, 32, 63); |
| |
| // 64-76 are various 4-byte special-purpose registers: |
| // 64: mq |
| // 65: lr |
| // 66: ctr |
| // 67: ap |
| // 68-75 cr0-7 |
| // 76: xer |
| AssignToArrayRange(Builder, Address, Four8, 64, 76); |
| |
| // 77-108: v0-31, the 16-byte vector registers |
| AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); |
| |
| // 109: vrsave |
| // 110: vscr |
| // 111: spe_acc |
| // 112: spefscr |
| // 113: sfp |
| AssignToArrayRange(Builder, Address, Four8, 109, 113); |
| |
| return false; |
| } |
| |
| // PowerPC-64 |
| |
| namespace { |
| /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. |
| class PPC64_SVR4_ABIInfo : public SwiftABIInfo { |
| public: |
| enum ABIKind { |
| ELFv1 = 0, |
| ELFv2 |
| }; |
| |
| private: |
| static const unsigned GPRBits = 64; |
| ABIKind Kind; |
| bool HasQPX; |
| bool IsSoftFloatABI; |
| |
| // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and |
| // will be passed in a QPX register. |
| bool IsQPXVectorTy(const Type *Ty) const { |
| if (!HasQPX) |
| return false; |
| |
| if (const VectorType *VT = Ty->getAs<VectorType>()) { |
| unsigned NumElements = VT->getNumElements(); |
| if (NumElements == 1) |
| return false; |
| |
| if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { |
| if (getContext().getTypeSize(Ty) <= 256) |
| return true; |
| } else if (VT->getElementType()-> |
| isSpecificBuiltinType(BuiltinType::Float)) { |
| if (getContext().getTypeSize(Ty) <= 128) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool IsQPXVectorTy(QualType Ty) const { |
| return IsQPXVectorTy(Ty.getTypePtr()); |
| } |
| |
| public: |
| PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, |
| bool SoftFloatABI) |
| : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), |
| IsSoftFloatABI(SoftFloatABI) {} |
| |
| bool isPromotableTypeForABI(QualType Ty) const; |
| CharUnits getParamTypeAlignment(QualType Ty) const; |
| |
| ABIArgInfo classifyReturnType(QualType RetTy) const; |
| ABIArgInfo classifyArgumentType(QualType Ty) const; |
| |
| bool isHomogeneousAggregateBaseType(QualType Ty) const override; |
| bool isHomogeneousAggregateSmallEnough(const Type *Ty, |
| uint64_t Members) const override; |
| |
| // TODO: We can add more logic to computeInfo to improve performance. |
| // Example: For aggregate arguments that fit in a register, we could |
| // use getDirectInReg (as is done below for structs containing a single |
| // floating-point value) to avoid pushing them to memory on function |
| // entry. This would require changing the logic in PPCISelLowering |
| // when lowering the parameters in the caller and args in the callee. |
| void computeInfo(CGFunctionInfo &FI) const override { |
| if (!getCXXABI().classifyReturnType(FI)) |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
| for (auto &I : FI.arguments()) { |
| // We rely on the default argument classification for the most part. |
| // One exception: An aggregate containing a single floating-point |
| // or vector item must be passed in a register if one is available. |
| const Type *T = isSingleElementStruct(I.type, getContext()); |
| if (T) { |
| const BuiltinType *BT = T->getAs<BuiltinType>(); |
| if (IsQPXVectorTy(T) || |
| (T->isVectorType() && getContext().getTypeSize(T) == 128) || |
| (BT && BT->isFloatingPoint())) { |
| QualType QT(T, 0); |
| I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); |
| continue; |
| } |
| } |
| I.info = classifyArgumentType(I.type); |
| } |
| } |
| |
| Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const override; |
| |
| bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, |
| bool asReturnValue) const override { |
| return occupiesMoreThan(CGT, scalars, /*total*/ 4); |
| } |
| |
| bool isSwiftErrorInRegister() const override { |
| return false; |
| } |
| }; |
| |
| class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { |
| |
| public: |
| PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, |
| PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, |
| bool SoftFloatABI) |
| : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, |
| SoftFloatABI)) {} |
| |
| int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
| // This is recovered from gcc output. |
| return 1; // r1 is the dedicated stack pointer |
| } |
| |
| bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const override; |
| }; |
| |
| class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { |
| public: |
| PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} |
| |
| int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
| // This is recovered from gcc output. |
| return 1; // r1 is the dedicated stack pointer |
| } |
| |
| bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const override; |
| }; |
| |
| } |
| |
| // Return true if the ABI requires Ty to be passed sign- or zero- |
| // extended to 64 bits. |
| bool |
| PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| |
| // Promotable integer types are required to be promoted by the ABI. |
| if (Ty->isPromotableIntegerType()) |
| return true; |
| |
| // In addition to the usual promotable integer types, we also need to |
| // extend all 32-bit types, since the ABI requires promotion to 64 bits. |
| if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) |
| switch (BT->getKind()) { |
| case BuiltinType::Int: |
| case BuiltinType::UInt: |
| return true; |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| /// isAlignedParamType - Determine whether a type requires 16-byte or |
| /// higher alignment in the parameter area. Always returns at least 8. |
| CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { |
| // Complex types are passed just like their elements. |
| if (const ComplexType *CTy = Ty->getAs<ComplexType>()) |
| Ty = CTy->getElementType(); |
| |
| // Only vector types of size 16 bytes need alignment (larger types are |
| // passed via reference, smaller types are not aligned). |
| if (IsQPXVectorTy(Ty)) { |
| if (getContext().getTypeSize(Ty) > 128) |
| return CharUnits::fromQuantity(32); |
| |
| return CharUnits::fromQuantity(16); |
| } else if (Ty->isVectorType()) { |
| return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); |
| } |
| |
| // For single-element float/vector structs, we consider the whole type |
| // to have the same alignment requirements as its single element. |
| const Type *AlignAsType = nullptr; |
| const Type *EltType = isSingleElementStruct(Ty, getContext()); |
| if (EltType) { |
| const BuiltinType *BT = EltType->getAs<BuiltinType>(); |
| if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && |
| getContext().getTypeSize(EltType) == 128) || |
| (BT && BT->isFloatingPoint())) |
| AlignAsType = EltType; |
| } |
| |
| // Likewise for ELFv2 homogeneous aggregates. |
| const Type *Base = nullptr; |
| uint64_t Members = 0; |
| if (!AlignAsType && Kind == ELFv2 && |
| isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) |
| AlignAsType = Base; |
| |
| // With special case aggregates, only vector base types need alignment. |
| if (AlignAsType && IsQPXVectorTy(AlignAsType)) { |
| if (getContext().getTypeSize(AlignAsType) > 128) |
| return CharUnits::fromQuantity(32); |
| |
| return CharUnits::fromQuantity(16); |
| } else if (AlignAsType) { |
| return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); |
| } |
| |
| // Otherwise, we only need alignment for any aggregate type that |
| // has an alignment requirement of >= 16 bytes. |
| if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { |
| if (HasQPX && getContext().getTypeAlign(Ty) >= 256) |
| return CharUnits::fromQuantity(32); |
| return CharUnits::fromQuantity(16); |
| } |
| |
| return CharUnits::fromQuantity(8); |
| } |
| |
| /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous |
| /// aggregate. Base is set to the base element type, and Members is set |
| /// to the number of base elements. |
| bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, |
| uint64_t &Members) const { |
| if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { |
| uint64_t NElements = AT->getSize().getZExtValue(); |
| if (NElements == 0) |
| return false; |
| if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) |
| return false; |
| Members *= NElements; |
| } else if (const RecordType *RT = Ty->getAs<RecordType>()) { |
| const RecordDecl *RD = RT->getDecl(); |
| if (RD->hasFlexibleArrayMember()) |
| return false; |
| |
| Members = 0; |
| |
| // If this is a C++ record, check the bases first. |
| if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
| for (const auto &I : CXXRD->bases()) { |
| // Ignore empty records. |
| if (isEmptyRecord(getContext(), I.getType(), true)) |
| continue; |
| |
| uint64_t FldMembers; |
| if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) |
| return false; |
| |
| Members += FldMembers; |
| } |
| } |
| |
| for (const auto *FD : RD->fields()) { |
| // Ignore (non-zero arrays of) empty records. |
| QualType FT = FD->getType(); |
| while (const ConstantArrayType *AT = |
| getContext().getAsConstantArrayType(FT)) { |
| if (AT->getSize().getZExtValue() == 0) |
| return false; |
| FT = AT->getElementType(); |
| } |
| if (isEmptyRecord(getContext(), FT, true)) |
| continue; |
| |
| // For compatibility with GCC, ignore empty bitfields in C++ mode. |
| if (getContext().getLangOpts().CPlusPlus && |
| FD->isZeroLengthBitField(getContext())) |
| continue; |
| |
| uint64_t FldMembers; |
| if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) |
| return false; |
| |
| Members = (RD->isUnion() ? |
| std::max(Members, FldMembers) : Members + FldMembers); |
| } |
| |
| if (!Base) |
| return false; |
| |
| // Ensure there is no padding. |
| if (getContext().getTypeSize(Base) * Members != |
| getContext().getTypeSize(Ty)) |
| return false; |
| } else { |
| Members = 1; |
| if (const ComplexType *CT = Ty->getAs<ComplexType>()) { |
| Members = 2; |
| Ty = CT->getElementType(); |
| } |
| |
| // Most ABIs only support float, double, and some vector type widths. |
| if (!isHomogeneousAggregateBaseType(Ty)) |
| return false; |
| |
| // The base type must be the same for all members. Types that |
| // agree in both total size and mode (float vs. vector) are |
| // treated as being equivalent here. |
| const Type *TyPtr = Ty.getTypePtr(); |
| if (!Base) { |
| Base = TyPtr; |
| // If it's a non-power-of-2 vector, its size is already a power-of-2, |
| // so make sure to widen it explicitly. |
| if (const VectorType *VT = Base->getAs<VectorType>()) { |
| QualType EltTy = VT->getElementType(); |
| unsigned NumElements = |
| getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); |
| Base = getContext() |
| .getVectorType(EltTy, NumElements, VT->getVectorKind()) |
| .getTypePtr(); |
| } |
| } |
| |
| if (Base->isVectorType() != TyPtr->isVectorType() || |
| getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) |
| return false; |
| } |
| return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); |
| } |
| |
| bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { |
| // Homogeneous aggregates for ELFv2 must have base types of float, |
| // double, long double, or 128-bit vectors. |
| if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { |
| if (BT->getKind() == BuiltinType::Float || |
| BT->getKind() == BuiltinType::Double || |
| BT->getKind() == BuiltinType::LongDouble || |
| (getContext().getTargetInfo().hasFloat128Type() && |
| (BT->getKind() == BuiltinType::Float128))) { |
| if (IsSoftFloatABI) |
| return false; |
| return true; |
| } |
| } |
| if (const VectorType *VT = Ty->getAs<VectorType>()) { |
| if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) |
| return true; |
| } |
| return false; |
| } |
| |
| bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( |
| const Type *Base, uint64_t Members) const { |
| // Vector and fp128 types require one register, other floating point types |
| // require one or two registers depending on their size. |
| uint32_t NumRegs = |
| ((getContext().getTargetInfo().hasFloat128Type() && |
| Base->isFloat128Type()) || |
| Base->isVectorType()) ? 1 |
| : (getContext().getTypeSize(Base) + 63) / 64; |
| |
| // Homogeneous Aggregates may occupy at most 8 registers. |
| return Members * NumRegs <= 8; |
| } |
| |
| ABIArgInfo |
| PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { |
| Ty = useFirstFieldIfTransparentUnion(Ty); |
| |
| if (Ty->isAnyComplexType()) |
| return ABIArgInfo::getDirect(); |
| |
| // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) |
| // or via reference (larger than 16 bytes). |
| if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { |
| uint64_t Size = getContext().getTypeSize(Ty); |
| if (Size > 128) |
| return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
| else if (Size < 128) { |
| llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); |
| return ABIArgInfo::getDirect(CoerceTy); |
| } |
| } |
| |
| if (isAggregateTypeForABI(Ty)) { |
| if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) |
| return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
| |
| uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); |
| uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); |
| |
| // ELFv2 homogeneous aggregates are passed as array types. |
| const Type *Base = nullptr; |
| uint64_t Members = 0; |
| if (Kind == ELFv2 && |
| isHomogeneousAggregate(Ty, Base, Members)) { |
| llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); |
| llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); |
| return ABIArgInfo::getDirect(CoerceTy); |
| } |
| |
| // If an aggregate may end up fully in registers, we do not |
| // use the ByVal method, but pass the aggregate as array. |
| // This is usually beneficial since we avoid forcing the |
| // back-end to store the argument to memory. |
| uint64_t Bits = getContext().getTypeSize(Ty); |
| if (Bits > 0 && Bits <= 8 * GPRBits) { |
| llvm::Type *CoerceTy; |
| |
| // Types up to 8 bytes are passed as integer type (which will be |
| // properly aligned in the argument save area doubleword). |
| if (Bits <= GPRBits) |
| CoerceTy = |
| llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); |
| // Larger types are passed as arrays, with the base type selected |
| // according to the required alignment in the save area. |
| else { |
| uint64_t RegBits = ABIAlign * 8; |
| uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; |
| llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); |
| CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); |
| } |
| |
| return ABIArgInfo::getDirect(CoerceTy); |
| } |
| |
| // All other aggregates are passed ByVal. |
| return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), |
| /*ByVal=*/true, |
| /*Realign=*/TyAlign > ABIAlign); |
| } |
| |
| return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) |
| : ABIArgInfo::getDirect()); |
| } |
| |
| ABIArgInfo |
| PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { |
| if (RetTy->isVoidType()) |
| return ABIArgInfo::getIgnore(); |
| |
| if (RetTy->isAnyComplexType()) |
| return ABIArgInfo::getDirect(); |
| |
| // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) |
| // or via reference (larger than 16 bytes). |
| if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { |
| uint64_t Size = getContext().getTypeSize(RetTy); |
| if (Size > 128) |
| return getNaturalAlignIndirect(RetTy); |
| else if (Size < 128) { |
| llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); |
| return ABIArgInfo::getDirect(CoerceTy); |
| } |
| } |
| |
| if (isAggregateTypeForABI(RetTy)) { |
| // ELFv2 homogeneous aggregates are returned as array types. |
| const Type *Base = nullptr; |
| uint64_t Members = 0; |
| if (Kind == ELFv2 && |
| isHomogeneousAggregate(RetTy, Base, Members)) { |
| llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); |
| llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); |
| return ABIArgInfo::getDirect(CoerceTy); |
| } |
| |
| // ELFv2 small aggregates are returned in up to two registers. |
| uint64_t Bits = getContext().getTypeSize(RetTy); |
| if (Kind == ELFv2 && Bits <= 2 * GPRBits) { |
| if (Bits == 0) |
| return ABIArgInfo::getIgnore(); |
| |
| llvm::Type *CoerceTy; |
| if (Bits > GPRBits) { |
| CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); |
| CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); |
| } else |
| CoerceTy = |
| llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); |
| return ABIArgInfo::getDirect(CoerceTy); |
| } |
| |
| // All other aggregates are returned indirectly. |
| return getNaturalAlignIndirect(RetTy); |
| } |
| |
| return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) |
| : ABIArgInfo::getDirect()); |
| } |
| |
| // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. |
| Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const { |
| auto TypeInfo = getContext().getTypeInfoInChars(Ty); |
| TypeInfo.second = getParamTypeAlignment(Ty); |
| |
| CharUnits SlotSize = CharUnits::fromQuantity(8); |
| |
| // If we have a complex type and the base type is smaller than 8 bytes, |
| // the ABI calls for the real and imaginary parts to be right-adjusted |
| // in separate doublewords. However, Clang expects us to produce a |
| // pointer to a structure with the two parts packed tightly. So generate |
| // loads of the real and imaginary parts relative to the va_list pointer, |
| // and store them to a temporary structure. |
| if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { |
| CharUnits EltSize = TypeInfo.first / 2; |
| if (EltSize < SlotSize) { |
| Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, |
| SlotSize * 2, SlotSize, |
| SlotSize, /*AllowHigher*/ true); |
| |
| Address RealAddr = Addr; |
| Address ImagAddr = RealAddr; |
| if (CGF.CGM.getDataLayout().isBigEndian()) { |
| RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, |
| SlotSize - EltSize); |
| ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, |
| 2 * SlotSize - EltSize); |
| } else { |
| ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); |
| } |
| |
| llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); |
| RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); |
| ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); |
| llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); |
| llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); |
| |
| Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); |
| CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), |
| /*init*/ true); |
| return Temp; |
| } |
| } |
| |
| // Otherwise, just use the general rule. |
| return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, |
| TypeInfo, SlotSize, /*AllowHigher*/ true); |
| } |
| |
| static bool |
| PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) { |
| // This is calculated from the LLVM and GCC tables and verified |
| // against gcc output. AFAIK all ABIs use the same encoding. |
| |
| CodeGen::CGBuilderTy &Builder = CGF.Builder; |
| |
| llvm::IntegerType *i8 = CGF.Int8Ty; |
| llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); |
| llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); |
| llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); |
| |
| // 0-31: r0-31, the 8-byte general-purpose registers |
| AssignToArrayRange(Builder, Address, Eight8, 0, 31); |
| |
| // 32-63: fp0-31, the 8-byte floating-point registers |
| AssignToArrayRange(Builder, Address, Eight8, 32, 63); |
| |
| // 64-67 are various 8-byte special-purpose registers: |
| // 64: mq |
| // 65: lr |
| // 66: ctr |
| // 67: ap |
| AssignToArrayRange(Builder, Address, Eight8, 64, 67); |
| |
| // 68-76 are various 4-byte special-purpose registers: |
| // 68-75 cr0-7 |
| // 76: xer |
| AssignToArrayRange(Builder, Address, Four8, 68, 76); |
| |
| // 77-108: v0-31, the 16-byte vector registers |
| AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); |
| |
| // 109: vrsave |
| // 110: vscr |
| // 111: spe_acc |
| // 112: spefscr |
| // 113: sfp |
| // 114: tfhar |
| // 115: tfiar |
| // 116: texasr |
| AssignToArrayRange(Builder, Address, Eight8, 109, 116); |
| |
| return false; |
| } |
| |
| bool |
| PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( |
| CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const { |
| |
| return PPC64_initDwarfEHRegSizeTable(CGF, Address); |
| } |
| |
| bool |
| PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const { |
| |
| return PPC64_initDwarfEHRegSizeTable(CGF, Address); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AArch64 ABI Implementation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class AArch64ABIInfo : public SwiftABIInfo { |
| public: |
| enum ABIKind { |
| AAPCS = 0, |
| DarwinPCS, |
| Win64 |
| }; |
| |
| private: |
| ABIKind Kind; |
| |
| public: |
| AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) |
| : SwiftABIInfo(CGT), Kind(Kind) {} |
| |
| private: |
| ABIKind getABIKind() const { return Kind; } |
| bool isDarwinPCS() const { return Kind == DarwinPCS; } |
| |
| ABIArgInfo classifyReturnType(QualType RetTy) const; |
| ABIArgInfo classifyArgumentType(QualType RetTy) const; |
| bool isHomogeneousAggregateBaseType(QualType Ty) const override; |
| bool isHomogeneousAggregateSmallEnough(const Type *Ty, |
| uint64_t Members) const override; |
| |
| bool isIllegalVectorType(QualType Ty) const; |
| |
| void computeInfo(CGFunctionInfo &FI) const override { |
| if (!::classifyReturnType(getCXXABI(), FI, *this)) |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
| |
| for (auto &it : FI.arguments()) |
| it.info = classifyArgumentType(it.type); |
| } |
| |
| Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const; |
| |
| Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const; |
| |
| Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const override { |
| return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) |
| : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) |
| : EmitAAPCSVAArg(VAListAddr, Ty, CGF); |
| } |
| |
| Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const override; |
| |
| bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, |
| bool asReturnValue) const override { |
| return occupiesMoreThan(CGT, scalars, /*total*/ 4); |
| } |
| bool isSwiftErrorInRegister() const override { |
| return true; |
| } |
| |
| bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, |
| unsigned elts) const override; |
| }; |
| |
| class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) |
| : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} |
| |
| StringRef getARCRetainAutoreleasedReturnValueMarker() const override { |
| return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; |
| } |
| |
| int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
| return 31; |
| } |
| |
| bool doesReturnSlotInterfereWithArgs() const override { return false; } |
| }; |
| |
| class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { |
| public: |
| WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) |
| : AArch64TargetCodeGenInfo(CGT, K) {} |
| |
| void getDependentLibraryOption(llvm::StringRef Lib, |
| llvm::SmallString<24> &Opt) const override { |
| Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); |
| } |
| |
| void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, |
| llvm::SmallString<32> &Opt) const override { |
| Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; |
| } |
| }; |
| } |
| |
| ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { |
| Ty = useFirstFieldIfTransparentUnion(Ty); |
| |
| // Handle illegal vector types here. |
| if (isIllegalVectorType(Ty)) { |
| uint64_t Size = getContext().getTypeSize(Ty); |
| // Android promotes <2 x i8> to i16, not i32 |
| if (isAndroid() && (Size <= 16)) { |
| llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); |
| return ABIArgInfo::getDirect(ResType); |
| } |
| if (Size <= 32) { |
| llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); |
| return ABIArgInfo::getDirect(ResType); |
| } |
| if (Size == 64) { |
| llvm::Type *ResType = |
| llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); |
| return ABIArgInfo::getDirect(ResType); |
| } |
| if (Size == 128) { |
| llvm::Type *ResType = |
| llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); |
| return ABIArgInfo::getDirect(ResType); |
| } |
| return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
| } |
| |
| if (!isAggregateTypeForABI(Ty)) { |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| |
| return (Ty->isPromotableIntegerType() && isDarwinPCS() |
| ? ABIArgInfo::getExtend(Ty) |
| : ABIArgInfo::getDirect()); |
| } |
| |
| // Structures with either a non-trivial destructor or a non-trivial |
| // copy constructor are always indirect. |
| if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { |
| return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == |
| CGCXXABI::RAA_DirectInMemory); |
| } |
| |
| // Empty records are always ignored on Darwin, but actually passed in C++ mode |
| // elsewhere for GNU compatibility. |
| uint64_t Size = getContext().getTypeSize(Ty); |
| bool IsEmpty = isEmptyRecord(getContext(), Ty, true); |
| if (IsEmpty || Size == 0) { |
| if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) |
| return ABIArgInfo::getIgnore(); |
| |
| // GNU C mode. The only argument that gets ignored is an empty one with size |
| // 0. |
| if (IsEmpty && Size == 0) |
| return ABIArgInfo::getIgnore(); |
| return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); |
| } |
| |
| // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. |
| const Type *Base = nullptr; |
| uint64_t Members = 0; |
| if (isHomogeneousAggregate(Ty, Base, Members)) { |
| return ABIArgInfo::getDirect( |
| llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); |
| } |
| |
| // Aggregates <= 16 bytes are passed directly in registers or on the stack. |
| if (Size <= 128) { |
| // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of |
| // same size and alignment. |
| if (getTarget().isRenderScriptTarget()) { |
| return coerceToIntArray(Ty, getContext(), getVMContext()); |
| } |
| unsigned Alignment; |
| if (Kind == AArch64ABIInfo::AAPCS) { |
| Alignment = getContext().getTypeUnadjustedAlign(Ty); |
| Alignment = Alignment < 128 ? 64 : 128; |
| } else { |
| Alignment = getContext().getTypeAlign(Ty); |
| } |
| Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes |
| |
| // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. |
| // For aggregates with 16-byte alignment, we use i128. |
| if (Alignment < 128 && Size == 128) { |
| llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); |
| return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); |
| } |
| return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); |
| } |
| |
| return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
| } |
| |
| ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy) const { |
| if (RetTy->isVoidType()) |
| return ABIArgInfo::getIgnore(); |
| |
| // Large vector types should be returned via memory. |
| if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) |
| return getNaturalAlignIndirect(RetTy); |
| |
| if (!isAggregateTypeForABI(RetTy)) { |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
| RetTy = EnumTy->getDecl()->getIntegerType(); |
| |
| return (RetTy->isPromotableIntegerType() && isDarwinPCS() |
| ? ABIArgInfo::getExtend(RetTy) |
| : ABIArgInfo::getDirect()); |
| } |
| |
| uint64_t Size = getContext().getTypeSize(RetTy); |
| if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) |
| return ABIArgInfo::getIgnore(); |
| |
| const Type *Base = nullptr; |
| uint64_t Members = 0; |
| if (isHomogeneousAggregate(RetTy, Base, Members)) |
| // Homogeneous Floating-point Aggregates (HFAs) are returned directly. |
| return ABIArgInfo::getDirect(); |
| |
| // Aggregates <= 16 bytes are returned directly in registers or on the stack. |
| if (Size <= 128) { |
| // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of |
| // same size and alignment. |
| if (getTarget().isRenderScriptTarget()) { |
| return coerceToIntArray(RetTy, getContext(), getVMContext()); |
| } |
| unsigned Alignment = getContext().getTypeAlign(RetTy); |
| Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes |
| |
| // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. |
| // For aggregates with 16-byte alignment, we use i128. |
| if (Alignment < 128 && Size == 128) { |
| llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); |
| return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); |
| } |
| return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); |
| } |
| |
| return getNaturalAlignIndirect(RetTy); |
| } |
| |
| /// isIllegalVectorType - check whether the vector type is legal for AArch64. |
| bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { |
| if (const VectorType *VT = Ty->getAs<VectorType>()) { |
| // Check whether VT is legal. |
| unsigned NumElements = VT->getNumElements(); |
| uint64_t Size = getContext().getTypeSize(VT); |
| // NumElements should be power of 2. |
| if (!llvm::isPowerOf2_32(NumElements)) |
| return true; |
| return Size != 64 && (Size != 128 || NumElements == 1); |
| } |
| return false; |
| } |
| |
| bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, |
| llvm::Type *eltTy, |
| unsigned elts) const { |
| if (!llvm::isPowerOf2_32(elts)) |
| return false; |
| if (totalSize.getQuantity() != 8 && |
| (totalSize.getQuantity() != 16 || elts == 1)) |
| return false; |
| return true; |
| } |
| |
| bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { |
| // Homogeneous aggregates for AAPCS64 must have base types of a floating |
| // point type or a short-vector type. This is the same as the 32-bit ABI, |
| // but with the difference that any floating-point type is allowed, |
| // including __fp16. |
| if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { |
| if (BT->isFloatingPoint()) |
| return true; |
| } else if (const VectorType *VT = Ty->getAs<VectorType>()) { |
| unsigned VecSize = getContext().getTypeSize(VT); |
| if (VecSize == 64 || VecSize == 128) |
| return true; |
| } |
| return false; |
| } |
| |
| bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, |
| uint64_t Members) const { |
| return Members <= 4; |
| } |
| |
| Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, |
| QualType Ty, |
| CodeGenFunction &CGF) const { |
| ABIArgInfo AI = classifyArgumentType(Ty); |
| bool IsIndirect = AI.isIndirect(); |
| |
| llvm::Type *BaseTy = CGF.ConvertType(Ty); |
| if (IsIndirect) |
| BaseTy = llvm::PointerType::getUnqual(BaseTy); |
| else if (AI.getCoerceToType()) |
| BaseTy = AI.getCoerceToType(); |
| |
| unsigned NumRegs = 1; |
| if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { |
| BaseTy = ArrTy->getElementType(); |
| NumRegs = ArrTy->getNumElements(); |
| } |
| bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); |
| |
| // The AArch64 va_list type and handling is specified in the Procedure Call |
| // Standard, section B.4: |
| // |
| // struct { |
| // void *__stack; |
| // void *__gr_top; |
| // void *__vr_top; |
| // int __gr_offs; |
| // int __vr_offs; |
| // }; |
| |
| llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); |
| llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); |
| llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); |
| llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); |
| |
| auto TyInfo = getContext().getTypeInfoInChars(Ty); |
| CharUnits TyAlign = TyInfo.second; |
| |
| Address reg_offs_p = Address::invalid(); |
| llvm::Value *reg_offs = nullptr; |
| int reg_top_index; |
| CharUnits reg_top_offset; |
| int RegSize = IsIndirect ? 8 : TyInfo.first.getQuantity(); |
| if (!IsFPR) { |
| // 3 is the field number of __gr_offs |
| reg_offs_p = |
| CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), |
| "gr_offs_p"); |
| reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); |
| reg_top_index = 1; // field number for __gr_top |
| reg_top_offset = CharUnits::fromQuantity(8); |
| RegSize = llvm::alignTo(RegSize, 8); |
| } else { |
| // 4 is the field number of __vr_offs. |
| reg_offs_p = |
| CGF.Builder.CreateStructGEP(VAListAddr, 4, CharUnits::fromQuantity(28), |
| "vr_offs_p"); |
| reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); |
| reg_top_index = 2; // field number for __vr_top |
| reg_top_offset = CharUnits::fromQuantity(16); |
| RegSize = 16 * NumRegs; |
| } |
| |
| //======================================= |
| // Find out where argument was passed |
| //======================================= |
| |
| // If reg_offs >= 0 we're already using the stack for this type of |
| // argument. We don't want to keep updating reg_offs (in case it overflows, |
| // though anyone passing 2GB of arguments, each at most 16 bytes, deserves |
| // whatever they get). |
| llvm::Value *UsingStack = nullptr; |
| UsingStack = CGF.Builder.CreateICmpSGE( |
| reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); |
| |
| CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); |
| |
| // Otherwise, at least some kind of argument could go in these registers, the |
| // question is whether this particular type is too big. |
| CGF.EmitBlock(MaybeRegBlock); |
| |
| // Integer arguments may need to correct register alignment (for example a |
| // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we |
| // align __gr_offs to calculate the potential address. |
| if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { |
| int Align = TyAlign.getQuantity(); |
| |
| reg_offs = CGF.Builder.CreateAdd( |
| reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), |
| "align_regoffs"); |
| reg_offs = CGF.Builder.CreateAnd( |
| reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), |
| "aligned_regoffs"); |
| } |
| |
| // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. |
| // The fact that this is done unconditionally reflects the fact that |
| // allocating an argument to the stack also uses up all the remaining |
| // registers of the appropriate kind. |
| llvm::Value *NewOffset = nullptr; |
| NewOffset = CGF.Builder.CreateAdd( |
| reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); |
| CGF.Builder.CreateStore(NewOffset, reg_offs_p); |
| |
| // Now we're in a position to decide whether this argument really was in |
| // registers or not. |
| llvm::Value *InRegs = nullptr; |
| InRegs = CGF.Builder.CreateICmpSLE( |
| NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); |
| |
| CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); |
| |
| //======================================= |
| // Argument was in registers |
| //======================================= |
| |
| // Now we emit the code for if the argument was originally passed in |
| // registers. First start the appropriate block: |
| CGF.EmitBlock(InRegBlock); |
| |
| llvm::Value *reg_top = nullptr; |
| Address reg_top_p = CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, |
| reg_top_offset, "reg_top_p"); |
| reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); |
| Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), |
| CharUnits::fromQuantity(IsFPR ? 16 : 8)); |
| Address RegAddr = Address::invalid(); |
| llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); |
| |
| if (IsIndirect) { |
| // If it's been passed indirectly (actually a struct), whatever we find from |
| // stored registers or on the stack will actually be a struct **. |
| MemTy = llvm::PointerType::getUnqual(MemTy); |
| } |
| |
| const Type *Base = nullptr; |
| uint64_t NumMembers = 0; |
| bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); |
| if (IsHFA && NumMembers > 1) { |
| // Homogeneous aggregates passed in registers will have their elements split |
| // and stored 16-bytes apart regardless of size (they're notionally in qN, |
| // qN+1, ...). We reload and store into a temporary local variable |
| // contiguously. |
| assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); |
| auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); |
| llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); |
| llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); |
| Address Tmp = CGF.CreateTempAlloca(HFATy, |
| std::max(TyAlign, BaseTyInfo.second)); |
| |
| // On big-endian platforms, the value will be right-aligned in its slot. |
| int Offset = 0; |
| if (CGF.CGM.getDataLayout().isBigEndian() && |
| BaseTyInfo.first.getQuantity() < 16) |
| Offset = 16 - BaseTyInfo.first.getQuantity(); |
| |
| for (unsigned i = 0; i < NumMembers; ++i) { |
| CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); |
| Address LoadAddr = |
| CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); |
| LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); |
| |
| Address StoreAddr = |
| CGF.Builder.CreateConstArrayGEP(Tmp, i, BaseTyInfo.first); |
| |
| llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); |
| CGF.Builder.CreateStore(Elem, StoreAddr); |
| } |
| |
| RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); |
| } else { |
| // Otherwise the object is contiguous in memory. |
| |
| // It might be right-aligned in its slot. |
| CharUnits SlotSize = BaseAddr.getAlignment(); |
| if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && |
| (IsHFA || !isAggregateTypeForABI(Ty)) && |
| TyInfo.first < SlotSize) { |
| CharUnits Offset = SlotSize - TyInfo.first; |
| BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); |
| } |
| |
| RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); |
| } |
| |
| CGF.EmitBranch(ContBlock); |
| |
| //======================================= |
| // Argument was on the stack |
| //======================================= |
| CGF.EmitBlock(OnStackBlock); |
| |
| Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, |
| CharUnits::Zero(), "stack_p"); |
| llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); |
| |
| // Again, stack arguments may need realignment. In this case both integer and |
| // floating-point ones might be affected. |
| if (!IsIndirect && TyAlign.getQuantity() > 8) { |
| int Align = TyAlign.getQuantity(); |
| |
| OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); |
| |
| OnStackPtr = CGF.Builder.CreateAdd( |
| OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), |
| "align_stack"); |
| OnStackPtr = CGF.Builder.CreateAnd( |
| OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), |
| "align_stack"); |
| |
| OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); |
| } |
| Address OnStackAddr(OnStackPtr, |
| std::max(CharUnits::fromQuantity(8), TyAlign)); |
| |
| // All stack slots are multiples of 8 bytes. |
| CharUnits StackSlotSize = CharUnits::fromQuantity(8); |
| CharUnits StackSize; |
| if (IsIndirect) |
| StackSize = StackSlotSize; |
| else |
| StackSize = TyInfo.first.alignTo(StackSlotSize); |
| |
| llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); |
| llvm::Value *NewStack = |
| CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); |
| |
| // Write the new value of __stack for the next call to va_arg |
| CGF.Builder.CreateStore(NewStack, stack_p); |
| |
| if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && |
| TyInfo.first < StackSlotSize) { |
| CharUnits Offset = StackSlotSize - TyInfo.first; |
| OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); |
| } |
| |
| OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); |
| |
| CGF.EmitBranch(ContBlock); |
| |
| //======================================= |
| // Tidy up |
| //======================================= |
| CGF.EmitBlock(ContBlock); |
| |
| Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, |
| OnStackAddr, OnStackBlock, "vaargs.addr"); |
| |
| if (IsIndirect) |
| return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), |
| TyInfo.second); |
| |
| return ResAddr; |
| } |
| |
| Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, |
| CodeGenFunction &CGF) const { |
| // The backend's lowering doesn't support va_arg for aggregates or |
| // illegal vector types. Lower VAArg here for these cases and use |
| // the LLVM va_arg instruction for everything else. |
| if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) |
| return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); |
| |
| CharUnits SlotSize = CharUnits::fromQuantity(8); |
| |
| // Empty records are ignored for parameter passing purposes. |
| if (isEmptyRecord(getContext(), Ty, true)) { |
| Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); |
| Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); |
| return Addr; |
| } |
| |
| // The size of the actual thing passed, which might end up just |
| // being a pointer for indirect types. |
| auto TyInfo = getContext().getTypeInfoInChars(Ty); |
| |
| // Arguments bigger than 16 bytes which aren't homogeneous |
| // aggregates should be passed indirectly. |
| bool IsIndirect = false; |
| if (TyInfo.first.getQuantity() > 16) { |
| const Type *Base = nullptr; |
| uint64_t Members = 0; |
| IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); |
| } |
| |
| return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, |
| TyInfo, SlotSize, /*AllowHigherAlign*/ true); |
| } |
| |
| Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const { |
| return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, |
| CGF.getContext().getTypeInfoInChars(Ty), |
| CharUnits::fromQuantity(8), |
| /*allowHigherAlign*/ false); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ARM ABI Implementation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class ARMABIInfo : public SwiftABIInfo { |
| public: |
| enum ABIKind { |
| APCS = 0, |
| AAPCS = 1, |
| AAPCS_VFP = 2, |
| AAPCS16_VFP = 3, |
| }; |
| |
| private: |
| ABIKind Kind; |
| |
| public: |
| ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) |
| : SwiftABIInfo(CGT), Kind(_Kind) { |
| setCCs(); |
| } |
| |
| bool isEABI() const { |
| switch (getTarget().getTriple().getEnvironment()) { |
| case llvm::Triple::Android: |
| case llvm::Triple::EABI: |
| case llvm::Triple::EABIHF: |
| case llvm::Triple::GNUEABI: |
| case llvm::Triple::GNUEABIHF: |
| case llvm::Triple::MuslEABI: |
| case llvm::Triple::MuslEABIHF: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool isEABIHF() const { |
| switch (getTarget().getTriple().getEnvironment()) { |
| case llvm::Triple::EABIHF: |
| case llvm::Triple::GNUEABIHF: |
| case llvm::Triple::MuslEABIHF: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| ABIKind getABIKind() const { return Kind; } |
| |
| private: |
| ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic) const; |
| ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic) const; |
| bool isIllegalVectorType(QualType Ty) const; |
| |
| bool isHomogeneousAggregateBaseType(QualType Ty) const override; |
| bool isHomogeneousAggregateSmallEnough(const Type *Ty, |
| uint64_t Members) const override; |
| |
| void computeInfo(CGFunctionInfo &FI) const override; |
| |
| Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const override; |
| |
| llvm::CallingConv::ID getLLVMDefaultCC() const; |
| llvm::CallingConv::ID getABIDefaultCC() const; |
| void setCCs(); |
| |
| bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, |
| bool asReturnValue) const override { |
| return occupiesMoreThan(CGT, scalars, /*total*/ 4); |
| } |
| bool isSwiftErrorInRegister() const override { |
| return true; |
| } |
| bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, |
| unsigned elts) const override; |
| }; |
| |
| class ARMTargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) |
| :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} |
| |
| const ARMABIInfo &getABIInfo() const { |
| return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); |
| } |
| |
| int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
| return 13; |
| } |
| |
| StringRef getARCRetainAutoreleasedReturnValueMarker() const override { |
| return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; |
| } |
| |
| bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const override { |
| llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); |
| |
| // 0-15 are the 16 integer registers. |
| AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); |
| return false; |
| } |
| |
| unsigned getSizeOfUnwindException() const override { |
| if (getABIInfo().isEABI()) return 88; |
| return TargetCodeGenInfo::getSizeOfUnwindException(); |
| } |
| |
| void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &CGM) const override { |
| if (GV->isDeclaration()) |
| return; |
| const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); |
| if (!FD) |
| return; |
| |
| const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); |
| if (!Attr) |
| return; |
| |
| const char *Kind; |
| switch (Attr->getInterrupt()) { |
| case ARMInterruptAttr::Generic: Kind = ""; break; |
| case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; |
| case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; |
| case ARMInterruptAttr::SWI: Kind = "SWI"; break; |
| case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; |
| case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; |
| } |
| |
| llvm::Function *Fn = cast<llvm::Function>(GV); |
| |
| Fn->addFnAttr("interrupt", Kind); |
| |
| ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); |
| if (ABI == ARMABIInfo::APCS) |
| return; |
| |
| // AAPCS guarantees that sp will be 8-byte aligned on any public interface, |
| // however this is not necessarily true on taking any interrupt. Instruct |
| // the backend to perform a realignment as part of the function prologue. |
| llvm::AttrBuilder B; |
| B.addStackAlignmentAttr(8); |
| Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); |
| } |
| }; |
| |
| class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { |
| public: |
| WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) |
| : ARMTargetCodeGenInfo(CGT, K) {} |
| |
| void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &CGM) const override; |
| |
| void getDependentLibraryOption(llvm::StringRef Lib, |
| llvm::SmallString<24> &Opt) const override { |
| Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); |
| } |
| |
| void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, |
| llvm::SmallString<32> &Opt) const override { |
| Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; |
| } |
| }; |
| |
| void WindowsARMTargetCodeGenInfo::setTargetAttributes( |
| const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { |
| ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); |
| if (GV->isDeclaration()) |
| return; |
| addStackProbeTargetAttributes(D, GV, CGM); |
| } |
| } |
| |
| void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { |
| if (!::classifyReturnType(getCXXABI(), FI, *this)) |
| FI.getReturnInfo() = |
| classifyReturnType(FI.getReturnType(), FI.isVariadic()); |
| |
| for (auto &I : FI.arguments()) |
| I.info = classifyArgumentType(I.type, FI.isVariadic()); |
| |
| // Always honor user-specified calling convention. |
| if (FI.getCallingConvention() != llvm::CallingConv::C) |
| return; |
| |
| llvm::CallingConv::ID cc = getRuntimeCC(); |
| if (cc != llvm::CallingConv::C) |
| FI.setEffectiveCallingConvention(cc); |
| } |
| |
| /// Return the default calling convention that LLVM will use. |
| llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { |
| // The default calling convention that LLVM will infer. |
| if (isEABIHF() || getTarget().getTriple().isWatchABI()) |
| return llvm::CallingConv::ARM_AAPCS_VFP; |
| else if (isEABI()) |
| return llvm::CallingConv::ARM_AAPCS; |
| else |
| return llvm::CallingConv::ARM_APCS; |
| } |
| |
| /// Return the calling convention that our ABI would like us to use |
| /// as the C calling convention. |
| llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { |
| switch (getABIKind()) { |
| case APCS: return llvm::CallingConv::ARM_APCS; |
| case AAPCS: return llvm::CallingConv::ARM_AAPCS; |
| case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; |
| case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; |
| } |
| llvm_unreachable("bad ABI kind"); |
| } |
| |
| void ARMABIInfo::setCCs() { |
| assert(getRuntimeCC() == llvm::CallingConv::C); |
| |
| // Don't muddy up the IR with a ton of explicit annotations if |
| // they'd just match what LLVM will infer from the triple. |
| llvm::CallingConv::ID abiCC = getABIDefaultCC(); |
| if (abiCC != getLLVMDefaultCC()) |
| RuntimeCC = abiCC; |
| } |
| |
| ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, |
| bool isVariadic) const { |
| // 6.1.2.1 The following argument types are VFP CPRCs: |
| // A single-precision floating-point type (including promoted |
| // half-precision types); A double-precision floating-point type; |
| // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate |
| // with a Base Type of a single- or double-precision floating-point type, |
| // 64-bit containerized vectors or 128-bit containerized vectors with one |
| // to four Elements. |
| bool IsEffectivelyAAPCS_VFP = getABIKind() == AAPCS_VFP && !isVariadic; |
| |
| Ty = useFirstFieldIfTransparentUnion(Ty); |
| |
| // Handle illegal vector types here. |
| if (isIllegalVectorType(Ty)) { |
| uint64_t Size = getContext().getTypeSize(Ty); |
| if (Size <= 32) { |
| llvm::Type *ResType = |
| llvm::Type::getInt32Ty(getVMContext()); |
| return ABIArgInfo::getDirect(ResType); |
| } |
| if (Size == 64) { |
| llvm::Type *ResType = llvm::VectorType::get( |
| llvm::Type::getInt32Ty(getVMContext()), 2); |
| return ABIArgInfo::getDirect(ResType); |
| } |
| if (Size == 128) { |
| llvm::Type *ResType = llvm::VectorType::get( |
| llvm::Type::getInt32Ty(getVMContext()), 4); |
| return ABIArgInfo::getDirect(ResType); |
| } |
| return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
| } |
| |
| // _Float16 and __fp16 get passed as if it were an int or float, but with |
| // the top 16 bits unspecified. This is not done for OpenCL as it handles the |
| // half type natively, and does not need to interwork with AAPCS code. |
| if ((Ty->isFloat16Type() || Ty->isHalfType()) && |
| !getContext().getLangOpts().NativeHalfArgsAndReturns) { |
| llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? |
| llvm::Type::getFloatTy(getVMContext()) : |
| llvm::Type::getInt32Ty(getVMContext()); |
| return ABIArgInfo::getDirect(ResType); |
| } |
| |
| if (!isAggregateTypeForABI(Ty)) { |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| } |
| |
| return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) |
| : ABIArgInfo::getDirect()); |
| } |
| |
| if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { |
| return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
| } |
| |
| // Ignore empty records. |
| if (isEmptyRecord(getContext(), Ty, true)) |
| return ABIArgInfo::getIgnore(); |
| |
| if (IsEffectivelyAAPCS_VFP) { |
| // Homogeneous Aggregates need to be expanded when we can fit the aggregate |
| // into VFP registers. |
| const Type *Base = nullptr; |
| uint64_t Members = 0; |
| if (isHomogeneousAggregate(Ty, Base, Members)) { |
| assert(Base && "Base class should be set for homogeneous aggregate"); |
| // Base can be a floating-point or a vector. |
| return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); |
| } |
| } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { |
| // WatchOS does have homogeneous aggregates. Note that we intentionally use |
| // this convention even for a variadic function: the backend will use GPRs |
| // if needed. |
| const Type *Base = nullptr; |
| uint64_t Members = 0; |
| if (isHomogeneousAggregate(Ty, Base, Members)) { |
| assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); |
| llvm::Type *Ty = |
| llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); |
| return ABIArgInfo::getDirect(Ty, 0, nullptr, false); |
| } |
| } |
| |
| if (getABIKind() == ARMABIInfo::AAPCS16_VFP && |
| getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { |
| // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're |
| // bigger than 128-bits, they get placed in space allocated by the caller, |
| // and a pointer is passed. |
| return ABIArgInfo::getIndirect( |
| CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); |
| } |
| |
| // Support byval for ARM. |
| // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at |
| // most 8-byte. We realign the indirect argument if type alignment is bigger |
| // than ABI alignment. |
| uint64_t ABIAlign = 4; |
| uint64_t TyAlign; |
| if (getABIKind() == ARMABIInfo::AAPCS_VFP || |
| getABIKind() == ARMABIInfo::AAPCS) { |
| TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); |
| ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); |
| } else { |
| TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); |
| } |
| if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { |
| assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); |
| return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), |
| /*ByVal=*/true, |
| /*Realign=*/TyAlign > ABIAlign); |
| } |
| |
| // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of |
| // same size and alignment. |
| if (getTarget().isRenderScriptTarget()) { |
| return coerceToIntArray(Ty, getContext(), getVMContext()); |
| } |
| |
| // Otherwise, pass by coercing to a structure of the appropriate size. |
| llvm::Type* ElemTy; |
| unsigned SizeRegs; |
| // FIXME: Try to match the types of the arguments more accurately where |
| // we can. |
| if (TyAlign <= 4) { |
| ElemTy = llvm::Type::getInt32Ty(getVMContext()); |
| SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; |
| } else { |
| ElemTy = llvm::Type::getInt64Ty(getVMContext()); |
| SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; |
| } |
| |
| return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); |
| } |
| |
| static bool isIntegerLikeType(QualType Ty, ASTContext &Context, |
| llvm::LLVMContext &VMContext) { |
| // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure |
| // is called integer-like if its size is less than or equal to one word, and |
| // the offset of each of its addressable sub-fields is zero. |
| |
| uint64_t Size = Context.getTypeSize(Ty); |
| |
| // Check that the type fits in a word. |
| if (Size > 32) |
| return false; |
| |
| // FIXME: Handle vector types! |
| if (Ty->isVectorType()) |
| return false; |
| |
| // Float types are never treated as "integer like". |
| if (Ty->isRealFloatingType()) |
| return false; |
| |
| // If this is a builtin or pointer type then it is ok. |
| if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) |
| return true; |
| |
| // Small complex integer types are "integer like". |
| if (const ComplexType *CT = Ty->getAs<ComplexType>()) |
| return isIntegerLikeType(CT->getElementType(), Context, VMContext); |
| |
| // Single element and zero sized arrays should be allowed, by the definition |
| // above, but they are not. |
| |
| // Otherwise, it must be a record type. |
| const RecordType *RT = Ty->getAs<RecordType>(); |
| if (!RT) return false; |
| |
| // Ignore records with flexible arrays. |
| const RecordDecl *RD = RT->getDecl(); |
| if (RD->hasFlexibleArrayMember()) |
| return false; |
| |
| // Check that all sub-fields are at offset 0, and are themselves "integer |
| // like". |
| const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
| |
| bool HadField = false; |
| unsigned idx = 0; |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i, ++idx) { |
| const FieldDecl *FD = *i; |
| |
| // Bit-fields are not addressable, we only need to verify they are "integer |
| // like". We still have to disallow a subsequent non-bitfield, for example: |
| // struct { int : 0; int x } |
| // is non-integer like according to gcc. |
| if (FD->isBitField()) { |
| if (!RD->isUnion()) |
| HadField = true; |
| |
| if (!isIntegerLikeType(FD->getType(), Context, VMContext)) |
| return false; |
| |
| continue; |
| } |
| |
| // Check if this field is at offset 0. |
| if (Layout.getFieldOffset(idx) != 0) |
| return false; |
| |
| if (!isIntegerLikeType(FD->getType(), Context, VMContext)) |
| return false; |
| |
| // Only allow at most one field in a structure. This doesn't match the |
| // wording above, but follows gcc in situations with a field following an |
| // empty structure. |
| if (!RD->isUnion()) { |
| if (HadField) |
| return false; |
| |
| HadField = true; |
| } |
| } |
| |
| return true; |
| } |
| |
| ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, |
| bool isVariadic) const { |
| bool IsEffectivelyAAPCS_VFP = |
| (getABIKind() == AAPCS_VFP || getABIKind() == AAPCS16_VFP) && !isVariadic; |
| |
| if (RetTy->isVoidType()) |
| return ABIArgInfo::getIgnore(); |
| |
| // Large vector types should be returned via memory. |
| if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) { |
| return getNaturalAlignIndirect(RetTy); |
| } |
| |
| // _Float16 and __fp16 get returned as if it were an int or float, but with |
| // the top 16 bits unspecified. This is not done for OpenCL as it handles the |
| // half type natively, and does not need to interwork with AAPCS code. |
| if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && |
| !getContext().getLangOpts().NativeHalfArgsAndReturns) { |
| llvm::Type *ResType = IsEffectivelyAAPCS_VFP ? |
| llvm::Type::getFloatTy(getVMContext()) : |
| llvm::Type::getInt32Ty(getVMContext()); |
| return ABIArgInfo::getDirect(ResType); |
| } |
| |
| if (!isAggregateTypeForABI(RetTy)) { |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
| RetTy = EnumTy->getDecl()->getIntegerType(); |
| |
| return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) |
| : ABIArgInfo::getDirect(); |
| } |
| |
| // Are we following APCS? |
| if (getABIKind() == APCS) { |
| if (isEmptyRecord(getContext(), RetTy, false)) |
| return ABIArgInfo::getIgnore(); |
| |
| // Complex types are all returned as packed integers. |
| // |
| // FIXME: Consider using 2 x vector types if the back end handles them |
| // correctly. |
| if (RetTy->isAnyComplexType()) |
| return ABIArgInfo::getDirect(llvm::IntegerType::get( |
| getVMContext(), getContext().getTypeSize(RetTy))); |
| |
| // Integer like structures are returned in r0. |
| if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { |
| // Return in the smallest viable integer type. |
| uint64_t Size = getContext().getTypeSize(RetTy); |
| if (Size <= 8) |
| return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); |
| if (Size <= 16) |
| return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); |
| return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); |
| } |
| |
| // Otherwise return in memory. |
| return getNaturalAlignIndirect(RetTy); |
| } |
| |
| // Otherwise this is an AAPCS variant. |
| |
| if (isEmptyRecord(getContext(), RetTy, true)) |
| return ABIArgInfo::getIgnore(); |
| |
| // Check for homogeneous aggregates with AAPCS-VFP. |
| if (IsEffectivelyAAPCS_VFP) { |
| const Type *Base = nullptr; |
| uint64_t Members = 0; |
| if (isHomogeneousAggregate(RetTy, Base, Members)) { |
| assert(Base && "Base class should be set for homogeneous aggregate"); |
| // Homogeneous Aggregates are returned directly. |
| return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); |
| } |
| } |
| |
| // Aggregates <= 4 bytes are returned in r0; other aggregates |
| // are returned indirectly. |
| uint64_t Size = getContext().getTypeSize(RetTy); |
| if (Size <= 32) { |
| // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of |
| // same size and alignment. |
| if (getTarget().isRenderScriptTarget()) { |
| return coerceToIntArray(RetTy, getContext(), getVMContext()); |
| } |
| if (getDataLayout().isBigEndian()) |
| // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) |
| return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); |
| |
| // Return in the smallest viable integer type. |
| if (Size <= 8) |
| return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); |
| if (Size <= 16) |
| return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); |
| return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); |
| } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { |
| llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); |
| llvm::Type *CoerceTy = |
| llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); |
| return ABIArgInfo::getDirect(CoerceTy); |
| } |
| |
| return getNaturalAlignIndirect(RetTy); |
| } |
| |
| /// isIllegalVector - check whether Ty is an illegal vector type. |
| bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { |
| if (const VectorType *VT = Ty->getAs<VectorType> ()) { |
| if (isAndroid()) { |
| // Android shipped using Clang 3.1, which supported a slightly different |
| // vector ABI. The primary differences were that 3-element vector types |
| // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path |
| // accepts that legacy behavior for Android only. |
| // Check whether VT is legal. |
| unsigned NumElements = VT->getNumElements(); |
| // NumElements should be power of 2 or equal to 3. |
| if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) |
| return true; |
| } else { |
| // Check whether VT is legal. |
| unsigned NumElements = VT->getNumElements(); |
| uint64_t Size = getContext().getTypeSize(VT); |
| // NumElements should be power of 2. |
| if (!llvm::isPowerOf2_32(NumElements)) |
| return true; |
| // Size should be greater than 32 bits. |
| return Size <= 32; |
| } |
| } |
| return false; |
| } |
| |
| bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, |
| llvm::Type *eltTy, |
| unsigned numElts) const { |
| if (!llvm::isPowerOf2_32(numElts)) |
| return false; |
| unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); |
| if (size > 64) |
| return false; |
| if (vectorSize.getQuantity() != 8 && |
| (vectorSize.getQuantity() != 16 || numElts == 1)) |
| return false; |
| return true; |
| } |
| |
| bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { |
| // Homogeneous aggregates for AAPCS-VFP must have base types of float, |
| // double, or 64-bit or 128-bit vectors. |
| if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { |
| if (BT->getKind() == BuiltinType::Float || |
| BT->getKind() == BuiltinType::Double || |
| BT->getKind() == BuiltinType::LongDouble) |
| return true; |
| } else if (const VectorType *VT = Ty->getAs<VectorType>()) { |
| unsigned VecSize = getContext().getTypeSize(VT); |
| if (VecSize == 64 || VecSize == 128) |
| return true; |
| } |
| return false; |
| } |
| |
| bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, |
| uint64_t Members) const { |
| return Members <= 4; |
| } |
| |
| Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const { |
| CharUnits SlotSize = CharUnits::fromQuantity(4); |
| |
| // Empty records are ignored for parameter passing purposes. |
| if (isEmptyRecord(getContext(), Ty, true)) { |
| Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); |
| Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); |
| return Addr; |
| } |
| |
| auto TyInfo = getContext().getTypeInfoInChars(Ty); |
| CharUnits TyAlignForABI = TyInfo.second; |
| |
| // Use indirect if size of the illegal vector is bigger than 16 bytes. |
| bool IsIndirect = false; |
| const Type *Base = nullptr; |
| uint64_t Members = 0; |
| if (TyInfo.first > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { |
| IsIndirect = true; |
| |
| // ARMv7k passes structs bigger than 16 bytes indirectly, in space |
| // allocated by the caller. |
| } else if (TyInfo.first > CharUnits::fromQuantity(16) && |
| getABIKind() == ARMABIInfo::AAPCS16_VFP && |
| !isHomogeneousAggregate(Ty, Base, Members)) { |
| IsIndirect = true; |
| |
| // Otherwise, bound the type's ABI alignment. |
| // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for |
| // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. |
| // Our callers should be prepared to handle an under-aligned address. |
| } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || |
| getABIKind() == ARMABIInfo::AAPCS) { |
| TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); |
| TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); |
| } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { |
| // ARMv7k allows type alignment up to 16 bytes. |
| TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); |
| TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); |
| } else { |
| TyAlignForABI = CharUnits::fromQuantity(4); |
| } |
| TyInfo.second = TyAlignForABI; |
| |
| return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, |
| SlotSize, /*AllowHigherAlign*/ true); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // NVPTX ABI Implementation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class NVPTXABIInfo : public ABIInfo { |
| public: |
| NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} |
| |
| ABIArgInfo classifyReturnType(QualType RetTy) const; |
| ABIArgInfo classifyArgumentType(QualType Ty) const; |
| |
| void computeInfo(CGFunctionInfo &FI) const override; |
| Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const override; |
| }; |
| |
| class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) |
| : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} |
| |
| void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &M) const override; |
| bool shouldEmitStaticExternCAliases() const override; |
| |
| private: |
| // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the |
| // resulting MDNode to the nvvm.annotations MDNode. |
| static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); |
| }; |
| |
| ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { |
| if (RetTy->isVoidType()) |
| return ABIArgInfo::getIgnore(); |
| |
| // note: this is different from default ABI |
| if (!RetTy->isScalarType()) |
| return ABIArgInfo::getDirect(); |
| |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
| RetTy = EnumTy->getDecl()->getIntegerType(); |
| |
| return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) |
| : ABIArgInfo::getDirect()); |
| } |
| |
| ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| |
| // Return aggregates type as indirect by value |
| if (isAggregateTypeForABI(Ty)) |
| return getNaturalAlignIndirect(Ty, /* byval */ true); |
| |
| return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) |
| : ABIArgInfo::getDirect()); |
| } |
| |
| void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { |
| if (!getCXXABI().classifyReturnType(FI)) |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
| for (auto &I : FI.arguments()) |
| I.info = classifyArgumentType(I.type); |
| |
| // Always honor user-specified calling convention. |
| if (FI.getCallingConvention() != llvm::CallingConv::C) |
| return; |
| |
| FI.setEffectiveCallingConvention(getRuntimeCC()); |
| } |
| |
| Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const { |
| llvm_unreachable("NVPTX does not support varargs"); |
| } |
| |
| void NVPTXTargetCodeGenInfo::setTargetAttributes( |
| const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { |
| if (GV->isDeclaration()) |
| return; |
| const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); |
| if (!FD) return; |
| |
| llvm::Function *F = cast<llvm::Function>(GV); |
| |
| // Perform special handling in OpenCL mode |
| if (M.getLangOpts().OpenCL) { |
| // Use OpenCL function attributes to check for kernel functions |
| // By default, all functions are device functions |
| if (FD->hasAttr<OpenCLKernelAttr>()) { |
| // OpenCL __kernel functions get kernel metadata |
| // Create !{<func-ref>, metadata !"kernel", i32 1} node |
| addNVVMMetadata(F, "kernel", 1); |
| // And kernel functions are not subject to inlining |
| F->addFnAttr(llvm::Attribute::NoInline); |
| } |
| } |
| |
| // Perform special handling in CUDA mode. |
| if (M.getLangOpts().CUDA) { |
| // CUDA __global__ functions get a kernel metadata entry. Since |
| // __global__ functions cannot be called from the device, we do not |
| // need to set the noinline attribute. |
| if (FD->hasAttr<CUDAGlobalAttr>()) { |
| // Create !{<func-ref>, metadata !"kernel", i32 1} node |
| addNVVMMetadata(F, "kernel", 1); |
| } |
| if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { |
| // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node |
| llvm::APSInt MaxThreads(32); |
| MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); |
| if (MaxThreads > 0) |
| addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); |
| |
| // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was |
| // not specified in __launch_bounds__ or if the user specified a 0 value, |
| // we don't have to add a PTX directive. |
| if (Attr->getMinBlocks()) { |
| llvm::APSInt MinBlocks(32); |
| MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); |
| if (MinBlocks > 0) |
| // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node |
| addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); |
| } |
| } |
| } |
| } |
| |
| void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, |
| int Operand) { |
| llvm::Module *M = F->getParent(); |
| llvm::LLVMContext &Ctx = M->getContext(); |
| |
| // Get "nvvm.annotations" metadata node |
| llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); |
| |
| llvm::Metadata *MDVals[] = { |
| llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), |
| llvm::ConstantAsMetadata::get( |
| llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; |
| // Append metadata to nvvm.annotations |
| MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); |
| } |
| |
| bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { |
| return false; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SystemZ ABI Implementation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class SystemZABIInfo : public SwiftABIInfo { |
| bool HasVector; |
| |
| public: |
| SystemZABIInfo(CodeGenTypes &CGT, bool HV) |
| : SwiftABIInfo(CGT), HasVector(HV) {} |
| |
| bool isPromotableIntegerType(QualType Ty) const; |
| bool isCompoundType(QualType Ty) const; |
| bool isVectorArgumentType(QualType Ty) const; |
| bool isFPArgumentType(QualType Ty) const; |
| QualType GetSingleElementType(QualType Ty) const; |
| |
| ABIArgInfo classifyReturnType(QualType RetTy) const; |
| ABIArgInfo classifyArgumentType(QualType ArgTy) const; |
| |
| void computeInfo(CGFunctionInfo &FI) const override { |
| if (!getCXXABI().classifyReturnType(FI)) |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
| for (auto &I : FI.arguments()) |
| I.info = classifyArgumentType(I.type); |
| } |
| |
| Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const override; |
| |
| bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, |
| bool asReturnValue) const override { |
| return occupiesMoreThan(CGT, scalars, /*total*/ 4); |
| } |
| bool isSwiftErrorInRegister() const override { |
| return false; |
| } |
| }; |
| |
| class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) |
| : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} |
| }; |
| |
| } |
| |
| bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| |
| // Promotable integer types are required to be promoted by the ABI. |
| if (Ty->isPromotableIntegerType()) |
| return true; |
| |
| // 32-bit values must also be promoted. |
| if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) |
| switch (BT->getKind()) { |
| case BuiltinType::Int: |
| case BuiltinType::UInt: |
| return true; |
| default: |
| return false; |
| } |
| return false; |
| } |
| |
| bool SystemZABIInfo::isCompoundType(QualType Ty) const { |
| return (Ty->isAnyComplexType() || |
| Ty->isVectorType() || |
| isAggregateTypeForABI(Ty)); |
| } |
| |
| bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { |
| return (HasVector && |
| Ty->isVectorType() && |
| getContext().getTypeSize(Ty) <= 128); |
| } |
| |
| bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { |
| if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) |
| switch (BT->getKind()) { |
| case BuiltinType::Float: |
| case BuiltinType::Double: |
| return true; |
| default: |
| return false; |
| } |
| |
| return false; |
| } |
| |
| QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { |
| if (const RecordType *RT = Ty->getAsStructureType()) { |
| const RecordDecl *RD = RT->getDecl(); |
| QualType Found; |
| |
| // If this is a C++ record, check the bases first. |
| if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) |
| for (const auto &I : CXXRD->bases()) { |
| QualType Base = I.getType(); |
| |
| // Empty bases don't affect things either way. |
| if (isEmptyRecord(getContext(), Base, true)) |
| continue; |
| |
| if (!Found.isNull()) |
| return Ty; |
| Found = GetSingleElementType(Base); |
| } |
| |
| // Check the fields. |
| for (const auto *FD : RD->fields()) { |
| // For compatibility with GCC, ignore empty bitfields in C++ mode. |
| // Unlike isSingleElementStruct(), empty structure and array fields |
| // do count. So do anonymous bitfields that aren't zero-sized. |
| if (getContext().getLangOpts().CPlusPlus && |
| FD->isZeroLengthBitField(getContext())) |
| continue; |
| |
| // Unlike isSingleElementStruct(), arrays do not count. |
| // Nested structures still do though. |
| if (!Found.isNull()) |
| return Ty; |
| Found = GetSingleElementType(FD->getType()); |
| } |
| |
| // Unlike isSingleElementStruct(), trailing padding is allowed. |
| // An 8-byte aligned struct s { float f; } is passed as a double. |
| if (!Found.isNull()) |
| return Found; |
| } |
| |
| return Ty; |
| } |
| |
| Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const { |
| // Assume that va_list type is correct; should be pointer to LLVM type: |
| // struct { |
| // i64 __gpr; |
| // i64 __fpr; |
| // i8 *__overflow_arg_area; |
| // i8 *__reg_save_area; |
| // }; |
| |
| // Every non-vector argument occupies 8 bytes and is passed by preference |
| // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are |
| // always passed on the stack. |
| Ty = getContext().getCanonicalType(Ty); |
| auto TyInfo = getContext().getTypeInfoInChars(Ty); |
| llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); |
| llvm::Type *DirectTy = ArgTy; |
| ABIArgInfo AI = classifyArgumentType(Ty); |
| bool IsIndirect = AI.isIndirect(); |
| bool InFPRs = false; |
| bool IsVector = false; |
| CharUnits UnpaddedSize; |
| CharUnits DirectAlign; |
| if (IsIndirect) { |
| DirectTy = llvm::PointerType::getUnqual(DirectTy); |
| UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); |
| } else { |
| if (AI.getCoerceToType()) |
| ArgTy = AI.getCoerceToType(); |
| InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); |
| IsVector = ArgTy->isVectorTy(); |
| UnpaddedSize = TyInfo.first; |
| DirectAlign = TyInfo.second; |
| } |
| CharUnits PaddedSize = CharUnits::fromQuantity(8); |
| if (IsVector && UnpaddedSize > PaddedSize) |
| PaddedSize = CharUnits::fromQuantity(16); |
| assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); |
| |
| CharUnits Padding = (PaddedSize - UnpaddedSize); |
| |
| llvm::Type *IndexTy = CGF.Int64Ty; |
| llvm::Value *PaddedSizeV = |
| llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); |
| |
| if (IsVector) { |
| // Work out the address of a vector argument on the stack. |
| // Vector arguments are always passed in the high bits of a |
| // single (8 byte) or double (16 byte) stack slot. |
| Address OverflowArgAreaPtr = |
| CGF.Builder.CreateStructGEP(VAListAddr, 2, CharUnits::fromQuantity(16), |
| "overflow_arg_area_ptr"); |
| Address OverflowArgArea = |
| Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), |
| TyInfo.second); |
| Address MemAddr = |
| CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); |
| |
| // Update overflow_arg_area_ptr pointer |
| llvm::Value *NewOverflowArgArea = |
| CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, |
| "overflow_arg_area"); |
| CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); |
| |
| return MemAddr; |
| } |
| |
| assert(PaddedSize.getQuantity() == 8); |
| |
| unsigned MaxRegs, RegCountField, RegSaveIndex; |
| CharUnits RegPadding; |
| if (InFPRs) { |
| MaxRegs = 4; // Maximum of 4 FPR arguments |
| RegCountField = 1; // __fpr |
| RegSaveIndex = 16; // save offset for f0 |
| RegPadding = CharUnits(); // floats are passed in the high bits of an FPR |
| } else { |
| MaxRegs = 5; // Maximum of 5 GPR arguments |
| RegCountField = 0; // __gpr |
| RegSaveIndex = 2; // save offset for r2 |
| RegPadding = Padding; // values are passed in the low bits of a GPR |
| } |
| |
| Address RegCountPtr = CGF.Builder.CreateStructGEP( |
| VAListAddr, RegCountField, RegCountField * CharUnits::fromQuantity(8), |
| "reg_count_ptr"); |
| llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); |
| llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); |
| llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, |
| "fits_in_regs"); |
| |
| llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); |
| llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); |
| llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); |
| CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); |
| |
| // Emit code to load the value if it was passed in registers. |
| CGF.EmitBlock(InRegBlock); |
| |
| // Work out the address of an argument register. |
| llvm::Value *ScaledRegCount = |
| CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); |
| llvm::Value *RegBase = |
| llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() |
| + RegPadding.getQuantity()); |
| llvm::Value *RegOffset = |
| CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); |
| Address RegSaveAreaPtr = |
| CGF.Builder.CreateStructGEP(VAListAddr, 3, CharUnits::fromQuantity(24), |
| "reg_save_area_ptr"); |
| llvm::Value *RegSaveArea = |
| CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); |
| Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, |
| "raw_reg_addr"), |
| PaddedSize); |
| Address RegAddr = |
| CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); |
| |
| // Update the register count |
| llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); |
| llvm::Value *NewRegCount = |
| CGF.Builder.CreateAdd(RegCount, One, "reg_count"); |
| CGF.Builder.CreateStore(NewRegCount, RegCountPtr); |
| CGF.EmitBranch(ContBlock); |
| |
| // Emit code to load the value if it was passed in memory. |
| CGF.EmitBlock(InMemBlock); |
| |
| // Work out the address of a stack argument. |
| Address OverflowArgAreaPtr = CGF.Builder.CreateStructGEP( |
| VAListAddr, 2, CharUnits::fromQuantity(16), "overflow_arg_area_ptr"); |
| Address OverflowArgArea = |
| Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), |
| PaddedSize); |
| Address RawMemAddr = |
| CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); |
| Address MemAddr = |
| CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); |
| |
| // Update overflow_arg_area_ptr pointer |
| llvm::Value *NewOverflowArgArea = |
| CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, |
| "overflow_arg_area"); |
| CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); |
| CGF.EmitBranch(ContBlock); |
| |
| // Return the appropriate result. |
| CGF.EmitBlock(ContBlock); |
| Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, |
| MemAddr, InMemBlock, "va_arg.addr"); |
| |
| if (IsIndirect) |
| ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), |
| TyInfo.second); |
| |
| return ResAddr; |
| } |
| |
| ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { |
| if (RetTy->isVoidType()) |
| return ABIArgInfo::getIgnore(); |
| if (isVectorArgumentType(RetTy)) |
| return ABIArgInfo::getDirect(); |
| if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) |
| return getNaturalAlignIndirect(RetTy); |
| return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) |
| : ABIArgInfo::getDirect()); |
| } |
| |
| ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { |
| // Handle the generic C++ ABI. |
| if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) |
| return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
| |
| // Integers and enums are extended to full register width. |
| if (isPromotableIntegerType(Ty)) |
| return ABIArgInfo::getExtend(Ty); |
| |
| // Handle vector types and vector-like structure types. Note that |
| // as opposed to float-like structure types, we do not allow any |
| // padding for vector-like structures, so verify the sizes match. |
| uint64_t Size = getContext().getTypeSize(Ty); |
| QualType SingleElementTy = GetSingleElementType(Ty); |
| if (isVectorArgumentType(SingleElementTy) && |
| getContext().getTypeSize(SingleElementTy) == Size) |
| return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); |
| |
| // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. |
| if (Size != 8 && Size != 16 && Size != 32 && Size != 64) |
| return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
| |
| // Handle small structures. |
| if (const RecordType *RT = Ty->getAs<RecordType>()) { |
| // Structures with flexible arrays have variable length, so really |
| // fail the size test above. |
| const RecordDecl *RD = RT->getDecl(); |
| if (RD->hasFlexibleArrayMember()) |
| return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
| |
| // The structure is passed as an unextended integer, a float, or a double. |
| llvm::Type *PassTy; |
| if (isFPArgumentType(SingleElementTy)) { |
| assert(Size == 32 || Size == 64); |
| if (Size == 32) |
| PassTy = llvm::Type::getFloatTy(getVMContext()); |
| else |
| PassTy = llvm::Type::getDoubleTy(getVMContext()); |
| } else |
| PassTy = llvm::IntegerType::get(getVMContext(), Size); |
| return ABIArgInfo::getDirect(PassTy); |
| } |
| |
| // Non-structure compounds are passed indirectly. |
| if (isCompoundType(Ty)) |
| return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
| |
| return ABIArgInfo::getDirect(nullptr); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MSP430 ABI Implementation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| MSP430TargetCodeGenInfo(CodeGenTypes &CGT) |
| : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} |
| void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &M) const override; |
| }; |
| |
| } |
| |
| void MSP430TargetCodeGenInfo::setTargetAttributes( |
| const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { |
| if (GV->isDeclaration()) |
| return; |
| if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { |
| if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) { |
| // Handle 'interrupt' attribute: |
| llvm::Function *F = cast<llvm::Function>(GV); |
| |
| // Step 1: Set ISR calling convention. |
| F->setCallingConv(llvm::CallingConv::MSP430_INTR); |
| |
| // Step 2: Add attributes goodness. |
| F->addFnAttr(llvm::Attribute::NoInline); |
| |
| // Step 3: Emit ISR vector alias. |
| unsigned Num = attr->getNumber() / 2; |
| llvm::GlobalAlias::create(llvm::Function::ExternalLinkage, |
| "__isr_" + Twine(Num), F); |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MIPS ABI Implementation. This works for both little-endian and |
| // big-endian variants. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class MipsABIInfo : public ABIInfo { |
| bool IsO32; |
| unsigned MinABIStackAlignInBytes, StackAlignInBytes; |
| void CoerceToIntArgs(uint64_t TySize, |
| SmallVectorImpl<llvm::Type *> &ArgList) const; |
| llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; |
| llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; |
| llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; |
| public: |
| MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : |
| ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), |
| StackAlignInBytes(IsO32 ? 8 : 16) {} |
| |
| ABIArgInfo classifyReturnType(QualType RetTy) const; |
| ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; |
| void computeInfo(CGFunctionInfo &FI) const override; |
| Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const override; |
| ABIArgInfo extendType(QualType Ty) const; |
| }; |
| |
| class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { |
| unsigned SizeOfUnwindException; |
| public: |
| MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) |
| : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), |
| SizeOfUnwindException(IsO32 ? 24 : 32) {} |
| |
| int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { |
| return 29; |
| } |
| |
| void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &CGM) const override { |
| const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); |
| if (!FD) return; |
| llvm::Function *Fn = cast<llvm::Function>(GV); |
| |
| if (FD->hasAttr<MipsLongCallAttr>()) |
| Fn->addFnAttr("long-call"); |
| else if (FD->hasAttr<MipsShortCallAttr>()) |
| Fn->addFnAttr("short-call"); |
| |
| // Other attributes do not have a meaning for declarations. |
| if (GV->isDeclaration()) |
| return; |
| |
| if (FD->hasAttr<Mips16Attr>()) { |
| Fn->addFnAttr("mips16"); |
| } |
| else if (FD->hasAttr<NoMips16Attr>()) { |
| Fn->addFnAttr("nomips16"); |
| } |
| |
| if (FD->hasAttr<MicroMipsAttr>()) |
| Fn->addFnAttr("micromips"); |
| else if (FD->hasAttr<NoMicroMipsAttr>()) |
| Fn->addFnAttr("nomicromips"); |
| |
| const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); |
| if (!Attr) |
| return; |
| |
| const char *Kind; |
| switch (Attr->getInterrupt()) { |
| case MipsInterruptAttr::eic: Kind = "eic"; break; |
| case MipsInterruptAttr::sw0: Kind = "sw0"; break; |
| case MipsInterruptAttr::sw1: Kind = "sw1"; break; |
| case MipsInterruptAttr::hw0: Kind = "hw0"; break; |
| case MipsInterruptAttr::hw1: Kind = "hw1"; break; |
| case MipsInterruptAttr::hw2: Kind = "hw2"; break; |
| case MipsInterruptAttr::hw3: Kind = "hw3"; break; |
| case MipsInterruptAttr::hw4: Kind = "hw4"; break; |
| case MipsInterruptAttr::hw5: Kind = "hw5"; break; |
| } |
| |
| Fn->addFnAttr("interrupt", Kind); |
| |
| } |
| |
| bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const override; |
| |
| unsigned getSizeOfUnwindException() const override { |
| return SizeOfUnwindException; |
| } |
| }; |
| } |
| |
| void MipsABIInfo::CoerceToIntArgs( |
| uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { |
| llvm::IntegerType *IntTy = |
| llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); |
| |
| // Add (TySize / MinABIStackAlignInBytes) args of IntTy. |
| for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) |
| ArgList.push_back(IntTy); |
| |
| // If necessary, add one more integer type to ArgList. |
| unsigned R = TySize % (MinABIStackAlignInBytes * 8); |
| |
| if (R) |
| ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); |
| } |
| |
| // In N32/64, an aligned double precision floating point field is passed in |
| // a register. |
| llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { |
| SmallVector<llvm::Type*, 8> ArgList, IntArgList; |
| |
| if (IsO32) { |
| CoerceToIntArgs(TySize, ArgList); |
| return llvm::StructType::get(getVMContext(), ArgList); |
| } |
| |
| if (Ty->isComplexType()) |
| return CGT.ConvertType(Ty); |
| |
| const RecordType *RT = Ty->getAs<RecordType>(); |
| |
| // Unions/vectors are passed in integer registers. |
| if (!RT || !RT->isStructureOrClassType()) { |
| CoerceToIntArgs(TySize, ArgList); |
| return llvm::StructType::get(getVMContext(), ArgList); |
| } |
| |
| const RecordDecl *RD = RT->getDecl(); |
| const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); |
| assert(!(TySize % 8) && "Size of structure must be multiple of 8."); |
| |
| uint64_t LastOffset = 0; |
| unsigned idx = 0; |
| llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); |
| |
| // Iterate over fields in the struct/class and check if there are any aligned |
| // double fields. |
| for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| i != e; ++i, ++idx) { |
| const QualType Ty = i->getType(); |
| const BuiltinType *BT = Ty->getAs<BuiltinType>(); |
| |
| if (!BT || BT->getKind() != BuiltinType::Double) |
| continue; |
| |
| uint64_t Offset = Layout.getFieldOffset(idx); |
| if (Offset % 64) // Ignore doubles that are not aligned. |
| continue; |
| |
| // Add ((Offset - LastOffset) / 64) args of type i64. |
| for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) |
| ArgList.push_back(I64); |
| |
| // Add double type. |
| ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); |
| LastOffset = Offset + 64; |
| } |
| |
| CoerceToIntArgs(TySize - LastOffset, IntArgList); |
| ArgList.append(IntArgList.begin(), IntArgList.end()); |
| |
| return llvm::StructType::get(getVMContext(), ArgList); |
| } |
| |
| llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, |
| uint64_t Offset) const { |
| if (OrigOffset + MinABIStackAlignInBytes > Offset) |
| return nullptr; |
| |
| return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); |
| } |
| |
| ABIArgInfo |
| MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { |
| Ty = useFirstFieldIfTransparentUnion(Ty); |
| |
| uint64_t OrigOffset = Offset; |
| uint64_t TySize = getContext().getTypeSize(Ty); |
| uint64_t Align = getContext().getTypeAlign(Ty) / 8; |
| |
| Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), |
| (uint64_t)StackAlignInBytes); |
| unsigned CurrOffset = llvm::alignTo(Offset, Align); |
| Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; |
| |
| if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { |
| // Ignore empty aggregates. |
| if (TySize == 0) |
| return ABIArgInfo::getIgnore(); |
| |
| if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { |
| Offset = OrigOffset + MinABIStackAlignInBytes; |
| return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
| } |
| |
| // If we have reached here, aggregates are passed directly by coercing to |
| // another structure type. Padding is inserted if the offset of the |
| // aggregate is unaligned. |
| ABIArgInfo ArgInfo = |
| ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, |
| getPaddingType(OrigOffset, CurrOffset)); |
| ArgInfo.setInReg(true); |
| return ArgInfo; |
| } |
| |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| |
| // All integral types are promoted to the GPR width. |
| if (Ty->isIntegralOrEnumerationType()) |
| return extendType(Ty); |
| |
| return ABIArgInfo::getDirect( |
| nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); |
| } |
| |
| llvm::Type* |
| MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { |
| const RecordType *RT = RetTy->getAs<RecordType>(); |
| SmallVector<llvm::Type*, 8> RTList; |
| |
| if (RT && RT->isStructureOrClassType()) { |
| const RecordDecl *RD = RT->getDecl(); |
| const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); |
| unsigned FieldCnt = Layout.getFieldCount(); |
| |
| // N32/64 returns struct/classes in floating point registers if the |
| // following conditions are met: |
| // 1. The size of the struct/class is no larger than 128-bit. |
| // 2. The struct/class has one or two fields all of which are floating |
| // point types. |
| // 3. The offset of the first field is zero (this follows what gcc does). |
| // |
| // Any other composite results are returned in integer registers. |
| // |
| if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { |
| RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); |
| for (; b != e; ++b) { |
| const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); |
| |
| if (!BT || !BT->isFloatingPoint()) |
| break; |
| |
| RTList.push_back(CGT.ConvertType(b->getType())); |
| } |
| |
| if (b == e) |
| return llvm::StructType::get(getVMContext(), RTList, |
| RD->hasAttr<PackedAttr>()); |
| |
| RTList.clear(); |
| } |
| } |
| |
| CoerceToIntArgs(Size, RTList); |
| return llvm::StructType::get(getVMContext(), RTList); |
| } |
| |
| ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { |
| uint64_t Size = getContext().getTypeSize(RetTy); |
| |
| if (RetTy->isVoidType()) |
| return ABIArgInfo::getIgnore(); |
| |
| // O32 doesn't treat zero-sized structs differently from other structs. |
| // However, N32/N64 ignores zero sized return values. |
| if (!IsO32 && Size == 0) |
| return ABIArgInfo::getIgnore(); |
| |
| if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { |
| if (Size <= 128) { |
| if (RetTy->isAnyComplexType()) |
| return ABIArgInfo::getDirect(); |
| |
| // O32 returns integer vectors in registers and N32/N64 returns all small |
| // aggregates in registers. |
| if (!IsO32 || |
| (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { |
| ABIArgInfo ArgInfo = |
| ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); |
| ArgInfo.setInReg(true); |
| return ArgInfo; |
| } |
| } |
| |
| return getNaturalAlignIndirect(RetTy); |
| } |
| |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
| RetTy = EnumTy->getDecl()->getIntegerType(); |
| |
| if (RetTy->isPromotableIntegerType()) |
| return ABIArgInfo::getExtend(RetTy); |
| |
| if ((RetTy->isUnsignedIntegerOrEnumerationType() || |
| RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) |
| return ABIArgInfo::getSignExtend(RetTy); |
| |
| return ABIArgInfo::getDirect(); |
| } |
| |
| void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { |
| ABIArgInfo &RetInfo = FI.getReturnInfo(); |
| if (!getCXXABI().classifyReturnType(FI)) |
| RetInfo = classifyReturnType(FI.getReturnType()); |
| |
| // Check if a pointer to an aggregate is passed as a hidden argument. |
| uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; |
| |
| for (auto &I : FI.arguments()) |
| I.info = classifyArgumentType(I.type, Offset); |
| } |
| |
| Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType OrigTy) const { |
| QualType Ty = OrigTy; |
| |
| // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. |
| // Pointers are also promoted in the same way but this only matters for N32. |
| unsigned SlotSizeInBits = IsO32 ? 32 : 64; |
| unsigned PtrWidth = getTarget().getPointerWidth(0); |
| bool DidPromote = false; |
| if ((Ty->isIntegerType() && |
| getContext().getIntWidth(Ty) < SlotSizeInBits) || |
| (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { |
| DidPromote = true; |
| Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, |
| Ty->isSignedIntegerType()); |
| } |
| |
| auto TyInfo = getContext().getTypeInfoInChars(Ty); |
| |
| // The alignment of things in the argument area is never larger than |
| // StackAlignInBytes. |
| TyInfo.second = |
| std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); |
| |
| // MinABIStackAlignInBytes is the size of argument slots on the stack. |
| CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); |
| |
| Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, |
| TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); |
| |
| |
| // If there was a promotion, "unpromote" into a temporary. |
| // TODO: can we just use a pointer into a subset of the original slot? |
| if (DidPromote) { |
| Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); |
| llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); |
| |
| // Truncate down to the right width. |
| llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() |
| : CGF.IntPtrTy); |
| llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); |
| if (OrigTy->isPointerType()) |
| V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); |
| |
| CGF.Builder.CreateStore(V, Temp); |
| Addr = Temp; |
| } |
| |
| return Addr; |
| } |
| |
| ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { |
| int TySize = getContext().getTypeSize(Ty); |
| |
| // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. |
| if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) |
| return ABIArgInfo::getSignExtend(Ty); |
| |
| return ABIArgInfo::getExtend(Ty); |
| } |
| |
| bool |
| MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const { |
| // This information comes from gcc's implementation, which seems to |
| // as canonical as it gets. |
| |
| // Everything on MIPS is 4 bytes. Double-precision FP registers |
| // are aliased to pairs of single-precision FP registers. |
| llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); |
| |
| // 0-31 are the general purpose registers, $0 - $31. |
| // 32-63 are the floating-point registers, $f0 - $f31. |
| // 64 and 65 are the multiply/divide registers, $hi and $lo. |
| // 66 is the (notional, I think) register for signal-handler return. |
| AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); |
| |
| // 67-74 are the floating-point status registers, $fcc0 - $fcc7. |
| // They are one bit wide and ignored here. |
| |
| // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. |
| // (coprocessor 1 is the FP unit) |
| // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. |
| // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. |
| // 176-181 are the DSP accumulator registers. |
| AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AVR ABI Implementation. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class AVRTargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| AVRTargetCodeGenInfo(CodeGenTypes &CGT) |
| : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } |
| |
| void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &CGM) const override { |
| if (GV->isDeclaration()) |
| return; |
| const auto *FD = dyn_cast_or_null<FunctionDecl>(D); |
| if (!FD) return; |
| auto *Fn = cast<llvm::Function>(GV); |
| |
| if (FD->getAttr<AVRInterruptAttr>()) |
| Fn->addFnAttr("interrupt"); |
| |
| if (FD->getAttr<AVRSignalAttr>()) |
| Fn->addFnAttr("signal"); |
| } |
| }; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. |
| // Currently subclassed only to implement custom OpenCL C function attribute |
| // handling. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { |
| public: |
| TCETargetCodeGenInfo(CodeGenTypes &CGT) |
| : DefaultTargetCodeGenInfo(CGT) {} |
| |
| void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &M) const override; |
| }; |
| |
| void TCETargetCodeGenInfo::setTargetAttributes( |
| const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { |
| if (GV->isDeclaration()) |
| return; |
| const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); |
| if (!FD) return; |
| |
| llvm::Function *F = cast<llvm::Function>(GV); |
| |
| if (M.getLangOpts().OpenCL) { |
| if (FD->hasAttr<OpenCLKernelAttr>()) { |
| // OpenCL C Kernel functions are not subject to inlining |
| F->addFnAttr(llvm::Attribute::NoInline); |
| const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); |
| if (Attr) { |
| // Convert the reqd_work_group_size() attributes to metadata. |
| llvm::LLVMContext &Context = F->getContext(); |
| llvm::NamedMDNode *OpenCLMetadata = |
| M.getModule().getOrInsertNamedMetadata( |
| "opencl.kernel_wg_size_info"); |
| |
| SmallVector<llvm::Metadata *, 5> Operands; |
| Operands.push_back(llvm::ConstantAsMetadata::get(F)); |
| |
| Operands.push_back( |
| llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( |
| M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); |
| Operands.push_back( |
| llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( |
| M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); |
| Operands.push_back( |
| llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( |
| M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); |
| |
| // Add a boolean constant operand for "required" (true) or "hint" |
| // (false) for implementing the work_group_size_hint attr later. |
| // Currently always true as the hint is not yet implemented. |
| Operands.push_back( |
| llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); |
| OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); |
| } |
| } |
| } |
| } |
| |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Hexagon ABI Implementation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class HexagonABIInfo : public ABIInfo { |
| |
| |
| public: |
| HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} |
| |
| private: |
| |
| ABIArgInfo classifyReturnType(QualType RetTy) const; |
| ABIArgInfo classifyArgumentType(QualType RetTy) const; |
| |
| void computeInfo(CGFunctionInfo &FI) const override; |
| |
| Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const override; |
| }; |
| |
| class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| HexagonTargetCodeGenInfo(CodeGenTypes &CGT) |
| :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} |
| |
| int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
| return 29; |
| } |
| }; |
| |
| } |
| |
| void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { |
| if (!getCXXABI().classifyReturnType(FI)) |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
| for (auto &I : FI.arguments()) |
| I.info = classifyArgumentType(I.type); |
| } |
| |
| ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { |
| if (!isAggregateTypeForABI(Ty)) { |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| |
| return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) |
| : ABIArgInfo::getDirect()); |
| } |
| |
| if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) |
| return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
| |
| // Ignore empty records. |
| if (isEmptyRecord(getContext(), Ty, true)) |
| return ABIArgInfo::getIgnore(); |
| |
| uint64_t Size = getContext().getTypeSize(Ty); |
| if (Size > 64) |
| return getNaturalAlignIndirect(Ty, /*ByVal=*/true); |
| // Pass in the smallest viable integer type. |
| else if (Size > 32) |
| return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); |
| else if (Size > 16) |
| return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); |
| else if (Size > 8) |
| return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); |
| else |
| return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); |
| } |
| |
| ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { |
| if (RetTy->isVoidType()) |
| return ABIArgInfo::getIgnore(); |
| |
| // Large vector types should be returned via memory. |
| if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) |
| return getNaturalAlignIndirect(RetTy); |
| |
| if (!isAggregateTypeForABI(RetTy)) { |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
| RetTy = EnumTy->getDecl()->getIntegerType(); |
| |
| return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) |
| : ABIArgInfo::getDirect()); |
| } |
| |
| if (isEmptyRecord(getContext(), RetTy, true)) |
| return ABIArgInfo::getIgnore(); |
| |
| // Aggregates <= 8 bytes are returned in r0; other aggregates |
| // are returned indirectly. |
| uint64_t Size = getContext().getTypeSize(RetTy); |
| if (Size <= 64) { |
| // Return in the smallest viable integer type. |
| if (Size <= 8) |
| return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); |
| if (Size <= 16) |
| return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); |
| if (Size <= 32) |
| return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); |
| return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); |
| } |
| |
| return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); |
| } |
| |
| Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const { |
| // FIXME: Someone needs to audit that this handle alignment correctly. |
| return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, |
| getContext().getTypeInfoInChars(Ty), |
| CharUnits::fromQuantity(4), |
| /*AllowHigherAlign*/ true); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Lanai ABI Implementation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class LanaiABIInfo : public DefaultABIInfo { |
| public: |
| LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} |
| |
| bool shouldUseInReg(QualType Ty, CCState &State) const; |
| |
| void computeInfo(CGFunctionInfo &FI) const override { |
| CCState State(FI.getCallingConvention()); |
| // Lanai uses 4 registers to pass arguments unless the function has the |
| // regparm attribute set. |
| if (FI.getHasRegParm()) { |
| State.FreeRegs = FI.getRegParm(); |
| } else { |
| State.FreeRegs = 4; |
| } |
| |
| if (!getCXXABI().classifyReturnType(FI)) |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
| for (auto &I : FI.arguments()) |
| I.info = classifyArgumentType(I.type, State); |
| } |
| |
| ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; |
| ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; |
| }; |
| } // end anonymous namespace |
| |
| bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { |
| unsigned Size = getContext().getTypeSize(Ty); |
| unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; |
| |
| if (SizeInRegs == 0) |
| return false; |
| |
| if (SizeInRegs > State.FreeRegs) { |
| State.FreeRegs = 0; |
| return false; |
| } |
| |
| State.FreeRegs -= SizeInRegs; |
| |
| return true; |
| } |
| |
| ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, |
| CCState &State) const { |
| if (!ByVal) { |
| if (State.FreeRegs) { |
| --State.FreeRegs; // Non-byval indirects just use one pointer. |
| return getNaturalAlignIndirectInReg(Ty); |
| } |
| return getNaturalAlignIndirect(Ty, false); |
| } |
| |
| // Compute the byval alignment. |
| const unsigned MinABIStackAlignInBytes = 4; |
| unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; |
| return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, |
| /*Realign=*/TypeAlign > |
| MinABIStackAlignInBytes); |
| } |
| |
| ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, |
| CCState &State) const { |
| // Check with the C++ ABI first. |
| const RecordType *RT = Ty->getAs<RecordType>(); |
| if (RT) { |
| CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); |
| if (RAA == CGCXXABI::RAA_Indirect) { |
| return getIndirectResult(Ty, /*ByVal=*/false, State); |
| } else if (RAA == CGCXXABI::RAA_DirectInMemory) { |
| return getNaturalAlignIndirect(Ty, /*ByRef=*/true); |
| } |
| } |
| |
| if (isAggregateTypeForABI(Ty)) { |
| // Structures with flexible arrays are always indirect. |
| if (RT && RT->getDecl()->hasFlexibleArrayMember()) |
| return getIndirectResult(Ty, /*ByVal=*/true, State); |
| |
| // Ignore empty structs/unions. |
| if (isEmptyRecord(getContext(), Ty, true)) |
| return ABIArgInfo::getIgnore(); |
| |
| llvm::LLVMContext &LLVMContext = getVMContext(); |
| unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; |
| if (SizeInRegs <= State.FreeRegs) { |
| llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); |
| SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); |
| llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); |
| State.FreeRegs -= SizeInRegs; |
| return ABIArgInfo::getDirectInReg(Result); |
| } else { |
| State.FreeRegs = 0; |
| } |
| return getIndirectResult(Ty, true, State); |
| } |
| |
| // Treat an enum type as its underlying type. |
| if (const auto *EnumTy = Ty->getAs<EnumType>()) |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| |
| bool InReg = shouldUseInReg(Ty, State); |
| if (Ty->isPromotableIntegerType()) { |
| if (InReg) |
| return ABIArgInfo::getDirectInReg(); |
| return ABIArgInfo::getExtend(Ty); |
| } |
| if (InReg) |
| return ABIArgInfo::getDirectInReg(); |
| return ABIArgInfo::getDirect(); |
| } |
| |
| namespace { |
| class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) |
| : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} |
| }; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AMDGPU ABI Implementation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class AMDGPUABIInfo final : public DefaultABIInfo { |
| private: |
| static const unsigned MaxNumRegsForArgsRet = 16; |
| |
| unsigned numRegsForType(QualType Ty) const; |
| |
| bool isHomogeneousAggregateBaseType(QualType Ty) const override; |
| bool isHomogeneousAggregateSmallEnough(const Type *Base, |
| uint64_t Members) const override; |
| |
| public: |
| explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : |
| DefaultABIInfo(CGT) {} |
| |
| ABIArgInfo classifyReturnType(QualType RetTy) const; |
| ABIArgInfo classifyKernelArgumentType(QualType Ty) const; |
| ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; |
| |
| void computeInfo(CGFunctionInfo &FI) const override; |
| }; |
| |
| bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { |
| return true; |
| } |
| |
| bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( |
| const Type *Base, uint64_t Members) const { |
| uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; |
| |
| // Homogeneous Aggregates may occupy at most 16 registers. |
| return Members * NumRegs <= MaxNumRegsForArgsRet; |
| } |
| |
| /// Estimate number of registers the type will use when passed in registers. |
| unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { |
| unsigned NumRegs = 0; |
| |
| if (const VectorType *VT = Ty->getAs<VectorType>()) { |
| // Compute from the number of elements. The reported size is based on the |
| // in-memory size, which includes the padding 4th element for 3-vectors. |
| QualType EltTy = VT->getElementType(); |
| unsigned EltSize = getContext().getTypeSize(EltTy); |
| |
| // 16-bit element vectors should be passed as packed. |
| if (EltSize == 16) |
| return (VT->getNumElements() + 1) / 2; |
| |
| unsigned EltNumRegs = (EltSize + 31) / 32; |
| return EltNumRegs * VT->getNumElements(); |
| } |
| |
| if (const RecordType *RT = Ty->getAs<RecordType>()) { |
| const RecordDecl *RD = RT->getDecl(); |
| assert(!RD->hasFlexibleArrayMember()); |
| |
| for (const FieldDecl *Field : RD->fields()) { |
| QualType FieldTy = Field->getType(); |
| NumRegs += numRegsForType(FieldTy); |
| } |
| |
| return NumRegs; |
| } |
| |
| return (getContext().getTypeSize(Ty) + 31) / 32; |
| } |
| |
| void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { |
| llvm::CallingConv::ID CC = FI.getCallingConvention(); |
| |
| if (!getCXXABI().classifyReturnType(FI)) |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
| |
| unsigned NumRegsLeft = MaxNumRegsForArgsRet; |
| for (auto &Arg : FI.arguments()) { |
| if (CC == llvm::CallingConv::AMDGPU_KERNEL) { |
| Arg.info = classifyKernelArgumentType(Arg.type); |
| } else { |
| Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); |
| } |
| } |
| } |
| |
| ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { |
| if (isAggregateTypeForABI(RetTy)) { |
| // Records with non-trivial destructors/copy-constructors should not be |
| // returned by value. |
| if (!getRecordArgABI(RetTy, getCXXABI())) { |
| // Ignore empty structs/unions. |
| if (isEmptyRecord(getContext(), RetTy, true)) |
| return ABIArgInfo::getIgnore(); |
| |
| // Lower single-element structs to just return a regular value. |
| if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) |
| return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); |
| |
| if (const RecordType *RT = RetTy->getAs<RecordType>()) { |
| const RecordDecl *RD = RT->getDecl(); |
| if (RD->hasFlexibleArrayMember()) |
| return DefaultABIInfo::classifyReturnType(RetTy); |
| } |
| |
| // Pack aggregates <= 4 bytes into single VGPR or pair. |
| uint64_t Size = getContext().getTypeSize(RetTy); |
| if (Size <= 16) |
| return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); |
| |
| if (Size <= 32) |
| return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); |
| |
| if (Size <= 64) { |
| llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); |
| return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); |
| } |
| |
| if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) |
| return ABIArgInfo::getDirect(); |
| } |
| } |
| |
| // Otherwise just do the default thing. |
| return DefaultABIInfo::classifyReturnType(RetTy); |
| } |
| |
| /// For kernels all parameters are really passed in a special buffer. It doesn't |
| /// make sense to pass anything byval, so everything must be direct. |
| ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { |
| Ty = useFirstFieldIfTransparentUnion(Ty); |
| |
| // TODO: Can we omit empty structs? |
| |
| // Coerce single element structs to its element. |
| if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) |
| return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); |
| |
| // If we set CanBeFlattened to true, CodeGen will expand the struct to its |
| // individual elements, which confuses the Clover OpenCL backend; therefore we |
| // have to set it to false here. Other args of getDirect() are just defaults. |
| return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); |
| } |
| |
| ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, |
| unsigned &NumRegsLeft) const { |
| assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); |
| |
| Ty = useFirstFieldIfTransparentUnion(Ty); |
| |
| if (isAggregateTypeForABI(Ty)) { |
| // Records with non-trivial destructors/copy-constructors should not be |
| // passed by value. |
| if (auto RAA = getRecordArgABI(Ty, getCXXABI())) |
| return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
| |
| // Ignore empty structs/unions. |
| if (isEmptyRecord(getContext(), Ty, true)) |
| return ABIArgInfo::getIgnore(); |
| |
| // Lower single-element structs to just pass a regular value. TODO: We |
| // could do reasonable-size multiple-element structs too, using getExpand(), |
| // though watch out for things like bitfields. |
| if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) |
| return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); |
| |
| if (const RecordType *RT = Ty->getAs<RecordType>()) { |
| const RecordDecl *RD = RT->getDecl(); |
| if (RD->hasFlexibleArrayMember()) |
| return DefaultABIInfo::classifyArgumentType(Ty); |
| } |
| |
| // Pack aggregates <= 8 bytes into single VGPR or pair. |
| uint64_t Size = getContext().getTypeSize(Ty); |
| if (Size <= 64) { |
| unsigned NumRegs = (Size + 31) / 32; |
| NumRegsLeft -= std::min(NumRegsLeft, NumRegs); |
| |
| if (Size <= 16) |
| return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); |
| |
| if (Size <= 32) |
| return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); |
| |
| // XXX: Should this be i64 instead, and should the limit increase? |
| llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); |
| return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); |
| } |
| |
| if (NumRegsLeft > 0) { |
| unsigned NumRegs = numRegsForType(Ty); |
| if (NumRegsLeft >= NumRegs) { |
| NumRegsLeft -= NumRegs; |
| return ABIArgInfo::getDirect(); |
| } |
| } |
| } |
| |
| // Otherwise just do the default thing. |
| ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); |
| if (!ArgInfo.isIndirect()) { |
| unsigned NumRegs = numRegsForType(Ty); |
| NumRegsLeft -= std::min(NumRegs, NumRegsLeft); |
| } |
| |
| return ArgInfo; |
| } |
| |
| class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) |
| : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} |
| void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &M) const override; |
| unsigned getOpenCLKernelCallingConv() const override; |
| |
| llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, |
| llvm::PointerType *T, QualType QT) const override; |
| |
| LangAS getASTAllocaAddressSpace() const override { |
| return getLangASFromTargetAS( |
| getABIInfo().getDataLayout().getAllocaAddrSpace()); |
| } |
| LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, |
| const VarDecl *D) const override; |
| llvm::SyncScope::ID getLLVMSyncScopeID(SyncScope S, |
| llvm::LLVMContext &C) const override; |
| llvm::Function * |
| createEnqueuedBlockKernel(CodeGenFunction &CGF, |
| llvm::Function *BlockInvokeFunc, |
| llvm::Value *BlockLiteral) const override; |
| bool shouldEmitStaticExternCAliases() const override; |
| void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; |
| }; |
| } |
| |
| void AMDGPUTargetCodeGenInfo::setTargetAttributes( |
| const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { |
| if (GV->isDeclaration()) |
| return; |
| const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); |
| if (!FD) |
| return; |
| |
| llvm::Function *F = cast<llvm::Function>(GV); |
| |
| const auto *ReqdWGS = M.getLangOpts().OpenCL ? |
| FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; |
| |
| if (M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>() && |
| (M.getTriple().getOS() == llvm::Triple::AMDHSA)) |
| F->addFnAttr("amdgpu-implicitarg-num-bytes", "48"); |
| |
| const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); |
| if (ReqdWGS || FlatWGS) { |
| unsigned Min = FlatWGS ? FlatWGS->getMin() : 0; |
| unsigned Max = FlatWGS ? FlatWGS->getMax() : 0; |
| if (ReqdWGS && Min == 0 && Max == 0) |
| Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); |
| |
| if (Min != 0) { |
| assert(Min <= Max && "Min must be less than or equal Max"); |
| |
| std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); |
| F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); |
| } else |
| assert(Max == 0 && "Max must be zero"); |
| } |
| |
| if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { |
| unsigned Min = Attr->getMin(); |
| unsigned Max = Attr->getMax(); |
| |
| if (Min != 0) { |
| assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); |
| |
| std::string AttrVal = llvm::utostr(Min); |
| if (Max != 0) |
| AttrVal = AttrVal + "," + llvm::utostr(Max); |
| F->addFnAttr("amdgpu-waves-per-eu", AttrVal); |
| } else |
| assert(Max == 0 && "Max must be zero"); |
| } |
| |
| if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { |
| unsigned NumSGPR = Attr->getNumSGPR(); |
| |
| if (NumSGPR != 0) |
| F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); |
| } |
| |
| if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { |
| uint32_t NumVGPR = Attr->getNumVGPR(); |
| |
| if (NumVGPR != 0) |
| F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); |
| } |
| } |
| |
| unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { |
| return llvm::CallingConv::AMDGPU_KERNEL; |
| } |
| |
| // Currently LLVM assumes null pointers always have value 0, |
| // which results in incorrectly transformed IR. Therefore, instead of |
| // emitting null pointers in private and local address spaces, a null |
| // pointer in generic address space is emitted which is casted to a |
| // pointer in local or private address space. |
| llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( |
| const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, |
| QualType QT) const { |
| if (CGM.getContext().getTargetNullPointerValue(QT) == 0) |
| return llvm::ConstantPointerNull::get(PT); |
| |
| auto &Ctx = CGM.getContext(); |
| auto NPT = llvm::PointerType::get(PT->getElementType(), |
| Ctx.getTargetAddressSpace(LangAS::opencl_generic)); |
| return llvm::ConstantExpr::getAddrSpaceCast( |
| llvm::ConstantPointerNull::get(NPT), PT); |
| } |
| |
| LangAS |
| AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, |
| const VarDecl *D) const { |
| assert(!CGM.getLangOpts().OpenCL && |
| !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && |
| "Address space agnostic languages only"); |
| LangAS DefaultGlobalAS = getLangASFromTargetAS( |
| CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); |
| if (!D) |
| return DefaultGlobalAS; |
| |
| LangAS AddrSpace = D->getType().getAddressSpace(); |
| assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); |
| if (AddrSpace != LangAS::Default) |
| return AddrSpace; |
| |
| if (CGM.isTypeConstant(D->getType(), false)) { |
| if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) |
| return ConstAS.getValue(); |
| } |
| return DefaultGlobalAS; |
| } |
| |
| llvm::SyncScope::ID |
| AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(SyncScope S, |
| llvm::LLVMContext &C) const { |
| StringRef Name; |
| switch (S) { |
| case SyncScope::OpenCLWorkGroup: |
| Name = "workgroup"; |
| break; |
| case SyncScope::OpenCLDevice: |
| Name = "agent"; |
| break; |
| case SyncScope::OpenCLAllSVMDevices: |
| Name = ""; |
| break; |
| case SyncScope::OpenCLSubGroup: |
| Name = "subgroup"; |
| } |
| return C.getOrInsertSyncScopeID(Name); |
| } |
| |
| bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { |
| return false; |
| } |
| |
| void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( |
| const FunctionType *&FT) const { |
| FT = getABIInfo().getContext().adjustFunctionType( |
| FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SPARC v8 ABI Implementation. |
| // Based on the SPARC Compliance Definition version 2.4.1. |
| // |
| // Ensures that complex values are passed in registers. |
| // |
| namespace { |
| class SparcV8ABIInfo : public DefaultABIInfo { |
| public: |
| SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} |
| |
| private: |
| ABIArgInfo classifyReturnType(QualType RetTy) const; |
| void computeInfo(CGFunctionInfo &FI) const override; |
| }; |
| } // end anonymous namespace |
| |
| |
| ABIArgInfo |
| SparcV8ABIInfo::classifyReturnType(QualType Ty) const { |
| if (Ty->isAnyComplexType()) { |
| return ABIArgInfo::getDirect(); |
| } |
| else { |
| return DefaultABIInfo::classifyReturnType(Ty); |
| } |
| } |
| |
| void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { |
| |
| FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
| for (auto &Arg : FI.arguments()) |
| Arg.info = classifyArgumentType(Arg.type); |
| } |
| |
| namespace { |
| class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) |
| : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} |
| }; |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // SPARC v9 ABI Implementation. |
| // Based on the SPARC Compliance Definition version 2.4.1. |
| // |
| // Function arguments a mapped to a nominal "parameter array" and promoted to |
| // registers depending on their type. Each argument occupies 8 or 16 bytes in |
| // the array, structs larger than 16 bytes are passed indirectly. |
| // |
| // One case requires special care: |
| // |
| // struct mixed { |
| // int i; |
| // float f; |
| // }; |
| // |
| // When a struct mixed is passed by value, it only occupies 8 bytes in the |
| // parameter array, but the int is passed in an integer register, and the float |
| // is passed in a floating point register. This is represented as two arguments |
| // with the LLVM IR inreg attribute: |
| // |
| // declare void f(i32 inreg %i, float inreg %f) |
| // |
| // The code generator will only allocate 4 bytes from the parameter array for |
| // the inreg arguments. All other arguments are allocated a multiple of 8 |
| // bytes. |
| // |
| namespace { |
| class SparcV9ABIInfo : public ABIInfo { |
| public: |
| SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} |
| |
| private: |
| ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; |
| void computeInfo(CGFunctionInfo &FI) const override; |
| Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const override; |
| |
| // Coercion type builder for structs passed in registers. The coercion type |
| // serves two purposes: |
| // |
| // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' |
| // in registers. |
| // 2. Expose aligned floating point elements as first-level elements, so the |
| // code generator knows to pass them in floating point registers. |
| // |
| // We also compute the InReg flag which indicates that the struct contains |
| // aligned 32-bit floats. |
| // |
| struct CoerceBuilder { |
| llvm::LLVMContext &Context; |
| const llvm::DataLayout &DL; |
| SmallVector<llvm::Type*, 8> Elems; |
| uint64_t Size; |
| bool InReg; |
| |
| CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) |
| : Context(c), DL(dl), Size(0), InReg(false) {} |
| |
| // Pad Elems with integers until Size is ToSize. |
| void pad(uint64_t ToSize) { |
| assert(ToSize >= Size && "Cannot remove elements"); |
| if (ToSize == Size) |
| return; |
| |
| // Finish the current 64-bit word. |
| uint64_t Aligned = llvm::alignTo(Size, 64); |
| if (Aligned > Size && Aligned <= ToSize) { |
| Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); |
| Size = Aligned; |
| } |
| |
| // Add whole 64-bit words. |
| while (Size + 64 <= ToSize) { |
| Elems.push_back(llvm::Type::getInt64Ty(Context)); |
| Size += 64; |
| } |
| |
| // Final in-word padding. |
| if (Size < ToSize) { |
| Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); |
| Size = ToSize; |
| } |
| } |
| |
| // Add a floating point element at Offset. |
| void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { |
| // Unaligned floats are treated as integers. |
| if (Offset % Bits) |
| return; |
| // The InReg flag is only required if there are any floats < 64 bits. |
| if (Bits < 64) |
| InReg = true; |
| pad(Offset); |
| Elems.push_back(Ty); |
| Size = Offset + Bits; |
| } |
| |
| // Add a struct type to the coercion type, starting at Offset (in bits). |
| void addStruct(uint64_t Offset, llvm::StructType *StrTy) { |
| const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); |
| for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { |
| llvm::Type *ElemTy = StrTy->getElementType(i); |
| uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); |
| switch (ElemTy->getTypeID()) { |
| case llvm::Type::StructTyID: |
| addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); |
| break; |
| case llvm::Type::FloatTyID: |
| addFloat(ElemOffset, ElemTy, 32); |
| break; |
| case llvm::Type::DoubleTyID: |
| addFloat(ElemOffset, ElemTy, 64); |
| break; |
| case llvm::Type::FP128TyID: |
| addFloat(ElemOffset, ElemTy, 128); |
| break; |
| case llvm::Type::PointerTyID: |
| if (ElemOffset % 64 == 0) { |
| pad(ElemOffset); |
| Elems.push_back(ElemTy); |
| Size += 64; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| // Check if Ty is a usable substitute for the coercion type. |
| bool isUsableType(llvm::StructType *Ty) const { |
| return llvm::makeArrayRef(Elems) == Ty->elements(); |
| } |
| |
| // Get the coercion type as a literal struct type. |
| llvm::Type *getType() const { |
| if (Elems.size() == 1) |
| return Elems.front(); |
| else |
| return llvm::StructType::get(Context, Elems); |
| } |
| }; |
| }; |
| } // end anonymous namespace |
| |
| ABIArgInfo |
| SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { |
| if (Ty->isVoidType()) |
| return ABIArgInfo::getIgnore(); |
| |
| uint64_t Size = getContext().getTypeSize(Ty); |
| |
| // Anything too big to fit in registers is passed with an explicit indirect |
| // pointer / sret pointer. |
| if (Size > SizeLimit) |
| return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
| |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| |
| // Integer types smaller than a register are extended. |
| if (Size < 64 && Ty->isIntegerType()) |
| return ABIArgInfo::getExtend(Ty); |
| |
| // Other non-aggregates go in registers. |
| if (!isAggregateTypeForABI(Ty)) |
| return ABIArgInfo::getDirect(); |
| |
| // If a C++ object has either a non-trivial copy constructor or a non-trivial |
| // destructor, it is passed with an explicit indirect pointer / sret pointer. |
| if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) |
| return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
| |
| // This is a small aggregate type that should be passed in registers. |
| // Build a coercion type from the LLVM struct type. |
| llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); |
| if (!StrTy) |
| return ABIArgInfo::getDirect(); |
| |
| CoerceBuilder CB(getVMContext(), getDataLayout()); |
| CB.addStruct(0, StrTy); |
| CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); |
| |
| // Try to use the original type for coercion. |
| llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); |
| |
| if (CB.InReg) |
| return ABIArgInfo::getDirectInReg(CoerceTy); |
| else |
| return ABIArgInfo::getDirect(CoerceTy); |
| } |
| |
| Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const { |
| ABIArgInfo AI = classifyType(Ty, 16 * 8); |
| llvm::Type *ArgTy = CGT.ConvertType(Ty); |
| if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) |
| AI.setCoerceToType(ArgTy); |
| |
| CharUnits SlotSize = CharUnits::fromQuantity(8); |
| |
| CGBuilderTy &Builder = CGF.Builder; |
| Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); |
| llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); |
| |
| auto TypeInfo = getContext().getTypeInfoInChars(Ty); |
| |
| Address ArgAddr = Address::invalid(); |
| CharUnits Stride; |
| switch (AI.getKind()) { |
| case ABIArgInfo::Expand: |
| case ABIArgInfo::CoerceAndExpand: |
| case ABIArgInfo::InAlloca: |
| llvm_unreachable("Unsupported ABI kind for va_arg"); |
| |
| case ABIArgInfo::Extend: { |
| Stride = SlotSize; |
| CharUnits Offset = SlotSize - TypeInfo.first; |
| ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); |
| break; |
| } |
| |
| case ABIArgInfo::Direct: { |
| auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); |
| Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); |
| ArgAddr = Addr; |
| break; |
| } |
| |
| case ABIArgInfo::Indirect: |
| Stride = SlotSize; |
| ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); |
| ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), |
| TypeInfo.second); |
| break; |
| |
| case ABIArgInfo::Ignore: |
| return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); |
| } |
| |
| // Update VAList. |
| llvm::Value *NextPtr = |
| Builder.CreateConstInBoundsByteGEP(Addr.getPointer(), Stride, "ap.next"); |
| Builder.CreateStore(NextPtr, VAListAddr); |
| |
| return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); |
| } |
| |
| void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { |
| FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); |
| for (auto &I : FI.arguments()) |
| I.info = classifyType(I.type, 16 * 8); |
| } |
| |
| namespace { |
| class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) |
| : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} |
| |
| int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
| return 14; |
| } |
| |
| bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const override; |
| }; |
| } // end anonymous namespace |
| |
| bool |
| SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| llvm::Value *Address) const { |
| // This is calculated from the LLVM and GCC tables and verified |
| // against gcc output. AFAIK all ABIs use the same encoding. |
| |
| CodeGen::CGBuilderTy &Builder = CGF.Builder; |
| |
| llvm::IntegerType *i8 = CGF.Int8Ty; |
| llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); |
| llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); |
| |
| // 0-31: the 8-byte general-purpose registers |
| AssignToArrayRange(Builder, Address, Eight8, 0, 31); |
| |
| // 32-63: f0-31, the 4-byte floating-point registers |
| AssignToArrayRange(Builder, Address, Four8, 32, 63); |
| |
| // Y = 64 |
| // PSR = 65 |
| // WIM = 66 |
| // TBR = 67 |
| // PC = 68 |
| // NPC = 69 |
| // FSR = 70 |
| // CSR = 71 |
| AssignToArrayRange(Builder, Address, Eight8, 64, 71); |
| |
| // 72-87: d0-15, the 8-byte floating-point registers |
| AssignToArrayRange(Builder, Address, Eight8, 72, 87); |
| |
| return false; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // XCore ABI Implementation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| /// A SmallStringEnc instance is used to build up the TypeString by passing |
| /// it by reference between functions that append to it. |
| typedef llvm::SmallString<128> SmallStringEnc; |
| |
| /// TypeStringCache caches the meta encodings of Types. |
| /// |
| /// The reason for caching TypeStrings is two fold: |
| /// 1. To cache a type's encoding for later uses; |
| /// 2. As a means to break recursive member type inclusion. |
| /// |
| /// A cache Entry can have a Status of: |
| /// NonRecursive: The type encoding is not recursive; |
| /// Recursive: The type encoding is recursive; |
| /// Incomplete: An incomplete TypeString; |
| /// IncompleteUsed: An incomplete TypeString that has been used in a |
| /// Recursive type encoding. |
| /// |
| /// A NonRecursive entry will have all of its sub-members expanded as fully |
| /// as possible. Whilst it may contain types which are recursive, the type |
| /// itself is not recursive and thus its encoding may be safely used whenever |
| /// the type is encountered. |
| /// |
| /// A Recursive entry will have all of its sub-members expanded as fully as |
| /// possible. The type itself is recursive and it may contain other types which |
| /// are recursive. The Recursive encoding must not be used during the expansion |
| /// of a recursive type's recursive branch. For simplicity the code uses |
| /// IncompleteCount to reject all usage of Recursive encodings for member types. |
| /// |
| /// An Incomplete entry is always a RecordType and only encodes its |
| /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and |
| /// are placed into the cache during type expansion as a means to identify and |
| /// handle recursive inclusion of types as sub-members. If there is recursion |
| /// the entry becomes IncompleteUsed. |
| /// |
| /// During the expansion of a RecordType's members: |
| /// |
| /// If the cache contains a NonRecursive encoding for the member type, the |
| /// cached encoding is used; |
| /// |
| /// If the cache contains a Recursive encoding for the member type, the |
| /// cached encoding is 'Swapped' out, as it may be incorrect, and... |
| /// |
| /// If the member is a RecordType, an Incomplete encoding is placed into the |
| /// cache to break potential recursive inclusion of itself as a sub-member; |
| /// |
| /// Once a member RecordType has been expanded, its temporary incomplete |
| /// entry is removed from the cache. If a Recursive encoding was swapped out |
| /// it is swapped back in; |
| /// |
| /// If an incomplete entry is used to expand a sub-member, the incomplete |
| /// entry is marked as IncompleteUsed. The cache keeps count of how many |
| /// IncompleteUsed entries it currently contains in IncompleteUsedCount; |
| /// |
| /// If a member's encoding is found to be a NonRecursive or Recursive viz: |
| /// IncompleteUsedCount==0, the member's encoding is added to the cache. |
| /// Else the member is part of a recursive type and thus the recursion has |
| /// been exited too soon for the encoding to be correct for the member. |
| /// |
| class TypeStringCache { |
| enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; |
| struct Entry { |
| std::string Str; // The encoded TypeString for the type. |
| enum Status State; // Information about the encoding in 'Str'. |
| std::string Swapped; // A temporary place holder for a Recursive encoding |
| // during the expansion of RecordType's members. |
| }; |
| std::map<const IdentifierInfo *, struct Entry> Map; |
| unsigned IncompleteCount; // Number of Incomplete entries in the Map. |
| unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. |
| public: |
| TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} |
| void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); |
| bool removeIncomplete(const IdentifierInfo *ID); |
| void addIfComplete(const IdentifierInfo *ID, StringRef Str, |
| bool IsRecursive); |
| StringRef lookupStr(const IdentifierInfo *ID); |
| }; |
| |
| /// TypeString encodings for enum & union fields must be order. |
| /// FieldEncoding is a helper for this ordering process. |
| class FieldEncoding { |
| bool HasName; |
| std::string Enc; |
| public: |
| FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} |
| StringRef str() { return Enc; } |
| bool operator<(const FieldEncoding &rhs) const { |
| if (HasName != rhs.HasName) return HasName; |
| return Enc < rhs.Enc; |
| } |
| }; |
| |
| class XCoreABIInfo : public DefaultABIInfo { |
| public: |
| XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} |
| Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const override; |
| }; |
| |
| class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { |
| mutable TypeStringCache TSC; |
| public: |
| XCoreTargetCodeGenInfo(CodeGenTypes &CGT) |
| :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} |
| void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &M) const override; |
| }; |
| |
| } // End anonymous namespace. |
| |
| // TODO: this implementation is likely now redundant with the default |
| // EmitVAArg. |
| Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const { |
| CGBuilderTy &Builder = CGF.Builder; |
| |
| // Get the VAList. |
| CharUnits SlotSize = CharUnits::fromQuantity(4); |
| Address AP(Builder.CreateLoad(VAListAddr), SlotSize); |
| |
| // Handle the argument. |
| ABIArgInfo AI = classifyArgumentType(Ty); |
| CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); |
| llvm::Type *ArgTy = CGT.ConvertType(Ty); |
| if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) |
| AI.setCoerceToType(ArgTy); |
| llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); |
| |
| Address Val = Address::invalid(); |
| CharUnits ArgSize = CharUnits::Zero(); |
| switch (AI.getKind()) { |
| case ABIArgInfo::Expand: |
| case ABIArgInfo::CoerceAndExpand: |
| case ABIArgInfo::InAlloca: |
| llvm_unreachable("Unsupported ABI kind for va_arg"); |
| case ABIArgInfo::Ignore: |
| Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); |
| ArgSize = CharUnits::Zero(); |
| break; |
| case ABIArgInfo::Extend: |
| case ABIArgInfo::Direct: |
| Val = Builder.CreateBitCast(AP, ArgPtrTy); |
| ArgSize = CharUnits::fromQuantity( |
| getDataLayout().getTypeAllocSize(AI.getCoerceToType())); |
| ArgSize = ArgSize.alignTo(SlotSize); |
| break; |
| case ABIArgInfo::Indirect: |
| Val = Builder.CreateElementBitCast(AP, ArgPtrTy); |
| Val = Address(Builder.CreateLoad(Val), TypeAlign); |
| ArgSize = SlotSize; |
| break; |
| } |
| |
| // Increment the VAList. |
| if (!ArgSize.isZero()) { |
| llvm::Value *APN = |
| Builder.CreateConstInBoundsByteGEP(AP.getPointer(), ArgSize); |
| Builder.CreateStore(APN, VAListAddr); |
| } |
| |
| return Val; |
| } |
| |
| /// During the expansion of a RecordType, an incomplete TypeString is placed |
| /// into the cache as a means to identify and break recursion. |
| /// If there is a Recursive encoding in the cache, it is swapped out and will |
| /// be reinserted by removeIncomplete(). |
| /// All other types of encoding should have been used rather than arriving here. |
| void TypeStringCache::addIncomplete(const IdentifierInfo *ID, |
| std::string StubEnc) { |
| if (!ID) |
| return; |
| Entry &E = Map[ID]; |
| assert( (E.Str.empty() || E.State == Recursive) && |
| "Incorrectly use of addIncomplete"); |
| assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); |
| E.Swapped.swap(E.Str); // swap out the Recursive |
| E.Str.swap(StubEnc); |
| E.State = Incomplete; |
| ++IncompleteCount; |
| } |
| |
| /// Once the RecordType has been expanded, the temporary incomplete TypeString |
| /// must be removed from the cache. |
| /// If a Recursive was swapped out by addIncomplete(), it will be replaced. |
| /// Returns true if the RecordType was defined recursively. |
| bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { |
| if (!ID) |
| return false; |
| auto I = Map.find(ID); |
| assert(I != Map.end() && "Entry not present"); |
| Entry &E = I->second; |
| assert( (E.State == Incomplete || |
| E.State == IncompleteUsed) && |
| "Entry must be an incomplete type"); |
| bool IsRecursive = false; |
| if (E.State == IncompleteUsed) { |
| // We made use of our Incomplete encoding, thus we are recursive. |
| IsRecursive = true; |
| --IncompleteUsedCount; |
| } |
| if (E.Swapped.empty()) |
| Map.erase(I); |
| else { |
| // Swap the Recursive back. |
| E.Swapped.swap(E.Str); |
| E.Swapped.clear(); |
| E.State = Recursive; |
| } |
| --IncompleteCount; |
| return IsRecursive; |
| } |
| |
| /// Add the encoded TypeString to the cache only if it is NonRecursive or |
| /// Recursive (viz: all sub-members were expanded as fully as possible). |
| void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, |
| bool IsRecursive) { |
| if (!ID || IncompleteUsedCount) |
| return; // No key or it is is an incomplete sub-type so don't add. |
| Entry &E = Map[ID]; |
| if (IsRecursive && !E.Str.empty()) { |
| assert(E.State==Recursive && E.Str.size() == Str.size() && |
| "This is not the same Recursive entry"); |
| // The parent container was not recursive after all, so we could have used |
| // this Recursive sub-member entry after all, but we assumed the worse when |
| // we started viz: IncompleteCount!=0. |
| return; |
| } |
| assert(E.Str.empty() && "Entry already present"); |
| E.Str = Str.str(); |
| E.State = IsRecursive? Recursive : NonRecursive; |
| } |
| |
| /// Return a cached TypeString encoding for the ID. If there isn't one, or we |
| /// are recursively expanding a type (IncompleteCount != 0) and the cached |
| /// encoding is Recursive, return an empty StringRef. |
| StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { |
| if (!ID) |
| return StringRef(); // We have no key. |
| auto I = Map.find(ID); |
| if (I == Map.end()) |
| return StringRef(); // We have no encoding. |
| Entry &E = I->second; |
| if (E.State == Recursive && IncompleteCount) |
| return StringRef(); // We don't use Recursive encodings for member types. |
| |
| if (E.State == Incomplete) { |
| // The incomplete type is being used to break out of recursion. |
| E.State = IncompleteUsed; |
| ++IncompleteUsedCount; |
| } |
| return E.Str; |
| } |
| |
| /// The XCore ABI includes a type information section that communicates symbol |
| /// type information to the linker. The linker uses this information to verify |
| /// safety/correctness of things such as array bound and pointers et al. |
| /// The ABI only requires C (and XC) language modules to emit TypeStrings. |
| /// This type information (TypeString) is emitted into meta data for all global |
| /// symbols: definitions, declarations, functions & variables. |
| /// |
| /// The TypeString carries type, qualifier, name, size & value details. |
| /// Please see 'Tools Development Guide' section 2.16.2 for format details: |
| /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf |
| /// The output is tested by test/CodeGen/xcore-stringtype.c. |
| /// |
| static bool getTypeString(SmallStringEnc &Enc, const Decl *D, |
| CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); |
| |
| /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. |
| void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &CGM) const { |
| SmallStringEnc Enc; |
| if (getTypeString(Enc, D, CGM, TSC)) { |
| llvm::LLVMContext &Ctx = CGM.getModule().getContext(); |
| llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), |
| llvm::MDString::get(Ctx, Enc.str())}; |
| llvm::NamedMDNode *MD = |
| CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); |
| MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SPIR ABI Implementation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) |
| : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} |
| unsigned getOpenCLKernelCallingConv() const override; |
| }; |
| |
| } // End anonymous namespace. |
| |
| namespace clang { |
| namespace CodeGen { |
| void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { |
| DefaultABIInfo SPIRABI(CGM.getTypes()); |
| SPIRABI.computeInfo(FI); |
| } |
| } |
| } |
| |
| unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { |
| return llvm::CallingConv::SPIR_KERNEL; |
| } |
| |
| static bool appendType(SmallStringEnc &Enc, QualType QType, |
| const CodeGen::CodeGenModule &CGM, |
| TypeStringCache &TSC); |
| |
| /// Helper function for appendRecordType(). |
| /// Builds a SmallVector containing the encoded field types in declaration |
| /// order. |
| static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, |
| const RecordDecl *RD, |
| const CodeGen::CodeGenModule &CGM, |
| TypeStringCache &TSC) { |
| for (const auto *Field : RD->fields()) { |
| SmallStringEnc Enc; |
| Enc += "m("; |
| Enc += Field->getName(); |
| Enc += "){"; |
| if (Field->isBitField()) { |
| Enc += "b("; |
| llvm::raw_svector_ostream OS(Enc); |
| OS << Field->getBitWidthValue(CGM.getContext()); |
| Enc += ':'; |
| } |
| if (!appendType(Enc, Field->getType(), CGM, TSC)) |
| return false; |
| if (Field->isBitField()) |
| Enc += ')'; |
| Enc += '}'; |
| FE.emplace_back(!Field->getName().empty(), Enc); |
| } |
| return true; |
| } |
| |
| /// Appends structure and union types to Enc and adds encoding to cache. |
| /// Recursively calls appendType (via extractFieldType) for each field. |
| /// Union types have their fields ordered according to the ABI. |
| static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, |
| const CodeGen::CodeGenModule &CGM, |
| TypeStringCache &TSC, const IdentifierInfo *ID) { |
| // Append the cached TypeString if we have one. |
| StringRef TypeString = TSC.lookupStr(ID); |
| if (!TypeString.empty()) { |
| Enc += TypeString; |
| return true; |
| } |
| |
| // Start to emit an incomplete TypeString. |
| size_t Start = Enc.size(); |
| Enc += (RT->isUnionType()? 'u' : 's'); |
| Enc += '('; |
| if (ID) |
| Enc += ID->getName(); |
| Enc += "){"; |
| |
| // We collect all encoded fields and order as necessary. |
| bool IsRecursive = false; |
| const RecordDecl *RD = RT->getDecl()->getDefinition(); |
| if (RD && !RD->field_empty()) { |
| // An incomplete TypeString stub is placed in the cache for this RecordType |
| // so that recursive calls to this RecordType will use it whilst building a |
| // complete TypeString for this RecordType. |
| SmallVector<FieldEncoding, 16> FE; |
| std::string StubEnc(Enc.substr(Start).str()); |
| StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. |
| TSC.addIncomplete(ID, std::move(StubEnc)); |
| if (!extractFieldType(FE, RD, CGM, TSC)) { |
| (void) TSC.removeIncomplete(ID); |
| return false; |
| } |
| IsRecursive = TSC.removeIncomplete(ID); |
| // The ABI requires unions to be sorted but not structures. |
| // See FieldEncoding::operator< for sort algorithm. |
| if (RT->isUnionType()) |
| llvm::sort(FE.begin(), FE.end()); |
| // We can now complete the TypeString. |
| unsigned E = FE.size(); |
| for (unsigned I = 0; I != E; ++I) { |
| if (I) |
| Enc += ','; |
| Enc += FE[I].str(); |
| } |
| } |
| Enc += '}'; |
| TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); |
| return true; |
| } |
| |
| /// Appends enum types to Enc and adds the encoding to the cache. |
| static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, |
| TypeStringCache &TSC, |
| const IdentifierInfo *ID) { |
| // Append the cached TypeString if we have one. |
| StringRef TypeString = TSC.lookupStr(ID); |
| if (!TypeString.empty()) { |
| Enc += TypeString; |
| return true; |
| } |
| |
| size_t Start = Enc.size(); |
| Enc += "e("; |
| if (ID) |
| Enc += ID->getName(); |
| Enc += "){"; |
| |
| // We collect all encoded enumerations and order them alphanumerically. |
| if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { |
| SmallVector<FieldEncoding, 16> FE; |
| for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; |
| ++I) { |
| SmallStringEnc EnumEnc; |
| EnumEnc += "m("; |
| EnumEnc += I->getName(); |
| EnumEnc += "){"; |
| I->getInitVal().toString(EnumEnc); |
| EnumEnc += '}'; |
| FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); |
| } |
| llvm::sort(FE.begin(), FE.end()); |
| unsigned E = FE.size(); |
| for (unsigned I = 0; I != E; ++I) { |
| if (I) |
| Enc += ','; |
| Enc += FE[I].str(); |
| } |
| } |
| Enc += '}'; |
| TSC.addIfComplete(ID, Enc.substr(Start), false); |
| return true; |
| } |
| |
| /// Appends type's qualifier to Enc. |
| /// This is done prior to appending the type's encoding. |
| static void appendQualifier(SmallStringEnc &Enc, QualType QT) { |
| // Qualifiers are emitted in alphabetical order. |
| static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; |
| int Lookup = 0; |
| if (QT.isConstQualified()) |
| Lookup += 1<<0; |
| if (QT.isRestrictQualified()) |
| Lookup += 1<<1; |
| if (QT.isVolatileQualified()) |
| Lookup += 1<<2; |
| Enc += Table[Lookup]; |
| } |
| |
| /// Appends built-in types to Enc. |
| static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { |
| const char *EncType; |
| switch (BT->getKind()) { |
| case BuiltinType::Void: |
| EncType = "0"; |
| break; |
| case BuiltinType::Bool: |
| EncType = "b"; |
| break; |
| case BuiltinType::Char_U: |
| EncType = "uc"; |
| break; |
| case BuiltinType::UChar: |
| EncType = "uc"; |
| break; |
| case BuiltinType::SChar: |
| EncType = "sc"; |
| break; |
| case BuiltinType::UShort: |
| EncType = "us"; |
| break; |
| case BuiltinType::Short: |
| EncType = "ss"; |
| break; |
| case BuiltinType::UInt: |
| EncType = "ui"; |
| break; |
| case BuiltinType::Int: |
| EncType = "si"; |
| break; |
| case BuiltinType::ULong: |
| EncType = "ul"; |
| break; |
| case BuiltinType::Long: |
| EncType = "sl"; |
| break; |
| case BuiltinType::ULongLong: |
| EncType = "ull"; |
| break; |
| case BuiltinType::LongLong: |
| EncType = "sll"; |
| break; |
| case BuiltinType::Float: |
| EncType = "ft"; |
| break; |
| case BuiltinType::Double: |
| EncType = "d"; |
| break; |
| case BuiltinType::LongDouble: |
| EncType = "ld"; |
| break; |
| default: |
| return false; |
| } |
| Enc += EncType; |
| return true; |
| } |
| |
| /// Appends a pointer encoding to Enc before calling appendType for the pointee. |
| static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, |
| const CodeGen::CodeGenModule &CGM, |
| TypeStringCache &TSC) { |
| Enc += "p("; |
| if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) |
| return false; |
| Enc += ')'; |
| return true; |
| } |
| |
| /// Appends array encoding to Enc before calling appendType for the element. |
| static bool appendArrayType(SmallStringEnc &Enc, QualType QT, |
| const ArrayType *AT, |
| const CodeGen::CodeGenModule &CGM, |
| TypeStringCache &TSC, StringRef NoSizeEnc) { |
| if (AT->getSizeModifier() != ArrayType::Normal) |
| return false; |
| Enc += "a("; |
| if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) |
| CAT->getSize().toStringUnsigned(Enc); |
| else |
| Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". |
| Enc += ':'; |
| // The Qualifiers should be attached to the type rather than the array. |
| appendQualifier(Enc, QT); |
| if (!appendType(Enc, AT->getElementType(), CGM, TSC)) |
| return false; |
| Enc += ')'; |
| return true; |
| } |
| |
| /// Appends a function encoding to Enc, calling appendType for the return type |
| /// and the arguments. |
| static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, |
| const CodeGen::CodeGenModule &CGM, |
| TypeStringCache &TSC) { |
| Enc += "f{"; |
| if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) |
| return false; |
| Enc += "}("; |
| if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { |
| // N.B. we are only interested in the adjusted param types. |
| auto I = FPT->param_type_begin(); |
| auto E = FPT->param_type_end(); |
| if (I != E) { |
| do { |
| if (!appendType(Enc, *I, CGM, TSC)) |
| return false; |
| ++I; |
| if (I != E) |
| Enc += ','; |
| } while (I != E); |
| if (FPT->isVariadic()) |
| Enc += ",va"; |
| } else { |
| if (FPT->isVariadic()) |
| Enc += "va"; |
| else |
| Enc += '0'; |
| } |
| } |
| Enc += ')'; |
| return true; |
| } |
| |
| /// Handles the type's qualifier before dispatching a call to handle specific |
| /// type encodings. |
| static bool appendType(SmallStringEnc &Enc, QualType QType, |
| const CodeGen::CodeGenModule &CGM, |
| TypeStringCache &TSC) { |
| |
| QualType QT = QType.getCanonicalType(); |
| |
| if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) |
| // The Qualifiers should be attached to the type rather than the array. |
| // Thus we don't call appendQualifier() here. |
| return appendArrayType(Enc, QT, AT, CGM, TSC, ""); |
| |
| appendQualifier(Enc, QT); |
| |
| if (const BuiltinType *BT = QT->getAs<BuiltinType>()) |
| return appendBuiltinType(Enc, BT); |
| |
| if (const PointerType *PT = QT->getAs<PointerType>()) |
| return appendPointerType(Enc, PT, CGM, TSC); |
| |
| if (const EnumType *ET = QT->getAs<EnumType>()) |
| return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); |
| |
| if (const RecordType *RT = QT->getAsStructureType()) |
| return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); |
| |
| if (const RecordType *RT = QT->getAsUnionType()) |
| return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); |
| |
| if (const FunctionType *FT = QT->getAs<FunctionType>()) |
| return appendFunctionType(Enc, FT, CGM, TSC); |
| |
| return false; |
| } |
| |
| static bool getTypeString(SmallStringEnc &Enc, const Decl *D, |
| CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { |
| if (!D) |
| return false; |
| |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| if (FD->getLanguageLinkage() != CLanguageLinkage) |
| return false; |
| return appendType(Enc, FD->getType(), CGM, TSC); |
| } |
| |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| if (VD->getLanguageLinkage() != CLanguageLinkage) |
| return false; |
| QualType QT = VD->getType().getCanonicalType(); |
| if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { |
| // Global ArrayTypes are given a size of '*' if the size is unknown. |
| // The Qualifiers should be attached to the type rather than the array. |
| // Thus we don't call appendQualifier() here. |
| return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); |
| } |
| return appendType(Enc, QT, CGM, TSC); |
| } |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // RISCV ABI Implementation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class RISCVABIInfo : public DefaultABIInfo { |
| private: |
| unsigned XLen; // Size of the integer ('x') registers in bits. |
| static const int NumArgGPRs = 8; |
| |
| public: |
| RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) |
| : DefaultABIInfo(CGT), XLen(XLen) {} |
| |
| // DefaultABIInfo's classifyReturnType and classifyArgumentType are |
| // non-virtual, but computeInfo is virtual, so we overload it. |
| void computeInfo(CGFunctionInfo &FI) const override; |
| |
| ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, |
| int &ArgGPRsLeft) const; |
| ABIArgInfo classifyReturnType(QualType RetTy) const; |
| |
| Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const override; |
| |
| ABIArgInfo extendType(QualType Ty) const; |
| }; |
| } // end anonymous namespace |
| |
| void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { |
| QualType RetTy = FI.getReturnType(); |
| if (!getCXXABI().classifyReturnType(FI)) |
| FI.getReturnInfo() = classifyReturnType(RetTy); |
| |
| // IsRetIndirect is true if classifyArgumentType indicated the value should |
| // be passed indirect or if the type size is greater than 2*xlen. e.g. fp128 |
| // is passed direct in LLVM IR, relying on the backend lowering code to |
| // rewrite the argument list and pass indirectly on RV32. |
| bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect || |
| getContext().getTypeSize(RetTy) > (2 * XLen); |
| |
| // We must track the number of GPRs used in order to conform to the RISC-V |
| // ABI, as integer scalars passed in registers should have signext/zeroext |
| // when promoted, but are anyext if passed on the stack. As GPR usage is |
| // different for variadic arguments, we must also track whether we are |
| // examining a vararg or not. |
| int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; |
| int NumFixedArgs = FI.getNumRequiredArgs(); |
| |
| int ArgNum = 0; |
| for (auto &ArgInfo : FI.arguments()) { |
| bool IsFixed = ArgNum < NumFixedArgs; |
| ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft); |
| ArgNum++; |
| } |
| } |
| |
| ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, |
| int &ArgGPRsLeft) const { |
| assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); |
| Ty = useFirstFieldIfTransparentUnion(Ty); |
| |
| // Structures with either a non-trivial destructor or a non-trivial |
| // copy constructor are always passed indirectly. |
| if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { |
| if (ArgGPRsLeft) |
| ArgGPRsLeft -= 1; |
| return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == |
| CGCXXABI::RAA_DirectInMemory); |
| } |
| |
| // Ignore empty structs/unions. |
| if (isEmptyRecord(getContext(), Ty, true)) |
| return ABIArgInfo::getIgnore(); |
| |
| uint64_t Size = getContext().getTypeSize(Ty); |
| uint64_t NeededAlign = getContext().getTypeAlign(Ty); |
| bool MustUseStack = false; |
| // Determine the number of GPRs needed to pass the current argument |
| // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" |
| // register pairs, so may consume 3 registers. |
| int NeededArgGPRs = 1; |
| if (!IsFixed && NeededAlign == 2 * XLen) |
| NeededArgGPRs = 2 + (ArgGPRsLeft % 2); |
| else if (Size > XLen && Size <= 2 * XLen) |
| NeededArgGPRs = 2; |
| |
| if (NeededArgGPRs > ArgGPRsLeft) { |
| MustUseStack = true; |
| NeededArgGPRs = ArgGPRsLeft; |
| } |
| |
| ArgGPRsLeft -= NeededArgGPRs; |
| |
| if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { |
| // Treat an enum type as its underlying type. |
| if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| Ty = EnumTy->getDecl()->getIntegerType(); |
| |
| // All integral types are promoted to XLen width, unless passed on the |
| // stack. |
| if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { |
| return extendType(Ty); |
| } |
| |
| return ABIArgInfo::getDirect(); |
| } |
| |
| // Aggregates which are <= 2*XLen will be passed in registers if possible, |
| // so coerce to integers. |
| if (Size <= 2 * XLen) { |
| unsigned Alignment = getContext().getTypeAlign(Ty); |
| |
| // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is |
| // required, and a 2-element XLen array if only XLen alignment is required. |
| if (Size <= XLen) { |
| return ABIArgInfo::getDirect( |
| llvm::IntegerType::get(getVMContext(), XLen)); |
| } else if (Alignment == 2 * XLen) { |
| return ABIArgInfo::getDirect( |
| llvm::IntegerType::get(getVMContext(), 2 * XLen)); |
| } else { |
| return ABIArgInfo::getDirect(llvm::ArrayType::get( |
| llvm::IntegerType::get(getVMContext(), XLen), 2)); |
| } |
| } |
| return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
| } |
| |
| ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { |
| if (RetTy->isVoidType()) |
| return ABIArgInfo::getIgnore(); |
| |
| int ArgGPRsLeft = 2; |
| |
| // The rules for return and argument types are the same, so defer to |
| // classifyArgumentType. |
| return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft); |
| } |
| |
| Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| QualType Ty) const { |
| CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); |
| |
| // Empty records are ignored for parameter passing purposes. |
| if (isEmptyRecord(getContext(), Ty, true)) { |
| Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); |
| Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); |
| return Addr; |
| } |
| |
| std::pair<CharUnits, CharUnits> SizeAndAlign = |
| getContext().getTypeInfoInChars(Ty); |
| |
| // Arguments bigger than 2*Xlen bytes are passed indirectly. |
| bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; |
| |
| return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, |
| SlotSize, /*AllowHigherAlign=*/true); |
| } |
| |
| ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { |
| int TySize = getContext().getTypeSize(Ty); |
| // RV64 ABI requires unsigned 32 bit integers to be sign extended. |
| if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) |
| return ABIArgInfo::getSignExtend(Ty); |
| return ABIArgInfo::getExtend(Ty); |
| } |
| |
| namespace { |
| class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { |
| public: |
| RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen) |
| : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {} |
| |
| void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
| CodeGen::CodeGenModule &CGM) const override { |
| const auto *FD = dyn_cast_or_null<FunctionDecl>(D); |
| if (!FD) return; |
| |
| const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); |
| if (!Attr) |
| return; |
| |
| const char *Kind; |
| switch (Attr->getInterrupt()) { |
| case RISCVInterruptAttr::user: Kind = "user"; break; |
| case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; |
| case RISCVInterruptAttr::machine: Kind = "machine"; break; |
| } |
| |
| auto *Fn = cast<llvm::Function>(GV); |
| |
| Fn->addFnAttr("interrupt", Kind); |
| } |
| }; |
| } // namespace |
| |
| //===----------------------------------------------------------------------===// |
| // Driver code |
| //===----------------------------------------------------------------------===// |
| |
| bool CodeGenModule::supportsCOMDAT() const { |
| return getTriple().supportsCOMDAT(); |
| } |
| |
| const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { |
| if (TheTargetCodeGenInfo) |
| return *TheTargetCodeGenInfo; |
| |
| // Helper to set the unique_ptr while still keeping the return value. |
| auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { |
| this->TheTargetCodeGenInfo.reset(P); |
| return *P; |
| }; |
| |
| const llvm::Triple &Triple = getTarget().getTriple(); |
| switch (Triple.getArch()) { |
| default: |
| return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); |
| |
| case llvm::Triple::le32: |
| return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); |
| case llvm::Triple::mips: |
| case llvm::Triple::mipsel: |
| if (Triple.getOS() == llvm::Triple::NaCl) |
| return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); |
| return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); |
| |
| case llvm::Triple::mips64: |
| case llvm::Triple::mips64el: |
| return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); |
| |
| case llvm::Triple::avr: |
| return SetCGInfo(new AVRTargetCodeGenInfo(Types)); |
| |
| case llvm::Triple::aarch64: |
| case llvm::Triple::aarch64_be: { |
| AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; |
| if (getTarget().getABI() == "darwinpcs") |
| Kind = AArch64ABIInfo::DarwinPCS; |
| else if (Triple.isOSWindows()) |
| return SetCGInfo( |
| new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); |
| |
| return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); |
| } |
| |
| case llvm::Triple::wasm32: |
| case llvm::Triple::wasm64: |
| return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); |
| |
| case llvm::Triple::arm: |
| case llvm::Triple::armeb: |
| case llvm::Triple::thumb: |
| case llvm::Triple::thumbeb: { |
| if (Triple.getOS() == llvm::Triple::Win32) { |
| return SetCGInfo( |
| new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); |
| } |
| |
| ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; |
| StringRef ABIStr = getTarget().getABI(); |
| if (ABIStr == "apcs-gnu") |
| Kind = ARMABIInfo::APCS; |
| else if (ABIStr == "aapcs16") |
| Kind = ARMABIInfo::AAPCS16_VFP; |
| else if (CodeGenOpts.FloatABI == "hard" || |
| (CodeGenOpts.FloatABI != "soft" && |
| (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || |
| Triple.getEnvironment() == llvm::Triple::MuslEABIHF || |
| Triple.getEnvironment() == llvm::Triple::EABIHF))) |
| Kind = ARMABIInfo::AAPCS_VFP; |
| |
| return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); |
| } |
| |
| case llvm::Triple::ppc: |
| return SetCGInfo( |
| new PPC32TargetCodeGenInfo(Types, CodeGenOpts.FloatABI == "soft")); |
| case llvm::Triple::ppc64: |
| if (Triple.isOSBinFormatELF()) { |
| PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; |
| if (getTarget().getABI() == "elfv2") |
| Kind = PPC64_SVR4_ABIInfo::ELFv2; |
| bool HasQPX = getTarget().getABI() == "elfv1-qpx"; |
| bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; |
| |
| return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, |
| IsSoftFloat)); |
| } else |
| return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); |
| case llvm::Triple::ppc64le: { |
| assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); |
| PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; |
| if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") |
| Kind = PPC64_SVR4_ABIInfo::ELFv1; |
| bool HasQPX = getTarget().getABI() == "elfv1-qpx"; |
| bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; |
| |
| return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, |
| IsSoftFloat)); |
| } |
| |
| case llvm::Triple::nvptx: |
| case llvm::Triple::nvptx64: |
| return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); |
| |
| case llvm::Triple::msp430: |
| return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); |
| |
| case llvm::Triple::riscv32: |
| return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32)); |
| case llvm::Triple::riscv64: |
| return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64)); |
| |
| case llvm::Triple::systemz: { |
| bool HasVector = getTarget().getABI() == "vector"; |
| return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); |
| } |
| |
| case llvm::Triple::tce: |
| case llvm::Triple::tcele: |
| return SetCGInfo(new TCETargetCodeGenInfo(Types)); |
| |
| case llvm::Triple::x86: { |
| bool IsDarwinVectorABI = Triple.isOSDarwin(); |
| bool RetSmallStructInRegABI = |
| X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); |
| bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); |
| |
| if (Triple.getOS() == llvm::Triple::Win32) { |
| return SetCGInfo(new WinX86_32TargetCodeGenInfo( |
| Types, IsDarwinVectorABI, RetSmallStructInRegABI, |
| IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); |
| } else { |
| return SetCGInfo(new X86_32TargetCodeGenInfo( |
| Types, IsDarwinVectorABI, RetSmallStructInRegABI, |
| IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, |
| CodeGenOpts.FloatABI == "soft")); |
| } |
| } |
| |
| case llvm::Triple::x86_64: { |
| StringRef ABI = getTarget().getABI(); |
| X86AVXABILevel AVXLevel = |
| (ABI == "avx512" |
| ? X86AVXABILevel::AVX512 |
| : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); |
| |
| switch (Triple.getOS()) { |
| case llvm::Triple::Win32: |
| return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); |
| case llvm::Triple::PS4: |
| return SetCGInfo(new PS4TargetCodeGenInfo(Types, AVXLevel)); |
| default: |
| return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); |
| } |
| } |
| case llvm::Triple::hexagon: |
| return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); |
| case llvm::Triple::lanai: |
| return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); |
| case llvm::Triple::r600: |
| return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); |
| case llvm::Triple::amdgcn: |
| return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); |
| case llvm::Triple::sparc: |
| return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); |
| case llvm::Triple::sparcv9: |
| return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); |
| case llvm::Triple::xcore: |
| return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); |
| case llvm::Triple::spir: |
| case llvm::Triple::spir64: |
| return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); |
| } |
| } |
| |
| /// Create an OpenCL kernel for an enqueued block. |
| /// |
| /// The kernel has the same function type as the block invoke function. Its |
| /// name is the name of the block invoke function postfixed with "_kernel". |
| /// It simply calls the block invoke function then returns. |
| llvm::Function * |
| TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, |
| llvm::Function *Invoke, |
| llvm::Value *BlockLiteral) const { |
| auto *InvokeFT = Invoke->getFunctionType(); |
| llvm::SmallVector<llvm::Type *, 2> ArgTys; |
| for (auto &P : InvokeFT->params()) |
| ArgTys.push_back(P); |
| auto &C = CGF.getLLVMContext(); |
| std::string Name = Invoke->getName().str() + "_kernel"; |
| auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); |
| auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, |
| &CGF.CGM.getModule()); |
| auto IP = CGF.Builder.saveIP(); |
| auto *BB = llvm::BasicBlock::Create(C, "entry", F); |
| auto &Builder = CGF.Builder; |
| Builder.SetInsertPoint(BB); |
| llvm::SmallVector<llvm::Value *, 2> Args; |
| for (auto &A : F->args()) |
| Args.push_back(&A); |
| Builder.CreateCall(Invoke, Args); |
| Builder.CreateRetVoid(); |
| Builder.restoreIP(IP); |
| return F; |
| } |
| |
| /// Create an OpenCL kernel for an enqueued block. |
| /// |
| /// The type of the first argument (the block literal) is the struct type |
| /// of the block literal instead of a pointer type. The first argument |
| /// (block literal) is passed directly by value to the kernel. The kernel |
| /// allocates the same type of struct on stack and stores the block literal |
| /// to it and passes its pointer to the block invoke function. The kernel |
| /// has "enqueued-block" function attribute and kernel argument metadata. |
| llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( |
| CodeGenFunction &CGF, llvm::Function *Invoke, |
| llvm::Value *BlockLiteral) const { |
| auto &Builder = CGF.Builder; |
| auto &C = CGF.getLLVMContext(); |
| |
| auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); |
| auto *InvokeFT = Invoke->getFunctionType(); |
| llvm::SmallVector<llvm::Type *, 2> ArgTys; |
| llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; |
| llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; |
| llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; |
| llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; |
| llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; |
| llvm::SmallVector<llvm::Metadata *, 8> ArgNames; |
| |
| ArgTys.push_back(BlockTy); |
| ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); |
| AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); |
| ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); |
| ArgTypeQuals.push_back(llvm::MDString::get(C, "")); |
| AccessQuals.push_back(llvm::MDString::get(C, "none")); |
| ArgNames.push_back(llvm::MDString::get(C, "block_literal")); |
| for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { |
| ArgTys.push_back(InvokeFT->getParamType(I)); |
| ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); |
| AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); |
| AccessQuals.push_back(llvm::MDString::get(C, "none")); |
| ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); |
| ArgTypeQuals.push_back(llvm::MDString::get(C, "")); |
| ArgNames.push_back( |
| llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); |
| } |
| std::string Name = Invoke->getName().str() + "_kernel"; |
| auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); |
| auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, |
| &CGF.CGM.getModule()); |
| F->addFnAttr("enqueued-block"); |
| auto IP = CGF.Builder.saveIP(); |
| auto *BB = llvm::BasicBlock::Create(C, "entry", F); |
| Builder.SetInsertPoint(BB); |
| unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); |
| auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); |
| BlockPtr->setAlignment(BlockAlign); |
| Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); |
| auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); |
| llvm::SmallVector<llvm::Value *, 2> Args; |
| Args.push_back(Cast); |
| for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) |
| Args.push_back(I); |
| Builder.CreateCall(Invoke, Args); |
| Builder.CreateRetVoid(); |
| Builder.restoreIP(IP); |
| |
| F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); |
| F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); |
| F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); |
| F->setMetadata("kernel_arg_base_type", |
| llvm::MDNode::get(C, ArgBaseTypeNames)); |
| F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); |
| if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) |
| F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); |
| |
| return F; |
| } |