blob: dc0b5c1fb9654aadb4c800e0b16bbd41e64e5c64 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_MAC_SCOPED_MACH_VM_H_
#define BASE_MAC_SCOPED_MACH_VM_H_
#include <mach/mach.h>
#include <algorithm>
#include "base/base_export.h"
#include "base/logging.h"
#include "base/macros.h"
#include "starboard/types.h"
// Use ScopedMachVM to supervise ownership of pages in the current process
// through the Mach VM subsystem. Pages allocated with vm_allocate can be
// released when exiting a scope with ScopedMachVM.
//
// The Mach VM subsystem operates on a page-by-page basis, and a single VM
// allocation managed by a ScopedMachVM object may span multiple pages. As far
// as Mach is concerned, allocated pages may be deallocated individually. This
// is in contrast to higher-level allocators such as malloc, where the base
// address of an allocation implies the size of an allocated block.
// Consequently, it is not sufficient to just pass the base address of an
// allocation to ScopedMachVM, it also needs to know the size of the
// allocation. To avoid any confusion, both the base address and size must
// be page-aligned.
//
// When dealing with Mach VM, base addresses will naturally be page-aligned,
// but user-specified sizes may not be. If there's a concern that a size is
// not page-aligned, use the mach_vm_round_page macro to correct it.
//
// Example:
//
// vm_address_t address = 0;
// vm_size_t size = 12345; // This requested size is not page-aligned.
// kern_return_t kr =
// vm_allocate(mach_task_self(), &address, size, VM_FLAGS_ANYWHERE);
// if (kr != KERN_SUCCESS) {
// return false;
// }
// ScopedMachVM vm_owner(address, mach_vm_round_page(size));
namespace base {
namespace mac {
class BASE_EXPORT ScopedMachVM {
public:
explicit ScopedMachVM(vm_address_t address = 0, vm_size_t size = 0)
: address_(address), size_(size) {
DCHECK_EQ(address % PAGE_SIZE, 0u);
DCHECK_EQ(size % PAGE_SIZE, 0u);
}
~ScopedMachVM() {
if (size_) {
vm_deallocate(mach_task_self(), address_, size_);
}
}
void reset(vm_address_t address = 0, vm_size_t size = 0);
vm_address_t address() const {
return address_;
}
vm_size_t size() const {
return size_;
}
void swap(ScopedMachVM& that) {
std::swap(address_, that.address_);
std::swap(size_, that.size_);
}
void release() {
address_ = 0;
size_ = 0;
}
private:
vm_address_t address_;
vm_size_t size_;
DISALLOW_COPY_AND_ASSIGN(ScopedMachVM);
};
} // namespace mac
} // namespace base
#endif // BASE_MAC_SCOPED_MACH_VM_H_