|  | //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements routines for folding instructions into simpler forms | 
|  | // that do not require creating new instructions.  This does constant folding | 
|  | // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either | 
|  | // returning a constant ("and i32 %x, 0" -> "0") or an already existing value | 
|  | // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been | 
|  | // simplified: This is usually true and assuming it simplifies the logic (if | 
|  | // they have not been simplified then results are correct but maybe suboptimal). | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/CaptureTracking.h" | 
|  | #include "llvm/Analysis/CmpInstAnalysis.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/LoopAnalysisManager.h" | 
|  | #include "llvm/Analysis/MemoryBuiltins.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/Analysis/VectorUtils.h" | 
|  | #include "llvm/IR/ConstantRange.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "instsimplify" | 
|  |  | 
|  | enum { RecursionLimit = 3 }; | 
|  |  | 
|  | STATISTIC(NumExpand,  "Number of expansions"); | 
|  | STATISTIC(NumReassoc, "Number of reassociations"); | 
|  |  | 
|  | static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); | 
|  | static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, | 
|  | unsigned); | 
|  | static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, | 
|  | const SimplifyQuery &, unsigned); | 
|  | static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, | 
|  | unsigned); | 
|  | static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, | 
|  | const SimplifyQuery &Q, unsigned MaxRecurse); | 
|  | static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); | 
|  | static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); | 
|  | static Value *SimplifyCastInst(unsigned, Value *, Type *, | 
|  | const SimplifyQuery &, unsigned); | 
|  | static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, | 
|  | unsigned); | 
|  |  | 
|  | static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, | 
|  | Value *FalseVal) { | 
|  | BinaryOperator::BinaryOps BinOpCode; | 
|  | if (auto *BO = dyn_cast<BinaryOperator>(Cond)) | 
|  | BinOpCode = BO->getOpcode(); | 
|  | else | 
|  | return nullptr; | 
|  |  | 
|  | CmpInst::Predicate ExpectedPred, Pred1, Pred2; | 
|  | if (BinOpCode == BinaryOperator::Or) { | 
|  | ExpectedPred = ICmpInst::ICMP_NE; | 
|  | } else if (BinOpCode == BinaryOperator::And) { | 
|  | ExpectedPred = ICmpInst::ICMP_EQ; | 
|  | } else | 
|  | return nullptr; | 
|  |  | 
|  | // %A = icmp eq %TV, %FV | 
|  | // %B = icmp eq %X, %Y (and one of these is a select operand) | 
|  | // %C = and %A, %B | 
|  | // %D = select %C, %TV, %FV | 
|  | // --> | 
|  | // %FV | 
|  |  | 
|  | // %A = icmp ne %TV, %FV | 
|  | // %B = icmp ne %X, %Y (and one of these is a select operand) | 
|  | // %C = or %A, %B | 
|  | // %D = select %C, %TV, %FV | 
|  | // --> | 
|  | // %TV | 
|  | Value *X, *Y; | 
|  | if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), | 
|  | m_Specific(FalseVal)), | 
|  | m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || | 
|  | Pred1 != Pred2 || Pred1 != ExpectedPred) | 
|  | return nullptr; | 
|  |  | 
|  | if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) | 
|  | return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// For a boolean type or a vector of boolean type, return false or a vector | 
|  | /// with every element false. | 
|  | static Constant *getFalse(Type *Ty) { | 
|  | return ConstantInt::getFalse(Ty); | 
|  | } | 
|  |  | 
|  | /// For a boolean type or a vector of boolean type, return true or a vector | 
|  | /// with every element true. | 
|  | static Constant *getTrue(Type *Ty) { | 
|  | return ConstantInt::getTrue(Ty); | 
|  | } | 
|  |  | 
|  | /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? | 
|  | static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, | 
|  | Value *RHS) { | 
|  | CmpInst *Cmp = dyn_cast<CmpInst>(V); | 
|  | if (!Cmp) | 
|  | return false; | 
|  | CmpInst::Predicate CPred = Cmp->getPredicate(); | 
|  | Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); | 
|  | if (CPred == Pred && CLHS == LHS && CRHS == RHS) | 
|  | return true; | 
|  | return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && | 
|  | CRHS == LHS; | 
|  | } | 
|  |  | 
|  | /// Does the given value dominate the specified phi node? | 
|  | static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) | 
|  | // Arguments and constants dominate all instructions. | 
|  | return true; | 
|  |  | 
|  | // If we are processing instructions (and/or basic blocks) that have not been | 
|  | // fully added to a function, the parent nodes may still be null. Simply | 
|  | // return the conservative answer in these cases. | 
|  | if (!I->getParent() || !P->getParent() || !I->getFunction()) | 
|  | return false; | 
|  |  | 
|  | // If we have a DominatorTree then do a precise test. | 
|  | if (DT) | 
|  | return DT->dominates(I, P); | 
|  |  | 
|  | // Otherwise, if the instruction is in the entry block and is not an invoke, | 
|  | // then it obviously dominates all phi nodes. | 
|  | if (I->getParent() == &I->getFunction()->getEntryBlock() && | 
|  | !isa<InvokeInst>(I)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Simplify "A op (B op' C)" by distributing op over op', turning it into | 
|  | /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is | 
|  | /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. | 
|  | /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". | 
|  | /// Returns the simplified value, or null if no simplification was performed. | 
|  | static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, | 
|  | Instruction::BinaryOps OpcodeToExpand, | 
|  | const SimplifyQuery &Q, unsigned MaxRecurse) { | 
|  | // Recursion is always used, so bail out at once if we already hit the limit. | 
|  | if (!MaxRecurse--) | 
|  | return nullptr; | 
|  |  | 
|  | // Check whether the expression has the form "(A op' B) op C". | 
|  | if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) | 
|  | if (Op0->getOpcode() == OpcodeToExpand) { | 
|  | // It does!  Try turning it into "(A op C) op' (B op C)". | 
|  | Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; | 
|  | // Do "A op C" and "B op C" both simplify? | 
|  | if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) | 
|  | if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { | 
|  | // They do! Return "L op' R" if it simplifies or is already available. | 
|  | // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. | 
|  | if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) | 
|  | && L == B && R == A)) { | 
|  | ++NumExpand; | 
|  | return LHS; | 
|  | } | 
|  | // Otherwise return "L op' R" if it simplifies. | 
|  | if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { | 
|  | ++NumExpand; | 
|  | return V; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check whether the expression has the form "A op (B op' C)". | 
|  | if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) | 
|  | if (Op1->getOpcode() == OpcodeToExpand) { | 
|  | // It does!  Try turning it into "(A op B) op' (A op C)". | 
|  | Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); | 
|  | // Do "A op B" and "A op C" both simplify? | 
|  | if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) | 
|  | if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { | 
|  | // They do! Return "L op' R" if it simplifies or is already available. | 
|  | // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. | 
|  | if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) | 
|  | && L == C && R == B)) { | 
|  | ++NumExpand; | 
|  | return RHS; | 
|  | } | 
|  | // Otherwise return "L op' R" if it simplifies. | 
|  | if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { | 
|  | ++NumExpand; | 
|  | return V; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Generic simplifications for associative binary operations. | 
|  | /// Returns the simpler value, or null if none was found. | 
|  | static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, | 
|  | Value *LHS, Value *RHS, | 
|  | const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse) { | 
|  | assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); | 
|  |  | 
|  | // Recursion is always used, so bail out at once if we already hit the limit. | 
|  | if (!MaxRecurse--) | 
|  | return nullptr; | 
|  |  | 
|  | BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); | 
|  | BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); | 
|  |  | 
|  | // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. | 
|  | if (Op0 && Op0->getOpcode() == Opcode) { | 
|  | Value *A = Op0->getOperand(0); | 
|  | Value *B = Op0->getOperand(1); | 
|  | Value *C = RHS; | 
|  |  | 
|  | // Does "B op C" simplify? | 
|  | if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { | 
|  | // It does!  Return "A op V" if it simplifies or is already available. | 
|  | // If V equals B then "A op V" is just the LHS. | 
|  | if (V == B) return LHS; | 
|  | // Otherwise return "A op V" if it simplifies. | 
|  | if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { | 
|  | ++NumReassoc; | 
|  | return W; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. | 
|  | if (Op1 && Op1->getOpcode() == Opcode) { | 
|  | Value *A = LHS; | 
|  | Value *B = Op1->getOperand(0); | 
|  | Value *C = Op1->getOperand(1); | 
|  |  | 
|  | // Does "A op B" simplify? | 
|  | if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { | 
|  | // It does!  Return "V op C" if it simplifies or is already available. | 
|  | // If V equals B then "V op C" is just the RHS. | 
|  | if (V == B) return RHS; | 
|  | // Otherwise return "V op C" if it simplifies. | 
|  | if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { | 
|  | ++NumReassoc; | 
|  | return W; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The remaining transforms require commutativity as well as associativity. | 
|  | if (!Instruction::isCommutative(Opcode)) | 
|  | return nullptr; | 
|  |  | 
|  | // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. | 
|  | if (Op0 && Op0->getOpcode() == Opcode) { | 
|  | Value *A = Op0->getOperand(0); | 
|  | Value *B = Op0->getOperand(1); | 
|  | Value *C = RHS; | 
|  |  | 
|  | // Does "C op A" simplify? | 
|  | if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { | 
|  | // It does!  Return "V op B" if it simplifies or is already available. | 
|  | // If V equals A then "V op B" is just the LHS. | 
|  | if (V == A) return LHS; | 
|  | // Otherwise return "V op B" if it simplifies. | 
|  | if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { | 
|  | ++NumReassoc; | 
|  | return W; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. | 
|  | if (Op1 && Op1->getOpcode() == Opcode) { | 
|  | Value *A = LHS; | 
|  | Value *B = Op1->getOperand(0); | 
|  | Value *C = Op1->getOperand(1); | 
|  |  | 
|  | // Does "C op A" simplify? | 
|  | if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { | 
|  | // It does!  Return "B op V" if it simplifies or is already available. | 
|  | // If V equals C then "B op V" is just the RHS. | 
|  | if (V == C) return RHS; | 
|  | // Otherwise return "B op V" if it simplifies. | 
|  | if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { | 
|  | ++NumReassoc; | 
|  | return W; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// In the case of a binary operation with a select instruction as an operand, | 
|  | /// try to simplify the binop by seeing whether evaluating it on both branches | 
|  | /// of the select results in the same value. Returns the common value if so, | 
|  | /// otherwise returns null. | 
|  | static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, | 
|  | Value *RHS, const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse) { | 
|  | // Recursion is always used, so bail out at once if we already hit the limit. | 
|  | if (!MaxRecurse--) | 
|  | return nullptr; | 
|  |  | 
|  | SelectInst *SI; | 
|  | if (isa<SelectInst>(LHS)) { | 
|  | SI = cast<SelectInst>(LHS); | 
|  | } else { | 
|  | assert(isa<SelectInst>(RHS) && "No select instruction operand!"); | 
|  | SI = cast<SelectInst>(RHS); | 
|  | } | 
|  |  | 
|  | // Evaluate the BinOp on the true and false branches of the select. | 
|  | Value *TV; | 
|  | Value *FV; | 
|  | if (SI == LHS) { | 
|  | TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); | 
|  | FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); | 
|  | } else { | 
|  | TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); | 
|  | FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); | 
|  | } | 
|  |  | 
|  | // If they simplified to the same value, then return the common value. | 
|  | // If they both failed to simplify then return null. | 
|  | if (TV == FV) | 
|  | return TV; | 
|  |  | 
|  | // If one branch simplified to undef, return the other one. | 
|  | if (TV && isa<UndefValue>(TV)) | 
|  | return FV; | 
|  | if (FV && isa<UndefValue>(FV)) | 
|  | return TV; | 
|  |  | 
|  | // If applying the operation did not change the true and false select values, | 
|  | // then the result of the binop is the select itself. | 
|  | if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) | 
|  | return SI; | 
|  |  | 
|  | // If one branch simplified and the other did not, and the simplified | 
|  | // value is equal to the unsimplified one, return the simplified value. | 
|  | // For example, select (cond, X, X & Z) & Z -> X & Z. | 
|  | if ((FV && !TV) || (TV && !FV)) { | 
|  | // Check that the simplified value has the form "X op Y" where "op" is the | 
|  | // same as the original operation. | 
|  | Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); | 
|  | if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { | 
|  | // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". | 
|  | // We already know that "op" is the same as for the simplified value.  See | 
|  | // if the operands match too.  If so, return the simplified value. | 
|  | Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); | 
|  | Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; | 
|  | Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; | 
|  | if (Simplified->getOperand(0) == UnsimplifiedLHS && | 
|  | Simplified->getOperand(1) == UnsimplifiedRHS) | 
|  | return Simplified; | 
|  | if (Simplified->isCommutative() && | 
|  | Simplified->getOperand(1) == UnsimplifiedLHS && | 
|  | Simplified->getOperand(0) == UnsimplifiedRHS) | 
|  | return Simplified; | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// In the case of a comparison with a select instruction, try to simplify the | 
|  | /// comparison by seeing whether both branches of the select result in the same | 
|  | /// value. Returns the common value if so, otherwise returns null. | 
|  | static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, | 
|  | Value *RHS, const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse) { | 
|  | // Recursion is always used, so bail out at once if we already hit the limit. | 
|  | if (!MaxRecurse--) | 
|  | return nullptr; | 
|  |  | 
|  | // Make sure the select is on the LHS. | 
|  | if (!isa<SelectInst>(LHS)) { | 
|  | std::swap(LHS, RHS); | 
|  | Pred = CmpInst::getSwappedPredicate(Pred); | 
|  | } | 
|  | assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); | 
|  | SelectInst *SI = cast<SelectInst>(LHS); | 
|  | Value *Cond = SI->getCondition(); | 
|  | Value *TV = SI->getTrueValue(); | 
|  | Value *FV = SI->getFalseValue(); | 
|  |  | 
|  | // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. | 
|  | // Does "cmp TV, RHS" simplify? | 
|  | Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); | 
|  | if (TCmp == Cond) { | 
|  | // It not only simplified, it simplified to the select condition.  Replace | 
|  | // it with 'true'. | 
|  | TCmp = getTrue(Cond->getType()); | 
|  | } else if (!TCmp) { | 
|  | // It didn't simplify.  However if "cmp TV, RHS" is equal to the select | 
|  | // condition then we can replace it with 'true'.  Otherwise give up. | 
|  | if (!isSameCompare(Cond, Pred, TV, RHS)) | 
|  | return nullptr; | 
|  | TCmp = getTrue(Cond->getType()); | 
|  | } | 
|  |  | 
|  | // Does "cmp FV, RHS" simplify? | 
|  | Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); | 
|  | if (FCmp == Cond) { | 
|  | // It not only simplified, it simplified to the select condition.  Replace | 
|  | // it with 'false'. | 
|  | FCmp = getFalse(Cond->getType()); | 
|  | } else if (!FCmp) { | 
|  | // It didn't simplify.  However if "cmp FV, RHS" is equal to the select | 
|  | // condition then we can replace it with 'false'.  Otherwise give up. | 
|  | if (!isSameCompare(Cond, Pred, FV, RHS)) | 
|  | return nullptr; | 
|  | FCmp = getFalse(Cond->getType()); | 
|  | } | 
|  |  | 
|  | // If both sides simplified to the same value, then use it as the result of | 
|  | // the original comparison. | 
|  | if (TCmp == FCmp) | 
|  | return TCmp; | 
|  |  | 
|  | // The remaining cases only make sense if the select condition has the same | 
|  | // type as the result of the comparison, so bail out if this is not so. | 
|  | if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) | 
|  | return nullptr; | 
|  | // If the false value simplified to false, then the result of the compare | 
|  | // is equal to "Cond && TCmp".  This also catches the case when the false | 
|  | // value simplified to false and the true value to true, returning "Cond". | 
|  | if (match(FCmp, m_Zero())) | 
|  | if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) | 
|  | return V; | 
|  | // If the true value simplified to true, then the result of the compare | 
|  | // is equal to "Cond || FCmp". | 
|  | if (match(TCmp, m_One())) | 
|  | if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) | 
|  | return V; | 
|  | // Finally, if the false value simplified to true and the true value to | 
|  | // false, then the result of the compare is equal to "!Cond". | 
|  | if (match(FCmp, m_One()) && match(TCmp, m_Zero())) | 
|  | if (Value *V = | 
|  | SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), | 
|  | Q, MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// In the case of a binary operation with an operand that is a PHI instruction, | 
|  | /// try to simplify the binop by seeing whether evaluating it on the incoming | 
|  | /// phi values yields the same result for every value. If so returns the common | 
|  | /// value, otherwise returns null. | 
|  | static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, | 
|  | Value *RHS, const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse) { | 
|  | // Recursion is always used, so bail out at once if we already hit the limit. | 
|  | if (!MaxRecurse--) | 
|  | return nullptr; | 
|  |  | 
|  | PHINode *PI; | 
|  | if (isa<PHINode>(LHS)) { | 
|  | PI = cast<PHINode>(LHS); | 
|  | // Bail out if RHS and the phi may be mutually interdependent due to a loop. | 
|  | if (!valueDominatesPHI(RHS, PI, Q.DT)) | 
|  | return nullptr; | 
|  | } else { | 
|  | assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); | 
|  | PI = cast<PHINode>(RHS); | 
|  | // Bail out if LHS and the phi may be mutually interdependent due to a loop. | 
|  | if (!valueDominatesPHI(LHS, PI, Q.DT)) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Evaluate the BinOp on the incoming phi values. | 
|  | Value *CommonValue = nullptr; | 
|  | for (Value *Incoming : PI->incoming_values()) { | 
|  | // If the incoming value is the phi node itself, it can safely be skipped. | 
|  | if (Incoming == PI) continue; | 
|  | Value *V = PI == LHS ? | 
|  | SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : | 
|  | SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); | 
|  | // If the operation failed to simplify, or simplified to a different value | 
|  | // to previously, then give up. | 
|  | if (!V || (CommonValue && V != CommonValue)) | 
|  | return nullptr; | 
|  | CommonValue = V; | 
|  | } | 
|  |  | 
|  | return CommonValue; | 
|  | } | 
|  |  | 
|  | /// In the case of a comparison with a PHI instruction, try to simplify the | 
|  | /// comparison by seeing whether comparing with all of the incoming phi values | 
|  | /// yields the same result every time. If so returns the common result, | 
|  | /// otherwise returns null. | 
|  | static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, | 
|  | const SimplifyQuery &Q, unsigned MaxRecurse) { | 
|  | // Recursion is always used, so bail out at once if we already hit the limit. | 
|  | if (!MaxRecurse--) | 
|  | return nullptr; | 
|  |  | 
|  | // Make sure the phi is on the LHS. | 
|  | if (!isa<PHINode>(LHS)) { | 
|  | std::swap(LHS, RHS); | 
|  | Pred = CmpInst::getSwappedPredicate(Pred); | 
|  | } | 
|  | assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); | 
|  | PHINode *PI = cast<PHINode>(LHS); | 
|  |  | 
|  | // Bail out if RHS and the phi may be mutually interdependent due to a loop. | 
|  | if (!valueDominatesPHI(RHS, PI, Q.DT)) | 
|  | return nullptr; | 
|  |  | 
|  | // Evaluate the BinOp on the incoming phi values. | 
|  | Value *CommonValue = nullptr; | 
|  | for (Value *Incoming : PI->incoming_values()) { | 
|  | // If the incoming value is the phi node itself, it can safely be skipped. | 
|  | if (Incoming == PI) continue; | 
|  | Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); | 
|  | // If the operation failed to simplify, or simplified to a different value | 
|  | // to previously, then give up. | 
|  | if (!V || (CommonValue && V != CommonValue)) | 
|  | return nullptr; | 
|  | CommonValue = V; | 
|  | } | 
|  |  | 
|  | return CommonValue; | 
|  | } | 
|  |  | 
|  | static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, | 
|  | Value *&Op0, Value *&Op1, | 
|  | const SimplifyQuery &Q) { | 
|  | if (auto *CLHS = dyn_cast<Constant>(Op0)) { | 
|  | if (auto *CRHS = dyn_cast<Constant>(Op1)) | 
|  | return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); | 
|  |  | 
|  | // Canonicalize the constant to the RHS if this is a commutative operation. | 
|  | if (Instruction::isCommutative(Opcode)) | 
|  | std::swap(Op0, Op1); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Given operands for an Add, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, | 
|  | const SimplifyQuery &Q, unsigned MaxRecurse) { | 
|  | if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) | 
|  | return C; | 
|  |  | 
|  | // X + undef -> undef | 
|  | if (match(Op1, m_Undef())) | 
|  | return Op1; | 
|  |  | 
|  | // X + 0 -> X | 
|  | if (match(Op1, m_Zero())) | 
|  | return Op0; | 
|  |  | 
|  | // If two operands are negative, return 0. | 
|  | if (isKnownNegation(Op0, Op1)) | 
|  | return Constant::getNullValue(Op0->getType()); | 
|  |  | 
|  | // X + (Y - X) -> Y | 
|  | // (Y - X) + X -> Y | 
|  | // Eg: X + -X -> 0 | 
|  | Value *Y = nullptr; | 
|  | if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || | 
|  | match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) | 
|  | return Y; | 
|  |  | 
|  | // X + ~X -> -1   since   ~X = -X-1 | 
|  | Type *Ty = Op0->getType(); | 
|  | if (match(Op0, m_Not(m_Specific(Op1))) || | 
|  | match(Op1, m_Not(m_Specific(Op0)))) | 
|  | return Constant::getAllOnesValue(Ty); | 
|  |  | 
|  | // add nsw/nuw (xor Y, signmask), signmask --> Y | 
|  | // The no-wrapping add guarantees that the top bit will be set by the add. | 
|  | // Therefore, the xor must be clearing the already set sign bit of Y. | 
|  | if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && | 
|  | match(Op0, m_Xor(m_Value(Y), m_SignMask()))) | 
|  | return Y; | 
|  |  | 
|  | // add nuw %x, -1  ->  -1, because %x can only be 0. | 
|  | if (IsNUW && match(Op1, m_AllOnes())) | 
|  | return Op1; // Which is -1. | 
|  |  | 
|  | /// i1 add -> xor. | 
|  | if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) | 
|  | if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) | 
|  | return V; | 
|  |  | 
|  | // Try some generic simplifications for associative operations. | 
|  | if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, | 
|  | MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // Threading Add over selects and phi nodes is pointless, so don't bother. | 
|  | // Threading over the select in "A + select(cond, B, C)" means evaluating | 
|  | // "A+B" and "A+C" and seeing if they are equal; but they are equal if and | 
|  | // only if B and C are equal.  If B and C are equal then (since we assume | 
|  | // that operands have already been simplified) "select(cond, B, C)" should | 
|  | // have been simplified to the common value of B and C already.  Analysing | 
|  | // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly | 
|  | // for threading over phi nodes. | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, | 
|  | const SimplifyQuery &Query) { | 
|  | return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); | 
|  | } | 
|  |  | 
|  | /// Compute the base pointer and cumulative constant offsets for V. | 
|  | /// | 
|  | /// This strips all constant offsets off of V, leaving it the base pointer, and | 
|  | /// accumulates the total constant offset applied in the returned constant. It | 
|  | /// returns 0 if V is not a pointer, and returns the constant '0' if there are | 
|  | /// no constant offsets applied. | 
|  | /// | 
|  | /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't | 
|  | /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. | 
|  | /// folding. | 
|  | static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, | 
|  | bool AllowNonInbounds = false) { | 
|  | assert(V->getType()->isPtrOrPtrVectorTy()); | 
|  |  | 
|  | Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); | 
|  | APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); | 
|  |  | 
|  | // Even though we don't look through PHI nodes, we could be called on an | 
|  | // instruction in an unreachable block, which may be on a cycle. | 
|  | SmallPtrSet<Value *, 4> Visited; | 
|  | Visited.insert(V); | 
|  | do { | 
|  | if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { | 
|  | if ((!AllowNonInbounds && !GEP->isInBounds()) || | 
|  | !GEP->accumulateConstantOffset(DL, Offset)) | 
|  | break; | 
|  | V = GEP->getPointerOperand(); | 
|  | } else if (Operator::getOpcode(V) == Instruction::BitCast) { | 
|  | V = cast<Operator>(V)->getOperand(0); | 
|  | } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { | 
|  | if (GA->isInterposable()) | 
|  | break; | 
|  | V = GA->getAliasee(); | 
|  | } else { | 
|  | if (auto CS = CallSite(V)) | 
|  | if (Value *RV = CS.getReturnedArgOperand()) { | 
|  | V = RV; | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); | 
|  | } while (Visited.insert(V).second); | 
|  |  | 
|  | Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); | 
|  | if (V->getType()->isVectorTy()) | 
|  | return ConstantVector::getSplat(V->getType()->getVectorNumElements(), | 
|  | OffsetIntPtr); | 
|  | return OffsetIntPtr; | 
|  | } | 
|  |  | 
|  | /// Compute the constant difference between two pointer values. | 
|  | /// If the difference is not a constant, returns zero. | 
|  | static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, | 
|  | Value *RHS) { | 
|  | Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); | 
|  | Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); | 
|  |  | 
|  | // If LHS and RHS are not related via constant offsets to the same base | 
|  | // value, there is nothing we can do here. | 
|  | if (LHS != RHS) | 
|  | return nullptr; | 
|  |  | 
|  | // Otherwise, the difference of LHS - RHS can be computed as: | 
|  | //    LHS - RHS | 
|  | //  = (LHSOffset + Base) - (RHSOffset + Base) | 
|  | //  = LHSOffset - RHSOffset | 
|  | return ConstantExpr::getSub(LHSOffset, RHSOffset); | 
|  | } | 
|  |  | 
|  | /// Given operands for a Sub, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, | 
|  | const SimplifyQuery &Q, unsigned MaxRecurse) { | 
|  | if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) | 
|  | return C; | 
|  |  | 
|  | // X - undef -> undef | 
|  | // undef - X -> undef | 
|  | if (match(Op0, m_Undef()) || match(Op1, m_Undef())) | 
|  | return UndefValue::get(Op0->getType()); | 
|  |  | 
|  | // X - 0 -> X | 
|  | if (match(Op1, m_Zero())) | 
|  | return Op0; | 
|  |  | 
|  | // X - X -> 0 | 
|  | if (Op0 == Op1) | 
|  | return Constant::getNullValue(Op0->getType()); | 
|  |  | 
|  | // Is this a negation? | 
|  | if (match(Op0, m_Zero())) { | 
|  | // 0 - X -> 0 if the sub is NUW. | 
|  | if (isNUW) | 
|  | return Constant::getNullValue(Op0->getType()); | 
|  |  | 
|  | KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); | 
|  | if (Known.Zero.isMaxSignedValue()) { | 
|  | // Op1 is either 0 or the minimum signed value. If the sub is NSW, then | 
|  | // Op1 must be 0 because negating the minimum signed value is undefined. | 
|  | if (isNSW) | 
|  | return Constant::getNullValue(Op0->getType()); | 
|  |  | 
|  | // 0 - X -> X if X is 0 or the minimum signed value. | 
|  | return Op1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. | 
|  | // For example, (X + Y) - Y -> X; (Y + X) - Y -> X | 
|  | Value *X = nullptr, *Y = nullptr, *Z = Op1; | 
|  | if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z | 
|  | // See if "V === Y - Z" simplifies. | 
|  | if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) | 
|  | // It does!  Now see if "X + V" simplifies. | 
|  | if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { | 
|  | // It does, we successfully reassociated! | 
|  | ++NumReassoc; | 
|  | return W; | 
|  | } | 
|  | // See if "V === X - Z" simplifies. | 
|  | if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) | 
|  | // It does!  Now see if "Y + V" simplifies. | 
|  | if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { | 
|  | // It does, we successfully reassociated! | 
|  | ++NumReassoc; | 
|  | return W; | 
|  | } | 
|  | } | 
|  |  | 
|  | // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. | 
|  | // For example, X - (X + 1) -> -1 | 
|  | X = Op0; | 
|  | if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) | 
|  | // See if "V === X - Y" simplifies. | 
|  | if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) | 
|  | // It does!  Now see if "V - Z" simplifies. | 
|  | if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { | 
|  | // It does, we successfully reassociated! | 
|  | ++NumReassoc; | 
|  | return W; | 
|  | } | 
|  | // See if "V === X - Z" simplifies. | 
|  | if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) | 
|  | // It does!  Now see if "V - Y" simplifies. | 
|  | if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { | 
|  | // It does, we successfully reassociated! | 
|  | ++NumReassoc; | 
|  | return W; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Z - (X - Y) -> (Z - X) + Y if everything simplifies. | 
|  | // For example, X - (X - Y) -> Y. | 
|  | Z = Op0; | 
|  | if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) | 
|  | // See if "V === Z - X" simplifies. | 
|  | if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) | 
|  | // It does!  Now see if "V + Y" simplifies. | 
|  | if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { | 
|  | // It does, we successfully reassociated! | 
|  | ++NumReassoc; | 
|  | return W; | 
|  | } | 
|  |  | 
|  | // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. | 
|  | if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && | 
|  | match(Op1, m_Trunc(m_Value(Y)))) | 
|  | if (X->getType() == Y->getType()) | 
|  | // See if "V === X - Y" simplifies. | 
|  | if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) | 
|  | // It does!  Now see if "trunc V" simplifies. | 
|  | if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), | 
|  | Q, MaxRecurse - 1)) | 
|  | // It does, return the simplified "trunc V". | 
|  | return W; | 
|  |  | 
|  | // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). | 
|  | if (match(Op0, m_PtrToInt(m_Value(X))) && | 
|  | match(Op1, m_PtrToInt(m_Value(Y)))) | 
|  | if (Constant *Result = computePointerDifference(Q.DL, X, Y)) | 
|  | return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); | 
|  |  | 
|  | // i1 sub -> xor. | 
|  | if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) | 
|  | if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) | 
|  | return V; | 
|  |  | 
|  | // Threading Sub over selects and phi nodes is pointless, so don't bother. | 
|  | // Threading over the select in "A - select(cond, B, C)" means evaluating | 
|  | // "A-B" and "A-C" and seeing if they are equal; but they are equal if and | 
|  | // only if B and C are equal.  If B and C are equal then (since we assume | 
|  | // that operands have already been simplified) "select(cond, B, C)" should | 
|  | // have been simplified to the common value of B and C already.  Analysing | 
|  | // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly | 
|  | // for threading over phi nodes. | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, | 
|  | const SimplifyQuery &Q) { | 
|  | return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | /// Given operands for a Mul, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse) { | 
|  | if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) | 
|  | return C; | 
|  |  | 
|  | // X * undef -> 0 | 
|  | // X * 0 -> 0 | 
|  | if (match(Op1, m_CombineOr(m_Undef(), m_Zero()))) | 
|  | return Constant::getNullValue(Op0->getType()); | 
|  |  | 
|  | // X * 1 -> X | 
|  | if (match(Op1, m_One())) | 
|  | return Op0; | 
|  |  | 
|  | // (X / Y) * Y -> X if the division is exact. | 
|  | Value *X = nullptr; | 
|  | if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y | 
|  | match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y) | 
|  | return X; | 
|  |  | 
|  | // i1 mul -> and. | 
|  | if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) | 
|  | if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) | 
|  | return V; | 
|  |  | 
|  | // Try some generic simplifications for associative operations. | 
|  | if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, | 
|  | MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // Mul distributes over Add. Try some generic simplifications based on this. | 
|  | if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, | 
|  | Q, MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // If the operation is with the result of a select instruction, check whether | 
|  | // operating on either branch of the select always yields the same value. | 
|  | if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) | 
|  | if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, | 
|  | MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // If the operation is with the result of a phi instruction, check whether | 
|  | // operating on all incoming values of the phi always yields the same value. | 
|  | if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) | 
|  | if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, | 
|  | MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { | 
|  | return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | /// Check for common or similar folds of integer division or integer remainder. | 
|  | /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). | 
|  | static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { | 
|  | Type *Ty = Op0->getType(); | 
|  |  | 
|  | // X / undef -> undef | 
|  | // X % undef -> undef | 
|  | if (match(Op1, m_Undef())) | 
|  | return Op1; | 
|  |  | 
|  | // X / 0 -> undef | 
|  | // X % 0 -> undef | 
|  | // We don't need to preserve faults! | 
|  | if (match(Op1, m_Zero())) | 
|  | return UndefValue::get(Ty); | 
|  |  | 
|  | // If any element of a constant divisor vector is zero or undef, the whole op | 
|  | // is undef. | 
|  | auto *Op1C = dyn_cast<Constant>(Op1); | 
|  | if (Op1C && Ty->isVectorTy()) { | 
|  | unsigned NumElts = Ty->getVectorNumElements(); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | Constant *Elt = Op1C->getAggregateElement(i); | 
|  | if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt))) | 
|  | return UndefValue::get(Ty); | 
|  | } | 
|  | } | 
|  |  | 
|  | // undef / X -> 0 | 
|  | // undef % X -> 0 | 
|  | if (match(Op0, m_Undef())) | 
|  | return Constant::getNullValue(Ty); | 
|  |  | 
|  | // 0 / X -> 0 | 
|  | // 0 % X -> 0 | 
|  | if (match(Op0, m_Zero())) | 
|  | return Constant::getNullValue(Op0->getType()); | 
|  |  | 
|  | // X / X -> 1 | 
|  | // X % X -> 0 | 
|  | if (Op0 == Op1) | 
|  | return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); | 
|  |  | 
|  | // X / 1 -> X | 
|  | // X % 1 -> 0 | 
|  | // If this is a boolean op (single-bit element type), we can't have | 
|  | // division-by-zero or remainder-by-zero, so assume the divisor is 1. | 
|  | // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. | 
|  | Value *X; | 
|  | if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || | 
|  | (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) | 
|  | return IsDiv ? Op0 : Constant::getNullValue(Ty); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Given a predicate and two operands, return true if the comparison is true. | 
|  | /// This is a helper for div/rem simplification where we return some other value | 
|  | /// when we can prove a relationship between the operands. | 
|  | static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, | 
|  | const SimplifyQuery &Q, unsigned MaxRecurse) { | 
|  | Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); | 
|  | Constant *C = dyn_cast_or_null<Constant>(V); | 
|  | return (C && C->isAllOnesValue()); | 
|  | } | 
|  |  | 
|  | /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer | 
|  | /// to simplify X % Y to X. | 
|  | static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse, bool IsSigned) { | 
|  | // Recursion is always used, so bail out at once if we already hit the limit. | 
|  | if (!MaxRecurse--) | 
|  | return false; | 
|  |  | 
|  | if (IsSigned) { | 
|  | // |X| / |Y| --> 0 | 
|  | // | 
|  | // We require that 1 operand is a simple constant. That could be extended to | 
|  | // 2 variables if we computed the sign bit for each. | 
|  | // | 
|  | // Make sure that a constant is not the minimum signed value because taking | 
|  | // the abs() of that is undefined. | 
|  | Type *Ty = X->getType(); | 
|  | const APInt *C; | 
|  | if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { | 
|  | // Is the variable divisor magnitude always greater than the constant | 
|  | // dividend magnitude? | 
|  | // |Y| > |C| --> Y < -abs(C) or Y > abs(C) | 
|  | Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); | 
|  | Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); | 
|  | if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || | 
|  | isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) | 
|  | return true; | 
|  | } | 
|  | if (match(Y, m_APInt(C))) { | 
|  | // Special-case: we can't take the abs() of a minimum signed value. If | 
|  | // that's the divisor, then all we have to do is prove that the dividend | 
|  | // is also not the minimum signed value. | 
|  | if (C->isMinSignedValue()) | 
|  | return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); | 
|  |  | 
|  | // Is the variable dividend magnitude always less than the constant | 
|  | // divisor magnitude? | 
|  | // |X| < |C| --> X > -abs(C) and X < abs(C) | 
|  | Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); | 
|  | Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); | 
|  | if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && | 
|  | isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // IsSigned == false. | 
|  | // Is the dividend unsigned less than the divisor? | 
|  | return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); | 
|  | } | 
|  |  | 
|  | /// These are simplifications common to SDiv and UDiv. | 
|  | static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, | 
|  | const SimplifyQuery &Q, unsigned MaxRecurse) { | 
|  | if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) | 
|  | return C; | 
|  |  | 
|  | if (Value *V = simplifyDivRem(Op0, Op1, true)) | 
|  | return V; | 
|  |  | 
|  | bool IsSigned = Opcode == Instruction::SDiv; | 
|  |  | 
|  | // (X * Y) / Y -> X if the multiplication does not overflow. | 
|  | Value *X; | 
|  | if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { | 
|  | auto *Mul = cast<OverflowingBinaryOperator>(Op0); | 
|  | // If the Mul does not overflow, then we are good to go. | 
|  | if ((IsSigned && Mul->hasNoSignedWrap()) || | 
|  | (!IsSigned && Mul->hasNoUnsignedWrap())) | 
|  | return X; | 
|  | // If X has the form X = A / Y, then X * Y cannot overflow. | 
|  | if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || | 
|  | (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) | 
|  | return X; | 
|  | } | 
|  |  | 
|  | // (X rem Y) / Y -> 0 | 
|  | if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || | 
|  | (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) | 
|  | return Constant::getNullValue(Op0->getType()); | 
|  |  | 
|  | // (X /u C1) /u C2 -> 0 if C1 * C2 overflow | 
|  | ConstantInt *C1, *C2; | 
|  | if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && | 
|  | match(Op1, m_ConstantInt(C2))) { | 
|  | bool Overflow; | 
|  | (void)C1->getValue().umul_ov(C2->getValue(), Overflow); | 
|  | if (Overflow) | 
|  | return Constant::getNullValue(Op0->getType()); | 
|  | } | 
|  |  | 
|  | // If the operation is with the result of a select instruction, check whether | 
|  | // operating on either branch of the select always yields the same value. | 
|  | if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) | 
|  | if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // If the operation is with the result of a phi instruction, check whether | 
|  | // operating on all incoming values of the phi always yields the same value. | 
|  | if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) | 
|  | if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) | 
|  | return Constant::getNullValue(Op0->getType()); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// These are simplifications common to SRem and URem. | 
|  | static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, | 
|  | const SimplifyQuery &Q, unsigned MaxRecurse) { | 
|  | if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) | 
|  | return C; | 
|  |  | 
|  | if (Value *V = simplifyDivRem(Op0, Op1, false)) | 
|  | return V; | 
|  |  | 
|  | // (X % Y) % Y -> X % Y | 
|  | if ((Opcode == Instruction::SRem && | 
|  | match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || | 
|  | (Opcode == Instruction::URem && | 
|  | match(Op0, m_URem(m_Value(), m_Specific(Op1))))) | 
|  | return Op0; | 
|  |  | 
|  | // (X << Y) % X -> 0 | 
|  | if ((Opcode == Instruction::SRem && | 
|  | match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || | 
|  | (Opcode == Instruction::URem && | 
|  | match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))) | 
|  | return Constant::getNullValue(Op0->getType()); | 
|  |  | 
|  | // If the operation is with the result of a select instruction, check whether | 
|  | // operating on either branch of the select always yields the same value. | 
|  | if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) | 
|  | if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // If the operation is with the result of a phi instruction, check whether | 
|  | // operating on all incoming values of the phi always yields the same value. | 
|  | if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) | 
|  | if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // If X / Y == 0, then X % Y == X. | 
|  | if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) | 
|  | return Op0; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Given operands for an SDiv, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse) { | 
|  | // If two operands are negated and no signed overflow, return -1. | 
|  | if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) | 
|  | return Constant::getAllOnesValue(Op0->getType()); | 
|  |  | 
|  | return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { | 
|  | return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | /// Given operands for a UDiv, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse) { | 
|  | return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { | 
|  | return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | /// Given operands for an SRem, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse) { | 
|  | // If the divisor is 0, the result is undefined, so assume the divisor is -1. | 
|  | // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 | 
|  | Value *X; | 
|  | if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) | 
|  | return ConstantInt::getNullValue(Op0->getType()); | 
|  |  | 
|  | // If the two operands are negated, return 0. | 
|  | if (isKnownNegation(Op0, Op1)) | 
|  | return ConstantInt::getNullValue(Op0->getType()); | 
|  |  | 
|  | return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { | 
|  | return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | /// Given operands for a URem, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse) { | 
|  | return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { | 
|  | return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | /// Returns true if a shift by \c Amount always yields undef. | 
|  | static bool isUndefShift(Value *Amount) { | 
|  | Constant *C = dyn_cast<Constant>(Amount); | 
|  | if (!C) | 
|  | return false; | 
|  |  | 
|  | // X shift by undef -> undef because it may shift by the bitwidth. | 
|  | if (isa<UndefValue>(C)) | 
|  | return true; | 
|  |  | 
|  | // Shifting by the bitwidth or more is undefined. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) | 
|  | if (CI->getValue().getLimitedValue() >= | 
|  | CI->getType()->getScalarSizeInBits()) | 
|  | return true; | 
|  |  | 
|  | // If all lanes of a vector shift are undefined the whole shift is. | 
|  | if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { | 
|  | for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) | 
|  | if (!isUndefShift(C->getAggregateElement(I))) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Given operands for an Shl, LShr or AShr, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, | 
|  | Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { | 
|  | if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) | 
|  | return C; | 
|  |  | 
|  | // 0 shift by X -> 0 | 
|  | if (match(Op0, m_Zero())) | 
|  | return Constant::getNullValue(Op0->getType()); | 
|  |  | 
|  | // X shift by 0 -> X | 
|  | // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones | 
|  | // would be poison. | 
|  | Value *X; | 
|  | if (match(Op1, m_Zero()) || | 
|  | (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) | 
|  | return Op0; | 
|  |  | 
|  | // Fold undefined shifts. | 
|  | if (isUndefShift(Op1)) | 
|  | return UndefValue::get(Op0->getType()); | 
|  |  | 
|  | // If the operation is with the result of a select instruction, check whether | 
|  | // operating on either branch of the select always yields the same value. | 
|  | if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) | 
|  | if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // If the operation is with the result of a phi instruction, check whether | 
|  | // operating on all incoming values of the phi always yields the same value. | 
|  | if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) | 
|  | if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // If any bits in the shift amount make that value greater than or equal to | 
|  | // the number of bits in the type, the shift is undefined. | 
|  | KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); | 
|  | if (Known.One.getLimitedValue() >= Known.getBitWidth()) | 
|  | return UndefValue::get(Op0->getType()); | 
|  |  | 
|  | // If all valid bits in the shift amount are known zero, the first operand is | 
|  | // unchanged. | 
|  | unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); | 
|  | if (Known.countMinTrailingZeros() >= NumValidShiftBits) | 
|  | return Op0; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Given operands for an Shl, LShr or AShr, see if we can | 
|  | /// fold the result.  If not, this returns null. | 
|  | static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, | 
|  | Value *Op1, bool isExact, const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse) { | 
|  | if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // X >> X -> 0 | 
|  | if (Op0 == Op1) | 
|  | return Constant::getNullValue(Op0->getType()); | 
|  |  | 
|  | // undef >> X -> 0 | 
|  | // undef >> X -> undef (if it's exact) | 
|  | if (match(Op0, m_Undef())) | 
|  | return isExact ? Op0 : Constant::getNullValue(Op0->getType()); | 
|  |  | 
|  | // The low bit cannot be shifted out of an exact shift if it is set. | 
|  | if (isExact) { | 
|  | KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); | 
|  | if (Op0Known.One[0]) | 
|  | return Op0; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Given operands for an Shl, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, | 
|  | const SimplifyQuery &Q, unsigned MaxRecurse) { | 
|  | if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // undef << X -> 0 | 
|  | // undef << X -> undef if (if it's NSW/NUW) | 
|  | if (match(Op0, m_Undef())) | 
|  | return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); | 
|  |  | 
|  | // (X >> A) << A -> X | 
|  | Value *X; | 
|  | if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) | 
|  | return X; | 
|  |  | 
|  | // shl nuw i8 C, %x  ->  C  iff C has sign bit set. | 
|  | if (isNUW && match(Op0, m_Negative())) | 
|  | return Op0; | 
|  | // NOTE: could use computeKnownBits() / LazyValueInfo, | 
|  | // but the cost-benefit analysis suggests it isn't worth it. | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, | 
|  | const SimplifyQuery &Q) { | 
|  | return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | /// Given operands for an LShr, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, | 
|  | const SimplifyQuery &Q, unsigned MaxRecurse) { | 
|  | if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, | 
|  | MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // (X << A) >> A -> X | 
|  | Value *X; | 
|  | if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) | 
|  | return X; | 
|  |  | 
|  | // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A. | 
|  | // We can return X as we do in the above case since OR alters no bits in X. | 
|  | // SimplifyDemandedBits in InstCombine can do more general optimization for | 
|  | // bit manipulation. This pattern aims to provide opportunities for other | 
|  | // optimizers by supporting a simple but common case in InstSimplify. | 
|  | Value *Y; | 
|  | const APInt *ShRAmt, *ShLAmt; | 
|  | if (match(Op1, m_APInt(ShRAmt)) && | 
|  | match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && | 
|  | *ShRAmt == *ShLAmt) { | 
|  | const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); | 
|  | const unsigned Width = Op0->getType()->getScalarSizeInBits(); | 
|  | const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); | 
|  | if (ShRAmt->uge(EffWidthY)) | 
|  | return X; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, | 
|  | const SimplifyQuery &Q) { | 
|  | return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | /// Given operands for an AShr, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, | 
|  | const SimplifyQuery &Q, unsigned MaxRecurse) { | 
|  | if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, | 
|  | MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // all ones >>a X -> -1 | 
|  | // Do not return Op0 because it may contain undef elements if it's a vector. | 
|  | if (match(Op0, m_AllOnes())) | 
|  | return Constant::getAllOnesValue(Op0->getType()); | 
|  |  | 
|  | // (X << A) >> A -> X | 
|  | Value *X; | 
|  | if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) | 
|  | return X; | 
|  |  | 
|  | // Arithmetic shifting an all-sign-bit value is a no-op. | 
|  | unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); | 
|  | if (NumSignBits == Op0->getType()->getScalarSizeInBits()) | 
|  | return Op0; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, | 
|  | const SimplifyQuery &Q) { | 
|  | return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | /// Commuted variants are assumed to be handled by calling this function again | 
|  | /// with the parameters swapped. | 
|  | static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, | 
|  | ICmpInst *UnsignedICmp, bool IsAnd) { | 
|  | Value *X, *Y; | 
|  |  | 
|  | ICmpInst::Predicate EqPred; | 
|  | if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || | 
|  | !ICmpInst::isEquality(EqPred)) | 
|  | return nullptr; | 
|  |  | 
|  | ICmpInst::Predicate UnsignedPred; | 
|  | if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && | 
|  | ICmpInst::isUnsigned(UnsignedPred)) | 
|  | ; | 
|  | else if (match(UnsignedICmp, | 
|  | m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && | 
|  | ICmpInst::isUnsigned(UnsignedPred)) | 
|  | UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); | 
|  | else | 
|  | return nullptr; | 
|  |  | 
|  | // X < Y && Y != 0  -->  X < Y | 
|  | // X < Y || Y != 0  -->  Y != 0 | 
|  | if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) | 
|  | return IsAnd ? UnsignedICmp : ZeroICmp; | 
|  |  | 
|  | // X >= Y || Y != 0  -->  true | 
|  | // X >= Y || Y == 0  -->  X >= Y | 
|  | if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { | 
|  | if (EqPred == ICmpInst::ICMP_NE) | 
|  | return getTrue(UnsignedICmp->getType()); | 
|  | return UnsignedICmp; | 
|  | } | 
|  |  | 
|  | // X < Y && Y == 0  -->  false | 
|  | if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && | 
|  | IsAnd) | 
|  | return getFalse(UnsignedICmp->getType()); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Commuted variants are assumed to be handled by calling this function again | 
|  | /// with the parameters swapped. | 
|  | static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { | 
|  | ICmpInst::Predicate Pred0, Pred1; | 
|  | Value *A ,*B; | 
|  | if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || | 
|  | !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) | 
|  | return nullptr; | 
|  |  | 
|  | // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). | 
|  | // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we | 
|  | // can eliminate Op1 from this 'and'. | 
|  | if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) | 
|  | return Op0; | 
|  |  | 
|  | // Check for any combination of predicates that are guaranteed to be disjoint. | 
|  | if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || | 
|  | (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || | 
|  | (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || | 
|  | (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) | 
|  | return getFalse(Op0->getType()); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Commuted variants are assumed to be handled by calling this function again | 
|  | /// with the parameters swapped. | 
|  | static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { | 
|  | ICmpInst::Predicate Pred0, Pred1; | 
|  | Value *A ,*B; | 
|  | if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || | 
|  | !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) | 
|  | return nullptr; | 
|  |  | 
|  | // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). | 
|  | // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we | 
|  | // can eliminate Op0 from this 'or'. | 
|  | if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) | 
|  | return Op1; | 
|  |  | 
|  | // Check for any combination of predicates that cover the entire range of | 
|  | // possibilities. | 
|  | if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || | 
|  | (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || | 
|  | (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || | 
|  | (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) | 
|  | return getTrue(Op0->getType()); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Test if a pair of compares with a shared operand and 2 constants has an | 
|  | /// empty set intersection, full set union, or if one compare is a superset of | 
|  | /// the other. | 
|  | static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, | 
|  | bool IsAnd) { | 
|  | // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). | 
|  | if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) | 
|  | return nullptr; | 
|  |  | 
|  | const APInt *C0, *C1; | 
|  | if (!match(Cmp0->getOperand(1), m_APInt(C0)) || | 
|  | !match(Cmp1->getOperand(1), m_APInt(C1))) | 
|  | return nullptr; | 
|  |  | 
|  | auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); | 
|  | auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); | 
|  |  | 
|  | // For and-of-compares, check if the intersection is empty: | 
|  | // (icmp X, C0) && (icmp X, C1) --> empty set --> false | 
|  | if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) | 
|  | return getFalse(Cmp0->getType()); | 
|  |  | 
|  | // For or-of-compares, check if the union is full: | 
|  | // (icmp X, C0) || (icmp X, C1) --> full set --> true | 
|  | if (!IsAnd && Range0.unionWith(Range1).isFullSet()) | 
|  | return getTrue(Cmp0->getType()); | 
|  |  | 
|  | // Is one range a superset of the other? | 
|  | // If this is and-of-compares, take the smaller set: | 
|  | // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 | 
|  | // If this is or-of-compares, take the larger set: | 
|  | // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 | 
|  | if (Range0.contains(Range1)) | 
|  | return IsAnd ? Cmp1 : Cmp0; | 
|  | if (Range1.contains(Range0)) | 
|  | return IsAnd ? Cmp0 : Cmp1; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, | 
|  | bool IsAnd) { | 
|  | ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); | 
|  | if (!match(Cmp0->getOperand(1), m_Zero()) || | 
|  | !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) | 
|  | return nullptr; | 
|  |  | 
|  | if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) | 
|  | return nullptr; | 
|  |  | 
|  | // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". | 
|  | Value *X = Cmp0->getOperand(0); | 
|  | Value *Y = Cmp1->getOperand(0); | 
|  |  | 
|  | // If one of the compares is a masked version of a (not) null check, then | 
|  | // that compare implies the other, so we eliminate the other. Optionally, look | 
|  | // through a pointer-to-int cast to match a null check of a pointer type. | 
|  |  | 
|  | // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 | 
|  | // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 | 
|  | // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 | 
|  | // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 | 
|  | if (match(Y, m_c_And(m_Specific(X), m_Value())) || | 
|  | match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) | 
|  | return Cmp1; | 
|  |  | 
|  | // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 | 
|  | // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 | 
|  | // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 | 
|  | // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 | 
|  | if (match(X, m_c_And(m_Specific(Y), m_Value())) || | 
|  | match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) | 
|  | return Cmp0; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { | 
|  | // (icmp (add V, C0), C1) & (icmp V, C0) | 
|  | ICmpInst::Predicate Pred0, Pred1; | 
|  | const APInt *C0, *C1; | 
|  | Value *V; | 
|  | if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) | 
|  | return nullptr; | 
|  |  | 
|  | if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) | 
|  | return nullptr; | 
|  |  | 
|  | auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); | 
|  | if (AddInst->getOperand(1) != Op1->getOperand(1)) | 
|  | return nullptr; | 
|  |  | 
|  | Type *ITy = Op0->getType(); | 
|  | bool isNSW = AddInst->hasNoSignedWrap(); | 
|  | bool isNUW = AddInst->hasNoUnsignedWrap(); | 
|  |  | 
|  | const APInt Delta = *C1 - *C0; | 
|  | if (C0->isStrictlyPositive()) { | 
|  | if (Delta == 2) { | 
|  | if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) | 
|  | return getFalse(ITy); | 
|  | if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) | 
|  | return getFalse(ITy); | 
|  | } | 
|  | if (Delta == 1) { | 
|  | if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) | 
|  | return getFalse(ITy); | 
|  | if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) | 
|  | return getFalse(ITy); | 
|  | } | 
|  | } | 
|  | if (C0->getBoolValue() && isNUW) { | 
|  | if (Delta == 2) | 
|  | if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) | 
|  | return getFalse(ITy); | 
|  | if (Delta == 1) | 
|  | if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) | 
|  | return getFalse(ITy); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { | 
|  | if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) | 
|  | return X; | 
|  | if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true)) | 
|  | return X; | 
|  |  | 
|  | if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) | 
|  | return X; | 
|  | if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) | 
|  | return X; | 
|  |  | 
|  | if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) | 
|  | return X; | 
|  |  | 
|  | if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) | 
|  | return X; | 
|  |  | 
|  | if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1)) | 
|  | return X; | 
|  | if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0)) | 
|  | return X; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { | 
|  | // (icmp (add V, C0), C1) | (icmp V, C0) | 
|  | ICmpInst::Predicate Pred0, Pred1; | 
|  | const APInt *C0, *C1; | 
|  | Value *V; | 
|  | if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) | 
|  | return nullptr; | 
|  |  | 
|  | if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) | 
|  | return nullptr; | 
|  |  | 
|  | auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); | 
|  | if (AddInst->getOperand(1) != Op1->getOperand(1)) | 
|  | return nullptr; | 
|  |  | 
|  | Type *ITy = Op0->getType(); | 
|  | bool isNSW = AddInst->hasNoSignedWrap(); | 
|  | bool isNUW = AddInst->hasNoUnsignedWrap(); | 
|  |  | 
|  | const APInt Delta = *C1 - *C0; | 
|  | if (C0->isStrictlyPositive()) { | 
|  | if (Delta == 2) { | 
|  | if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) | 
|  | return getTrue(ITy); | 
|  | if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) | 
|  | return getTrue(ITy); | 
|  | } | 
|  | if (Delta == 1) { | 
|  | if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) | 
|  | return getTrue(ITy); | 
|  | if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) | 
|  | return getTrue(ITy); | 
|  | } | 
|  | } | 
|  | if (C0->getBoolValue() && isNUW) { | 
|  | if (Delta == 2) | 
|  | if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) | 
|  | return getTrue(ITy); | 
|  | if (Delta == 1) | 
|  | if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) | 
|  | return getTrue(ITy); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { | 
|  | if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) | 
|  | return X; | 
|  | if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false)) | 
|  | return X; | 
|  |  | 
|  | if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) | 
|  | return X; | 
|  | if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) | 
|  | return X; | 
|  |  | 
|  | if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) | 
|  | return X; | 
|  |  | 
|  | if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) | 
|  | return X; | 
|  |  | 
|  | if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1)) | 
|  | return X; | 
|  | if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0)) | 
|  | return X; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Value *simplifyAndOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { | 
|  | Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); | 
|  | Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); | 
|  | if (LHS0->getType() != RHS0->getType()) | 
|  | return nullptr; | 
|  |  | 
|  | FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); | 
|  | if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || | 
|  | (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { | 
|  | // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y | 
|  | // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X | 
|  | // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y | 
|  | // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X | 
|  | // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y | 
|  | // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X | 
|  | // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y | 
|  | // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X | 
|  | if ((isKnownNeverNaN(LHS0) && (LHS1 == RHS0 || LHS1 == RHS1)) || | 
|  | (isKnownNeverNaN(LHS1) && (LHS0 == RHS0 || LHS0 == RHS1))) | 
|  | return RHS; | 
|  |  | 
|  | // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y | 
|  | // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X | 
|  | // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y | 
|  | // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X | 
|  | // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y | 
|  | // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X | 
|  | // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y | 
|  | // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X | 
|  | if ((isKnownNeverNaN(RHS0) && (RHS1 == LHS0 || RHS1 == LHS1)) || | 
|  | (isKnownNeverNaN(RHS1) && (RHS0 == LHS0 || RHS0 == LHS1))) | 
|  | return LHS; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Value *simplifyAndOrOfCmps(Value *Op0, Value *Op1, bool IsAnd) { | 
|  | // Look through casts of the 'and' operands to find compares. | 
|  | auto *Cast0 = dyn_cast<CastInst>(Op0); | 
|  | auto *Cast1 = dyn_cast<CastInst>(Op1); | 
|  | if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && | 
|  | Cast0->getSrcTy() == Cast1->getSrcTy()) { | 
|  | Op0 = Cast0->getOperand(0); | 
|  | Op1 = Cast1->getOperand(0); | 
|  | } | 
|  |  | 
|  | Value *V = nullptr; | 
|  | auto *ICmp0 = dyn_cast<ICmpInst>(Op0); | 
|  | auto *ICmp1 = dyn_cast<ICmpInst>(Op1); | 
|  | if (ICmp0 && ICmp1) | 
|  | V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1) : | 
|  | simplifyOrOfICmps(ICmp0, ICmp1); | 
|  |  | 
|  | auto *FCmp0 = dyn_cast<FCmpInst>(Op0); | 
|  | auto *FCmp1 = dyn_cast<FCmpInst>(Op1); | 
|  | if (FCmp0 && FCmp1) | 
|  | V = simplifyAndOrOfFCmps(FCmp0, FCmp1, IsAnd); | 
|  |  | 
|  | if (!V) | 
|  | return nullptr; | 
|  | if (!Cast0) | 
|  | return V; | 
|  |  | 
|  | // If we looked through casts, we can only handle a constant simplification | 
|  | // because we are not allowed to create a cast instruction here. | 
|  | if (auto *C = dyn_cast<Constant>(V)) | 
|  | return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Given operands for an And, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse) { | 
|  | if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) | 
|  | return C; | 
|  |  | 
|  | // X & undef -> 0 | 
|  | if (match(Op1, m_Undef())) | 
|  | return Constant::getNullValue(Op0->getType()); | 
|  |  | 
|  | // X & X = X | 
|  | if (Op0 == Op1) | 
|  | return Op0; | 
|  |  | 
|  | // X & 0 = 0 | 
|  | if (match(Op1, m_Zero())) | 
|  | return Constant::getNullValue(Op0->getType()); | 
|  |  | 
|  | // X & -1 = X | 
|  | if (match(Op1, m_AllOnes())) | 
|  | return Op0; | 
|  |  | 
|  | // A & ~A  =  ~A & A  =  0 | 
|  | if (match(Op0, m_Not(m_Specific(Op1))) || | 
|  | match(Op1, m_Not(m_Specific(Op0)))) | 
|  | return Constant::getNullValue(Op0->getType()); | 
|  |  | 
|  | // (A | ?) & A = A | 
|  | if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) | 
|  | return Op1; | 
|  |  | 
|  | // A & (A | ?) = A | 
|  | if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) | 
|  | return Op0; | 
|  |  | 
|  | // A mask that only clears known zeros of a shifted value is a no-op. | 
|  | Value *X; | 
|  | const APInt *Mask; | 
|  | const APInt *ShAmt; | 
|  | if (match(Op1, m_APInt(Mask))) { | 
|  | // If all bits in the inverted and shifted mask are clear: | 
|  | // and (shl X, ShAmt), Mask --> shl X, ShAmt | 
|  | if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && | 
|  | (~(*Mask)).lshr(*ShAmt).isNullValue()) | 
|  | return Op0; | 
|  |  | 
|  | // If all bits in the inverted and shifted mask are clear: | 
|  | // and (lshr X, ShAmt), Mask --> lshr X, ShAmt | 
|  | if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && | 
|  | (~(*Mask)).shl(*ShAmt).isNullValue()) | 
|  | return Op0; | 
|  | } | 
|  |  | 
|  | // A & (-A) = A if A is a power of two or zero. | 
|  | if (match(Op0, m_Neg(m_Specific(Op1))) || | 
|  | match(Op1, m_Neg(m_Specific(Op0)))) { | 
|  | if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, | 
|  | Q.DT)) | 
|  | return Op0; | 
|  | if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, | 
|  | Q.DT)) | 
|  | return Op1; | 
|  | } | 
|  |  | 
|  | if (Value *V = simplifyAndOrOfCmps(Op0, Op1, true)) | 
|  | return V; | 
|  |  | 
|  | // Try some generic simplifications for associative operations. | 
|  | if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, | 
|  | MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // And distributes over Or.  Try some generic simplifications based on this. | 
|  | if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, | 
|  | Q, MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // And distributes over Xor.  Try some generic simplifications based on this. | 
|  | if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, | 
|  | Q, MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // If the operation is with the result of a select instruction, check whether | 
|  | // operating on either branch of the select always yields the same value. | 
|  | if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) | 
|  | if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, | 
|  | MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // If the operation is with the result of a phi instruction, check whether | 
|  | // operating on all incoming values of the phi always yields the same value. | 
|  | if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) | 
|  | if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, | 
|  | MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // Assuming the effective width of Y is not larger than A, i.e. all bits | 
|  | // from X and Y are disjoint in (X << A) | Y, | 
|  | // if the mask of this AND op covers all bits of X or Y, while it covers | 
|  | // no bits from the other, we can bypass this AND op. E.g., | 
|  | // ((X << A) | Y) & Mask -> Y, | 
|  | //     if Mask = ((1 << effective_width_of(Y)) - 1) | 
|  | // ((X << A) | Y) & Mask -> X << A, | 
|  | //     if Mask = ((1 << effective_width_of(X)) - 1) << A | 
|  | // SimplifyDemandedBits in InstCombine can optimize the general case. | 
|  | // This pattern aims to help other passes for a common case. | 
|  | Value *Y, *XShifted; | 
|  | if (match(Op1, m_APInt(Mask)) && | 
|  | match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), | 
|  | m_Value(XShifted)), | 
|  | m_Value(Y)))) { | 
|  | const unsigned Width = Op0->getType()->getScalarSizeInBits(); | 
|  | const unsigned ShftCnt = ShAmt->getLimitedValue(Width); | 
|  | const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); | 
|  | const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); | 
|  | if (EffWidthY <= ShftCnt) { | 
|  | const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, | 
|  | Q.DT); | 
|  | const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); | 
|  | const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); | 
|  | const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; | 
|  | // If the mask is extracting all bits from X or Y as is, we can skip | 
|  | // this AND op. | 
|  | if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) | 
|  | return Y; | 
|  | if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) | 
|  | return XShifted; | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { | 
|  | return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | /// Given operands for an Or, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse) { | 
|  | if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) | 
|  | return C; | 
|  |  | 
|  | // X | undef -> -1 | 
|  | // X | -1 = -1 | 
|  | // Do not return Op1 because it may contain undef elements if it's a vector. | 
|  | if (match(Op1, m_Undef()) || match(Op1, m_AllOnes())) | 
|  | return Constant::getAllOnesValue(Op0->getType()); | 
|  |  | 
|  | // X | X = X | 
|  | // X | 0 = X | 
|  | if (Op0 == Op1 || match(Op1, m_Zero())) | 
|  | return Op0; | 
|  |  | 
|  | // A | ~A  =  ~A | A  =  -1 | 
|  | if (match(Op0, m_Not(m_Specific(Op1))) || | 
|  | match(Op1, m_Not(m_Specific(Op0)))) | 
|  | return Constant::getAllOnesValue(Op0->getType()); | 
|  |  | 
|  | // (A & ?) | A = A | 
|  | if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) | 
|  | return Op1; | 
|  |  | 
|  | // A | (A & ?) = A | 
|  | if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) | 
|  | return Op0; | 
|  |  | 
|  | // ~(A & ?) | A = -1 | 
|  | if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) | 
|  | return Constant::getAllOnesValue(Op1->getType()); | 
|  |  | 
|  | // A | ~(A & ?) = -1 | 
|  | if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) | 
|  | return Constant::getAllOnesValue(Op0->getType()); | 
|  |  | 
|  | Value *A, *B; | 
|  | // (A & ~B) | (A ^ B) -> (A ^ B) | 
|  | // (~B & A) | (A ^ B) -> (A ^ B) | 
|  | // (A & ~B) | (B ^ A) -> (B ^ A) | 
|  | // (~B & A) | (B ^ A) -> (B ^ A) | 
|  | if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && | 
|  | (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || | 
|  | match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) | 
|  | return Op1; | 
|  |  | 
|  | // Commute the 'or' operands. | 
|  | // (A ^ B) | (A & ~B) -> (A ^ B) | 
|  | // (A ^ B) | (~B & A) -> (A ^ B) | 
|  | // (B ^ A) | (A & ~B) -> (B ^ A) | 
|  | // (B ^ A) | (~B & A) -> (B ^ A) | 
|  | if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && | 
|  | (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || | 
|  | match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) | 
|  | return Op0; | 
|  |  | 
|  | // (A & B) | (~A ^ B) -> (~A ^ B) | 
|  | // (B & A) | (~A ^ B) -> (~A ^ B) | 
|  | // (A & B) | (B ^ ~A) -> (B ^ ~A) | 
|  | // (B & A) | (B ^ ~A) -> (B ^ ~A) | 
|  | if (match(Op0, m_And(m_Value(A), m_Value(B))) && | 
|  | (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || | 
|  | match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) | 
|  | return Op1; | 
|  |  | 
|  | // (~A ^ B) | (A & B) -> (~A ^ B) | 
|  | // (~A ^ B) | (B & A) -> (~A ^ B) | 
|  | // (B ^ ~A) | (A & B) -> (B ^ ~A) | 
|  | // (B ^ ~A) | (B & A) -> (B ^ ~A) | 
|  | if (match(Op1, m_And(m_Value(A), m_Value(B))) && | 
|  | (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || | 
|  | match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) | 
|  | return Op0; | 
|  |  | 
|  | if (Value *V = simplifyAndOrOfCmps(Op0, Op1, false)) | 
|  | return V; | 
|  |  | 
|  | // Try some generic simplifications for associative operations. | 
|  | if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, | 
|  | MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // Or distributes over And.  Try some generic simplifications based on this. | 
|  | if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, | 
|  | MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // If the operation is with the result of a select instruction, check whether | 
|  | // operating on either branch of the select always yields the same value. | 
|  | if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) | 
|  | if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, | 
|  | MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // (A & C1)|(B & C2) | 
|  | const APInt *C1, *C2; | 
|  | if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && | 
|  | match(Op1, m_And(m_Value(B), m_APInt(C2)))) { | 
|  | if (*C1 == ~*C2) { | 
|  | // (A & C1)|(B & C2) | 
|  | // If we have: ((V + N) & C1) | (V & C2) | 
|  | // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 | 
|  | // replace with V+N. | 
|  | Value *N; | 
|  | if (C2->isMask() && // C2 == 0+1+ | 
|  | match(A, m_c_Add(m_Specific(B), m_Value(N)))) { | 
|  | // Add commutes, try both ways. | 
|  | if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) | 
|  | return A; | 
|  | } | 
|  | // Or commutes, try both ways. | 
|  | if (C1->isMask() && | 
|  | match(B, m_c_Add(m_Specific(A), m_Value(N)))) { | 
|  | // Add commutes, try both ways. | 
|  | if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) | 
|  | return B; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the operation is with the result of a phi instruction, check whether | 
|  | // operating on all incoming values of the phi always yields the same value. | 
|  | if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) | 
|  | if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { | 
|  | return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | /// Given operands for a Xor, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse) { | 
|  | if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) | 
|  | return C; | 
|  |  | 
|  | // A ^ undef -> undef | 
|  | if (match(Op1, m_Undef())) | 
|  | return Op1; | 
|  |  | 
|  | // A ^ 0 = A | 
|  | if (match(Op1, m_Zero())) | 
|  | return Op0; | 
|  |  | 
|  | // A ^ A = 0 | 
|  | if (Op0 == Op1) | 
|  | return Constant::getNullValue(Op0->getType()); | 
|  |  | 
|  | // A ^ ~A  =  ~A ^ A  =  -1 | 
|  | if (match(Op0, m_Not(m_Specific(Op1))) || | 
|  | match(Op1, m_Not(m_Specific(Op0)))) | 
|  | return Constant::getAllOnesValue(Op0->getType()); | 
|  |  | 
|  | // Try some generic simplifications for associative operations. | 
|  | if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, | 
|  | MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // Threading Xor over selects and phi nodes is pointless, so don't bother. | 
|  | // Threading over the select in "A ^ select(cond, B, C)" means evaluating | 
|  | // "A^B" and "A^C" and seeing if they are equal; but they are equal if and | 
|  | // only if B and C are equal.  If B and C are equal then (since we assume | 
|  | // that operands have already been simplified) "select(cond, B, C)" should | 
|  | // have been simplified to the common value of B and C already.  Analysing | 
|  | // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly | 
|  | // for threading over phi nodes. | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { | 
|  | return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  |  | 
|  | static Type *GetCompareTy(Value *Op) { | 
|  | return CmpInst::makeCmpResultType(Op->getType()); | 
|  | } | 
|  |  | 
|  | /// Rummage around inside V looking for something equivalent to the comparison | 
|  | /// "LHS Pred RHS". Return such a value if found, otherwise return null. | 
|  | /// Helper function for analyzing max/min idioms. | 
|  | static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, | 
|  | Value *LHS, Value *RHS) { | 
|  | SelectInst *SI = dyn_cast<SelectInst>(V); | 
|  | if (!SI) | 
|  | return nullptr; | 
|  | CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); | 
|  | if (!Cmp) | 
|  | return nullptr; | 
|  | Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); | 
|  | if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) | 
|  | return Cmp; | 
|  | if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && | 
|  | LHS == CmpRHS && RHS == CmpLHS) | 
|  | return Cmp; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // A significant optimization not implemented here is assuming that alloca | 
|  | // addresses are not equal to incoming argument values. They don't *alias*, | 
|  | // as we say, but that doesn't mean they aren't equal, so we take a | 
|  | // conservative approach. | 
|  | // | 
|  | // This is inspired in part by C++11 5.10p1: | 
|  | //   "Two pointers of the same type compare equal if and only if they are both | 
|  | //    null, both point to the same function, or both represent the same | 
|  | //    address." | 
|  | // | 
|  | // This is pretty permissive. | 
|  | // | 
|  | // It's also partly due to C11 6.5.9p6: | 
|  | //   "Two pointers compare equal if and only if both are null pointers, both are | 
|  | //    pointers to the same object (including a pointer to an object and a | 
|  | //    subobject at its beginning) or function, both are pointers to one past the | 
|  | //    last element of the same array object, or one is a pointer to one past the | 
|  | //    end of one array object and the other is a pointer to the start of a | 
|  | //    different array object that happens to immediately follow the first array | 
|  | //    object in the address space.) | 
|  | // | 
|  | // C11's version is more restrictive, however there's no reason why an argument | 
|  | // couldn't be a one-past-the-end value for a stack object in the caller and be | 
|  | // equal to the beginning of a stack object in the callee. | 
|  | // | 
|  | // If the C and C++ standards are ever made sufficiently restrictive in this | 
|  | // area, it may be possible to update LLVM's semantics accordingly and reinstate | 
|  | // this optimization. | 
|  | static Constant * | 
|  | computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, | 
|  | const DominatorTree *DT, CmpInst::Predicate Pred, | 
|  | AssumptionCache *AC, const Instruction *CxtI, | 
|  | Value *LHS, Value *RHS) { | 
|  | // First, skip past any trivial no-ops. | 
|  | LHS = LHS->stripPointerCasts(); | 
|  | RHS = RHS->stripPointerCasts(); | 
|  |  | 
|  | // A non-null pointer is not equal to a null pointer. | 
|  | if (llvm::isKnownNonZero(LHS, DL) && isa<ConstantPointerNull>(RHS) && | 
|  | (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) | 
|  | return ConstantInt::get(GetCompareTy(LHS), | 
|  | !CmpInst::isTrueWhenEqual(Pred)); | 
|  |  | 
|  | // We can only fold certain predicates on pointer comparisons. | 
|  | switch (Pred) { | 
|  | default: | 
|  | return nullptr; | 
|  |  | 
|  | // Equality comaprisons are easy to fold. | 
|  | case CmpInst::ICMP_EQ: | 
|  | case CmpInst::ICMP_NE: | 
|  | break; | 
|  |  | 
|  | // We can only handle unsigned relational comparisons because 'inbounds' on | 
|  | // a GEP only protects against unsigned wrapping. | 
|  | case CmpInst::ICMP_UGT: | 
|  | case CmpInst::ICMP_UGE: | 
|  | case CmpInst::ICMP_ULT: | 
|  | case CmpInst::ICMP_ULE: | 
|  | // However, we have to switch them to their signed variants to handle | 
|  | // negative indices from the base pointer. | 
|  | Pred = ICmpInst::getSignedPredicate(Pred); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Strip off any constant offsets so that we can reason about them. | 
|  | // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets | 
|  | // here and compare base addresses like AliasAnalysis does, however there are | 
|  | // numerous hazards. AliasAnalysis and its utilities rely on special rules | 
|  | // governing loads and stores which don't apply to icmps. Also, AliasAnalysis | 
|  | // doesn't need to guarantee pointer inequality when it says NoAlias. | 
|  | Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); | 
|  | Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); | 
|  |  | 
|  | // If LHS and RHS are related via constant offsets to the same base | 
|  | // value, we can replace it with an icmp which just compares the offsets. | 
|  | if (LHS == RHS) | 
|  | return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); | 
|  |  | 
|  | // Various optimizations for (in)equality comparisons. | 
|  | if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { | 
|  | // Different non-empty allocations that exist at the same time have | 
|  | // different addresses (if the program can tell). Global variables always | 
|  | // exist, so they always exist during the lifetime of each other and all | 
|  | // allocas. Two different allocas usually have different addresses... | 
|  | // | 
|  | // However, if there's an @llvm.stackrestore dynamically in between two | 
|  | // allocas, they may have the same address. It's tempting to reduce the | 
|  | // scope of the problem by only looking at *static* allocas here. That would | 
|  | // cover the majority of allocas while significantly reducing the likelihood | 
|  | // of having an @llvm.stackrestore pop up in the middle. However, it's not | 
|  | // actually impossible for an @llvm.stackrestore to pop up in the middle of | 
|  | // an entry block. Also, if we have a block that's not attached to a | 
|  | // function, we can't tell if it's "static" under the current definition. | 
|  | // Theoretically, this problem could be fixed by creating a new kind of | 
|  | // instruction kind specifically for static allocas. Such a new instruction | 
|  | // could be required to be at the top of the entry block, thus preventing it | 
|  | // from being subject to a @llvm.stackrestore. Instcombine could even | 
|  | // convert regular allocas into these special allocas. It'd be nifty. | 
|  | // However, until then, this problem remains open. | 
|  | // | 
|  | // So, we'll assume that two non-empty allocas have different addresses | 
|  | // for now. | 
|  | // | 
|  | // With all that, if the offsets are within the bounds of their allocations | 
|  | // (and not one-past-the-end! so we can't use inbounds!), and their | 
|  | // allocations aren't the same, the pointers are not equal. | 
|  | // | 
|  | // Note that it's not necessary to check for LHS being a global variable | 
|  | // address, due to canonicalization and constant folding. | 
|  | if (isa<AllocaInst>(LHS) && | 
|  | (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { | 
|  | ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); | 
|  | ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); | 
|  | uint64_t LHSSize, RHSSize; | 
|  | ObjectSizeOpts Opts; | 
|  | Opts.NullIsUnknownSize = | 
|  | NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); | 
|  | if (LHSOffsetCI && RHSOffsetCI && | 
|  | getObjectSize(LHS, LHSSize, DL, TLI, Opts) && | 
|  | getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { | 
|  | const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); | 
|  | const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); | 
|  | if (!LHSOffsetValue.isNegative() && | 
|  | !RHSOffsetValue.isNegative() && | 
|  | LHSOffsetValue.ult(LHSSize) && | 
|  | RHSOffsetValue.ult(RHSSize)) { | 
|  | return ConstantInt::get(GetCompareTy(LHS), | 
|  | !CmpInst::isTrueWhenEqual(Pred)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Repeat the above check but this time without depending on DataLayout | 
|  | // or being able to compute a precise size. | 
|  | if (!cast<PointerType>(LHS->getType())->isEmptyTy() && | 
|  | !cast<PointerType>(RHS->getType())->isEmptyTy() && | 
|  | LHSOffset->isNullValue() && | 
|  | RHSOffset->isNullValue()) | 
|  | return ConstantInt::get(GetCompareTy(LHS), | 
|  | !CmpInst::isTrueWhenEqual(Pred)); | 
|  | } | 
|  |  | 
|  | // Even if an non-inbounds GEP occurs along the path we can still optimize | 
|  | // equality comparisons concerning the result. We avoid walking the whole | 
|  | // chain again by starting where the last calls to | 
|  | // stripAndComputeConstantOffsets left off and accumulate the offsets. | 
|  | Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); | 
|  | Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); | 
|  | if (LHS == RHS) | 
|  | return ConstantExpr::getICmp(Pred, | 
|  | ConstantExpr::getAdd(LHSOffset, LHSNoBound), | 
|  | ConstantExpr::getAdd(RHSOffset, RHSNoBound)); | 
|  |  | 
|  | // If one side of the equality comparison must come from a noalias call | 
|  | // (meaning a system memory allocation function), and the other side must | 
|  | // come from a pointer that cannot overlap with dynamically-allocated | 
|  | // memory within the lifetime of the current function (allocas, byval | 
|  | // arguments, globals), then determine the comparison result here. | 
|  | SmallVector<Value *, 8> LHSUObjs, RHSUObjs; | 
|  | GetUnderlyingObjects(LHS, LHSUObjs, DL); | 
|  | GetUnderlyingObjects(RHS, RHSUObjs, DL); | 
|  |  | 
|  | // Is the set of underlying objects all noalias calls? | 
|  | auto IsNAC = [](ArrayRef<Value *> Objects) { | 
|  | return all_of(Objects, isNoAliasCall); | 
|  | }; | 
|  |  | 
|  | // Is the set of underlying objects all things which must be disjoint from | 
|  | // noalias calls. For allocas, we consider only static ones (dynamic | 
|  | // allocas might be transformed into calls to malloc not simultaneously | 
|  | // live with the compared-to allocation). For globals, we exclude symbols | 
|  | // that might be resolve lazily to symbols in another dynamically-loaded | 
|  | // library (and, thus, could be malloc'ed by the implementation). | 
|  | auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { | 
|  | return all_of(Objects, [](Value *V) { | 
|  | if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) | 
|  | return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); | 
|  | if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) | 
|  | return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || | 
|  | GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && | 
|  | !GV->isThreadLocal(); | 
|  | if (const Argument *A = dyn_cast<Argument>(V)) | 
|  | return A->hasByValAttr(); | 
|  | return false; | 
|  | }); | 
|  | }; | 
|  |  | 
|  | if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || | 
|  | (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) | 
|  | return ConstantInt::get(GetCompareTy(LHS), | 
|  | !CmpInst::isTrueWhenEqual(Pred)); | 
|  |  | 
|  | // Fold comparisons for non-escaping pointer even if the allocation call | 
|  | // cannot be elided. We cannot fold malloc comparison to null. Also, the | 
|  | // dynamic allocation call could be either of the operands. | 
|  | Value *MI = nullptr; | 
|  | if (isAllocLikeFn(LHS, TLI) && | 
|  | llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) | 
|  | MI = LHS; | 
|  | else if (isAllocLikeFn(RHS, TLI) && | 
|  | llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) | 
|  | MI = RHS; | 
|  | // FIXME: We should also fold the compare when the pointer escapes, but the | 
|  | // compare dominates the pointer escape | 
|  | if (MI && !PointerMayBeCaptured(MI, true, true)) | 
|  | return ConstantInt::get(GetCompareTy(LHS), | 
|  | CmpInst::isFalseWhenEqual(Pred)); | 
|  | } | 
|  |  | 
|  | // Otherwise, fail. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold an icmp when its operands have i1 scalar type. | 
|  | static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, | 
|  | Value *RHS, const SimplifyQuery &Q) { | 
|  | Type *ITy = GetCompareTy(LHS); // The return type. | 
|  | Type *OpTy = LHS->getType();   // The operand type. | 
|  | if (!OpTy->isIntOrIntVectorTy(1)) | 
|  | return nullptr; | 
|  |  | 
|  | // A boolean compared to true/false can be simplified in 14 out of the 20 | 
|  | // (10 predicates * 2 constants) possible combinations. Cases not handled here | 
|  | // require a 'not' of the LHS, so those must be transformed in InstCombine. | 
|  | if (match(RHS, m_Zero())) { | 
|  | switch (Pred) { | 
|  | case CmpInst::ICMP_NE:  // X !=  0 -> X | 
|  | case CmpInst::ICMP_UGT: // X >u  0 -> X | 
|  | case CmpInst::ICMP_SLT: // X <s  0 -> X | 
|  | return LHS; | 
|  |  | 
|  | case CmpInst::ICMP_ULT: // X <u  0 -> false | 
|  | case CmpInst::ICMP_SGT: // X >s  0 -> false | 
|  | return getFalse(ITy); | 
|  |  | 
|  | case CmpInst::ICMP_UGE: // X >=u 0 -> true | 
|  | case CmpInst::ICMP_SLE: // X <=s 0 -> true | 
|  | return getTrue(ITy); | 
|  |  | 
|  | default: break; | 
|  | } | 
|  | } else if (match(RHS, m_One())) { | 
|  | switch (Pred) { | 
|  | case CmpInst::ICMP_EQ:  // X ==   1 -> X | 
|  | case CmpInst::ICMP_UGE: // X >=u  1 -> X | 
|  | case CmpInst::ICMP_SLE: // X <=s -1 -> X | 
|  | return LHS; | 
|  |  | 
|  | case CmpInst::ICMP_UGT: // X >u   1 -> false | 
|  | case CmpInst::ICMP_SLT: // X <s  -1 -> false | 
|  | return getFalse(ITy); | 
|  |  | 
|  | case CmpInst::ICMP_ULE: // X <=u  1 -> true | 
|  | case CmpInst::ICMP_SGE: // X >=s -1 -> true | 
|  | return getTrue(ITy); | 
|  |  | 
|  | default: break; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (Pred) { | 
|  | default: | 
|  | break; | 
|  | case ICmpInst::ICMP_UGE: | 
|  | if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) | 
|  | return getTrue(ITy); | 
|  | break; | 
|  | case ICmpInst::ICMP_SGE: | 
|  | /// For signed comparison, the values for an i1 are 0 and -1 | 
|  | /// respectively. This maps into a truth table of: | 
|  | /// LHS | RHS | LHS >=s RHS   | LHS implies RHS | 
|  | ///  0  |  0  |  1 (0 >= 0)   |  1 | 
|  | ///  0  |  1  |  1 (0 >= -1)  |  1 | 
|  | ///  1  |  0  |  0 (-1 >= 0)  |  0 | 
|  | ///  1  |  1  |  1 (-1 >= -1) |  1 | 
|  | if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) | 
|  | return getTrue(ITy); | 
|  | break; | 
|  | case ICmpInst::ICMP_ULE: | 
|  | if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) | 
|  | return getTrue(ITy); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Try hard to fold icmp with zero RHS because this is a common case. | 
|  | static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, | 
|  | Value *RHS, const SimplifyQuery &Q) { | 
|  | if (!match(RHS, m_Zero())) | 
|  | return nullptr; | 
|  |  | 
|  | Type *ITy = GetCompareTy(LHS); // The return type. | 
|  | switch (Pred) { | 
|  | default: | 
|  | llvm_unreachable("Unknown ICmp predicate!"); | 
|  | case ICmpInst::ICMP_ULT: | 
|  | return getFalse(ITy); | 
|  | case ICmpInst::ICMP_UGE: | 
|  | return getTrue(ITy); | 
|  | case ICmpInst::ICMP_EQ: | 
|  | case ICmpInst::ICMP_ULE: | 
|  | if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) | 
|  | return getFalse(ITy); | 
|  | break; | 
|  | case ICmpInst::ICMP_NE: | 
|  | case ICmpInst::ICMP_UGT: | 
|  | if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) | 
|  | return getTrue(ITy); | 
|  | break; | 
|  | case ICmpInst::ICMP_SLT: { | 
|  | KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); | 
|  | if (LHSKnown.isNegative()) | 
|  | return getTrue(ITy); | 
|  | if (LHSKnown.isNonNegative()) | 
|  | return getFalse(ITy); | 
|  | break; | 
|  | } | 
|  | case ICmpInst::ICMP_SLE: { | 
|  | KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); | 
|  | if (LHSKnown.isNegative()) | 
|  | return getTrue(ITy); | 
|  | if (LHSKnown.isNonNegative() && | 
|  | isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) | 
|  | return getFalse(ITy); | 
|  | break; | 
|  | } | 
|  | case ICmpInst::ICMP_SGE: { | 
|  | KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); | 
|  | if (LHSKnown.isNegative()) | 
|  | return getFalse(ITy); | 
|  | if (LHSKnown.isNonNegative()) | 
|  | return getTrue(ITy); | 
|  | break; | 
|  | } | 
|  | case ICmpInst::ICMP_SGT: { | 
|  | KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); | 
|  | if (LHSKnown.isNegative()) | 
|  | return getFalse(ITy); | 
|  | if (LHSKnown.isNonNegative() && | 
|  | isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) | 
|  | return getTrue(ITy); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Many binary operators with a constant operand have an easy-to-compute | 
|  | /// range of outputs. This can be used to fold a comparison to always true or | 
|  | /// always false. | 
|  | static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { | 
|  | unsigned Width = Lower.getBitWidth(); | 
|  | const APInt *C; | 
|  | switch (BO.getOpcode()) { | 
|  | case Instruction::Add: | 
|  | if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { | 
|  | // FIXME: If we have both nuw and nsw, we should reduce the range further. | 
|  | if (BO.hasNoUnsignedWrap()) { | 
|  | // 'add nuw x, C' produces [C, UINT_MAX]. | 
|  | Lower = *C; | 
|  | } else if (BO.hasNoSignedWrap()) { | 
|  | if (C->isNegative()) { | 
|  | // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. | 
|  | Lower = APInt::getSignedMinValue(Width); | 
|  | Upper = APInt::getSignedMaxValue(Width) + *C + 1; | 
|  | } else { | 
|  | // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. | 
|  | Lower = APInt::getSignedMinValue(Width) + *C; | 
|  | Upper = APInt::getSignedMaxValue(Width) + 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::And: | 
|  | if (match(BO.getOperand(1), m_APInt(C))) | 
|  | // 'and x, C' produces [0, C]. | 
|  | Upper = *C + 1; | 
|  | break; | 
|  |  | 
|  | case Instruction::Or: | 
|  | if (match(BO.getOperand(1), m_APInt(C))) | 
|  | // 'or x, C' produces [C, UINT_MAX]. | 
|  | Lower = *C; | 
|  | break; | 
|  |  | 
|  | case Instruction::AShr: | 
|  | if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { | 
|  | // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. | 
|  | Lower = APInt::getSignedMinValue(Width).ashr(*C); | 
|  | Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; | 
|  | } else if (match(BO.getOperand(0), m_APInt(C))) { | 
|  | unsigned ShiftAmount = Width - 1; | 
|  | if (!C->isNullValue() && BO.isExact()) | 
|  | ShiftAmount = C->countTrailingZeros(); | 
|  | if (C->isNegative()) { | 
|  | // 'ashr C, x' produces [C, C >> (Width-1)] | 
|  | Lower = *C; | 
|  | Upper = C->ashr(ShiftAmount) + 1; | 
|  | } else { | 
|  | // 'ashr C, x' produces [C >> (Width-1), C] | 
|  | Lower = C->ashr(ShiftAmount); | 
|  | Upper = *C + 1; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::LShr: | 
|  | if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { | 
|  | // 'lshr x, C' produces [0, UINT_MAX >> C]. | 
|  | Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; | 
|  | } else if (match(BO.getOperand(0), m_APInt(C))) { | 
|  | // 'lshr C, x' produces [C >> (Width-1), C]. | 
|  | unsigned ShiftAmount = Width - 1; | 
|  | if (!C->isNullValue() && BO.isExact()) | 
|  | ShiftAmount = C->countTrailingZeros(); | 
|  | Lower = C->lshr(ShiftAmount); | 
|  | Upper = *C + 1; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::Shl: | 
|  | if (match(BO.getOperand(0), m_APInt(C))) { | 
|  | if (BO.hasNoUnsignedWrap()) { | 
|  | // 'shl nuw C, x' produces [C, C << CLZ(C)] | 
|  | Lower = *C; | 
|  | Upper = Lower.shl(Lower.countLeadingZeros()) + 1; | 
|  | } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? | 
|  | if (C->isNegative()) { | 
|  | // 'shl nsw C, x' produces [C << CLO(C)-1, C] | 
|  | unsigned ShiftAmount = C->countLeadingOnes() - 1; | 
|  | Lower = C->shl(ShiftAmount); | 
|  | Upper = *C + 1; | 
|  | } else { | 
|  | // 'shl nsw C, x' produces [C, C << CLZ(C)-1] | 
|  | unsigned ShiftAmount = C->countLeadingZeros() - 1; | 
|  | Lower = *C; | 
|  | Upper = C->shl(ShiftAmount) + 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::SDiv: | 
|  | if (match(BO.getOperand(1), m_APInt(C))) { | 
|  | APInt IntMin = APInt::getSignedMinValue(Width); | 
|  | APInt IntMax = APInt::getSignedMaxValue(Width); | 
|  | if (C->isAllOnesValue()) { | 
|  | // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] | 
|  | //    where C != -1 and C != 0 and C != 1 | 
|  | Lower = IntMin + 1; | 
|  | Upper = IntMax + 1; | 
|  | } else if (C->countLeadingZeros() < Width - 1) { | 
|  | // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] | 
|  | //    where C != -1 and C != 0 and C != 1 | 
|  | Lower = IntMin.sdiv(*C); | 
|  | Upper = IntMax.sdiv(*C); | 
|  | if (Lower.sgt(Upper)) | 
|  | std::swap(Lower, Upper); | 
|  | Upper = Upper + 1; | 
|  | assert(Upper != Lower && "Upper part of range has wrapped!"); | 
|  | } | 
|  | } else if (match(BO.getOperand(0), m_APInt(C))) { | 
|  | if (C->isMinSignedValue()) { | 
|  | // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. | 
|  | Lower = *C; | 
|  | Upper = Lower.lshr(1) + 1; | 
|  | } else { | 
|  | // 'sdiv C, x' produces [-|C|, |C|]. | 
|  | Upper = C->abs() + 1; | 
|  | Lower = (-Upper) + 1; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::UDiv: | 
|  | if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { | 
|  | // 'udiv x, C' produces [0, UINT_MAX / C]. | 
|  | Upper = APInt::getMaxValue(Width).udiv(*C) + 1; | 
|  | } else if (match(BO.getOperand(0), m_APInt(C))) { | 
|  | // 'udiv C, x' produces [0, C]. | 
|  | Upper = *C + 1; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::SRem: | 
|  | if (match(BO.getOperand(1), m_APInt(C))) { | 
|  | // 'srem x, C' produces (-|C|, |C|). | 
|  | Upper = C->abs(); | 
|  | Lower = (-Upper) + 1; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::URem: | 
|  | if (match(BO.getOperand(1), m_APInt(C))) | 
|  | // 'urem x, C' produces [0, C). | 
|  | Upper = *C; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, | 
|  | Value *RHS) { | 
|  | Type *ITy = GetCompareTy(RHS); // The return type. | 
|  |  | 
|  | Value *X; | 
|  | // Sign-bit checks can be optimized to true/false after unsigned | 
|  | // floating-point casts: | 
|  | // icmp slt (bitcast (uitofp X)),  0 --> false | 
|  | // icmp sgt (bitcast (uitofp X)), -1 --> true | 
|  | if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { | 
|  | if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) | 
|  | return ConstantInt::getFalse(ITy); | 
|  | if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) | 
|  | return ConstantInt::getTrue(ITy); | 
|  | } | 
|  |  | 
|  | const APInt *C; | 
|  | if (!match(RHS, m_APInt(C))) | 
|  | return nullptr; | 
|  |  | 
|  | // Rule out tautological comparisons (eg., ult 0 or uge 0). | 
|  | ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); | 
|  | if (RHS_CR.isEmptySet()) | 
|  | return ConstantInt::getFalse(ITy); | 
|  | if (RHS_CR.isFullSet()) | 
|  | return ConstantInt::getTrue(ITy); | 
|  |  | 
|  | // Find the range of possible values for binary operators. | 
|  | unsigned Width = C->getBitWidth(); | 
|  | APInt Lower = APInt(Width, 0); | 
|  | APInt Upper = APInt(Width, 0); | 
|  | if (auto *BO = dyn_cast<BinaryOperator>(LHS)) | 
|  | setLimitsForBinOp(*BO, Lower, Upper); | 
|  |  | 
|  | ConstantRange LHS_CR = | 
|  | Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); | 
|  |  | 
|  | if (auto *I = dyn_cast<Instruction>(LHS)) | 
|  | if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) | 
|  | LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); | 
|  |  | 
|  | if (!LHS_CR.isFullSet()) { | 
|  | if (RHS_CR.contains(LHS_CR)) | 
|  | return ConstantInt::getTrue(ITy); | 
|  | if (RHS_CR.inverse().contains(LHS_CR)) | 
|  | return ConstantInt::getFalse(ITy); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// TODO: A large part of this logic is duplicated in InstCombine's | 
|  | /// foldICmpBinOp(). We should be able to share that and avoid the code | 
|  | /// duplication. | 
|  | static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, | 
|  | Value *RHS, const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse) { | 
|  | Type *ITy = GetCompareTy(LHS); // The return type. | 
|  |  | 
|  | BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); | 
|  | BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); | 
|  | if (MaxRecurse && (LBO || RBO)) { | 
|  | // Analyze the case when either LHS or RHS is an add instruction. | 
|  | Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; | 
|  | // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). | 
|  | bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; | 
|  | if (LBO && LBO->getOpcode() == Instruction::Add) { | 
|  | A = LBO->getOperand(0); | 
|  | B = LBO->getOperand(1); | 
|  | NoLHSWrapProblem = | 
|  | ICmpInst::isEquality(Pred) || | 
|  | (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || | 
|  | (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); | 
|  | } | 
|  | if (RBO && RBO->getOpcode() == Instruction::Add) { | 
|  | C = RBO->getOperand(0); | 
|  | D = RBO->getOperand(1); | 
|  | NoRHSWrapProblem = | 
|  | ICmpInst::isEquality(Pred) || | 
|  | (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || | 
|  | (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); | 
|  | } | 
|  |  | 
|  | // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. | 
|  | if ((A == RHS || B == RHS) && NoLHSWrapProblem) | 
|  | if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, | 
|  | Constant::getNullValue(RHS->getType()), Q, | 
|  | MaxRecurse - 1)) | 
|  | return V; | 
|  |  | 
|  | // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. | 
|  | if ((C == LHS || D == LHS) && NoRHSWrapProblem) | 
|  | if (Value *V = | 
|  | SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), | 
|  | C == LHS ? D : C, Q, MaxRecurse - 1)) | 
|  | return V; | 
|  |  | 
|  | // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. | 
|  | if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && | 
|  | NoRHSWrapProblem) { | 
|  | // Determine Y and Z in the form icmp (X+Y), (X+Z). | 
|  | Value *Y, *Z; | 
|  | if (A == C) { | 
|  | // C + B == C + D  ->  B == D | 
|  | Y = B; | 
|  | Z = D; | 
|  | } else if (A == D) { | 
|  | // D + B == C + D  ->  B == C | 
|  | Y = B; | 
|  | Z = C; | 
|  | } else if (B == C) { | 
|  | // A + C == C + D  ->  A == D | 
|  | Y = A; | 
|  | Z = D; | 
|  | } else { | 
|  | assert(B == D); | 
|  | // A + D == C + D  ->  A == C | 
|  | Y = A; | 
|  | Z = C; | 
|  | } | 
|  | if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) | 
|  | return V; | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | Value *Y = nullptr; | 
|  | // icmp pred (or X, Y), X | 
|  | if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { | 
|  | if (Pred == ICmpInst::ICMP_ULT) | 
|  | return getFalse(ITy); | 
|  | if (Pred == ICmpInst::ICMP_UGE) | 
|  | return getTrue(ITy); | 
|  |  | 
|  | if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { | 
|  | KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); | 
|  | KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); | 
|  | if (RHSKnown.isNonNegative() && YKnown.isNegative()) | 
|  | return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); | 
|  | if (RHSKnown.isNegative() || YKnown.isNonNegative()) | 
|  | return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); | 
|  | } | 
|  | } | 
|  | // icmp pred X, (or X, Y) | 
|  | if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { | 
|  | if (Pred == ICmpInst::ICMP_ULE) | 
|  | return getTrue(ITy); | 
|  | if (Pred == ICmpInst::ICMP_UGT) | 
|  | return getFalse(ITy); | 
|  |  | 
|  | if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { | 
|  | KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); | 
|  | KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); | 
|  | if (LHSKnown.isNonNegative() && YKnown.isNegative()) | 
|  | return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); | 
|  | if (LHSKnown.isNegative() || YKnown.isNonNegative()) | 
|  | return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // icmp pred (and X, Y), X | 
|  | if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { | 
|  | if (Pred == ICmpInst::ICMP_UGT) | 
|  | return getFalse(ITy); | 
|  | if (Pred == ICmpInst::ICMP_ULE) | 
|  | return getTrue(ITy); | 
|  | } | 
|  | // icmp pred X, (and X, Y) | 
|  | if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { | 
|  | if (Pred == ICmpInst::ICMP_UGE) | 
|  | return getTrue(ITy); | 
|  | if (Pred == ICmpInst::ICMP_ULT) | 
|  | return getFalse(ITy); | 
|  | } | 
|  |  | 
|  | // 0 - (zext X) pred C | 
|  | if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { | 
|  | if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { | 
|  | if (RHSC->getValue().isStrictlyPositive()) { | 
|  | if (Pred == ICmpInst::ICMP_SLT) | 
|  | return ConstantInt::getTrue(RHSC->getContext()); | 
|  | if (Pred == ICmpInst::ICMP_SGE) | 
|  | return ConstantInt::getFalse(RHSC->getContext()); | 
|  | if (Pred == ICmpInst::ICMP_EQ) | 
|  | return ConstantInt::getFalse(RHSC->getContext()); | 
|  | if (Pred == ICmpInst::ICMP_NE) | 
|  | return ConstantInt::getTrue(RHSC->getContext()); | 
|  | } | 
|  | if (RHSC->getValue().isNonNegative()) { | 
|  | if (Pred == ICmpInst::ICMP_SLE) | 
|  | return ConstantInt::getTrue(RHSC->getContext()); | 
|  | if (Pred == ICmpInst::ICMP_SGT) | 
|  | return ConstantInt::getFalse(RHSC->getContext()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // icmp pred (urem X, Y), Y | 
|  | if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { | 
|  | switch (Pred) { | 
|  | default: | 
|  | break; | 
|  | case ICmpInst::ICMP_SGT: | 
|  | case ICmpInst::ICMP_SGE: { | 
|  | KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); | 
|  | if (!Known.isNonNegative()) | 
|  | break; | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case ICmpInst::ICMP_EQ: | 
|  | case ICmpInst::ICMP_UGT: | 
|  | case ICmpInst::ICMP_UGE: | 
|  | return getFalse(ITy); | 
|  | case ICmpInst::ICMP_SLT: | 
|  | case ICmpInst::ICMP_SLE: { | 
|  | KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); | 
|  | if (!Known.isNonNegative()) | 
|  | break; | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case ICmpInst::ICMP_NE: | 
|  | case ICmpInst::ICMP_ULT: | 
|  | case ICmpInst::ICMP_ULE: | 
|  | return getTrue(ITy); | 
|  | } | 
|  | } | 
|  |  | 
|  | // icmp pred X, (urem Y, X) | 
|  | if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { | 
|  | switch (Pred) { | 
|  | default: | 
|  | break; | 
|  | case ICmpInst::ICMP_SGT: | 
|  | case ICmpInst::ICMP_SGE: { | 
|  | KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); | 
|  | if (!Known.isNonNegative()) | 
|  | break; | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case ICmpInst::ICMP_NE: | 
|  | case ICmpInst::ICMP_UGT: | 
|  | case ICmpInst::ICMP_UGE: | 
|  | return getTrue(ITy); | 
|  | case ICmpInst::ICMP_SLT: | 
|  | case ICmpInst::ICMP_SLE: { | 
|  | KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); | 
|  | if (!Known.isNonNegative()) | 
|  | break; | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case ICmpInst::ICMP_EQ: | 
|  | case ICmpInst::ICMP_ULT: | 
|  | case ICmpInst::ICMP_ULE: | 
|  | return getFalse(ITy); | 
|  | } | 
|  | } | 
|  |  | 
|  | // x >> y <=u x | 
|  | // x udiv y <=u x. | 
|  | if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || | 
|  | match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { | 
|  | // icmp pred (X op Y), X | 
|  | if (Pred == ICmpInst::ICMP_UGT) | 
|  | return getFalse(ITy); | 
|  | if (Pred == ICmpInst::ICMP_ULE) | 
|  | return getTrue(ITy); | 
|  | } | 
|  |  | 
|  | // x >=u x >> y | 
|  | // x >=u x udiv y. | 
|  | if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || | 
|  | match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { | 
|  | // icmp pred X, (X op Y) | 
|  | if (Pred == ICmpInst::ICMP_ULT) | 
|  | return getFalse(ITy); | 
|  | if (Pred == ICmpInst::ICMP_UGE) | 
|  | return getTrue(ITy); | 
|  | } | 
|  |  | 
|  | // handle: | 
|  | //   CI2 << X == CI | 
|  | //   CI2 << X != CI | 
|  | // | 
|  | //   where CI2 is a power of 2 and CI isn't | 
|  | if (auto *CI = dyn_cast<ConstantInt>(RHS)) { | 
|  | const APInt *CI2Val, *CIVal = &CI->getValue(); | 
|  | if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && | 
|  | CI2Val->isPowerOf2()) { | 
|  | if (!CIVal->isPowerOf2()) { | 
|  | // CI2 << X can equal zero in some circumstances, | 
|  | // this simplification is unsafe if CI is zero. | 
|  | // | 
|  | // We know it is safe if: | 
|  | // - The shift is nsw, we can't shift out the one bit. | 
|  | // - The shift is nuw, we can't shift out the one bit. | 
|  | // - CI2 is one | 
|  | // - CI isn't zero | 
|  | if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || | 
|  | CI2Val->isOneValue() || !CI->isZero()) { | 
|  | if (Pred == ICmpInst::ICMP_EQ) | 
|  | return ConstantInt::getFalse(RHS->getContext()); | 
|  | if (Pred == ICmpInst::ICMP_NE) | 
|  | return ConstantInt::getTrue(RHS->getContext()); | 
|  | } | 
|  | } | 
|  | if (CIVal->isSignMask() && CI2Val->isOneValue()) { | 
|  | if (Pred == ICmpInst::ICMP_UGT) | 
|  | return ConstantInt::getFalse(RHS->getContext()); | 
|  | if (Pred == ICmpInst::ICMP_ULE) | 
|  | return ConstantInt::getTrue(RHS->getContext()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && | 
|  | LBO->getOperand(1) == RBO->getOperand(1)) { | 
|  | switch (LBO->getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | case Instruction::UDiv: | 
|  | case Instruction::LShr: | 
|  | if (ICmpInst::isSigned(Pred) || !LBO->isExact() || !RBO->isExact()) | 
|  | break; | 
|  | if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), | 
|  | RBO->getOperand(0), Q, MaxRecurse - 1)) | 
|  | return V; | 
|  | break; | 
|  | case Instruction::SDiv: | 
|  | if (!ICmpInst::isEquality(Pred) || !LBO->isExact() || !RBO->isExact()) | 
|  | break; | 
|  | if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), | 
|  | RBO->getOperand(0), Q, MaxRecurse - 1)) | 
|  | return V; | 
|  | break; | 
|  | case Instruction::AShr: | 
|  | if (!LBO->isExact() || !RBO->isExact()) | 
|  | break; | 
|  | if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), | 
|  | RBO->getOperand(0), Q, MaxRecurse - 1)) | 
|  | return V; | 
|  | break; | 
|  | case Instruction::Shl: { | 
|  | bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); | 
|  | bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); | 
|  | if (!NUW && !NSW) | 
|  | break; | 
|  | if (!NSW && ICmpInst::isSigned(Pred)) | 
|  | break; | 
|  | if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), | 
|  | RBO->getOperand(0), Q, MaxRecurse - 1)) | 
|  | return V; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Simplify integer comparisons where at least one operand of the compare | 
|  | /// matches an integer min/max idiom. | 
|  | static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, | 
|  | Value *RHS, const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse) { | 
|  | Type *ITy = GetCompareTy(LHS); // The return type. | 
|  | Value *A, *B; | 
|  | CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; | 
|  | CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". | 
|  |  | 
|  | // Signed variants on "max(a,b)>=a -> true". | 
|  | if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { | 
|  | if (A != RHS) | 
|  | std::swap(A, B);       // smax(A, B) pred A. | 
|  | EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". | 
|  | // We analyze this as smax(A, B) pred A. | 
|  | P = Pred; | 
|  | } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && | 
|  | (A == LHS || B == LHS)) { | 
|  | if (A != LHS) | 
|  | std::swap(A, B);       // A pred smax(A, B). | 
|  | EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". | 
|  | // We analyze this as smax(A, B) swapped-pred A. | 
|  | P = CmpInst::getSwappedPredicate(Pred); | 
|  | } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && | 
|  | (A == RHS || B == RHS)) { | 
|  | if (A != RHS) | 
|  | std::swap(A, B);       // smin(A, B) pred A. | 
|  | EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". | 
|  | // We analyze this as smax(-A, -B) swapped-pred -A. | 
|  | // Note that we do not need to actually form -A or -B thanks to EqP. | 
|  | P = CmpInst::getSwappedPredicate(Pred); | 
|  | } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && | 
|  | (A == LHS || B == LHS)) { | 
|  | if (A != LHS) | 
|  | std::swap(A, B);       // A pred smin(A, B). | 
|  | EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". | 
|  | // We analyze this as smax(-A, -B) pred -A. | 
|  | // Note that we do not need to actually form -A or -B thanks to EqP. | 
|  | P = Pred; | 
|  | } | 
|  | if (P != CmpInst::BAD_ICMP_PREDICATE) { | 
|  | // Cases correspond to "max(A, B) p A". | 
|  | switch (P) { | 
|  | default: | 
|  | break; | 
|  | case CmpInst::ICMP_EQ: | 
|  | case CmpInst::ICMP_SLE: | 
|  | // Equivalent to "A EqP B".  This may be the same as the condition tested | 
|  | // in the max/min; if so, we can just return that. | 
|  | if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) | 
|  | return V; | 
|  | if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) | 
|  | return V; | 
|  | // Otherwise, see if "A EqP B" simplifies. | 
|  | if (MaxRecurse) | 
|  | if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) | 
|  | return V; | 
|  | break; | 
|  | case CmpInst::ICMP_NE: | 
|  | case CmpInst::ICMP_SGT: { | 
|  | CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); | 
|  | // Equivalent to "A InvEqP B".  This may be the same as the condition | 
|  | // tested in the max/min; if so, we can just return that. | 
|  | if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) | 
|  | return V; | 
|  | if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) | 
|  | return V; | 
|  | // Otherwise, see if "A InvEqP B" simplifies. | 
|  | if (MaxRecurse) | 
|  | if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) | 
|  | return V; | 
|  | break; | 
|  | } | 
|  | case CmpInst::ICMP_SGE: | 
|  | // Always true. | 
|  | return getTrue(ITy); | 
|  | case CmpInst::ICMP_SLT: | 
|  | // Always false. | 
|  | return getFalse(ITy); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Unsigned variants on "max(a,b)>=a -> true". | 
|  | P = CmpInst::BAD_ICMP_PREDICATE; | 
|  | if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { | 
|  | if (A != RHS) | 
|  | std::swap(A, B);       // umax(A, B) pred A. | 
|  | EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". | 
|  | // We analyze this as umax(A, B) pred A. | 
|  | P = Pred; | 
|  | } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && | 
|  | (A == LHS || B == LHS)) { | 
|  | if (A != LHS) | 
|  | std::swap(A, B);       // A pred umax(A, B). | 
|  | EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". | 
|  | // We analyze this as umax(A, B) swapped-pred A. | 
|  | P = CmpInst::getSwappedPredicate(Pred); | 
|  | } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && | 
|  | (A == RHS || B == RHS)) { | 
|  | if (A != RHS) | 
|  | std::swap(A, B);       // umin(A, B) pred A. | 
|  | EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". | 
|  | // We analyze this as umax(-A, -B) swapped-pred -A. | 
|  | // Note that we do not need to actually form -A or -B thanks to EqP. | 
|  | P = CmpInst::getSwappedPredicate(Pred); | 
|  | } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && | 
|  | (A == LHS || B == LHS)) { | 
|  | if (A != LHS) | 
|  | std::swap(A, B);       // A pred umin(A, B). | 
|  | EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". | 
|  | // We analyze this as umax(-A, -B) pred -A. | 
|  | // Note that we do not need to actually form -A or -B thanks to EqP. | 
|  | P = Pred; | 
|  | } | 
|  | if (P != CmpInst::BAD_ICMP_PREDICATE) { | 
|  | // Cases correspond to "max(A, B) p A". | 
|  | switch (P) { | 
|  | default: | 
|  | break; | 
|  | case CmpInst::ICMP_EQ: | 
|  | case CmpInst::ICMP_ULE: | 
|  | // Equivalent to "A EqP B".  This may be the same as the condition tested | 
|  | // in the max/min; if so, we can just return that. | 
|  | if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) | 
|  | return V; | 
|  | if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) | 
|  | return V; | 
|  | // Otherwise, see if "A EqP B" simplifies. | 
|  | if (MaxRecurse) | 
|  | if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) | 
|  | return V; | 
|  | break; | 
|  | case CmpInst::ICMP_NE: | 
|  | case CmpInst::ICMP_UGT: { | 
|  | CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); | 
|  | // Equivalent to "A InvEqP B".  This may be the same as the condition | 
|  | // tested in the max/min; if so, we can just return that. | 
|  | if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) | 
|  | return V; | 
|  | if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) | 
|  | return V; | 
|  | // Otherwise, see if "A InvEqP B" simplifies. | 
|  | if (MaxRecurse) | 
|  | if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) | 
|  | return V; | 
|  | break; | 
|  | } | 
|  | case CmpInst::ICMP_UGE: | 
|  | // Always true. | 
|  | return getTrue(ITy); | 
|  | case CmpInst::ICMP_ULT: | 
|  | // Always false. | 
|  | return getFalse(ITy); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Variants on "max(x,y) >= min(x,z)". | 
|  | Value *C, *D; | 
|  | if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && | 
|  | match(RHS, m_SMin(m_Value(C), m_Value(D))) && | 
|  | (A == C || A == D || B == C || B == D)) { | 
|  | // max(x, ?) pred min(x, ?). | 
|  | if (Pred == CmpInst::ICMP_SGE) | 
|  | // Always true. | 
|  | return getTrue(ITy); | 
|  | if (Pred == CmpInst::ICMP_SLT) | 
|  | // Always false. | 
|  | return getFalse(ITy); | 
|  | } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && | 
|  | match(RHS, m_SMax(m_Value(C), m_Value(D))) && | 
|  | (A == C || A == D || B == C || B == D)) { | 
|  | // min(x, ?) pred max(x, ?). | 
|  | if (Pred == CmpInst::ICMP_SLE) | 
|  | // Always true. | 
|  | return getTrue(ITy); | 
|  | if (Pred == CmpInst::ICMP_SGT) | 
|  | // Always false. | 
|  | return getFalse(ITy); | 
|  | } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && | 
|  | match(RHS, m_UMin(m_Value(C), m_Value(D))) && | 
|  | (A == C || A == D || B == C || B == D)) { | 
|  | // max(x, ?) pred min(x, ?). | 
|  | if (Pred == CmpInst::ICMP_UGE) | 
|  | // Always true. | 
|  | return getTrue(ITy); | 
|  | if (Pred == CmpInst::ICMP_ULT) | 
|  | // Always false. | 
|  | return getFalse(ITy); | 
|  | } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && | 
|  | match(RHS, m_UMax(m_Value(C), m_Value(D))) && | 
|  | (A == C || A == D || B == C || B == D)) { | 
|  | // min(x, ?) pred max(x, ?). | 
|  | if (Pred == CmpInst::ICMP_ULE) | 
|  | // Always true. | 
|  | return getTrue(ITy); | 
|  | if (Pred == CmpInst::ICMP_UGT) | 
|  | // Always false. | 
|  | return getFalse(ITy); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Given operands for an ICmpInst, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, | 
|  | const SimplifyQuery &Q, unsigned MaxRecurse) { | 
|  | CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; | 
|  | assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); | 
|  |  | 
|  | if (Constant *CLHS = dyn_cast<Constant>(LHS)) { | 
|  | if (Constant *CRHS = dyn_cast<Constant>(RHS)) | 
|  | return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); | 
|  |  | 
|  | // If we have a constant, make sure it is on the RHS. | 
|  | std::swap(LHS, RHS); | 
|  | Pred = CmpInst::getSwappedPredicate(Pred); | 
|  | } | 
|  |  | 
|  | Type *ITy = GetCompareTy(LHS); // The return type. | 
|  |  | 
|  | // icmp X, X -> true/false | 
|  | // icmp X, undef -> true/false because undef could be X. | 
|  | if (LHS == RHS || isa<UndefValue>(RHS)) | 
|  | return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); | 
|  |  | 
|  | if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) | 
|  | return V; | 
|  |  | 
|  | if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) | 
|  | return V; | 
|  |  | 
|  | if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) | 
|  | return V; | 
|  |  | 
|  | // If both operands have range metadata, use the metadata | 
|  | // to simplify the comparison. | 
|  | if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { | 
|  | auto RHS_Instr = cast<Instruction>(RHS); | 
|  | auto LHS_Instr = cast<Instruction>(LHS); | 
|  |  | 
|  | if (RHS_Instr->getMetadata(LLVMContext::MD_range) && | 
|  | LHS_Instr->getMetadata(LLVMContext::MD_range)) { | 
|  | auto RHS_CR = getConstantRangeFromMetadata( | 
|  | *RHS_Instr->getMetadata(LLVMContext::MD_range)); | 
|  | auto LHS_CR = getConstantRangeFromMetadata( | 
|  | *LHS_Instr->getMetadata(LLVMContext::MD_range)); | 
|  |  | 
|  | auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); | 
|  | if (Satisfied_CR.contains(LHS_CR)) | 
|  | return ConstantInt::getTrue(RHS->getContext()); | 
|  |  | 
|  | auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( | 
|  | CmpInst::getInversePredicate(Pred), RHS_CR); | 
|  | if (InversedSatisfied_CR.contains(LHS_CR)) | 
|  | return ConstantInt::getFalse(RHS->getContext()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compare of cast, for example (zext X) != 0 -> X != 0 | 
|  | if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { | 
|  | Instruction *LI = cast<CastInst>(LHS); | 
|  | Value *SrcOp = LI->getOperand(0); | 
|  | Type *SrcTy = SrcOp->getType(); | 
|  | Type *DstTy = LI->getType(); | 
|  |  | 
|  | // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input | 
|  | // if the integer type is the same size as the pointer type. | 
|  | if (MaxRecurse && isa<PtrToIntInst>(LI) && | 
|  | Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { | 
|  | if (Constant *RHSC = dyn_cast<Constant>(RHS)) { | 
|  | // Transfer the cast to the constant. | 
|  | if (Value *V = SimplifyICmpInst(Pred, SrcOp, | 
|  | ConstantExpr::getIntToPtr(RHSC, SrcTy), | 
|  | Q, MaxRecurse-1)) | 
|  | return V; | 
|  | } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { | 
|  | if (RI->getOperand(0)->getType() == SrcTy) | 
|  | // Compare without the cast. | 
|  | if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), | 
|  | Q, MaxRecurse-1)) | 
|  | return V; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<ZExtInst>(LHS)) { | 
|  | // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the | 
|  | // same type. | 
|  | if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { | 
|  | if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) | 
|  | // Compare X and Y.  Note that signed predicates become unsigned. | 
|  | if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), | 
|  | SrcOp, RI->getOperand(0), Q, | 
|  | MaxRecurse-1)) | 
|  | return V; | 
|  | } | 
|  | // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended | 
|  | // too.  If not, then try to deduce the result of the comparison. | 
|  | else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { | 
|  | // Compute the constant that would happen if we truncated to SrcTy then | 
|  | // reextended to DstTy. | 
|  | Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); | 
|  | Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); | 
|  |  | 
|  | // If the re-extended constant didn't change then this is effectively | 
|  | // also a case of comparing two zero-extended values. | 
|  | if (RExt == CI && MaxRecurse) | 
|  | if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), | 
|  | SrcOp, Trunc, Q, MaxRecurse-1)) | 
|  | return V; | 
|  |  | 
|  | // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit | 
|  | // there.  Use this to work out the result of the comparison. | 
|  | if (RExt != CI) { | 
|  | switch (Pred) { | 
|  | default: llvm_unreachable("Unknown ICmp predicate!"); | 
|  | // LHS <u RHS. | 
|  | case ICmpInst::ICMP_EQ: | 
|  | case ICmpInst::ICMP_UGT: | 
|  | case ICmpInst::ICMP_UGE: | 
|  | return ConstantInt::getFalse(CI->getContext()); | 
|  |  | 
|  | case ICmpInst::ICMP_NE: | 
|  | case ICmpInst::ICMP_ULT: | 
|  | case ICmpInst::ICMP_ULE: | 
|  | return ConstantInt::getTrue(CI->getContext()); | 
|  |  | 
|  | // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS | 
|  | // is non-negative then LHS <s RHS. | 
|  | case ICmpInst::ICMP_SGT: | 
|  | case ICmpInst::ICMP_SGE: | 
|  | return CI->getValue().isNegative() ? | 
|  | ConstantInt::getTrue(CI->getContext()) : | 
|  | ConstantInt::getFalse(CI->getContext()); | 
|  |  | 
|  | case ICmpInst::ICMP_SLT: | 
|  | case ICmpInst::ICMP_SLE: | 
|  | return CI->getValue().isNegative() ? | 
|  | ConstantInt::getFalse(CI->getContext()) : | 
|  | ConstantInt::getTrue(CI->getContext()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<SExtInst>(LHS)) { | 
|  | // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the | 
|  | // same type. | 
|  | if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { | 
|  | if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) | 
|  | // Compare X and Y.  Note that the predicate does not change. | 
|  | if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), | 
|  | Q, MaxRecurse-1)) | 
|  | return V; | 
|  | } | 
|  | // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended | 
|  | // too.  If not, then try to deduce the result of the comparison. | 
|  | else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { | 
|  | // Compute the constant that would happen if we truncated to SrcTy then | 
|  | // reextended to DstTy. | 
|  | Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); | 
|  | Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); | 
|  |  | 
|  | // If the re-extended constant didn't change then this is effectively | 
|  | // also a case of comparing two sign-extended values. | 
|  | if (RExt == CI && MaxRecurse) | 
|  | if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) | 
|  | return V; | 
|  |  | 
|  | // Otherwise the upper bits of LHS are all equal, while RHS has varying | 
|  | // bits there.  Use this to work out the result of the comparison. | 
|  | if (RExt != CI) { | 
|  | switch (Pred) { | 
|  | default: llvm_unreachable("Unknown ICmp predicate!"); | 
|  | case ICmpInst::ICMP_EQ: | 
|  | return ConstantInt::getFalse(CI->getContext()); | 
|  | case ICmpInst::ICMP_NE: | 
|  | return ConstantInt::getTrue(CI->getContext()); | 
|  |  | 
|  | // If RHS is non-negative then LHS <s RHS.  If RHS is negative then | 
|  | // LHS >s RHS. | 
|  | case ICmpInst::ICMP_SGT: | 
|  | case ICmpInst::ICMP_SGE: | 
|  | return CI->getValue().isNegative() ? | 
|  | ConstantInt::getTrue(CI->getContext()) : | 
|  | ConstantInt::getFalse(CI->getContext()); | 
|  | case ICmpInst::ICMP_SLT: | 
|  | case ICmpInst::ICMP_SLE: | 
|  | return CI->getValue().isNegative() ? | 
|  | ConstantInt::getFalse(CI->getContext()) : | 
|  | ConstantInt::getTrue(CI->getContext()); | 
|  |  | 
|  | // If LHS is non-negative then LHS <u RHS.  If LHS is negative then | 
|  | // LHS >u RHS. | 
|  | case ICmpInst::ICMP_UGT: | 
|  | case ICmpInst::ICMP_UGE: | 
|  | // Comparison is true iff the LHS <s 0. | 
|  | if (MaxRecurse) | 
|  | if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, | 
|  | Constant::getNullValue(SrcTy), | 
|  | Q, MaxRecurse-1)) | 
|  | return V; | 
|  | break; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | case ICmpInst::ICMP_ULE: | 
|  | // Comparison is true iff the LHS >=s 0. | 
|  | if (MaxRecurse) | 
|  | if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, | 
|  | Constant::getNullValue(SrcTy), | 
|  | Q, MaxRecurse-1)) | 
|  | return V; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // icmp eq|ne X, Y -> false|true if X != Y | 
|  | if (ICmpInst::isEquality(Pred) && | 
|  | isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { | 
|  | return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); | 
|  | } | 
|  |  | 
|  | if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // Simplify comparisons of related pointers using a powerful, recursive | 
|  | // GEP-walk when we have target data available.. | 
|  | if (LHS->getType()->isPointerTy()) | 
|  | if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, LHS, | 
|  | RHS)) | 
|  | return C; | 
|  | if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) | 
|  | if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) | 
|  | if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == | 
|  | Q.DL.getTypeSizeInBits(CLHS->getType()) && | 
|  | Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == | 
|  | Q.DL.getTypeSizeInBits(CRHS->getType())) | 
|  | if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, | 
|  | CLHS->getPointerOperand(), | 
|  | CRHS->getPointerOperand())) | 
|  | return C; | 
|  |  | 
|  | if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { | 
|  | if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { | 
|  | if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && | 
|  | GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && | 
|  | (ICmpInst::isEquality(Pred) || | 
|  | (GLHS->isInBounds() && GRHS->isInBounds() && | 
|  | Pred == ICmpInst::getSignedPredicate(Pred)))) { | 
|  | // The bases are equal and the indices are constant.  Build a constant | 
|  | // expression GEP with the same indices and a null base pointer to see | 
|  | // what constant folding can make out of it. | 
|  | Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); | 
|  | SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); | 
|  | Constant *NewLHS = ConstantExpr::getGetElementPtr( | 
|  | GLHS->getSourceElementType(), Null, IndicesLHS); | 
|  |  | 
|  | SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); | 
|  | Constant *NewRHS = ConstantExpr::getGetElementPtr( | 
|  | GLHS->getSourceElementType(), Null, IndicesRHS); | 
|  | return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the comparison is with the result of a select instruction, check whether | 
|  | // comparing with either branch of the select always yields the same value. | 
|  | if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) | 
|  | if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // If the comparison is with the result of a phi instruction, check whether | 
|  | // doing the compare with each incoming phi value yields a common result. | 
|  | if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) | 
|  | if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, | 
|  | const SimplifyQuery &Q) { | 
|  | return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | /// Given operands for an FCmpInst, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, | 
|  | FastMathFlags FMF, const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse) { | 
|  | CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; | 
|  | assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); | 
|  |  | 
|  | if (Constant *CLHS = dyn_cast<Constant>(LHS)) { | 
|  | if (Constant *CRHS = dyn_cast<Constant>(RHS)) | 
|  | return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); | 
|  |  | 
|  | // If we have a constant, make sure it is on the RHS. | 
|  | std::swap(LHS, RHS); | 
|  | Pred = CmpInst::getSwappedPredicate(Pred); | 
|  | } | 
|  |  | 
|  | // Fold trivial predicates. | 
|  | Type *RetTy = GetCompareTy(LHS); | 
|  | if (Pred == FCmpInst::FCMP_FALSE) | 
|  | return getFalse(RetTy); | 
|  | if (Pred == FCmpInst::FCMP_TRUE) | 
|  | return getTrue(RetTy); | 
|  |  | 
|  | // UNO/ORD predicates can be trivially folded if NaNs are ignored. | 
|  | if (FMF.noNaNs()) { | 
|  | if (Pred == FCmpInst::FCMP_UNO) | 
|  | return getFalse(RetTy); | 
|  | if (Pred == FCmpInst::FCMP_ORD) | 
|  | return getTrue(RetTy); | 
|  | } | 
|  |  | 
|  | // NaN is unordered; NaN is not ordered. | 
|  | assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && | 
|  | "Comparison must be either ordered or unordered"); | 
|  | if (match(RHS, m_NaN())) | 
|  | return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); | 
|  |  | 
|  | // fcmp pred x, undef  and  fcmp pred undef, x | 
|  | // fold to true if unordered, false if ordered | 
|  | if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { | 
|  | // Choosing NaN for the undef will always make unordered comparison succeed | 
|  | // and ordered comparison fail. | 
|  | return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); | 
|  | } | 
|  |  | 
|  | // fcmp x,x -> true/false.  Not all compares are foldable. | 
|  | if (LHS == RHS) { | 
|  | if (CmpInst::isTrueWhenEqual(Pred)) | 
|  | return getTrue(RetTy); | 
|  | if (CmpInst::isFalseWhenEqual(Pred)) | 
|  | return getFalse(RetTy); | 
|  | } | 
|  |  | 
|  | // Handle fcmp with constant RHS. | 
|  | const APFloat *C; | 
|  | if (match(RHS, m_APFloat(C))) { | 
|  | // Check whether the constant is an infinity. | 
|  | if (C->isInfinity()) { | 
|  | if (C->isNegative()) { | 
|  | switch (Pred) { | 
|  | case FCmpInst::FCMP_OLT: | 
|  | // No value is ordered and less than negative infinity. | 
|  | return getFalse(RetTy); | 
|  | case FCmpInst::FCMP_UGE: | 
|  | // All values are unordered with or at least negative infinity. | 
|  | return getTrue(RetTy); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | switch (Pred) { | 
|  | case FCmpInst::FCMP_OGT: | 
|  | // No value is ordered and greater than infinity. | 
|  | return getFalse(RetTy); | 
|  | case FCmpInst::FCMP_ULE: | 
|  | // All values are unordered with and at most infinity. | 
|  | return getTrue(RetTy); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (C->isZero()) { | 
|  | switch (Pred) { | 
|  | case FCmpInst::FCMP_UGE: | 
|  | if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) | 
|  | return getTrue(RetTy); | 
|  | break; | 
|  | case FCmpInst::FCMP_OLT: | 
|  | // X < 0 | 
|  | if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) | 
|  | return getFalse(RetTy); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } else if (C->isNegative()) { | 
|  | assert(!C->isNaN() && "Unexpected NaN constant!"); | 
|  | // TODO: We can catch more cases by using a range check rather than | 
|  | //       relying on CannotBeOrderedLessThanZero. | 
|  | switch (Pred) { | 
|  | case FCmpInst::FCMP_UGE: | 
|  | case FCmpInst::FCMP_UGT: | 
|  | case FCmpInst::FCMP_UNE: | 
|  | // (X >= 0) implies (X > C) when (C < 0) | 
|  | if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) | 
|  | return getTrue(RetTy); | 
|  | break; | 
|  | case FCmpInst::FCMP_OEQ: | 
|  | case FCmpInst::FCMP_OLE: | 
|  | case FCmpInst::FCMP_OLT: | 
|  | // (X >= 0) implies !(X < C) when (C < 0) | 
|  | if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) | 
|  | return getFalse(RetTy); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the comparison is with the result of a select instruction, check whether | 
|  | // comparing with either branch of the select always yields the same value. | 
|  | if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) | 
|  | if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | // If the comparison is with the result of a phi instruction, check whether | 
|  | // doing the compare with each incoming phi value yields a common result. | 
|  | if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) | 
|  | if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, | 
|  | FastMathFlags FMF, const SimplifyQuery &Q) { | 
|  | return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | /// See if V simplifies when its operand Op is replaced with RepOp. | 
|  | static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, | 
|  | const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse) { | 
|  | // Trivial replacement. | 
|  | if (V == Op) | 
|  | return RepOp; | 
|  |  | 
|  | // We cannot replace a constant, and shouldn't even try. | 
|  | if (isa<Constant>(Op)) | 
|  | return nullptr; | 
|  |  | 
|  | auto *I = dyn_cast<Instruction>(V); | 
|  | if (!I) | 
|  | return nullptr; | 
|  |  | 
|  | // If this is a binary operator, try to simplify it with the replaced op. | 
|  | if (auto *B = dyn_cast<BinaryOperator>(I)) { | 
|  | // Consider: | 
|  | //   %cmp = icmp eq i32 %x, 2147483647 | 
|  | //   %add = add nsw i32 %x, 1 | 
|  | //   %sel = select i1 %cmp, i32 -2147483648, i32 %add | 
|  | // | 
|  | // We can't replace %sel with %add unless we strip away the flags. | 
|  | if (isa<OverflowingBinaryOperator>(B)) | 
|  | if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) | 
|  | return nullptr; | 
|  | if (isa<PossiblyExactOperator>(B)) | 
|  | if (B->isExact()) | 
|  | return nullptr; | 
|  |  | 
|  | if (MaxRecurse) { | 
|  | if (B->getOperand(0) == Op) | 
|  | return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, | 
|  | MaxRecurse - 1); | 
|  | if (B->getOperand(1) == Op) | 
|  | return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, | 
|  | MaxRecurse - 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Same for CmpInsts. | 
|  | if (CmpInst *C = dyn_cast<CmpInst>(I)) { | 
|  | if (MaxRecurse) { | 
|  | if (C->getOperand(0) == Op) | 
|  | return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, | 
|  | MaxRecurse - 1); | 
|  | if (C->getOperand(1) == Op) | 
|  | return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, | 
|  | MaxRecurse - 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Same for GEPs. | 
|  | if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { | 
|  | if (MaxRecurse) { | 
|  | SmallVector<Value *, 8> NewOps(GEP->getNumOperands()); | 
|  | transform(GEP->operands(), NewOps.begin(), | 
|  | [&](Value *V) { return V == Op ? RepOp : V; }); | 
|  | return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q, | 
|  | MaxRecurse - 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: We could hand off more cases to instsimplify here. | 
|  |  | 
|  | // If all operands are constant after substituting Op for RepOp then we can | 
|  | // constant fold the instruction. | 
|  | if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { | 
|  | // Build a list of all constant operands. | 
|  | SmallVector<Constant *, 8> ConstOps; | 
|  | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { | 
|  | if (I->getOperand(i) == Op) | 
|  | ConstOps.push_back(CRepOp); | 
|  | else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) | 
|  | ConstOps.push_back(COp); | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | // All operands were constants, fold it. | 
|  | if (ConstOps.size() == I->getNumOperands()) { | 
|  | if (CmpInst *C = dyn_cast<CmpInst>(I)) | 
|  | return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], | 
|  | ConstOps[1], Q.DL, Q.TLI); | 
|  |  | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(I)) | 
|  | if (!LI->isVolatile()) | 
|  | return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); | 
|  |  | 
|  | return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Try to simplify a select instruction when its condition operand is an | 
|  | /// integer comparison where one operand of the compare is a constant. | 
|  | static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, | 
|  | const APInt *Y, bool TrueWhenUnset) { | 
|  | const APInt *C; | 
|  |  | 
|  | // (X & Y) == 0 ? X & ~Y : X  --> X | 
|  | // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y | 
|  | if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && | 
|  | *Y == ~*C) | 
|  | return TrueWhenUnset ? FalseVal : TrueVal; | 
|  |  | 
|  | // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y | 
|  | // (X & Y) != 0 ? X : X & ~Y  --> X | 
|  | if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && | 
|  | *Y == ~*C) | 
|  | return TrueWhenUnset ? FalseVal : TrueVal; | 
|  |  | 
|  | if (Y->isPowerOf2()) { | 
|  | // (X & Y) == 0 ? X | Y : X  --> X | Y | 
|  | // (X & Y) != 0 ? X | Y : X  --> X | 
|  | if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && | 
|  | *Y == *C) | 
|  | return TrueWhenUnset ? TrueVal : FalseVal; | 
|  |  | 
|  | // (X & Y) == 0 ? X : X | Y  --> X | 
|  | // (X & Y) != 0 ? X : X | Y  --> X | Y | 
|  | if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && | 
|  | *Y == *C) | 
|  | return TrueWhenUnset ? TrueVal : FalseVal; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// An alternative way to test if a bit is set or not uses sgt/slt instead of | 
|  | /// eq/ne. | 
|  | static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, | 
|  | ICmpInst::Predicate Pred, | 
|  | Value *TrueVal, Value *FalseVal) { | 
|  | Value *X; | 
|  | APInt Mask; | 
|  | if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) | 
|  | return nullptr; | 
|  |  | 
|  | return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, | 
|  | Pred == ICmpInst::ICMP_EQ); | 
|  | } | 
|  |  | 
|  | /// Try to simplify a select instruction when its condition operand is an | 
|  | /// integer comparison. | 
|  | static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, | 
|  | Value *FalseVal, const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse) { | 
|  | ICmpInst::Predicate Pred; | 
|  | Value *CmpLHS, *CmpRHS; | 
|  | if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) | 
|  | return nullptr; | 
|  |  | 
|  | if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { | 
|  | Value *X; | 
|  | const APInt *Y; | 
|  | if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) | 
|  | if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, | 
|  | Pred == ICmpInst::ICMP_EQ)) | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // Check for other compares that behave like bit test. | 
|  | if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, | 
|  | TrueVal, FalseVal)) | 
|  | return V; | 
|  |  | 
|  | // If we have an equality comparison, then we know the value in one of the | 
|  | // arms of the select. See if substituting this value into the arm and | 
|  | // simplifying the result yields the same value as the other arm. | 
|  | if (Pred == ICmpInst::ICMP_EQ) { | 
|  | if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == | 
|  | TrueVal || | 
|  | SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == | 
|  | TrueVal) | 
|  | return FalseVal; | 
|  | if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == | 
|  | FalseVal || | 
|  | SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == | 
|  | FalseVal) | 
|  | return FalseVal; | 
|  | } else if (Pred == ICmpInst::ICMP_NE) { | 
|  | if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == | 
|  | FalseVal || | 
|  | SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == | 
|  | FalseVal) | 
|  | return TrueVal; | 
|  | if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == | 
|  | TrueVal || | 
|  | SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == | 
|  | TrueVal) | 
|  | return TrueVal; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Given operands for a SelectInst, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, | 
|  | const SimplifyQuery &Q, unsigned MaxRecurse) { | 
|  | if (auto *CondC = dyn_cast<Constant>(Cond)) { | 
|  | if (auto *TrueC = dyn_cast<Constant>(TrueVal)) | 
|  | if (auto *FalseC = dyn_cast<Constant>(FalseVal)) | 
|  | return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); | 
|  |  | 
|  | // select undef, X, Y -> X or Y | 
|  | if (isa<UndefValue>(CondC)) | 
|  | return isa<Constant>(FalseVal) ? FalseVal : TrueVal; | 
|  |  | 
|  | // TODO: Vector constants with undef elements don't simplify. | 
|  |  | 
|  | // select true, X, Y  -> X | 
|  | if (CondC->isAllOnesValue()) | 
|  | return TrueVal; | 
|  | // select false, X, Y -> Y | 
|  | if (CondC->isNullValue()) | 
|  | return FalseVal; | 
|  | } | 
|  |  | 
|  | // select ?, X, X -> X | 
|  | if (TrueVal == FalseVal) | 
|  | return TrueVal; | 
|  |  | 
|  | if (isa<UndefValue>(TrueVal))   // select ?, undef, X -> X | 
|  | return FalseVal; | 
|  | if (isa<UndefValue>(FalseVal))   // select ?, X, undef -> X | 
|  | return TrueVal; | 
|  |  | 
|  | if (Value *V = | 
|  | simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) | 
|  | return V; | 
|  |  | 
|  | if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) | 
|  | return V; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, | 
|  | const SimplifyQuery &Q) { | 
|  | return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | /// Given operands for an GetElementPtrInst, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, | 
|  | const SimplifyQuery &Q, unsigned) { | 
|  | // The type of the GEP pointer operand. | 
|  | unsigned AS = | 
|  | cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); | 
|  |  | 
|  | // getelementptr P -> P. | 
|  | if (Ops.size() == 1) | 
|  | return Ops[0]; | 
|  |  | 
|  | // Compute the (pointer) type returned by the GEP instruction. | 
|  | Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); | 
|  | Type *GEPTy = PointerType::get(LastType, AS); | 
|  | if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) | 
|  | GEPTy = VectorType::get(GEPTy, VT->getNumElements()); | 
|  | else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) | 
|  | GEPTy = VectorType::get(GEPTy, VT->getNumElements()); | 
|  |  | 
|  | if (isa<UndefValue>(Ops[0])) | 
|  | return UndefValue::get(GEPTy); | 
|  |  | 
|  | if (Ops.size() == 2) { | 
|  | // getelementptr P, 0 -> P. | 
|  | if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) | 
|  | return Ops[0]; | 
|  |  | 
|  | Type *Ty = SrcTy; | 
|  | if (Ty->isSized()) { | 
|  | Value *P; | 
|  | uint64_t C; | 
|  | uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); | 
|  | // getelementptr P, N -> P if P points to a type of zero size. | 
|  | if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) | 
|  | return Ops[0]; | 
|  |  | 
|  | // The following transforms are only safe if the ptrtoint cast | 
|  | // doesn't truncate the pointers. | 
|  | if (Ops[1]->getType()->getScalarSizeInBits() == | 
|  | Q.DL.getIndexSizeInBits(AS)) { | 
|  | auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { | 
|  | if (match(P, m_Zero())) | 
|  | return Constant::getNullValue(GEPTy); | 
|  | Value *Temp; | 
|  | if (match(P, m_PtrToInt(m_Value(Temp)))) | 
|  | if (Temp->getType() == GEPTy) | 
|  | return Temp; | 
|  | return nullptr; | 
|  | }; | 
|  |  | 
|  | // getelementptr V, (sub P, V) -> P if P points to a type of size 1. | 
|  | if (TyAllocSize == 1 && | 
|  | match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) | 
|  | if (Value *R = PtrToIntOrZero(P)) | 
|  | return R; | 
|  |  | 
|  | // getelementptr V, (ashr (sub P, V), C) -> Q | 
|  | // if P points to a type of size 1 << C. | 
|  | if (match(Ops[1], | 
|  | m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), | 
|  | m_ConstantInt(C))) && | 
|  | TyAllocSize == 1ULL << C) | 
|  | if (Value *R = PtrToIntOrZero(P)) | 
|  | return R; | 
|  |  | 
|  | // getelementptr V, (sdiv (sub P, V), C) -> Q | 
|  | // if P points to a type of size C. | 
|  | if (match(Ops[1], | 
|  | m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), | 
|  | m_SpecificInt(TyAllocSize)))) | 
|  | if (Value *R = PtrToIntOrZero(P)) | 
|  | return R; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Q.DL.getTypeAllocSize(LastType) == 1 && | 
|  | all_of(Ops.slice(1).drop_back(1), | 
|  | [](Value *Idx) { return match(Idx, m_Zero()); })) { | 
|  | unsigned IdxWidth = | 
|  | Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); | 
|  | if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { | 
|  | APInt BasePtrOffset(IdxWidth, 0); | 
|  | Value *StrippedBasePtr = | 
|  | Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, | 
|  | BasePtrOffset); | 
|  |  | 
|  | // gep (gep V, C), (sub 0, V) -> C | 
|  | if (match(Ops.back(), | 
|  | m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { | 
|  | auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); | 
|  | return ConstantExpr::getIntToPtr(CI, GEPTy); | 
|  | } | 
|  | // gep (gep V, C), (xor V, -1) -> C-1 | 
|  | if (match(Ops.back(), | 
|  | m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { | 
|  | auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); | 
|  | return ConstantExpr::getIntToPtr(CI, GEPTy); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check to see if this is constant foldable. | 
|  | if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) | 
|  | return nullptr; | 
|  |  | 
|  | auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), | 
|  | Ops.slice(1)); | 
|  | if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) | 
|  | return CEFolded; | 
|  | return CE; | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, | 
|  | const SimplifyQuery &Q) { | 
|  | return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | /// Given operands for an InsertValueInst, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, | 
|  | ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, | 
|  | unsigned) { | 
|  | if (Constant *CAgg = dyn_cast<Constant>(Agg)) | 
|  | if (Constant *CVal = dyn_cast<Constant>(Val)) | 
|  | return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); | 
|  |  | 
|  | // insertvalue x, undef, n -> x | 
|  | if (match(Val, m_Undef())) | 
|  | return Agg; | 
|  |  | 
|  | // insertvalue x, (extractvalue y, n), n | 
|  | if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) | 
|  | if (EV->getAggregateOperand()->getType() == Agg->getType() && | 
|  | EV->getIndices() == Idxs) { | 
|  | // insertvalue undef, (extractvalue y, n), n -> y | 
|  | if (match(Agg, m_Undef())) | 
|  | return EV->getAggregateOperand(); | 
|  |  | 
|  | // insertvalue y, (extractvalue y, n), n -> y | 
|  | if (Agg == EV->getAggregateOperand()) | 
|  | return Agg; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, | 
|  | ArrayRef<unsigned> Idxs, | 
|  | const SimplifyQuery &Q) { | 
|  | return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, | 
|  | const SimplifyQuery &Q) { | 
|  | // Try to constant fold. | 
|  | auto *VecC = dyn_cast<Constant>(Vec); | 
|  | auto *ValC = dyn_cast<Constant>(Val); | 
|  | auto *IdxC = dyn_cast<Constant>(Idx); | 
|  | if (VecC && ValC && IdxC) | 
|  | return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC); | 
|  |  | 
|  | // Fold into undef if index is out of bounds. | 
|  | if (auto *CI = dyn_cast<ConstantInt>(Idx)) { | 
|  | uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements(); | 
|  | if (CI->uge(NumElements)) | 
|  | return UndefValue::get(Vec->getType()); | 
|  | } | 
|  |  | 
|  | // If index is undef, it might be out of bounds (see above case) | 
|  | if (isa<UndefValue>(Idx)) | 
|  | return UndefValue::get(Vec->getType()); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Given operands for an ExtractValueInst, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, | 
|  | const SimplifyQuery &, unsigned) { | 
|  | if (auto *CAgg = dyn_cast<Constant>(Agg)) | 
|  | return ConstantFoldExtractValueInstruction(CAgg, Idxs); | 
|  |  | 
|  | // extractvalue x, (insertvalue y, elt, n), n -> elt | 
|  | unsigned NumIdxs = Idxs.size(); | 
|  | for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; | 
|  | IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { | 
|  | ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); | 
|  | unsigned NumInsertValueIdxs = InsertValueIdxs.size(); | 
|  | unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); | 
|  | if (InsertValueIdxs.slice(0, NumCommonIdxs) == | 
|  | Idxs.slice(0, NumCommonIdxs)) { | 
|  | if (NumIdxs == NumInsertValueIdxs) | 
|  | return IVI->getInsertedValueOperand(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, | 
|  | const SimplifyQuery &Q) { | 
|  | return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | /// Given operands for an ExtractElementInst, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, | 
|  | unsigned) { | 
|  | if (auto *CVec = dyn_cast<Constant>(Vec)) { | 
|  | if (auto *CIdx = dyn_cast<Constant>(Idx)) | 
|  | return ConstantFoldExtractElementInstruction(CVec, CIdx); | 
|  |  | 
|  | // The index is not relevant if our vector is a splat. | 
|  | if (auto *Splat = CVec->getSplatValue()) | 
|  | return Splat; | 
|  |  | 
|  | if (isa<UndefValue>(Vec)) | 
|  | return UndefValue::get(Vec->getType()->getVectorElementType()); | 
|  | } | 
|  |  | 
|  | // If extracting a specified index from the vector, see if we can recursively | 
|  | // find a previously computed scalar that was inserted into the vector. | 
|  | if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { | 
|  | if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements())) | 
|  | // definitely out of bounds, thus undefined result | 
|  | return UndefValue::get(Vec->getType()->getVectorElementType()); | 
|  | if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) | 
|  | return Elt; | 
|  | } | 
|  |  | 
|  | // An undef extract index can be arbitrarily chosen to be an out-of-range | 
|  | // index value, which would result in the instruction being undef. | 
|  | if (isa<UndefValue>(Idx)) | 
|  | return UndefValue::get(Vec->getType()->getVectorElementType()); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, | 
|  | const SimplifyQuery &Q) { | 
|  | return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | /// See if we can fold the given phi. If not, returns null. | 
|  | static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { | 
|  | // If all of the PHI's incoming values are the same then replace the PHI node | 
|  | // with the common value. | 
|  | Value *CommonValue = nullptr; | 
|  | bool HasUndefInput = false; | 
|  | for (Value *Incoming : PN->incoming_values()) { | 
|  | // If the incoming value is the phi node itself, it can safely be skipped. | 
|  | if (Incoming == PN) continue; | 
|  | if (isa<UndefValue>(Incoming)) { | 
|  | // Remember that we saw an undef value, but otherwise ignore them. | 
|  | HasUndefInput = true; | 
|  | continue; | 
|  | } | 
|  | if (CommonValue && Incoming != CommonValue) | 
|  | return nullptr;  // Not the same, bail out. | 
|  | CommonValue = Incoming; | 
|  | } | 
|  |  | 
|  | // If CommonValue is null then all of the incoming values were either undef or | 
|  | // equal to the phi node itself. | 
|  | if (!CommonValue) | 
|  | return UndefValue::get(PN->getType()); | 
|  |  | 
|  | // If we have a PHI node like phi(X, undef, X), where X is defined by some | 
|  | // instruction, we cannot return X as the result of the PHI node unless it | 
|  | // dominates the PHI block. | 
|  | if (HasUndefInput) | 
|  | return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; | 
|  |  | 
|  | return CommonValue; | 
|  | } | 
|  |  | 
|  | static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, | 
|  | Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { | 
|  | if (auto *C = dyn_cast<Constant>(Op)) | 
|  | return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); | 
|  |  | 
|  | if (auto *CI = dyn_cast<CastInst>(Op)) { | 
|  | auto *Src = CI->getOperand(0); | 
|  | Type *SrcTy = Src->getType(); | 
|  | Type *MidTy = CI->getType(); | 
|  | Type *DstTy = Ty; | 
|  | if (Src->getType() == Ty) { | 
|  | auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); | 
|  | auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); | 
|  | Type *SrcIntPtrTy = | 
|  | SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; | 
|  | Type *MidIntPtrTy = | 
|  | MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; | 
|  | Type *DstIntPtrTy = | 
|  | DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; | 
|  | if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, | 
|  | SrcIntPtrTy, MidIntPtrTy, | 
|  | DstIntPtrTy) == Instruction::BitCast) | 
|  | return Src; | 
|  | } | 
|  | } | 
|  |  | 
|  | // bitcast x -> x | 
|  | if (CastOpc == Instruction::BitCast) | 
|  | if (Op->getType() == Ty) | 
|  | return Op; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, | 
|  | const SimplifyQuery &Q) { | 
|  | return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | /// For the given destination element of a shuffle, peek through shuffles to | 
|  | /// match a root vector source operand that contains that element in the same | 
|  | /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). | 
|  | static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, | 
|  | int MaskVal, Value *RootVec, | 
|  | unsigned MaxRecurse) { | 
|  | if (!MaxRecurse--) | 
|  | return nullptr; | 
|  |  | 
|  | // Bail out if any mask value is undefined. That kind of shuffle may be | 
|  | // simplified further based on demanded bits or other folds. | 
|  | if (MaskVal == -1) | 
|  | return nullptr; | 
|  |  | 
|  | // The mask value chooses which source operand we need to look at next. | 
|  | int InVecNumElts = Op0->getType()->getVectorNumElements(); | 
|  | int RootElt = MaskVal; | 
|  | Value *SourceOp = Op0; | 
|  | if (MaskVal >= InVecNumElts) { | 
|  | RootElt = MaskVal - InVecNumElts; | 
|  | SourceOp = Op1; | 
|  | } | 
|  |  | 
|  | // If the source operand is a shuffle itself, look through it to find the | 
|  | // matching root vector. | 
|  | if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { | 
|  | return foldIdentityShuffles( | 
|  | DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), | 
|  | SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); | 
|  | } | 
|  |  | 
|  | // TODO: Look through bitcasts? What if the bitcast changes the vector element | 
|  | // size? | 
|  |  | 
|  | // The source operand is not a shuffle. Initialize the root vector value for | 
|  | // this shuffle if that has not been done yet. | 
|  | if (!RootVec) | 
|  | RootVec = SourceOp; | 
|  |  | 
|  | // Give up as soon as a source operand does not match the existing root value. | 
|  | if (RootVec != SourceOp) | 
|  | return nullptr; | 
|  |  | 
|  | // The element must be coming from the same lane in the source vector | 
|  | // (although it may have crossed lanes in intermediate shuffles). | 
|  | if (RootElt != DestElt) | 
|  | return nullptr; | 
|  |  | 
|  | return RootVec; | 
|  | } | 
|  |  | 
|  | static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, | 
|  | Type *RetTy, const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse) { | 
|  | if (isa<UndefValue>(Mask)) | 
|  | return UndefValue::get(RetTy); | 
|  |  | 
|  | Type *InVecTy = Op0->getType(); | 
|  | unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); | 
|  | unsigned InVecNumElts = InVecTy->getVectorNumElements(); | 
|  |  | 
|  | SmallVector<int, 32> Indices; | 
|  | ShuffleVectorInst::getShuffleMask(Mask, Indices); | 
|  | assert(MaskNumElts == Indices.size() && | 
|  | "Size of Indices not same as number of mask elements?"); | 
|  |  | 
|  | // Canonicalization: If mask does not select elements from an input vector, | 
|  | // replace that input vector with undef. | 
|  | bool MaskSelects0 = false, MaskSelects1 = false; | 
|  | for (unsigned i = 0; i != MaskNumElts; ++i) { | 
|  | if (Indices[i] == -1) | 
|  | continue; | 
|  | if ((unsigned)Indices[i] < InVecNumElts) | 
|  | MaskSelects0 = true; | 
|  | else | 
|  | MaskSelects1 = true; | 
|  | } | 
|  | if (!MaskSelects0) | 
|  | Op0 = UndefValue::get(InVecTy); | 
|  | if (!MaskSelects1) | 
|  | Op1 = UndefValue::get(InVecTy); | 
|  |  | 
|  | auto *Op0Const = dyn_cast<Constant>(Op0); | 
|  | auto *Op1Const = dyn_cast<Constant>(Op1); | 
|  |  | 
|  | // If all operands are constant, constant fold the shuffle. | 
|  | if (Op0Const && Op1Const) | 
|  | return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); | 
|  |  | 
|  | // Canonicalization: if only one input vector is constant, it shall be the | 
|  | // second one. | 
|  | if (Op0Const && !Op1Const) { | 
|  | std::swap(Op0, Op1); | 
|  | ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); | 
|  | } | 
|  |  | 
|  | // A shuffle of a splat is always the splat itself. Legal if the shuffle's | 
|  | // value type is same as the input vectors' type. | 
|  | if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) | 
|  | if (isa<UndefValue>(Op1) && RetTy == InVecTy && | 
|  | OpShuf->getMask()->getSplatValue()) | 
|  | return Op0; | 
|  |  | 
|  | // Don't fold a shuffle with undef mask elements. This may get folded in a | 
|  | // better way using demanded bits or other analysis. | 
|  | // TODO: Should we allow this? | 
|  | if (find(Indices, -1) != Indices.end()) | 
|  | return nullptr; | 
|  |  | 
|  | // Check if every element of this shuffle can be mapped back to the | 
|  | // corresponding element of a single root vector. If so, we don't need this | 
|  | // shuffle. This handles simple identity shuffles as well as chains of | 
|  | // shuffles that may widen/narrow and/or move elements across lanes and back. | 
|  | Value *RootVec = nullptr; | 
|  | for (unsigned i = 0; i != MaskNumElts; ++i) { | 
|  | // Note that recursion is limited for each vector element, so if any element | 
|  | // exceeds the limit, this will fail to simplify. | 
|  | RootVec = | 
|  | foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); | 
|  |  | 
|  | // We can't replace a widening/narrowing shuffle with one of its operands. | 
|  | if (!RootVec || RootVec->getType() != RetTy) | 
|  | return nullptr; | 
|  | } | 
|  | return RootVec; | 
|  | } | 
|  |  | 
|  | /// Given operands for a ShuffleVectorInst, fold the result or return null. | 
|  | Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, | 
|  | Type *RetTy, const SimplifyQuery &Q) { | 
|  | return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | static Constant *propagateNaN(Constant *In) { | 
|  | // If the input is a vector with undef elements, just return a default NaN. | 
|  | if (!In->isNaN()) | 
|  | return ConstantFP::getNaN(In->getType()); | 
|  |  | 
|  | // Propagate the existing NaN constant when possible. | 
|  | // TODO: Should we quiet a signaling NaN? | 
|  | return In; | 
|  | } | 
|  |  | 
|  | static Constant *simplifyFPBinop(Value *Op0, Value *Op1) { | 
|  | if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) | 
|  | return ConstantFP::getNaN(Op0->getType()); | 
|  |  | 
|  | if (match(Op0, m_NaN())) | 
|  | return propagateNaN(cast<Constant>(Op0)); | 
|  | if (match(Op1, m_NaN())) | 
|  | return propagateNaN(cast<Constant>(Op1)); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Given operands for an FAdd, see if we can fold the result.  If not, this | 
|  | /// returns null. | 
|  | static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, | 
|  | const SimplifyQuery &Q, unsigned MaxRecurse) { | 
|  | if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) | 
|  | return C; | 
|  |  | 
|  | if (Constant *C = simplifyFPBinop(Op0, Op1)) | 
|  | return C; | 
|  |  | 
|  | // fadd X, -0 ==> X | 
|  | if (match(Op1, m_NegZeroFP())) | 
|  | return Op0; | 
|  |  | 
|  | // fadd X, 0 ==> X, when we know X is not -0 | 
|  | if (match(Op1, m_PosZeroFP()) && | 
|  | (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) | 
|  | return Op0; | 
|  |  | 
|  | // With nnan: (+/-0.0 - X) + X --> 0.0 (and commuted variant) | 
|  | // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. | 
|  | // Negative zeros are allowed because we always end up with positive zero: | 
|  | // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 | 
|  | // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 | 
|  | // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 | 
|  | // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 | 
|  | if (FMF.noNaNs() && (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || | 
|  | match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))) | 
|  | return ConstantFP::getNullValue(Op0->getType()); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Given operands for an FSub, see if we can fold the result.  If not, this | 
|  | /// returns null. | 
|  | static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, | 
|  | const SimplifyQuery &Q, unsigned MaxRecurse) { | 
|  | if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) | 
|  | return C; | 
|  |  | 
|  | if (Constant *C = simplifyFPBinop(Op0, Op1)) | 
|  | return C; | 
|  |  | 
|  | // fsub X, +0 ==> X | 
|  | if (match(Op1, m_PosZeroFP())) | 
|  | return Op0; | 
|  |  | 
|  | // fsub X, -0 ==> X, when we know X is not -0 | 
|  | if (match(Op1, m_NegZeroFP()) && | 
|  | (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) | 
|  | return Op0; | 
|  |  | 
|  | // fsub -0.0, (fsub -0.0, X) ==> X | 
|  | Value *X; | 
|  | if (match(Op0, m_NegZeroFP()) && | 
|  | match(Op1, m_FSub(m_NegZeroFP(), m_Value(X)))) | 
|  | return X; | 
|  |  | 
|  | // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. | 
|  | if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && | 
|  | match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X)))) | 
|  | return X; | 
|  |  | 
|  | // fsub nnan x, x ==> 0.0 | 
|  | if (FMF.noNaNs() && Op0 == Op1) | 
|  | return Constant::getNullValue(Op0->getType()); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Given the operands for an FMul, see if we can fold the result | 
|  | static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, | 
|  | const SimplifyQuery &Q, unsigned MaxRecurse) { | 
|  | if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) | 
|  | return C; | 
|  |  | 
|  | if (Constant *C = simplifyFPBinop(Op0, Op1)) | 
|  | return C; | 
|  |  | 
|  | // fmul X, 1.0 ==> X | 
|  | if (match(Op1, m_FPOne())) | 
|  | return Op0; | 
|  |  | 
|  | // fmul nnan nsz X, 0 ==> 0 | 
|  | if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) | 
|  | return ConstantFP::getNullValue(Op0->getType()); | 
|  |  | 
|  | // sqrt(X) * sqrt(X) --> X, if we can: | 
|  | // 1. Remove the intermediate rounding (reassociate). | 
|  | // 2. Ignore non-zero negative numbers because sqrt would produce NAN. | 
|  | // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. | 
|  | Value *X; | 
|  | if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && | 
|  | FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) | 
|  | return X; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, | 
|  | const SimplifyQuery &Q) { | 
|  | return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  |  | 
|  | Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, | 
|  | const SimplifyQuery &Q) { | 
|  | return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, | 
|  | const SimplifyQuery &Q) { | 
|  | return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, | 
|  | const SimplifyQuery &Q, unsigned) { | 
|  | if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) | 
|  | return C; | 
|  |  | 
|  | if (Constant *C = simplifyFPBinop(Op0, Op1)) | 
|  | return C; | 
|  |  | 
|  | // X / 1.0 -> X | 
|  | if (match(Op1, m_FPOne())) | 
|  | return Op0; | 
|  |  | 
|  | // 0 / X -> 0 | 
|  | // Requires that NaNs are off (X could be zero) and signed zeroes are | 
|  | // ignored (X could be positive or negative, so the output sign is unknown). | 
|  | if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) | 
|  | return ConstantFP::getNullValue(Op0->getType()); | 
|  |  | 
|  | if (FMF.noNaNs()) { | 
|  | // X / X -> 1.0 is legal when NaNs are ignored. | 
|  | // We can ignore infinities because INF/INF is NaN. | 
|  | if (Op0 == Op1) | 
|  | return ConstantFP::get(Op0->getType(), 1.0); | 
|  |  | 
|  | // (X * Y) / Y --> X if we can reassociate to the above form. | 
|  | Value *X; | 
|  | if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) | 
|  | return X; | 
|  |  | 
|  | // -X /  X -> -1.0 and | 
|  | //  X / -X -> -1.0 are legal when NaNs are ignored. | 
|  | // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. | 
|  | if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && | 
|  | BinaryOperator::getFNegArgument(Op0) == Op1) || | 
|  | (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && | 
|  | BinaryOperator::getFNegArgument(Op1) == Op0)) | 
|  | return ConstantFP::get(Op0->getType(), -1.0); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, | 
|  | const SimplifyQuery &Q) { | 
|  | return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, | 
|  | const SimplifyQuery &Q, unsigned) { | 
|  | if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) | 
|  | return C; | 
|  |  | 
|  | if (Constant *C = simplifyFPBinop(Op0, Op1)) | 
|  | return C; | 
|  |  | 
|  | // Unlike fdiv, the result of frem always matches the sign of the dividend. | 
|  | // The constant match may include undef elements in a vector, so return a full | 
|  | // zero constant as the result. | 
|  | if (FMF.noNaNs()) { | 
|  | // +0 % X -> 0 | 
|  | if (match(Op0, m_PosZeroFP())) | 
|  | return ConstantFP::getNullValue(Op0->getType()); | 
|  | // -0 % X -> -0 | 
|  | if (match(Op0, m_NegZeroFP())) | 
|  | return ConstantFP::getNegativeZero(Op0->getType()); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, | 
|  | const SimplifyQuery &Q) { | 
|  | return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | //=== Helper functions for higher up the class hierarchy. | 
|  |  | 
|  | /// Given operands for a BinaryOperator, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, | 
|  | const SimplifyQuery &Q, unsigned MaxRecurse) { | 
|  | switch (Opcode) { | 
|  | case Instruction::Add: | 
|  | return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); | 
|  | case Instruction::Sub: | 
|  | return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); | 
|  | case Instruction::Mul: | 
|  | return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); | 
|  | case Instruction::SDiv: | 
|  | return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); | 
|  | case Instruction::UDiv: | 
|  | return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); | 
|  | case Instruction::SRem: | 
|  | return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); | 
|  | case Instruction::URem: | 
|  | return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); | 
|  | case Instruction::Shl: | 
|  | return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); | 
|  | case Instruction::LShr: | 
|  | return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); | 
|  | case Instruction::AShr: | 
|  | return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); | 
|  | case Instruction::And: | 
|  | return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); | 
|  | case Instruction::Or: | 
|  | return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); | 
|  | case Instruction::Xor: | 
|  | return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); | 
|  | case Instruction::FAdd: | 
|  | return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); | 
|  | case Instruction::FSub: | 
|  | return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); | 
|  | case Instruction::FMul: | 
|  | return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); | 
|  | case Instruction::FDiv: | 
|  | return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); | 
|  | case Instruction::FRem: | 
|  | return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); | 
|  | default: | 
|  | llvm_unreachable("Unexpected opcode"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Given operands for a BinaryOperator, see if we can fold the result. | 
|  | /// If not, this returns null. | 
|  | /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the | 
|  | /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. | 
|  | static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, | 
|  | const FastMathFlags &FMF, const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse) { | 
|  | switch (Opcode) { | 
|  | case Instruction::FAdd: | 
|  | return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); | 
|  | case Instruction::FSub: | 
|  | return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); | 
|  | case Instruction::FMul: | 
|  | return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); | 
|  | case Instruction::FDiv: | 
|  | return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); | 
|  | default: | 
|  | return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); | 
|  | } | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, | 
|  | const SimplifyQuery &Q) { | 
|  | return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, | 
|  | FastMathFlags FMF, const SimplifyQuery &Q) { | 
|  | return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | /// Given operands for a CmpInst, see if we can fold the result. | 
|  | static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, | 
|  | const SimplifyQuery &Q, unsigned MaxRecurse) { | 
|  | if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) | 
|  | return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); | 
|  | return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, | 
|  | const SimplifyQuery &Q) { | 
|  | return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | static bool IsIdempotent(Intrinsic::ID ID) { | 
|  | switch (ID) { | 
|  | default: return false; | 
|  |  | 
|  | // Unary idempotent: f(f(x)) = f(x) | 
|  | case Intrinsic::fabs: | 
|  | case Intrinsic::floor: | 
|  | case Intrinsic::ceil: | 
|  | case Intrinsic::trunc: | 
|  | case Intrinsic::rint: | 
|  | case Intrinsic::nearbyint: | 
|  | case Intrinsic::round: | 
|  | case Intrinsic::canonicalize: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, | 
|  | const DataLayout &DL) { | 
|  | GlobalValue *PtrSym; | 
|  | APInt PtrOffset; | 
|  | if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) | 
|  | return nullptr; | 
|  |  | 
|  | Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); | 
|  | Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); | 
|  | Type *Int32PtrTy = Int32Ty->getPointerTo(); | 
|  | Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); | 
|  |  | 
|  | auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); | 
|  | if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) | 
|  | return nullptr; | 
|  |  | 
|  | uint64_t OffsetInt = OffsetConstInt->getSExtValue(); | 
|  | if (OffsetInt % 4 != 0) | 
|  | return nullptr; | 
|  |  | 
|  | Constant *C = ConstantExpr::getGetElementPtr( | 
|  | Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), | 
|  | ConstantInt::get(Int64Ty, OffsetInt / 4)); | 
|  | Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); | 
|  | if (!Loaded) | 
|  | return nullptr; | 
|  |  | 
|  | auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); | 
|  | if (!LoadedCE) | 
|  | return nullptr; | 
|  |  | 
|  | if (LoadedCE->getOpcode() == Instruction::Trunc) { | 
|  | LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); | 
|  | if (!LoadedCE) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (LoadedCE->getOpcode() != Instruction::Sub) | 
|  | return nullptr; | 
|  |  | 
|  | auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); | 
|  | if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) | 
|  | return nullptr; | 
|  | auto *LoadedLHSPtr = LoadedLHS->getOperand(0); | 
|  |  | 
|  | Constant *LoadedRHS = LoadedCE->getOperand(1); | 
|  | GlobalValue *LoadedRHSSym; | 
|  | APInt LoadedRHSOffset; | 
|  | if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, | 
|  | DL) || | 
|  | PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) | 
|  | return nullptr; | 
|  |  | 
|  | return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); | 
|  | } | 
|  |  | 
|  | static bool maskIsAllZeroOrUndef(Value *Mask) { | 
|  | auto *ConstMask = dyn_cast<Constant>(Mask); | 
|  | if (!ConstMask) | 
|  | return false; | 
|  | if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) | 
|  | return true; | 
|  | for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; | 
|  | ++I) { | 
|  | if (auto *MaskElt = ConstMask->getAggregateElement(I)) | 
|  | if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) | 
|  | continue; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, | 
|  | const SimplifyQuery &Q) { | 
|  | // Idempotent functions return the same result when called repeatedly. | 
|  | Intrinsic::ID IID = F->getIntrinsicID(); | 
|  | if (IsIdempotent(IID)) | 
|  | if (auto *II = dyn_cast<IntrinsicInst>(Op0)) | 
|  | if (II->getIntrinsicID() == IID) | 
|  | return II; | 
|  |  | 
|  | Value *X; | 
|  | switch (IID) { | 
|  | case Intrinsic::fabs: | 
|  | if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; | 
|  | break; | 
|  | case Intrinsic::bswap: | 
|  | // bswap(bswap(x)) -> x | 
|  | if (match(Op0, m_BSwap(m_Value(X)))) return X; | 
|  | break; | 
|  | case Intrinsic::bitreverse: | 
|  | // bitreverse(bitreverse(x)) -> x | 
|  | if (match(Op0, m_BitReverse(m_Value(X)))) return X; | 
|  | break; | 
|  | case Intrinsic::exp: | 
|  | // exp(log(x)) -> x | 
|  | if (Q.CxtI->hasAllowReassoc() && | 
|  | match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; | 
|  | break; | 
|  | case Intrinsic::exp2: | 
|  | // exp2(log2(x)) -> x | 
|  | if (Q.CxtI->hasAllowReassoc() && | 
|  | match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; | 
|  | break; | 
|  | case Intrinsic::log: | 
|  | // log(exp(x)) -> x | 
|  | if (Q.CxtI->hasAllowReassoc() && | 
|  | match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; | 
|  | break; | 
|  | case Intrinsic::log2: | 
|  | // log2(exp2(x)) -> x | 
|  | if (Q.CxtI->hasAllowReassoc() && | 
|  | match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X)))) return X; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, | 
|  | const SimplifyQuery &Q) { | 
|  | Intrinsic::ID IID = F->getIntrinsicID(); | 
|  | Type *ReturnType = F->getReturnType(); | 
|  | switch (IID) { | 
|  | case Intrinsic::usub_with_overflow: | 
|  | case Intrinsic::ssub_with_overflow: | 
|  | // X - X -> { 0, false } | 
|  | if (Op0 == Op1) | 
|  | return Constant::getNullValue(ReturnType); | 
|  | // X - undef -> undef | 
|  | // undef - X -> undef | 
|  | if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) | 
|  | return UndefValue::get(ReturnType); | 
|  | break; | 
|  | case Intrinsic::uadd_with_overflow: | 
|  | case Intrinsic::sadd_with_overflow: | 
|  | // X + undef -> undef | 
|  | if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) | 
|  | return UndefValue::get(ReturnType); | 
|  | break; | 
|  | case Intrinsic::umul_with_overflow: | 
|  | case Intrinsic::smul_with_overflow: | 
|  | // 0 * X -> { 0, false } | 
|  | // X * 0 -> { 0, false } | 
|  | if (match(Op0, m_Zero()) || match(Op1, m_Zero())) | 
|  | return Constant::getNullValue(ReturnType); | 
|  | // undef * X -> { 0, false } | 
|  | // X * undef -> { 0, false } | 
|  | if (match(Op0, m_Undef()) || match(Op1, m_Undef())) | 
|  | return Constant::getNullValue(ReturnType); | 
|  | break; | 
|  | case Intrinsic::load_relative: | 
|  | if (auto *C0 = dyn_cast<Constant>(Op0)) | 
|  | if (auto *C1 = dyn_cast<Constant>(Op1)) | 
|  | return SimplifyRelativeLoad(C0, C1, Q.DL); | 
|  | break; | 
|  | case Intrinsic::powi: | 
|  | if (auto *Power = dyn_cast<ConstantInt>(Op1)) { | 
|  | // powi(x, 0) -> 1.0 | 
|  | if (Power->isZero()) | 
|  | return ConstantFP::get(Op0->getType(), 1.0); | 
|  | // powi(x, 1) -> x | 
|  | if (Power->isOne()) | 
|  | return Op0; | 
|  | } | 
|  | break; | 
|  | case Intrinsic::maxnum: | 
|  | case Intrinsic::minnum: | 
|  | // If one argument is NaN, return the other argument. | 
|  | if (match(Op0, m_NaN())) return Op1; | 
|  | if (match(Op1, m_NaN())) return Op0; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | template <typename IterTy> | 
|  | static Value *simplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, | 
|  | const SimplifyQuery &Q) { | 
|  | // Intrinsics with no operands have some kind of side effect. Don't simplify. | 
|  | unsigned NumOperands = std::distance(ArgBegin, ArgEnd); | 
|  | if (NumOperands == 0) | 
|  | return nullptr; | 
|  |  | 
|  | Intrinsic::ID IID = F->getIntrinsicID(); | 
|  | if (NumOperands == 1) | 
|  | return simplifyUnaryIntrinsic(F, ArgBegin[0], Q); | 
|  |  | 
|  | if (NumOperands == 2) | 
|  | return simplifyBinaryIntrinsic(F, ArgBegin[0], ArgBegin[1], Q); | 
|  |  | 
|  | // Handle intrinsics with 3 or more arguments. | 
|  | switch (IID) { | 
|  | case Intrinsic::masked_load: { | 
|  | Value *MaskArg = ArgBegin[2]; | 
|  | Value *PassthruArg = ArgBegin[3]; | 
|  | // If the mask is all zeros or undef, the "passthru" argument is the result. | 
|  | if (maskIsAllZeroOrUndef(MaskArg)) | 
|  | return PassthruArg; | 
|  | return nullptr; | 
|  | } | 
|  | case Intrinsic::fshl: | 
|  | case Intrinsic::fshr: { | 
|  | Value *ShAmtArg = ArgBegin[2]; | 
|  | const APInt *ShAmtC; | 
|  | if (match(ShAmtArg, m_APInt(ShAmtC))) { | 
|  | // If there's effectively no shift, return the 1st arg or 2nd arg. | 
|  | // TODO: For vectors, we could check each element of a non-splat constant. | 
|  | APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); | 
|  | if (ShAmtC->urem(BitWidth).isNullValue()) | 
|  | return ArgBegin[IID == Intrinsic::fshl ? 0 : 1]; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename IterTy> | 
|  | static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin, | 
|  | IterTy ArgEnd, const SimplifyQuery &Q, | 
|  | unsigned MaxRecurse) { | 
|  | Type *Ty = V->getType(); | 
|  | if (PointerType *PTy = dyn_cast<PointerType>(Ty)) | 
|  | Ty = PTy->getElementType(); | 
|  | FunctionType *FTy = cast<FunctionType>(Ty); | 
|  |  | 
|  | // call undef -> undef | 
|  | // call null -> undef | 
|  | if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) | 
|  | return UndefValue::get(FTy->getReturnType()); | 
|  |  | 
|  | Function *F = dyn_cast<Function>(V); | 
|  | if (!F) | 
|  | return nullptr; | 
|  |  | 
|  | if (F->isIntrinsic()) | 
|  | if (Value *Ret = simplifyIntrinsic(F, ArgBegin, ArgEnd, Q)) | 
|  | return Ret; | 
|  |  | 
|  | if (!canConstantFoldCallTo(CS, F)) | 
|  | return nullptr; | 
|  |  | 
|  | SmallVector<Constant *, 4> ConstantArgs; | 
|  | ConstantArgs.reserve(ArgEnd - ArgBegin); | 
|  | for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { | 
|  | Constant *C = dyn_cast<Constant>(*I); | 
|  | if (!C) | 
|  | return nullptr; | 
|  | ConstantArgs.push_back(C); | 
|  | } | 
|  |  | 
|  | return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI); | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, | 
|  | User::op_iterator ArgBegin, User::op_iterator ArgEnd, | 
|  | const SimplifyQuery &Q) { | 
|  | return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, | 
|  | ArrayRef<Value *> Args, const SimplifyQuery &Q) { | 
|  | return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | Value *llvm::SimplifyCall(ImmutableCallSite ICS, const SimplifyQuery &Q) { | 
|  | CallSite CS(const_cast<Instruction*>(ICS.getInstruction())); | 
|  | return ::SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), | 
|  | Q, RecursionLimit); | 
|  | } | 
|  |  | 
|  | /// See if we can compute a simplified version of this instruction. | 
|  | /// If not, this returns null. | 
|  |  | 
|  | Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, | 
|  | OptimizationRemarkEmitter *ORE) { | 
|  | const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); | 
|  | Value *Result; | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | default: | 
|  | Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); | 
|  | break; | 
|  | case Instruction::FAdd: | 
|  | Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), | 
|  | I->getFastMathFlags(), Q); | 
|  | break; | 
|  | case Instruction::Add: | 
|  | Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), | 
|  | cast<BinaryOperator>(I)->hasNoSignedWrap(), | 
|  | cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); | 
|  | break; | 
|  | case Instruction::FSub: | 
|  | Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), | 
|  | I->getFastMathFlags(), Q); | 
|  | break; | 
|  | case Instruction::Sub: | 
|  | Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), | 
|  | cast<BinaryOperator>(I)->hasNoSignedWrap(), | 
|  | cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); | 
|  | break; | 
|  | case Instruction::FMul: | 
|  | Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), | 
|  | I->getFastMathFlags(), Q); | 
|  | break; | 
|  | case Instruction::Mul: | 
|  | Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); | 
|  | break; | 
|  | case Instruction::SDiv: | 
|  | Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); | 
|  | break; | 
|  | case Instruction::UDiv: | 
|  | Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); | 
|  | break; | 
|  | case Instruction::FDiv: | 
|  | Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), | 
|  | I->getFastMathFlags(), Q); | 
|  | break; | 
|  | case Instruction::SRem: | 
|  | Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); | 
|  | break; | 
|  | case Instruction::URem: | 
|  | Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); | 
|  | break; | 
|  | case Instruction::FRem: | 
|  | Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), | 
|  | I->getFastMathFlags(), Q); | 
|  | break; | 
|  | case Instruction::Shl: | 
|  | Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), | 
|  | cast<BinaryOperator>(I)->hasNoSignedWrap(), | 
|  | cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); | 
|  | break; | 
|  | case Instruction::LShr: | 
|  | Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), | 
|  | cast<BinaryOperator>(I)->isExact(), Q); | 
|  | break; | 
|  | case Instruction::AShr: | 
|  | Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), | 
|  | cast<BinaryOperator>(I)->isExact(), Q); | 
|  | break; | 
|  | case Instruction::And: | 
|  | Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); | 
|  | break; | 
|  | case Instruction::Or: | 
|  | Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); | 
|  | break; | 
|  | case Instruction::Xor: | 
|  | Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); | 
|  | break; | 
|  | case Instruction::ICmp: | 
|  | Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), | 
|  | I->getOperand(0), I->getOperand(1), Q); | 
|  | break; | 
|  | case Instruction::FCmp: | 
|  | Result = | 
|  | SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), | 
|  | I->getOperand(1), I->getFastMathFlags(), Q); | 
|  | break; | 
|  | case Instruction::Select: | 
|  | Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), | 
|  | I->getOperand(2), Q); | 
|  | break; | 
|  | case Instruction::GetElementPtr: { | 
|  | SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); | 
|  | Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), | 
|  | Ops, Q); | 
|  | break; | 
|  | } | 
|  | case Instruction::InsertValue: { | 
|  | InsertValueInst *IV = cast<InsertValueInst>(I); | 
|  | Result = SimplifyInsertValueInst(IV->getAggregateOperand(), | 
|  | IV->getInsertedValueOperand(), | 
|  | IV->getIndices(), Q); | 
|  | break; | 
|  | } | 
|  | case Instruction::InsertElement: { | 
|  | auto *IE = cast<InsertElementInst>(I); | 
|  | Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), | 
|  | IE->getOperand(2), Q); | 
|  | break; | 
|  | } | 
|  | case Instruction::ExtractValue: { | 
|  | auto *EVI = cast<ExtractValueInst>(I); | 
|  | Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), | 
|  | EVI->getIndices(), Q); | 
|  | break; | 
|  | } | 
|  | case Instruction::ExtractElement: { | 
|  | auto *EEI = cast<ExtractElementInst>(I); | 
|  | Result = SimplifyExtractElementInst(EEI->getVectorOperand(), | 
|  | EEI->getIndexOperand(), Q); | 
|  | break; | 
|  | } | 
|  | case Instruction::ShuffleVector: { | 
|  | auto *SVI = cast<ShuffleVectorInst>(I); | 
|  | Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), | 
|  | SVI->getMask(), SVI->getType(), Q); | 
|  | break; | 
|  | } | 
|  | case Instruction::PHI: | 
|  | Result = SimplifyPHINode(cast<PHINode>(I), Q); | 
|  | break; | 
|  | case Instruction::Call: { | 
|  | CallSite CS(cast<CallInst>(I)); | 
|  | Result = SimplifyCall(CS, Q); | 
|  | break; | 
|  | } | 
|  | #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: | 
|  | #include "llvm/IR/Instruction.def" | 
|  | #undef HANDLE_CAST_INST | 
|  | Result = | 
|  | SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); | 
|  | break; | 
|  | case Instruction::Alloca: | 
|  | // No simplifications for Alloca and it can't be constant folded. | 
|  | Result = nullptr; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // In general, it is possible for computeKnownBits to determine all bits in a | 
|  | // value even when the operands are not all constants. | 
|  | if (!Result && I->getType()->isIntOrIntVectorTy()) { | 
|  | KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); | 
|  | if (Known.isConstant()) | 
|  | Result = ConstantInt::get(I->getType(), Known.getConstant()); | 
|  | } | 
|  |  | 
|  | /// If called on unreachable code, the above logic may report that the | 
|  | /// instruction simplified to itself.  Make life easier for users by | 
|  | /// detecting that case here, returning a safe value instead. | 
|  | return Result == I ? UndefValue::get(I->getType()) : Result; | 
|  | } | 
|  |  | 
|  | /// Implementation of recursive simplification through an instruction's | 
|  | /// uses. | 
|  | /// | 
|  | /// This is the common implementation of the recursive simplification routines. | 
|  | /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to | 
|  | /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of | 
|  | /// instructions to process and attempt to simplify it using | 
|  | /// InstructionSimplify. | 
|  | /// | 
|  | /// This routine returns 'true' only when *it* simplifies something. The passed | 
|  | /// in simplified value does not count toward this. | 
|  | static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, | 
|  | const TargetLibraryInfo *TLI, | 
|  | const DominatorTree *DT, | 
|  | AssumptionCache *AC) { | 
|  | bool Simplified = false; | 
|  | SmallSetVector<Instruction *, 8> Worklist; | 
|  | const DataLayout &DL = I->getModule()->getDataLayout(); | 
|  |  | 
|  | // If we have an explicit value to collapse to, do that round of the | 
|  | // simplification loop by hand initially. | 
|  | if (SimpleV) { | 
|  | for (User *U : I->users()) | 
|  | if (U != I) | 
|  | Worklist.insert(cast<Instruction>(U)); | 
|  |  | 
|  | // Replace the instruction with its simplified value. | 
|  | I->replaceAllUsesWith(SimpleV); | 
|  |  | 
|  | // Gracefully handle edge cases where the instruction is not wired into any | 
|  | // parent block. | 
|  | if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && | 
|  | !I->mayHaveSideEffects()) | 
|  | I->eraseFromParent(); | 
|  | } else { | 
|  | Worklist.insert(I); | 
|  | } | 
|  |  | 
|  | // Note that we must test the size on each iteration, the worklist can grow. | 
|  | for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { | 
|  | I = Worklist[Idx]; | 
|  |  | 
|  | // See if this instruction simplifies. | 
|  | SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); | 
|  | if (!SimpleV) | 
|  | continue; | 
|  |  | 
|  | Simplified = true; | 
|  |  | 
|  | // Stash away all the uses of the old instruction so we can check them for | 
|  | // recursive simplifications after a RAUW. This is cheaper than checking all | 
|  | // uses of To on the recursive step in most cases. | 
|  | for (User *U : I->users()) | 
|  | Worklist.insert(cast<Instruction>(U)); | 
|  |  | 
|  | // Replace the instruction with its simplified value. | 
|  | I->replaceAllUsesWith(SimpleV); | 
|  |  | 
|  | // Gracefully handle edge cases where the instruction is not wired into any | 
|  | // parent block. | 
|  | if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && | 
|  | !I->mayHaveSideEffects()) | 
|  | I->eraseFromParent(); | 
|  | } | 
|  | return Simplified; | 
|  | } | 
|  |  | 
|  | bool llvm::recursivelySimplifyInstruction(Instruction *I, | 
|  | const TargetLibraryInfo *TLI, | 
|  | const DominatorTree *DT, | 
|  | AssumptionCache *AC) { | 
|  | return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); | 
|  | } | 
|  |  | 
|  | bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, | 
|  | const TargetLibraryInfo *TLI, | 
|  | const DominatorTree *DT, | 
|  | AssumptionCache *AC) { | 
|  | assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); | 
|  | assert(SimpleV && "Must provide a simplified value."); | 
|  | return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  | const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { | 
|  | auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); | 
|  | auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; | 
|  | auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); | 
|  | auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr; | 
|  | auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); | 
|  | auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; | 
|  | return {F.getParent()->getDataLayout(), TLI, DT, AC}; | 
|  | } | 
|  |  | 
|  | const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, | 
|  | const DataLayout &DL) { | 
|  | return {DL, &AR.TLI, &AR.DT, &AR.AC}; | 
|  | } | 
|  |  | 
|  | template <class T, class... TArgs> | 
|  | const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, | 
|  | Function &F) { | 
|  | auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); | 
|  | auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); | 
|  | auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); | 
|  | return {F.getParent()->getDataLayout(), TLI, DT, AC}; | 
|  | } | 
|  | template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, | 
|  | Function &); | 
|  | } |