|  | //===- Loads.cpp - Local load analysis ------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines simple local analyses for load instructions. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/Statepoint.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static bool isAligned(const Value *Base, const APInt &Offset, unsigned Align, | 
|  | const DataLayout &DL) { | 
|  | APInt BaseAlign(Offset.getBitWidth(), Base->getPointerAlignment(DL)); | 
|  |  | 
|  | if (!BaseAlign) { | 
|  | Type *Ty = Base->getType()->getPointerElementType(); | 
|  | if (!Ty->isSized()) | 
|  | return false; | 
|  | BaseAlign = DL.getABITypeAlignment(Ty); | 
|  | } | 
|  |  | 
|  | APInt Alignment(Offset.getBitWidth(), Align); | 
|  |  | 
|  | assert(Alignment.isPowerOf2() && "must be a power of 2!"); | 
|  | return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1)); | 
|  | } | 
|  |  | 
|  | static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) { | 
|  | Type *Ty = Base->getType(); | 
|  | assert(Ty->isSized() && "must be sized"); | 
|  | APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); | 
|  | return isAligned(Base, Offset, Align, DL); | 
|  | } | 
|  |  | 
|  | /// Test if V is always a pointer to allocated and suitably aligned memory for | 
|  | /// a simple load or store. | 
|  | static bool isDereferenceableAndAlignedPointer( | 
|  | const Value *V, unsigned Align, const APInt &Size, const DataLayout &DL, | 
|  | const Instruction *CtxI, const DominatorTree *DT, | 
|  | SmallPtrSetImpl<const Value *> &Visited) { | 
|  | // Already visited?  Bail out, we've likely hit unreachable code. | 
|  | if (!Visited.insert(V).second) | 
|  | return false; | 
|  |  | 
|  | // Note that it is not safe to speculate into a malloc'd region because | 
|  | // malloc may return null. | 
|  |  | 
|  | // bitcast instructions are no-ops as far as dereferenceability is concerned. | 
|  | if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) | 
|  | return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, Size, | 
|  | DL, CtxI, DT, Visited); | 
|  |  | 
|  | bool CheckForNonNull = false; | 
|  | APInt KnownDerefBytes(Size.getBitWidth(), | 
|  | V->getPointerDereferenceableBytes(DL, CheckForNonNull)); | 
|  | if (KnownDerefBytes.getBoolValue()) { | 
|  | if (KnownDerefBytes.uge(Size)) | 
|  | if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) | 
|  | return isAligned(V, Align, DL); | 
|  | } | 
|  |  | 
|  | // For GEPs, determine if the indexing lands within the allocated object. | 
|  | if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { | 
|  | const Value *Base = GEP->getPointerOperand(); | 
|  |  | 
|  | APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0); | 
|  | if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() || | 
|  | !Offset.urem(APInt(Offset.getBitWidth(), Align)).isMinValue()) | 
|  | return false; | 
|  |  | 
|  | // If the base pointer is dereferenceable for Offset+Size bytes, then the | 
|  | // GEP (== Base + Offset) is dereferenceable for Size bytes.  If the base | 
|  | // pointer is aligned to Align bytes, and the Offset is divisible by Align | 
|  | // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also | 
|  | // aligned to Align bytes. | 
|  |  | 
|  | // Offset and Size may have different bit widths if we have visited an | 
|  | // addrspacecast, so we can't do arithmetic directly on the APInt values. | 
|  | return isDereferenceableAndAlignedPointer( | 
|  | Base, Align, Offset + Size.sextOrTrunc(Offset.getBitWidth()), | 
|  | DL, CtxI, DT, Visited); | 
|  | } | 
|  |  | 
|  | // For gc.relocate, look through relocations | 
|  | if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) | 
|  | return isDereferenceableAndAlignedPointer( | 
|  | RelocateInst->getDerivedPtr(), Align, Size, DL, CtxI, DT, Visited); | 
|  |  | 
|  | if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) | 
|  | return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, Size, | 
|  | DL, CtxI, DT, Visited); | 
|  |  | 
|  | if (auto CS = ImmutableCallSite(V)) | 
|  | if (auto *RP = getArgumentAliasingToReturnedPointer(CS)) | 
|  | return isDereferenceableAndAlignedPointer(RP, Align, Size, DL, CtxI, DT, | 
|  | Visited); | 
|  |  | 
|  | // If we don't know, assume the worst. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align, | 
|  | const APInt &Size, | 
|  | const DataLayout &DL, | 
|  | const Instruction *CtxI, | 
|  | const DominatorTree *DT) { | 
|  | SmallPtrSet<const Value *, 32> Visited; | 
|  | return ::isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT, | 
|  | Visited); | 
|  | } | 
|  |  | 
|  | bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align, | 
|  | const DataLayout &DL, | 
|  | const Instruction *CtxI, | 
|  | const DominatorTree *DT) { | 
|  | // When dereferenceability information is provided by a dereferenceable | 
|  | // attribute, we know exactly how many bytes are dereferenceable. If we can | 
|  | // determine the exact offset to the attributed variable, we can use that | 
|  | // information here. | 
|  | Type *VTy = V->getType(); | 
|  | Type *Ty = VTy->getPointerElementType(); | 
|  |  | 
|  | // Require ABI alignment for loads without alignment specification | 
|  | if (Align == 0) | 
|  | Align = DL.getABITypeAlignment(Ty); | 
|  |  | 
|  | if (!Ty->isSized()) | 
|  | return false; | 
|  |  | 
|  | SmallPtrSet<const Value *, 32> Visited; | 
|  | return ::isDereferenceableAndAlignedPointer( | 
|  | V, Align, APInt(DL.getIndexTypeSizeInBits(VTy), DL.getTypeStoreSize(Ty)), DL, | 
|  | CtxI, DT, Visited); | 
|  | } | 
|  |  | 
|  | bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL, | 
|  | const Instruction *CtxI, | 
|  | const DominatorTree *DT) { | 
|  | return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT); | 
|  | } | 
|  |  | 
|  | /// Test if A and B will obviously have the same value. | 
|  | /// | 
|  | /// This includes recognizing that %t0 and %t1 will have the same | 
|  | /// value in code like this: | 
|  | /// \code | 
|  | ///   %t0 = getelementptr \@a, 0, 3 | 
|  | ///   store i32 0, i32* %t0 | 
|  | ///   %t1 = getelementptr \@a, 0, 3 | 
|  | ///   %t2 = load i32* %t1 | 
|  | /// \endcode | 
|  | /// | 
|  | static bool AreEquivalentAddressValues(const Value *A, const Value *B) { | 
|  | // Test if the values are trivially equivalent. | 
|  | if (A == B) | 
|  | return true; | 
|  |  | 
|  | // Test if the values come from identical arithmetic instructions. | 
|  | // Use isIdenticalToWhenDefined instead of isIdenticalTo because | 
|  | // this function is only used when one address use dominates the | 
|  | // other, which means that they'll always either have the same | 
|  | // value or one of them will have an undefined value. | 
|  | if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) || | 
|  | isa<GetElementPtrInst>(A)) | 
|  | if (const Instruction *BI = dyn_cast<Instruction>(B)) | 
|  | if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) | 
|  | return true; | 
|  |  | 
|  | // Otherwise they may not be equivalent. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check if executing a load of this pointer value cannot trap. | 
|  | /// | 
|  | /// If DT and ScanFrom are specified this method performs context-sensitive | 
|  | /// analysis and returns true if it is safe to load immediately before ScanFrom. | 
|  | /// | 
|  | /// If it is not obviously safe to load from the specified pointer, we do | 
|  | /// a quick local scan of the basic block containing \c ScanFrom, to determine | 
|  | /// if the address is already accessed. | 
|  | /// | 
|  | /// This uses the pointee type to determine how many bytes need to be safe to | 
|  | /// load from the pointer. | 
|  | bool llvm::isSafeToLoadUnconditionally(Value *V, unsigned Align, | 
|  | const DataLayout &DL, | 
|  | Instruction *ScanFrom, | 
|  | const DominatorTree *DT) { | 
|  | // Zero alignment means that the load has the ABI alignment for the target | 
|  | if (Align == 0) | 
|  | Align = DL.getABITypeAlignment(V->getType()->getPointerElementType()); | 
|  | assert(isPowerOf2_32(Align)); | 
|  |  | 
|  | // If DT is not specified we can't make context-sensitive query | 
|  | const Instruction* CtxI = DT ? ScanFrom : nullptr; | 
|  | if (isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT)) | 
|  | return true; | 
|  |  | 
|  | int64_t ByteOffset = 0; | 
|  | Value *Base = V; | 
|  | Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL); | 
|  |  | 
|  | if (ByteOffset < 0) // out of bounds | 
|  | return false; | 
|  |  | 
|  | Type *BaseType = nullptr; | 
|  | unsigned BaseAlign = 0; | 
|  | if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) { | 
|  | // An alloca is safe to load from as load as it is suitably aligned. | 
|  | BaseType = AI->getAllocatedType(); | 
|  | BaseAlign = AI->getAlignment(); | 
|  | } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) { | 
|  | // Global variables are not necessarily safe to load from if they are | 
|  | // interposed arbitrarily. Their size may change or they may be weak and | 
|  | // require a test to determine if they were in fact provided. | 
|  | if (!GV->isInterposable()) { | 
|  | BaseType = GV->getType()->getElementType(); | 
|  | BaseAlign = GV->getAlignment(); | 
|  | } | 
|  | } | 
|  |  | 
|  | PointerType *AddrTy = cast<PointerType>(V->getType()); | 
|  | uint64_t LoadSize = DL.getTypeStoreSize(AddrTy->getElementType()); | 
|  |  | 
|  | // If we found a base allocated type from either an alloca or global variable, | 
|  | // try to see if we are definitively within the allocated region. We need to | 
|  | // know the size of the base type and the loaded type to do anything in this | 
|  | // case. | 
|  | if (BaseType && BaseType->isSized()) { | 
|  | if (BaseAlign == 0) | 
|  | BaseAlign = DL.getPrefTypeAlignment(BaseType); | 
|  |  | 
|  | if (Align <= BaseAlign) { | 
|  | // Check if the load is within the bounds of the underlying object. | 
|  | if (ByteOffset + LoadSize <= DL.getTypeAllocSize(BaseType) && | 
|  | ((ByteOffset % Align) == 0)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ScanFrom) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, be a little bit aggressive by scanning the local block where we | 
|  | // want to check to see if the pointer is already being loaded or stored | 
|  | // from/to.  If so, the previous load or store would have already trapped, | 
|  | // so there is no harm doing an extra load (also, CSE will later eliminate | 
|  | // the load entirely). | 
|  | BasicBlock::iterator BBI = ScanFrom->getIterator(), | 
|  | E = ScanFrom->getParent()->begin(); | 
|  |  | 
|  | // We can at least always strip pointer casts even though we can't use the | 
|  | // base here. | 
|  | V = V->stripPointerCasts(); | 
|  |  | 
|  | while (BBI != E) { | 
|  | --BBI; | 
|  |  | 
|  | // If we see a free or a call which may write to memory (i.e. which might do | 
|  | // a free) the pointer could be marked invalid. | 
|  | if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() && | 
|  | !isa<DbgInfoIntrinsic>(BBI)) | 
|  | return false; | 
|  |  | 
|  | Value *AccessedPtr; | 
|  | unsigned AccessedAlign; | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { | 
|  | AccessedPtr = LI->getPointerOperand(); | 
|  | AccessedAlign = LI->getAlignment(); | 
|  | } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { | 
|  | AccessedPtr = SI->getPointerOperand(); | 
|  | AccessedAlign = SI->getAlignment(); | 
|  | } else | 
|  | continue; | 
|  |  | 
|  | Type *AccessedTy = AccessedPtr->getType()->getPointerElementType(); | 
|  | if (AccessedAlign == 0) | 
|  | AccessedAlign = DL.getABITypeAlignment(AccessedTy); | 
|  | if (AccessedAlign < Align) | 
|  | continue; | 
|  |  | 
|  | // Handle trivial cases. | 
|  | if (AccessedPtr == V) | 
|  | return true; | 
|  |  | 
|  | if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) && | 
|  | LoadSize <= DL.getTypeStoreSize(AccessedTy)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// DefMaxInstsToScan - the default number of maximum instructions | 
|  | /// to scan in the block, used by FindAvailableLoadedValue(). | 
|  | /// FindAvailableLoadedValue() was introduced in r60148, to improve jump | 
|  | /// threading in part by eliminating partially redundant loads. | 
|  | /// At that point, the value of MaxInstsToScan was already set to '6' | 
|  | /// without documented explanation. | 
|  | cl::opt<unsigned> | 
|  | llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden, | 
|  | cl::desc("Use this to specify the default maximum number of instructions " | 
|  | "to scan backward from a given instruction, when searching for " | 
|  | "available loaded value")); | 
|  |  | 
|  | Value *llvm::FindAvailableLoadedValue(LoadInst *Load, | 
|  | BasicBlock *ScanBB, | 
|  | BasicBlock::iterator &ScanFrom, | 
|  | unsigned MaxInstsToScan, | 
|  | AliasAnalysis *AA, bool *IsLoad, | 
|  | unsigned *NumScanedInst) { | 
|  | // Don't CSE load that is volatile or anything stronger than unordered. | 
|  | if (!Load->isUnordered()) | 
|  | return nullptr; | 
|  |  | 
|  | return FindAvailablePtrLoadStore( | 
|  | Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB, | 
|  | ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst); | 
|  | } | 
|  |  | 
|  | Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy, | 
|  | bool AtLeastAtomic, BasicBlock *ScanBB, | 
|  | BasicBlock::iterator &ScanFrom, | 
|  | unsigned MaxInstsToScan, | 
|  | AliasAnalysis *AA, bool *IsLoadCSE, | 
|  | unsigned *NumScanedInst) { | 
|  | if (MaxInstsToScan == 0) | 
|  | MaxInstsToScan = ~0U; | 
|  |  | 
|  | const DataLayout &DL = ScanBB->getModule()->getDataLayout(); | 
|  |  | 
|  | // Try to get the store size for the type. | 
|  | uint64_t AccessSize = DL.getTypeStoreSize(AccessTy); | 
|  |  | 
|  | Value *StrippedPtr = Ptr->stripPointerCasts(); | 
|  |  | 
|  | while (ScanFrom != ScanBB->begin()) { | 
|  | // We must ignore debug info directives when counting (otherwise they | 
|  | // would affect codegen). | 
|  | Instruction *Inst = &*--ScanFrom; | 
|  | if (isa<DbgInfoIntrinsic>(Inst)) | 
|  | continue; | 
|  |  | 
|  | // Restore ScanFrom to expected value in case next test succeeds | 
|  | ScanFrom++; | 
|  |  | 
|  | if (NumScanedInst) | 
|  | ++(*NumScanedInst); | 
|  |  | 
|  | // Don't scan huge blocks. | 
|  | if (MaxInstsToScan-- == 0) | 
|  | return nullptr; | 
|  |  | 
|  | --ScanFrom; | 
|  | // If this is a load of Ptr, the loaded value is available. | 
|  | // (This is true even if the load is volatile or atomic, although | 
|  | // those cases are unlikely.) | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) | 
|  | if (AreEquivalentAddressValues( | 
|  | LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) && | 
|  | CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) { | 
|  |  | 
|  | // We can value forward from an atomic to a non-atomic, but not the | 
|  | // other way around. | 
|  | if (LI->isAtomic() < AtLeastAtomic) | 
|  | return nullptr; | 
|  |  | 
|  | if (IsLoadCSE) | 
|  | *IsLoadCSE = true; | 
|  | return LI; | 
|  | } | 
|  |  | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { | 
|  | Value *StorePtr = SI->getPointerOperand()->stripPointerCasts(); | 
|  | // If this is a store through Ptr, the value is available! | 
|  | // (This is true even if the store is volatile or atomic, although | 
|  | // those cases are unlikely.) | 
|  | if (AreEquivalentAddressValues(StorePtr, StrippedPtr) && | 
|  | CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(), | 
|  | AccessTy, DL)) { | 
|  |  | 
|  | // We can value forward from an atomic to a non-atomic, but not the | 
|  | // other way around. | 
|  | if (SI->isAtomic() < AtLeastAtomic) | 
|  | return nullptr; | 
|  |  | 
|  | if (IsLoadCSE) | 
|  | *IsLoadCSE = false; | 
|  | return SI->getOperand(0); | 
|  | } | 
|  |  | 
|  | // If both StrippedPtr and StorePtr reach all the way to an alloca or | 
|  | // global and they are different, ignore the store. This is a trivial form | 
|  | // of alias analysis that is important for reg2mem'd code. | 
|  | if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) && | 
|  | (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) && | 
|  | StrippedPtr != StorePtr) | 
|  | continue; | 
|  |  | 
|  | // If we have alias analysis and it says the store won't modify the loaded | 
|  | // value, ignore the store. | 
|  | if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize))) | 
|  | continue; | 
|  |  | 
|  | // Otherwise the store that may or may not alias the pointer, bail out. | 
|  | ++ScanFrom; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If this is some other instruction that may clobber Ptr, bail out. | 
|  | if (Inst->mayWriteToMemory()) { | 
|  | // If alias analysis claims that it really won't modify the load, | 
|  | // ignore it. | 
|  | if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize))) | 
|  | continue; | 
|  |  | 
|  | // May modify the pointer, bail out. | 
|  | ++ScanFrom; | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Got to the start of the block, we didn't find it, but are done for this | 
|  | // block. | 
|  | return nullptr; | 
|  | } |