blob: a7db7b562c9dac4faf102a2d094d88c2c9d4f940 [file] [log] [blame]
// This file is generated by Values_cpp.template.
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//#include "Values.h"
#include "{{config.crdtp.dir}}/cbor.h"
{% for namespace in config.protocol.namespace %}
namespace {{namespace}} {
{% endfor %}
namespace {
using {{config.crdtp.namespace}}::Status;
using {{config.crdtp.namespace}}::ParserHandler;
using {{config.crdtp.namespace}}::span;
namespace cbor {
using {{config.crdtp.namespace}}::cbor::ParseCBOR;
using {{config.crdtp.namespace}}::cbor::EncodeBinary;
using {{config.crdtp.namespace}}::cbor::EncodeDouble;
using {{config.crdtp.namespace}}::cbor::EncodeFalse;
using {{config.crdtp.namespace}}::cbor::EncodeFromLatin1;
using {{config.crdtp.namespace}}::cbor::EncodeFromUTF16;
using {{config.crdtp.namespace}}::cbor::EncodeIndefiniteLengthArrayStart;
using {{config.crdtp.namespace}}::cbor::EncodeIndefiniteLengthMapStart;
using {{config.crdtp.namespace}}::cbor::EncodeInt32;
using {{config.crdtp.namespace}}::cbor::EncodeNull;
using {{config.crdtp.namespace}}::cbor::EncodeStop;
using {{config.crdtp.namespace}}::cbor::EncodeString8;
using {{config.crdtp.namespace}}::cbor::EncodeTrue;
using {{config.crdtp.namespace}}::cbor::EnvelopeEncoder;
using {{config.crdtp.namespace}}::cbor::InitialByteForEnvelope;
} // namespace cbor
// Uses the parsing events received from driver of |ParserHandler|
// (e.g. cbor::ParseCBOR) into a protocol::Value instance.
class ValueParserHandler : public ParserHandler {
public:
// Provides the parsed protocol::Value.
std::unique_ptr<Value> ReleaseRoot() { return std::move(root_); }
// The first parsing error encountered; |status().ok()| is the default.
Status status() const { return status_; }
private:
//
// Implementation of ParserHandler.
//
void HandleMapBegin() override {
if (!status_.ok()) return;
std::unique_ptr<DictionaryValue> dict = DictionaryValue::create();
DictionaryValue* dict_ptr = dict.get();
AddValueToParent(std::move(dict));
stack_.emplace_back(dict_ptr);
}
void HandleMapEnd() override {
if (!status_.ok()) return;
DCHECK(!stack_.empty());
DCHECK(stack_.back().is_dict);
stack_.pop_back();
}
void HandleArrayBegin() override {
if (!status_.ok()) return;
std::unique_ptr<ListValue> list = ListValue::create();
ListValue* list_ptr = list.get();
AddValueToParent(std::move(list));
stack_.emplace_back(list_ptr);
}
void HandleArrayEnd() override {
if (!status_.ok()) return;
DCHECK(!stack_.empty());
DCHECK(!stack_.back().is_dict);
stack_.pop_back();
}
void HandleString8(span<uint8_t> chars) override {
AddStringToParent(StringUtil::fromUTF8(chars.data(), chars.size()));
}
void HandleString16(span<uint16_t> chars) override {
AddStringToParent(
StringUtil::fromUTF16LE(chars.data(), chars.size()));
}
void HandleBinary(span<uint8_t> bytes) override {
AddValueToParent(
BinaryValue::create(Binary::fromSpan(bytes.data(), bytes.size())));
}
void HandleDouble(double value) override {
AddValueToParent(FundamentalValue::create(value));
}
void HandleInt32(int32_t value) override {
AddValueToParent(FundamentalValue::create(value));
}
void HandleBool(bool value) override {
AddValueToParent(FundamentalValue::create(value));
}
void HandleNull() override {
AddValueToParent(Value::null());
}
void HandleError(Status error) override {
status_ = error;
}
//
// Adding strings and values to the parent value.
// Strings are handled separately because they can be keys for
// dictionary values.
//
void AddStringToParent(String str) {
if (!status_.ok()) return;
if (!root_) {
DCHECK(!key_is_pending_);
root_ = StringValue::create(str);
} else if (stack_.back().is_dict) {
// If we already have a pending key, then this is the value of the
// key/value pair. Otherwise, it's the new pending key.
if (key_is_pending_) {
stack_.back().dict->setString(pending_key_, str);
key_is_pending_ = false;
} else {
pending_key_ = std::move(str);
key_is_pending_ = true;
}
} else { // Top of the stack is a list.
DCHECK(!key_is_pending_);
stack_.back().list->pushValue(StringValue::create(str));
}
}
void AddValueToParent(std::unique_ptr<Value> value) {
if (!status_.ok()) return;
if (!root_) {
DCHECK(!key_is_pending_);
root_ = std::move(value);
} else if (stack_.back().is_dict) {
DCHECK(key_is_pending_);
stack_.back().dict->setValue(pending_key_, std::move(value));
key_is_pending_ = false;
} else { // Top of the stack is a list.
DCHECK(!key_is_pending_);
stack_.back().list->pushValue(std::move(value));
}
}
// |status_.ok()| is the default; if we receive an error event
// we keep the first one and stop modifying any other state.
Status status_;
// The root of the parsed protocol::Value tree.
std::unique_ptr<Value> root_;
// If root_ is a list or a dictionary, this stack keeps track of
// the container we're currently parsing as well as its ancestors.
struct ContainerState {
ContainerState(DictionaryValue* dict) : is_dict(true), dict(dict) {}
ContainerState(ListValue* list) : is_dict(false), list(list) {}
bool is_dict;
union {
DictionaryValue* dict;
ListValue* list;
};
};
std::vector<ContainerState> stack_;
// For maps, keys and values are alternating events, so we keep the
// key around and process it when the value arrives.
bool key_is_pending_ = false;
String pending_key_;
};
} // anonymous namespace
// static
std::unique_ptr<Value> Value::parseBinary(const uint8_t* data, size_t size) {
ValueParserHandler handler;
cbor::ParseCBOR(span<uint8_t>(data, size), &handler);
// TODO(johannes): We have decent error info in handler.status(); provide
// a richer interface that makes this available to client code.
if (handler.status().ok())
return handler.ReleaseRoot();
return nullptr;
}
bool Value::asBoolean(bool*) const
{
return false;
}
bool Value::asDouble(double*) const
{
return false;
}
bool Value::asInteger(int*) const
{
return false;
}
bool Value::asString(String*) const
{
return false;
}
bool Value::asBinary(Binary*) const
{
return false;
}
void Value::AppendSerialized(std::vector<uint8_t>* bytes) const {
DCHECK(m_type == TypeNull);
bytes->push_back(cbor::EncodeNull());
}
std::unique_ptr<Value> Value::clone() const
{
return Value::null();
}
bool FundamentalValue::asBoolean(bool* output) const
{
if (type() != TypeBoolean)
return false;
*output = m_boolValue;
return true;
}
bool FundamentalValue::asDouble(double* output) const
{
if (type() == TypeDouble) {
*output = m_doubleValue;
return true;
}
if (type() == TypeInteger) {
*output = m_integerValue;
return true;
}
return false;
}
bool FundamentalValue::asInteger(int* output) const
{
if (type() != TypeInteger)
return false;
*output = m_integerValue;
return true;
}
void FundamentalValue::AppendSerialized(std::vector<uint8_t>* bytes) const {
switch (type()) {
case TypeDouble:
cbor::EncodeDouble(m_doubleValue, bytes);
return;
case TypeInteger:
cbor::EncodeInt32(m_integerValue, bytes);
return;
case TypeBoolean:
bytes->push_back(m_boolValue ? cbor::EncodeTrue() : cbor::EncodeFalse());
return;
default:
DCHECK(false);
}
}
std::unique_ptr<Value> FundamentalValue::clone() const
{
switch (type()) {
case TypeDouble: return FundamentalValue::create(m_doubleValue);
case TypeInteger: return FundamentalValue::create(m_integerValue);
case TypeBoolean: return FundamentalValue::create(m_boolValue);
default:
DCHECK(false);
}
return nullptr;
}
bool StringValue::asString(String* output) const
{
*output = m_stringValue;
return true;
}
namespace {
// This routine distinguishes between the current encoding for a given
// string |s|, and calls encoding routines that will
// - Ensure that all ASCII strings end up being encoded as UTF8 in
// the wire format - e.g., EncodeFromUTF16 will detect ASCII and
// do the (trivial) transcode to STRING8 on the wire, but if it's
// not ASCII it'll do STRING16.
// - Select a format that's cheap to convert to. E.g., we don't
// have LATIN1 on the wire, so we call EncodeFromLatin1 which
// transcodes to UTF8 if needed.
void EncodeString(const String& s, std::vector<uint8_t>* out) {
if (StringUtil::CharacterCount(s) == 0) {
cbor::EncodeString8(span<uint8_t>(nullptr, 0), out); // Empty string.
} else if (StringUtil::CharactersLatin1(s)) {
cbor::EncodeFromLatin1(span<uint8_t>(StringUtil::CharactersLatin1(s),
StringUtil::CharacterCount(s)),
out);
} else if (StringUtil::CharactersUTF16(s)) {
cbor::EncodeFromUTF16(span<uint16_t>(StringUtil::CharactersUTF16(s),
StringUtil::CharacterCount(s)),
out);
} else if (StringUtil::CharactersUTF8(s)) {
cbor::EncodeString8(span<uint8_t>(StringUtil::CharactersUTF8(s),
StringUtil::CharacterCount(s)),
out);
}
}
} // namespace
void StringValue::AppendSerialized(std::vector<uint8_t>* bytes) const {
EncodeString(m_stringValue, bytes);
}
std::unique_ptr<Value> StringValue::clone() const
{
return StringValue::create(m_stringValue);
}
bool BinaryValue::asBinary(Binary* output) const
{
*output = m_binaryValue;
return true;
}
void BinaryValue::AppendSerialized(std::vector<uint8_t>* bytes) const {
cbor::EncodeBinary(span<uint8_t>(m_binaryValue.data(),
m_binaryValue.size()), bytes);
}
std::unique_ptr<Value> BinaryValue::clone() const
{
return BinaryValue::create(m_binaryValue);
}
DictionaryValue::~DictionaryValue()
{
}
void DictionaryValue::setBoolean(const String& name, bool value)
{
setValue(name, FundamentalValue::create(value));
}
void DictionaryValue::setInteger(const String& name, int value)
{
setValue(name, FundamentalValue::create(value));
}
void DictionaryValue::setDouble(const String& name, double value)
{
setValue(name, FundamentalValue::create(value));
}
void DictionaryValue::setString(const String& name, const String& value)
{
setValue(name, StringValue::create(value));
}
void DictionaryValue::setValue(const String& name, std::unique_ptr<Value> value)
{
set(name, value);
}
void DictionaryValue::setObject(const String& name, std::unique_ptr<DictionaryValue> value)
{
set(name, value);
}
void DictionaryValue::setArray(const String& name, std::unique_ptr<ListValue> value)
{
set(name, value);
}
bool DictionaryValue::getBoolean(const String& name, bool* output) const
{
protocol::Value* value = get(name);
if (!value)
return false;
return value->asBoolean(output);
}
bool DictionaryValue::getInteger(const String& name, int* output) const
{
Value* value = get(name);
if (!value)
return false;
return value->asInteger(output);
}
bool DictionaryValue::getDouble(const String& name, double* output) const
{
Value* value = get(name);
if (!value)
return false;
return value->asDouble(output);
}
bool DictionaryValue::getString(const String& name, String* output) const
{
protocol::Value* value = get(name);
if (!value)
return false;
return value->asString(output);
}
DictionaryValue* DictionaryValue::getObject(const String& name) const
{
return DictionaryValue::cast(get(name));
}
protocol::ListValue* DictionaryValue::getArray(const String& name) const
{
return ListValue::cast(get(name));
}
protocol::Value* DictionaryValue::get(const String& name) const
{
Dictionary::const_iterator it = m_data.find(name);
if (it == m_data.end())
return nullptr;
return it->second.get();
}
DictionaryValue::Entry DictionaryValue::at(size_t index) const
{
const String key = m_order[index];
return std::make_pair(key, m_data.find(key)->second.get());
}
bool DictionaryValue::booleanProperty(const String& name, bool defaultValue) const
{
bool result = defaultValue;
getBoolean(name, &result);
return result;
}
int DictionaryValue::integerProperty(const String& name, int defaultValue) const
{
int result = defaultValue;
getInteger(name, &result);
return result;
}
double DictionaryValue::doubleProperty(const String& name, double defaultValue) const
{
double result = defaultValue;
getDouble(name, &result);
return result;
}
void DictionaryValue::remove(const String& name)
{
m_data.erase(name);
m_order.erase(std::remove(m_order.begin(), m_order.end(), name), m_order.end());
}
void DictionaryValue::AppendSerialized(std::vector<uint8_t>* bytes) const {
cbor::EnvelopeEncoder encoder;
encoder.EncodeStart(bytes);
bytes->push_back(cbor::EncodeIndefiniteLengthMapStart());
for (size_t i = 0; i < m_order.size(); ++i) {
const String& key = m_order[i];
Dictionary::const_iterator value = m_data.find(key);
DCHECK(value != m_data.cend() && value->second);
EncodeString(key, bytes);
value->second->AppendSerialized(bytes);
}
bytes->push_back(cbor::EncodeStop());
encoder.EncodeStop(bytes);
}
std::unique_ptr<Value> DictionaryValue::clone() const
{
std::unique_ptr<DictionaryValue> result = DictionaryValue::create();
for (size_t i = 0; i < m_order.size(); ++i) {
String key = m_order[i];
Dictionary::const_iterator value = m_data.find(key);
DCHECK(value != m_data.cend() && value->second);
result->setValue(key, value->second->clone());
}
return std::unique_ptr<Value>(result.release());
}
DictionaryValue::DictionaryValue()
: Value(TypeObject)
{
}
ListValue::~ListValue()
{
}
void ListValue::AppendSerialized(std::vector<uint8_t>* bytes) const {
cbor::EnvelopeEncoder encoder;
encoder.EncodeStart(bytes);
bytes->push_back(cbor::EncodeIndefiniteLengthArrayStart());
for (size_t i = 0; i < m_data.size(); ++i) {
m_data[i]->AppendSerialized(bytes);
}
bytes->push_back(cbor::EncodeStop());
encoder.EncodeStop(bytes);
}
std::unique_ptr<Value> ListValue::clone() const
{
std::unique_ptr<ListValue> result = ListValue::create();
for (const std::unique_ptr<protocol::Value>& value : m_data)
result->pushValue(value->clone());
return std::unique_ptr<Value>(result.release());
}
ListValue::ListValue()
: Value(TypeArray)
{
}
void ListValue::pushValue(std::unique_ptr<protocol::Value> value)
{
DCHECK(value);
m_data.push_back(std::move(value));
}
protocol::Value* ListValue::at(size_t index)
{
DCHECK_LT(index, m_data.size());
return m_data[index].get();
}
{% for namespace in config.protocol.namespace %}
} // namespace {{namespace}}
{% endfor %}