| //===- Lexer.cpp - C Language Family Lexer --------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Lexer and Token interfaces. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Lex/Lexer.h" |
| #include "UnicodeCharSets.h" |
| #include "clang/Basic/CharInfo.h" |
| #include "clang/Basic/IdentifierTable.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TokenKinds.h" |
| #include "clang/Lex/LexDiagnostic.h" |
| #include "clang/Lex/LiteralSupport.h" |
| #include "clang/Lex/MultipleIncludeOpt.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Lex/PreprocessorOptions.h" |
| #include "clang/Lex/Token.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/Basic/LLVM.h" |
| #include "clang/Basic/TokenKinds.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/ConvertUTF.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Support/NativeFormatting.h" |
| #include "llvm/Support/UnicodeCharRanges.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstring> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===// |
| // Token Class Implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// isObjCAtKeyword - Return true if we have an ObjC keyword identifier. |
| bool Token::isObjCAtKeyword(tok::ObjCKeywordKind objcKey) const { |
| if (isAnnotation()) |
| return false; |
| if (IdentifierInfo *II = getIdentifierInfo()) |
| return II->getObjCKeywordID() == objcKey; |
| return false; |
| } |
| |
| /// getObjCKeywordID - Return the ObjC keyword kind. |
| tok::ObjCKeywordKind Token::getObjCKeywordID() const { |
| if (isAnnotation()) |
| return tok::objc_not_keyword; |
| IdentifierInfo *specId = getIdentifierInfo(); |
| return specId ? specId->getObjCKeywordID() : tok::objc_not_keyword; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Lexer Class Implementation |
| //===----------------------------------------------------------------------===// |
| |
| void Lexer::anchor() {} |
| |
| void Lexer::InitLexer(const char *BufStart, const char *BufPtr, |
| const char *BufEnd) { |
| BufferStart = BufStart; |
| BufferPtr = BufPtr; |
| BufferEnd = BufEnd; |
| |
| assert(BufEnd[0] == 0 && |
| "We assume that the input buffer has a null character at the end" |
| " to simplify lexing!"); |
| |
| // Check whether we have a BOM in the beginning of the buffer. If yes - act |
| // accordingly. Right now we support only UTF-8 with and without BOM, so, just |
| // skip the UTF-8 BOM if it's present. |
| if (BufferStart == BufferPtr) { |
| // Determine the size of the BOM. |
| StringRef Buf(BufferStart, BufferEnd - BufferStart); |
| size_t BOMLength = llvm::StringSwitch<size_t>(Buf) |
| .StartsWith("\xEF\xBB\xBF", 3) // UTF-8 BOM |
| .Default(0); |
| |
| // Skip the BOM. |
| BufferPtr += BOMLength; |
| } |
| |
| Is_PragmaLexer = false; |
| CurrentConflictMarkerState = CMK_None; |
| |
| // Start of the file is a start of line. |
| IsAtStartOfLine = true; |
| IsAtPhysicalStartOfLine = true; |
| |
| HasLeadingSpace = false; |
| HasLeadingEmptyMacro = false; |
| |
| // We are not after parsing a #. |
| ParsingPreprocessorDirective = false; |
| |
| // We are not after parsing #include. |
| ParsingFilename = false; |
| |
| // We are not in raw mode. Raw mode disables diagnostics and interpretation |
| // of tokens (e.g. identifiers, thus disabling macro expansion). It is used |
| // to quickly lex the tokens of the buffer, e.g. when handling a "#if 0" block |
| // or otherwise skipping over tokens. |
| LexingRawMode = false; |
| |
| // Default to not keeping comments. |
| ExtendedTokenMode = 0; |
| } |
| |
| /// Lexer constructor - Create a new lexer object for the specified buffer |
| /// with the specified preprocessor managing the lexing process. This lexer |
| /// assumes that the associated file buffer and Preprocessor objects will |
| /// outlive it, so it doesn't take ownership of either of them. |
| Lexer::Lexer(FileID FID, const llvm::MemoryBuffer *InputFile, Preprocessor &PP) |
| : PreprocessorLexer(&PP, FID), |
| FileLoc(PP.getSourceManager().getLocForStartOfFile(FID)), |
| LangOpts(PP.getLangOpts()) { |
| InitLexer(InputFile->getBufferStart(), InputFile->getBufferStart(), |
| InputFile->getBufferEnd()); |
| |
| resetExtendedTokenMode(); |
| } |
| |
| /// Lexer constructor - Create a new raw lexer object. This object is only |
| /// suitable for calls to 'LexFromRawLexer'. This lexer assumes that the text |
| /// range will outlive it, so it doesn't take ownership of it. |
| Lexer::Lexer(SourceLocation fileloc, const LangOptions &langOpts, |
| const char *BufStart, const char *BufPtr, const char *BufEnd) |
| : FileLoc(fileloc), LangOpts(langOpts) { |
| InitLexer(BufStart, BufPtr, BufEnd); |
| |
| // We *are* in raw mode. |
| LexingRawMode = true; |
| } |
| |
| /// Lexer constructor - Create a new raw lexer object. This object is only |
| /// suitable for calls to 'LexFromRawLexer'. This lexer assumes that the text |
| /// range will outlive it, so it doesn't take ownership of it. |
| Lexer::Lexer(FileID FID, const llvm::MemoryBuffer *FromFile, |
| const SourceManager &SM, const LangOptions &langOpts) |
| : Lexer(SM.getLocForStartOfFile(FID), langOpts, FromFile->getBufferStart(), |
| FromFile->getBufferStart(), FromFile->getBufferEnd()) {} |
| |
| void Lexer::resetExtendedTokenMode() { |
| assert(PP && "Cannot reset token mode without a preprocessor"); |
| if (LangOpts.TraditionalCPP) |
| SetKeepWhitespaceMode(true); |
| else |
| SetCommentRetentionState(PP->getCommentRetentionState()); |
| } |
| |
| /// Create_PragmaLexer: Lexer constructor - Create a new lexer object for |
| /// _Pragma expansion. This has a variety of magic semantics that this method |
| /// sets up. It returns a new'd Lexer that must be delete'd when done. |
| /// |
| /// On entrance to this routine, TokStartLoc is a macro location which has a |
| /// spelling loc that indicates the bytes to be lexed for the token and an |
| /// expansion location that indicates where all lexed tokens should be |
| /// "expanded from". |
| /// |
| /// TODO: It would really be nice to make _Pragma just be a wrapper around a |
| /// normal lexer that remaps tokens as they fly by. This would require making |
| /// Preprocessor::Lex virtual. Given that, we could just dump in a magic lexer |
| /// interface that could handle this stuff. This would pull GetMappedTokenLoc |
| /// out of the critical path of the lexer! |
| /// |
| Lexer *Lexer::Create_PragmaLexer(SourceLocation SpellingLoc, |
| SourceLocation ExpansionLocStart, |
| SourceLocation ExpansionLocEnd, |
| unsigned TokLen, Preprocessor &PP) { |
| SourceManager &SM = PP.getSourceManager(); |
| |
| // Create the lexer as if we were going to lex the file normally. |
| FileID SpellingFID = SM.getFileID(SpellingLoc); |
| const llvm::MemoryBuffer *InputFile = SM.getBuffer(SpellingFID); |
| Lexer *L = new Lexer(SpellingFID, InputFile, PP); |
| |
| // Now that the lexer is created, change the start/end locations so that we |
| // just lex the subsection of the file that we want. This is lexing from a |
| // scratch buffer. |
| const char *StrData = SM.getCharacterData(SpellingLoc); |
| |
| L->BufferPtr = StrData; |
| L->BufferEnd = StrData+TokLen; |
| assert(L->BufferEnd[0] == 0 && "Buffer is not nul terminated!"); |
| |
| // Set the SourceLocation with the remapping information. This ensures that |
| // GetMappedTokenLoc will remap the tokens as they are lexed. |
| L->FileLoc = SM.createExpansionLoc(SM.getLocForStartOfFile(SpellingFID), |
| ExpansionLocStart, |
| ExpansionLocEnd, TokLen); |
| |
| // Ensure that the lexer thinks it is inside a directive, so that end \n will |
| // return an EOD token. |
| L->ParsingPreprocessorDirective = true; |
| |
| // This lexer really is for _Pragma. |
| L->Is_PragmaLexer = true; |
| return L; |
| } |
| |
| template <typename T> static void StringifyImpl(T &Str, char Quote) { |
| typename T::size_type i = 0, e = Str.size(); |
| while (i < e) { |
| if (Str[i] == '\\' || Str[i] == Quote) { |
| Str.insert(Str.begin() + i, '\\'); |
| i += 2; |
| ++e; |
| } else if (Str[i] == '\n' || Str[i] == '\r') { |
| // Replace '\r\n' and '\n\r' to '\\' followed by 'n'. |
| if ((i < e - 1) && (Str[i + 1] == '\n' || Str[i + 1] == '\r') && |
| Str[i] != Str[i + 1]) { |
| Str[i] = '\\'; |
| Str[i + 1] = 'n'; |
| } else { |
| // Replace '\n' and '\r' to '\\' followed by 'n'. |
| Str[i] = '\\'; |
| Str.insert(Str.begin() + i + 1, 'n'); |
| ++e; |
| } |
| i += 2; |
| } else |
| ++i; |
| } |
| } |
| |
| std::string Lexer::Stringify(StringRef Str, bool Charify) { |
| std::string Result = Str; |
| char Quote = Charify ? '\'' : '"'; |
| StringifyImpl(Result, Quote); |
| return Result; |
| } |
| |
| void Lexer::Stringify(SmallVectorImpl<char> &Str) { StringifyImpl(Str, '"'); } |
| |
| //===----------------------------------------------------------------------===// |
| // Token Spelling |
| //===----------------------------------------------------------------------===// |
| |
| /// Slow case of getSpelling. Extract the characters comprising the |
| /// spelling of this token from the provided input buffer. |
| static size_t getSpellingSlow(const Token &Tok, const char *BufPtr, |
| const LangOptions &LangOpts, char *Spelling) { |
| assert(Tok.needsCleaning() && "getSpellingSlow called on simple token"); |
| |
| size_t Length = 0; |
| const char *BufEnd = BufPtr + Tok.getLength(); |
| |
| if (tok::isStringLiteral(Tok.getKind())) { |
| // Munch the encoding-prefix and opening double-quote. |
| while (BufPtr < BufEnd) { |
| unsigned Size; |
| Spelling[Length++] = Lexer::getCharAndSizeNoWarn(BufPtr, Size, LangOpts); |
| BufPtr += Size; |
| |
| if (Spelling[Length - 1] == '"') |
| break; |
| } |
| |
| // Raw string literals need special handling; trigraph expansion and line |
| // splicing do not occur within their d-char-sequence nor within their |
| // r-char-sequence. |
| if (Length >= 2 && |
| Spelling[Length - 2] == 'R' && Spelling[Length - 1] == '"') { |
| // Search backwards from the end of the token to find the matching closing |
| // quote. |
| const char *RawEnd = BufEnd; |
| do --RawEnd; while (*RawEnd != '"'); |
| size_t RawLength = RawEnd - BufPtr + 1; |
| |
| // Everything between the quotes is included verbatim in the spelling. |
| memcpy(Spelling + Length, BufPtr, RawLength); |
| Length += RawLength; |
| BufPtr += RawLength; |
| |
| // The rest of the token is lexed normally. |
| } |
| } |
| |
| while (BufPtr < BufEnd) { |
| unsigned Size; |
| Spelling[Length++] = Lexer::getCharAndSizeNoWarn(BufPtr, Size, LangOpts); |
| BufPtr += Size; |
| } |
| |
| assert(Length < Tok.getLength() && |
| "NeedsCleaning flag set on token that didn't need cleaning!"); |
| return Length; |
| } |
| |
| /// getSpelling() - Return the 'spelling' of this token. The spelling of a |
| /// token are the characters used to represent the token in the source file |
| /// after trigraph expansion and escaped-newline folding. In particular, this |
| /// wants to get the true, uncanonicalized, spelling of things like digraphs |
| /// UCNs, etc. |
| StringRef Lexer::getSpelling(SourceLocation loc, |
| SmallVectorImpl<char> &buffer, |
| const SourceManager &SM, |
| const LangOptions &options, |
| bool *invalid) { |
| // Break down the source location. |
| std::pair<FileID, unsigned> locInfo = SM.getDecomposedLoc(loc); |
| |
| // Try to the load the file buffer. |
| bool invalidTemp = false; |
| StringRef file = SM.getBufferData(locInfo.first, &invalidTemp); |
| if (invalidTemp) { |
| if (invalid) *invalid = true; |
| return {}; |
| } |
| |
| const char *tokenBegin = file.data() + locInfo.second; |
| |
| // Lex from the start of the given location. |
| Lexer lexer(SM.getLocForStartOfFile(locInfo.first), options, |
| file.begin(), tokenBegin, file.end()); |
| Token token; |
| lexer.LexFromRawLexer(token); |
| |
| unsigned length = token.getLength(); |
| |
| // Common case: no need for cleaning. |
| if (!token.needsCleaning()) |
| return StringRef(tokenBegin, length); |
| |
| // Hard case, we need to relex the characters into the string. |
| buffer.resize(length); |
| buffer.resize(getSpellingSlow(token, tokenBegin, options, buffer.data())); |
| return StringRef(buffer.data(), buffer.size()); |
| } |
| |
| /// getSpelling() - Return the 'spelling' of this token. The spelling of a |
| /// token are the characters used to represent the token in the source file |
| /// after trigraph expansion and escaped-newline folding. In particular, this |
| /// wants to get the true, uncanonicalized, spelling of things like digraphs |
| /// UCNs, etc. |
| std::string Lexer::getSpelling(const Token &Tok, const SourceManager &SourceMgr, |
| const LangOptions &LangOpts, bool *Invalid) { |
| assert((int)Tok.getLength() >= 0 && "Token character range is bogus!"); |
| |
| bool CharDataInvalid = false; |
| const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation(), |
| &CharDataInvalid); |
| if (Invalid) |
| *Invalid = CharDataInvalid; |
| if (CharDataInvalid) |
| return {}; |
| |
| // If this token contains nothing interesting, return it directly. |
| if (!Tok.needsCleaning()) |
| return std::string(TokStart, TokStart + Tok.getLength()); |
| |
| std::string Result; |
| Result.resize(Tok.getLength()); |
| Result.resize(getSpellingSlow(Tok, TokStart, LangOpts, &*Result.begin())); |
| return Result; |
| } |
| |
| /// getSpelling - This method is used to get the spelling of a token into a |
| /// preallocated buffer, instead of as an std::string. The caller is required |
| /// to allocate enough space for the token, which is guaranteed to be at least |
| /// Tok.getLength() bytes long. The actual length of the token is returned. |
| /// |
| /// Note that this method may do two possible things: it may either fill in |
| /// the buffer specified with characters, or it may *change the input pointer* |
| /// to point to a constant buffer with the data already in it (avoiding a |
| /// copy). The caller is not allowed to modify the returned buffer pointer |
| /// if an internal buffer is returned. |
| unsigned Lexer::getSpelling(const Token &Tok, const char *&Buffer, |
| const SourceManager &SourceMgr, |
| const LangOptions &LangOpts, bool *Invalid) { |
| assert((int)Tok.getLength() >= 0 && "Token character range is bogus!"); |
| |
| const char *TokStart = nullptr; |
| // NOTE: this has to be checked *before* testing for an IdentifierInfo. |
| if (Tok.is(tok::raw_identifier)) |
| TokStart = Tok.getRawIdentifier().data(); |
| else if (!Tok.hasUCN()) { |
| if (const IdentifierInfo *II = Tok.getIdentifierInfo()) { |
| // Just return the string from the identifier table, which is very quick. |
| Buffer = II->getNameStart(); |
| return II->getLength(); |
| } |
| } |
| |
| // NOTE: this can be checked even after testing for an IdentifierInfo. |
| if (Tok.isLiteral()) |
| TokStart = Tok.getLiteralData(); |
| |
| if (!TokStart) { |
| // Compute the start of the token in the input lexer buffer. |
| bool CharDataInvalid = false; |
| TokStart = SourceMgr.getCharacterData(Tok.getLocation(), &CharDataInvalid); |
| if (Invalid) |
| *Invalid = CharDataInvalid; |
| if (CharDataInvalid) { |
| Buffer = ""; |
| return 0; |
| } |
| } |
| |
| // If this token contains nothing interesting, return it directly. |
| if (!Tok.needsCleaning()) { |
| Buffer = TokStart; |
| return Tok.getLength(); |
| } |
| |
| // Otherwise, hard case, relex the characters into the string. |
| return getSpellingSlow(Tok, TokStart, LangOpts, const_cast<char*>(Buffer)); |
| } |
| |
| /// MeasureTokenLength - Relex the token at the specified location and return |
| /// its length in bytes in the input file. If the token needs cleaning (e.g. |
| /// includes a trigraph or an escaped newline) then this count includes bytes |
| /// that are part of that. |
| unsigned Lexer::MeasureTokenLength(SourceLocation Loc, |
| const SourceManager &SM, |
| const LangOptions &LangOpts) { |
| Token TheTok; |
| if (getRawToken(Loc, TheTok, SM, LangOpts)) |
| return 0; |
| return TheTok.getLength(); |
| } |
| |
| /// Relex the token at the specified location. |
| /// \returns true if there was a failure, false on success. |
| bool Lexer::getRawToken(SourceLocation Loc, Token &Result, |
| const SourceManager &SM, |
| const LangOptions &LangOpts, |
| bool IgnoreWhiteSpace) { |
| // TODO: this could be special cased for common tokens like identifiers, ')', |
| // etc to make this faster, if it mattered. Just look at StrData[0] to handle |
| // all obviously single-char tokens. This could use |
| // Lexer::isObviouslySimpleCharacter for example to handle identifiers or |
| // something. |
| |
| // If this comes from a macro expansion, we really do want the macro name, not |
| // the token this macro expanded to. |
| Loc = SM.getExpansionLoc(Loc); |
| std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); |
| bool Invalid = false; |
| StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); |
| if (Invalid) |
| return true; |
| |
| const char *StrData = Buffer.data()+LocInfo.second; |
| |
| if (!IgnoreWhiteSpace && isWhitespace(StrData[0])) |
| return true; |
| |
| // Create a lexer starting at the beginning of this token. |
| Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts, |
| Buffer.begin(), StrData, Buffer.end()); |
| TheLexer.SetCommentRetentionState(true); |
| TheLexer.LexFromRawLexer(Result); |
| return false; |
| } |
| |
| /// Returns the pointer that points to the beginning of line that contains |
| /// the given offset, or null if the offset if invalid. |
| static const char *findBeginningOfLine(StringRef Buffer, unsigned Offset) { |
| const char *BufStart = Buffer.data(); |
| if (Offset >= Buffer.size()) |
| return nullptr; |
| |
| const char *LexStart = BufStart + Offset; |
| for (; LexStart != BufStart; --LexStart) { |
| if (isVerticalWhitespace(LexStart[0]) && |
| !Lexer::isNewLineEscaped(BufStart, LexStart)) { |
| // LexStart should point at first character of logical line. |
| ++LexStart; |
| break; |
| } |
| } |
| return LexStart; |
| } |
| |
| static SourceLocation getBeginningOfFileToken(SourceLocation Loc, |
| const SourceManager &SM, |
| const LangOptions &LangOpts) { |
| assert(Loc.isFileID()); |
| std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); |
| if (LocInfo.first.isInvalid()) |
| return Loc; |
| |
| bool Invalid = false; |
| StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); |
| if (Invalid) |
| return Loc; |
| |
| // Back up from the current location until we hit the beginning of a line |
| // (or the buffer). We'll relex from that point. |
| const char *StrData = Buffer.data() + LocInfo.second; |
| const char *LexStart = findBeginningOfLine(Buffer, LocInfo.second); |
| if (!LexStart || LexStart == StrData) |
| return Loc; |
| |
| // Create a lexer starting at the beginning of this token. |
| SourceLocation LexerStartLoc = Loc.getLocWithOffset(-LocInfo.second); |
| Lexer TheLexer(LexerStartLoc, LangOpts, Buffer.data(), LexStart, |
| Buffer.end()); |
| TheLexer.SetCommentRetentionState(true); |
| |
| // Lex tokens until we find the token that contains the source location. |
| Token TheTok; |
| do { |
| TheLexer.LexFromRawLexer(TheTok); |
| |
| if (TheLexer.getBufferLocation() > StrData) { |
| // Lexing this token has taken the lexer past the source location we're |
| // looking for. If the current token encompasses our source location, |
| // return the beginning of that token. |
| if (TheLexer.getBufferLocation() - TheTok.getLength() <= StrData) |
| return TheTok.getLocation(); |
| |
| // We ended up skipping over the source location entirely, which means |
| // that it points into whitespace. We're done here. |
| break; |
| } |
| } while (TheTok.getKind() != tok::eof); |
| |
| // We've passed our source location; just return the original source location. |
| return Loc; |
| } |
| |
| SourceLocation Lexer::GetBeginningOfToken(SourceLocation Loc, |
| const SourceManager &SM, |
| const LangOptions &LangOpts) { |
| if (Loc.isFileID()) |
| return getBeginningOfFileToken(Loc, SM, LangOpts); |
| |
| if (!SM.isMacroArgExpansion(Loc)) |
| return Loc; |
| |
| SourceLocation FileLoc = SM.getSpellingLoc(Loc); |
| SourceLocation BeginFileLoc = getBeginningOfFileToken(FileLoc, SM, LangOpts); |
| std::pair<FileID, unsigned> FileLocInfo = SM.getDecomposedLoc(FileLoc); |
| std::pair<FileID, unsigned> BeginFileLocInfo = |
| SM.getDecomposedLoc(BeginFileLoc); |
| assert(FileLocInfo.first == BeginFileLocInfo.first && |
| FileLocInfo.second >= BeginFileLocInfo.second); |
| return Loc.getLocWithOffset(BeginFileLocInfo.second - FileLocInfo.second); |
| } |
| |
| namespace { |
| |
| enum PreambleDirectiveKind { |
| PDK_Skipped, |
| PDK_Unknown |
| }; |
| |
| } // namespace |
| |
| PreambleBounds Lexer::ComputePreamble(StringRef Buffer, |
| const LangOptions &LangOpts, |
| unsigned MaxLines) { |
| // Create a lexer starting at the beginning of the file. Note that we use a |
| // "fake" file source location at offset 1 so that the lexer will track our |
| // position within the file. |
| const unsigned StartOffset = 1; |
| SourceLocation FileLoc = SourceLocation::getFromRawEncoding(StartOffset); |
| Lexer TheLexer(FileLoc, LangOpts, Buffer.begin(), Buffer.begin(), |
| Buffer.end()); |
| TheLexer.SetCommentRetentionState(true); |
| |
| bool InPreprocessorDirective = false; |
| Token TheTok; |
| SourceLocation ActiveCommentLoc; |
| |
| unsigned MaxLineOffset = 0; |
| if (MaxLines) { |
| const char *CurPtr = Buffer.begin(); |
| unsigned CurLine = 0; |
| while (CurPtr != Buffer.end()) { |
| char ch = *CurPtr++; |
| if (ch == '\n') { |
| ++CurLine; |
| if (CurLine == MaxLines) |
| break; |
| } |
| } |
| if (CurPtr != Buffer.end()) |
| MaxLineOffset = CurPtr - Buffer.begin(); |
| } |
| |
| do { |
| TheLexer.LexFromRawLexer(TheTok); |
| |
| if (InPreprocessorDirective) { |
| // If we've hit the end of the file, we're done. |
| if (TheTok.getKind() == tok::eof) { |
| break; |
| } |
| |
| // If we haven't hit the end of the preprocessor directive, skip this |
| // token. |
| if (!TheTok.isAtStartOfLine()) |
| continue; |
| |
| // We've passed the end of the preprocessor directive, and will look |
| // at this token again below. |
| InPreprocessorDirective = false; |
| } |
| |
| // Keep track of the # of lines in the preamble. |
| if (TheTok.isAtStartOfLine()) { |
| unsigned TokOffset = TheTok.getLocation().getRawEncoding() - StartOffset; |
| |
| // If we were asked to limit the number of lines in the preamble, |
| // and we're about to exceed that limit, we're done. |
| if (MaxLineOffset && TokOffset >= MaxLineOffset) |
| break; |
| } |
| |
| // Comments are okay; skip over them. |
| if (TheTok.getKind() == tok::comment) { |
| if (ActiveCommentLoc.isInvalid()) |
| ActiveCommentLoc = TheTok.getLocation(); |
| continue; |
| } |
| |
| if (TheTok.isAtStartOfLine() && TheTok.getKind() == tok::hash) { |
| // This is the start of a preprocessor directive. |
| Token HashTok = TheTok; |
| InPreprocessorDirective = true; |
| ActiveCommentLoc = SourceLocation(); |
| |
| // Figure out which directive this is. Since we're lexing raw tokens, |
| // we don't have an identifier table available. Instead, just look at |
| // the raw identifier to recognize and categorize preprocessor directives. |
| TheLexer.LexFromRawLexer(TheTok); |
| if (TheTok.getKind() == tok::raw_identifier && !TheTok.needsCleaning()) { |
| StringRef Keyword = TheTok.getRawIdentifier(); |
| PreambleDirectiveKind PDK |
| = llvm::StringSwitch<PreambleDirectiveKind>(Keyword) |
| .Case("include", PDK_Skipped) |
| .Case("__include_macros", PDK_Skipped) |
| .Case("define", PDK_Skipped) |
| .Case("undef", PDK_Skipped) |
| .Case("line", PDK_Skipped) |
| .Case("error", PDK_Skipped) |
| .Case("pragma", PDK_Skipped) |
| .Case("import", PDK_Skipped) |
| .Case("include_next", PDK_Skipped) |
| .Case("warning", PDK_Skipped) |
| .Case("ident", PDK_Skipped) |
| .Case("sccs", PDK_Skipped) |
| .Case("assert", PDK_Skipped) |
| .Case("unassert", PDK_Skipped) |
| .Case("if", PDK_Skipped) |
| .Case("ifdef", PDK_Skipped) |
| .Case("ifndef", PDK_Skipped) |
| .Case("elif", PDK_Skipped) |
| .Case("else", PDK_Skipped) |
| .Case("endif", PDK_Skipped) |
| .Default(PDK_Unknown); |
| |
| switch (PDK) { |
| case PDK_Skipped: |
| continue; |
| |
| case PDK_Unknown: |
| // We don't know what this directive is; stop at the '#'. |
| break; |
| } |
| } |
| |
| // We only end up here if we didn't recognize the preprocessor |
| // directive or it was one that can't occur in the preamble at this |
| // point. Roll back the current token to the location of the '#'. |
| InPreprocessorDirective = false; |
| TheTok = HashTok; |
| } |
| |
| // We hit a token that we don't recognize as being in the |
| // "preprocessing only" part of the file, so we're no longer in |
| // the preamble. |
| break; |
| } while (true); |
| |
| SourceLocation End; |
| if (ActiveCommentLoc.isValid()) |
| End = ActiveCommentLoc; // don't truncate a decl comment. |
| else |
| End = TheTok.getLocation(); |
| |
| return PreambleBounds(End.getRawEncoding() - FileLoc.getRawEncoding(), |
| TheTok.isAtStartOfLine()); |
| } |
| |
| unsigned Lexer::getTokenPrefixLength(SourceLocation TokStart, unsigned CharNo, |
| const SourceManager &SM, |
| const LangOptions &LangOpts) { |
| // Figure out how many physical characters away the specified expansion |
| // character is. This needs to take into consideration newlines and |
| // trigraphs. |
| bool Invalid = false; |
| const char *TokPtr = SM.getCharacterData(TokStart, &Invalid); |
| |
| // If they request the first char of the token, we're trivially done. |
| if (Invalid || (CharNo == 0 && Lexer::isObviouslySimpleCharacter(*TokPtr))) |
| return 0; |
| |
| unsigned PhysOffset = 0; |
| |
| // The usual case is that tokens don't contain anything interesting. Skip |
| // over the uninteresting characters. If a token only consists of simple |
| // chars, this method is extremely fast. |
| while (Lexer::isObviouslySimpleCharacter(*TokPtr)) { |
| if (CharNo == 0) |
| return PhysOffset; |
| ++TokPtr; |
| --CharNo; |
| ++PhysOffset; |
| } |
| |
| // If we have a character that may be a trigraph or escaped newline, use a |
| // lexer to parse it correctly. |
| for (; CharNo; --CharNo) { |
| unsigned Size; |
| Lexer::getCharAndSizeNoWarn(TokPtr, Size, LangOpts); |
| TokPtr += Size; |
| PhysOffset += Size; |
| } |
| |
| // Final detail: if we end up on an escaped newline, we want to return the |
| // location of the actual byte of the token. For example foo\<newline>bar |
| // advanced by 3 should return the location of b, not of \\. One compounding |
| // detail of this is that the escape may be made by a trigraph. |
| if (!Lexer::isObviouslySimpleCharacter(*TokPtr)) |
| PhysOffset += Lexer::SkipEscapedNewLines(TokPtr)-TokPtr; |
| |
| return PhysOffset; |
| } |
| |
| /// Computes the source location just past the end of the |
| /// token at this source location. |
| /// |
| /// This routine can be used to produce a source location that |
| /// points just past the end of the token referenced by \p Loc, and |
| /// is generally used when a diagnostic needs to point just after a |
| /// token where it expected something different that it received. If |
| /// the returned source location would not be meaningful (e.g., if |
| /// it points into a macro), this routine returns an invalid |
| /// source location. |
| /// |
| /// \param Offset an offset from the end of the token, where the source |
| /// location should refer to. The default offset (0) produces a source |
| /// location pointing just past the end of the token; an offset of 1 produces |
| /// a source location pointing to the last character in the token, etc. |
| SourceLocation Lexer::getLocForEndOfToken(SourceLocation Loc, unsigned Offset, |
| const SourceManager &SM, |
| const LangOptions &LangOpts) { |
| if (Loc.isInvalid()) |
| return {}; |
| |
| if (Loc.isMacroID()) { |
| if (Offset > 0 || !isAtEndOfMacroExpansion(Loc, SM, LangOpts, &Loc)) |
| return {}; // Points inside the macro expansion. |
| } |
| |
| unsigned Len = Lexer::MeasureTokenLength(Loc, SM, LangOpts); |
| if (Len > Offset) |
| Len = Len - Offset; |
| else |
| return Loc; |
| |
| return Loc.getLocWithOffset(Len); |
| } |
| |
| /// Returns true if the given MacroID location points at the first |
| /// token of the macro expansion. |
| bool Lexer::isAtStartOfMacroExpansion(SourceLocation loc, |
| const SourceManager &SM, |
| const LangOptions &LangOpts, |
| SourceLocation *MacroBegin) { |
| assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc"); |
| |
| SourceLocation expansionLoc; |
| if (!SM.isAtStartOfImmediateMacroExpansion(loc, &expansionLoc)) |
| return false; |
| |
| if (expansionLoc.isFileID()) { |
| // No other macro expansions, this is the first. |
| if (MacroBegin) |
| *MacroBegin = expansionLoc; |
| return true; |
| } |
| |
| return isAtStartOfMacroExpansion(expansionLoc, SM, LangOpts, MacroBegin); |
| } |
| |
| /// Returns true if the given MacroID location points at the last |
| /// token of the macro expansion. |
| bool Lexer::isAtEndOfMacroExpansion(SourceLocation loc, |
| const SourceManager &SM, |
| const LangOptions &LangOpts, |
| SourceLocation *MacroEnd) { |
| assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc"); |
| |
| SourceLocation spellLoc = SM.getSpellingLoc(loc); |
| unsigned tokLen = MeasureTokenLength(spellLoc, SM, LangOpts); |
| if (tokLen == 0) |
| return false; |
| |
| SourceLocation afterLoc = loc.getLocWithOffset(tokLen); |
| SourceLocation expansionLoc; |
| if (!SM.isAtEndOfImmediateMacroExpansion(afterLoc, &expansionLoc)) |
| return false; |
| |
| if (expansionLoc.isFileID()) { |
| // No other macro expansions. |
| if (MacroEnd) |
| *MacroEnd = expansionLoc; |
| return true; |
| } |
| |
| return isAtEndOfMacroExpansion(expansionLoc, SM, LangOpts, MacroEnd); |
| } |
| |
| static CharSourceRange makeRangeFromFileLocs(CharSourceRange Range, |
| const SourceManager &SM, |
| const LangOptions &LangOpts) { |
| SourceLocation Begin = Range.getBegin(); |
| SourceLocation End = Range.getEnd(); |
| assert(Begin.isFileID() && End.isFileID()); |
| if (Range.isTokenRange()) { |
| End = Lexer::getLocForEndOfToken(End, 0, SM,LangOpts); |
| if (End.isInvalid()) |
| return {}; |
| } |
| |
| // Break down the source locations. |
| FileID FID; |
| unsigned BeginOffs; |
| std::tie(FID, BeginOffs) = SM.getDecomposedLoc(Begin); |
| if (FID.isInvalid()) |
| return {}; |
| |
| unsigned EndOffs; |
| if (!SM.isInFileID(End, FID, &EndOffs) || |
| BeginOffs > EndOffs) |
| return {}; |
| |
| return CharSourceRange::getCharRange(Begin, End); |
| } |
| |
| CharSourceRange Lexer::makeFileCharRange(CharSourceRange Range, |
| const SourceManager &SM, |
| const LangOptions &LangOpts) { |
| SourceLocation Begin = Range.getBegin(); |
| SourceLocation End = Range.getEnd(); |
| if (Begin.isInvalid() || End.isInvalid()) |
| return {}; |
| |
| if (Begin.isFileID() && End.isFileID()) |
| return makeRangeFromFileLocs(Range, SM, LangOpts); |
| |
| if (Begin.isMacroID() && End.isFileID()) { |
| if (!isAtStartOfMacroExpansion(Begin, SM, LangOpts, &Begin)) |
| return {}; |
| Range.setBegin(Begin); |
| return makeRangeFromFileLocs(Range, SM, LangOpts); |
| } |
| |
| if (Begin.isFileID() && End.isMacroID()) { |
| if ((Range.isTokenRange() && !isAtEndOfMacroExpansion(End, SM, LangOpts, |
| &End)) || |
| (Range.isCharRange() && !isAtStartOfMacroExpansion(End, SM, LangOpts, |
| &End))) |
| return {}; |
| Range.setEnd(End); |
| return makeRangeFromFileLocs(Range, SM, LangOpts); |
| } |
| |
| assert(Begin.isMacroID() && End.isMacroID()); |
| SourceLocation MacroBegin, MacroEnd; |
| if (isAtStartOfMacroExpansion(Begin, SM, LangOpts, &MacroBegin) && |
| ((Range.isTokenRange() && isAtEndOfMacroExpansion(End, SM, LangOpts, |
| &MacroEnd)) || |
| (Range.isCharRange() && isAtStartOfMacroExpansion(End, SM, LangOpts, |
| &MacroEnd)))) { |
| Range.setBegin(MacroBegin); |
| Range.setEnd(MacroEnd); |
| return makeRangeFromFileLocs(Range, SM, LangOpts); |
| } |
| |
| bool Invalid = false; |
| const SrcMgr::SLocEntry &BeginEntry = SM.getSLocEntry(SM.getFileID(Begin), |
| &Invalid); |
| if (Invalid) |
| return {}; |
| |
| if (BeginEntry.getExpansion().isMacroArgExpansion()) { |
| const SrcMgr::SLocEntry &EndEntry = SM.getSLocEntry(SM.getFileID(End), |
| &Invalid); |
| if (Invalid) |
| return {}; |
| |
| if (EndEntry.getExpansion().isMacroArgExpansion() && |
| BeginEntry.getExpansion().getExpansionLocStart() == |
| EndEntry.getExpansion().getExpansionLocStart()) { |
| Range.setBegin(SM.getImmediateSpellingLoc(Begin)); |
| Range.setEnd(SM.getImmediateSpellingLoc(End)); |
| return makeFileCharRange(Range, SM, LangOpts); |
| } |
| } |
| |
| return {}; |
| } |
| |
| StringRef Lexer::getSourceText(CharSourceRange Range, |
| const SourceManager &SM, |
| const LangOptions &LangOpts, |
| bool *Invalid) { |
| Range = makeFileCharRange(Range, SM, LangOpts); |
| if (Range.isInvalid()) { |
| if (Invalid) *Invalid = true; |
| return {}; |
| } |
| |
| // Break down the source location. |
| std::pair<FileID, unsigned> beginInfo = SM.getDecomposedLoc(Range.getBegin()); |
| if (beginInfo.first.isInvalid()) { |
| if (Invalid) *Invalid = true; |
| return {}; |
| } |
| |
| unsigned EndOffs; |
| if (!SM.isInFileID(Range.getEnd(), beginInfo.first, &EndOffs) || |
| beginInfo.second > EndOffs) { |
| if (Invalid) *Invalid = true; |
| return {}; |
| } |
| |
| // Try to the load the file buffer. |
| bool invalidTemp = false; |
| StringRef file = SM.getBufferData(beginInfo.first, &invalidTemp); |
| if (invalidTemp) { |
| if (Invalid) *Invalid = true; |
| return {}; |
| } |
| |
| if (Invalid) *Invalid = false; |
| return file.substr(beginInfo.second, EndOffs - beginInfo.second); |
| } |
| |
| StringRef Lexer::getImmediateMacroName(SourceLocation Loc, |
| const SourceManager &SM, |
| const LangOptions &LangOpts) { |
| assert(Loc.isMacroID() && "Only reasonable to call this on macros"); |
| |
| // Find the location of the immediate macro expansion. |
| while (true) { |
| FileID FID = SM.getFileID(Loc); |
| const SrcMgr::SLocEntry *E = &SM.getSLocEntry(FID); |
| const SrcMgr::ExpansionInfo &Expansion = E->getExpansion(); |
| Loc = Expansion.getExpansionLocStart(); |
| if (!Expansion.isMacroArgExpansion()) |
| break; |
| |
| // For macro arguments we need to check that the argument did not come |
| // from an inner macro, e.g: "MAC1( MAC2(foo) )" |
| |
| // Loc points to the argument id of the macro definition, move to the |
| // macro expansion. |
| Loc = SM.getImmediateExpansionRange(Loc).getBegin(); |
| SourceLocation SpellLoc = Expansion.getSpellingLoc(); |
| if (SpellLoc.isFileID()) |
| break; // No inner macro. |
| |
| // If spelling location resides in the same FileID as macro expansion |
| // location, it means there is no inner macro. |
| FileID MacroFID = SM.getFileID(Loc); |
| if (SM.isInFileID(SpellLoc, MacroFID)) |
| break; |
| |
| // Argument came from inner macro. |
| Loc = SpellLoc; |
| } |
| |
| // Find the spelling location of the start of the non-argument expansion |
| // range. This is where the macro name was spelled in order to begin |
| // expanding this macro. |
| Loc = SM.getSpellingLoc(Loc); |
| |
| // Dig out the buffer where the macro name was spelled and the extents of the |
| // name so that we can render it into the expansion note. |
| std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc); |
| unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts); |
| StringRef ExpansionBuffer = SM.getBufferData(ExpansionInfo.first); |
| return ExpansionBuffer.substr(ExpansionInfo.second, MacroTokenLength); |
| } |
| |
| StringRef Lexer::getImmediateMacroNameForDiagnostics( |
| SourceLocation Loc, const SourceManager &SM, const LangOptions &LangOpts) { |
| assert(Loc.isMacroID() && "Only reasonable to call this on macros"); |
| // Walk past macro argument expanions. |
| while (SM.isMacroArgExpansion(Loc)) |
| Loc = SM.getImmediateExpansionRange(Loc).getBegin(); |
| |
| // If the macro's spelling has no FileID, then it's actually a token paste |
| // or stringization (or similar) and not a macro at all. |
| if (!SM.getFileEntryForID(SM.getFileID(SM.getSpellingLoc(Loc)))) |
| return {}; |
| |
| // Find the spelling location of the start of the non-argument expansion |
| // range. This is where the macro name was spelled in order to begin |
| // expanding this macro. |
| Loc = SM.getSpellingLoc(SM.getImmediateExpansionRange(Loc).getBegin()); |
| |
| // Dig out the buffer where the macro name was spelled and the extents of the |
| // name so that we can render it into the expansion note. |
| std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc); |
| unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts); |
| StringRef ExpansionBuffer = SM.getBufferData(ExpansionInfo.first); |
| return ExpansionBuffer.substr(ExpansionInfo.second, MacroTokenLength); |
| } |
| |
| bool Lexer::isIdentifierBodyChar(char c, const LangOptions &LangOpts) { |
| return isIdentifierBody(c, LangOpts.DollarIdents); |
| } |
| |
| bool Lexer::isNewLineEscaped(const char *BufferStart, const char *Str) { |
| assert(isVerticalWhitespace(Str[0])); |
| if (Str - 1 < BufferStart) |
| return false; |
| |
| if ((Str[0] == '\n' && Str[-1] == '\r') || |
| (Str[0] == '\r' && Str[-1] == '\n')) { |
| if (Str - 2 < BufferStart) |
| return false; |
| --Str; |
| } |
| --Str; |
| |
| // Rewind to first non-space character: |
| while (Str > BufferStart && isHorizontalWhitespace(*Str)) |
| --Str; |
| |
| return *Str == '\\'; |
| } |
| |
| StringRef Lexer::getIndentationForLine(SourceLocation Loc, |
| const SourceManager &SM) { |
| if (Loc.isInvalid() || Loc.isMacroID()) |
| return {}; |
| std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); |
| if (LocInfo.first.isInvalid()) |
| return {}; |
| bool Invalid = false; |
| StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); |
| if (Invalid) |
| return {}; |
| const char *Line = findBeginningOfLine(Buffer, LocInfo.second); |
| if (!Line) |
| return {}; |
| StringRef Rest = Buffer.substr(Line - Buffer.data()); |
| size_t NumWhitespaceChars = Rest.find_first_not_of(" \t"); |
| return NumWhitespaceChars == StringRef::npos |
| ? "" |
| : Rest.take_front(NumWhitespaceChars); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Diagnostics forwarding code. |
| //===----------------------------------------------------------------------===// |
| |
| /// GetMappedTokenLoc - If lexing out of a 'mapped buffer', where we pretend the |
| /// lexer buffer was all expanded at a single point, perform the mapping. |
| /// This is currently only used for _Pragma implementation, so it is the slow |
| /// path of the hot getSourceLocation method. Do not allow it to be inlined. |
| static LLVM_ATTRIBUTE_NOINLINE SourceLocation GetMappedTokenLoc( |
| Preprocessor &PP, SourceLocation FileLoc, unsigned CharNo, unsigned TokLen); |
| static SourceLocation GetMappedTokenLoc(Preprocessor &PP, |
| SourceLocation FileLoc, |
| unsigned CharNo, unsigned TokLen) { |
| assert(FileLoc.isMacroID() && "Must be a macro expansion"); |
| |
| // Otherwise, we're lexing "mapped tokens". This is used for things like |
| // _Pragma handling. Combine the expansion location of FileLoc with the |
| // spelling location. |
| SourceManager &SM = PP.getSourceManager(); |
| |
| // Create a new SLoc which is expanded from Expansion(FileLoc) but whose |
| // characters come from spelling(FileLoc)+Offset. |
| SourceLocation SpellingLoc = SM.getSpellingLoc(FileLoc); |
| SpellingLoc = SpellingLoc.getLocWithOffset(CharNo); |
| |
| // Figure out the expansion loc range, which is the range covered by the |
| // original _Pragma(...) sequence. |
| CharSourceRange II = SM.getImmediateExpansionRange(FileLoc); |
| |
| return SM.createExpansionLoc(SpellingLoc, II.getBegin(), II.getEnd(), TokLen); |
| } |
| |
| /// getSourceLocation - Return a source location identifier for the specified |
| /// offset in the current file. |
| SourceLocation Lexer::getSourceLocation(const char *Loc, |
| unsigned TokLen) const { |
| assert(Loc >= BufferStart && Loc <= BufferEnd && |
| "Location out of range for this buffer!"); |
| |
| // In the normal case, we're just lexing from a simple file buffer, return |
| // the file id from FileLoc with the offset specified. |
| unsigned CharNo = Loc-BufferStart; |
| if (FileLoc.isFileID()) |
| return FileLoc.getLocWithOffset(CharNo); |
| |
| // Otherwise, this is the _Pragma lexer case, which pretends that all of the |
| // tokens are lexed from where the _Pragma was defined. |
| assert(PP && "This doesn't work on raw lexers"); |
| return GetMappedTokenLoc(*PP, FileLoc, CharNo, TokLen); |
| } |
| |
| /// Diag - Forwarding function for diagnostics. This translate a source |
| /// position in the current buffer into a SourceLocation object for rendering. |
| DiagnosticBuilder Lexer::Diag(const char *Loc, unsigned DiagID) const { |
| return PP->Diag(getSourceLocation(Loc), DiagID); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Trigraph and Escaped Newline Handling Code. |
| //===----------------------------------------------------------------------===// |
| |
| /// GetTrigraphCharForLetter - Given a character that occurs after a ?? pair, |
| /// return the decoded trigraph letter it corresponds to, or '\0' if nothing. |
| static char GetTrigraphCharForLetter(char Letter) { |
| switch (Letter) { |
| default: return 0; |
| case '=': return '#'; |
| case ')': return ']'; |
| case '(': return '['; |
| case '!': return '|'; |
| case '\'': return '^'; |
| case '>': return '}'; |
| case '/': return '\\'; |
| case '<': return '{'; |
| case '-': return '~'; |
| } |
| } |
| |
| /// DecodeTrigraphChar - If the specified character is a legal trigraph when |
| /// prefixed with ??, emit a trigraph warning. If trigraphs are enabled, |
| /// return the result character. Finally, emit a warning about trigraph use |
| /// whether trigraphs are enabled or not. |
| static char DecodeTrigraphChar(const char *CP, Lexer *L) { |
| char Res = GetTrigraphCharForLetter(*CP); |
| if (!Res || !L) return Res; |
| |
| if (!L->getLangOpts().Trigraphs) { |
| if (!L->isLexingRawMode()) |
| L->Diag(CP-2, diag::trigraph_ignored); |
| return 0; |
| } |
| |
| if (!L->isLexingRawMode()) |
| L->Diag(CP-2, diag::trigraph_converted) << StringRef(&Res, 1); |
| return Res; |
| } |
| |
| /// getEscapedNewLineSize - Return the size of the specified escaped newline, |
| /// or 0 if it is not an escaped newline. P[-1] is known to be a "\" or a |
| /// trigraph equivalent on entry to this function. |
| unsigned Lexer::getEscapedNewLineSize(const char *Ptr) { |
| unsigned Size = 0; |
| while (isWhitespace(Ptr[Size])) { |
| ++Size; |
| |
| if (Ptr[Size-1] != '\n' && Ptr[Size-1] != '\r') |
| continue; |
| |
| // If this is a \r\n or \n\r, skip the other half. |
| if ((Ptr[Size] == '\r' || Ptr[Size] == '\n') && |
| Ptr[Size-1] != Ptr[Size]) |
| ++Size; |
| |
| return Size; |
| } |
| |
| // Not an escaped newline, must be a \t or something else. |
| return 0; |
| } |
| |
| /// SkipEscapedNewLines - If P points to an escaped newline (or a series of |
| /// them), skip over them and return the first non-escaped-newline found, |
| /// otherwise return P. |
| const char *Lexer::SkipEscapedNewLines(const char *P) { |
| while (true) { |
| const char *AfterEscape; |
| if (*P == '\\') { |
| AfterEscape = P+1; |
| } else if (*P == '?') { |
| // If not a trigraph for escape, bail out. |
| if (P[1] != '?' || P[2] != '/') |
| return P; |
| // FIXME: Take LangOpts into account; the language might not |
| // support trigraphs. |
| AfterEscape = P+3; |
| } else { |
| return P; |
| } |
| |
| unsigned NewLineSize = Lexer::getEscapedNewLineSize(AfterEscape); |
| if (NewLineSize == 0) return P; |
| P = AfterEscape+NewLineSize; |
| } |
| } |
| |
| Optional<Token> Lexer::findNextToken(SourceLocation Loc, |
| const SourceManager &SM, |
| const LangOptions &LangOpts) { |
| if (Loc.isMacroID()) { |
| if (!Lexer::isAtEndOfMacroExpansion(Loc, SM, LangOpts, &Loc)) |
| return None; |
| } |
| Loc = Lexer::getLocForEndOfToken(Loc, 0, SM, LangOpts); |
| |
| // Break down the source location. |
| std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); |
| |
| // Try to load the file buffer. |
| bool InvalidTemp = false; |
| StringRef File = SM.getBufferData(LocInfo.first, &InvalidTemp); |
| if (InvalidTemp) |
| return None; |
| |
| const char *TokenBegin = File.data() + LocInfo.second; |
| |
| // Lex from the start of the given location. |
| Lexer lexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts, File.begin(), |
| TokenBegin, File.end()); |
| // Find the token. |
| Token Tok; |
| lexer.LexFromRawLexer(Tok); |
| return Tok; |
| } |
| |
| /// Checks that the given token is the first token that occurs after the |
| /// given location (this excludes comments and whitespace). Returns the location |
| /// immediately after the specified token. If the token is not found or the |
| /// location is inside a macro, the returned source location will be invalid. |
| SourceLocation Lexer::findLocationAfterToken( |
| SourceLocation Loc, tok::TokenKind TKind, const SourceManager &SM, |
| const LangOptions &LangOpts, bool SkipTrailingWhitespaceAndNewLine) { |
| Optional<Token> Tok = findNextToken(Loc, SM, LangOpts); |
| if (!Tok || Tok->isNot(TKind)) |
| return {}; |
| SourceLocation TokenLoc = Tok->getLocation(); |
| |
| // Calculate how much whitespace needs to be skipped if any. |
| unsigned NumWhitespaceChars = 0; |
| if (SkipTrailingWhitespaceAndNewLine) { |
| const char *TokenEnd = SM.getCharacterData(TokenLoc) + Tok->getLength(); |
| unsigned char C = *TokenEnd; |
| while (isHorizontalWhitespace(C)) { |
| C = *(++TokenEnd); |
| NumWhitespaceChars++; |
| } |
| |
| // Skip \r, \n, \r\n, or \n\r |
| if (C == '\n' || C == '\r') { |
| char PrevC = C; |
| C = *(++TokenEnd); |
| NumWhitespaceChars++; |
| if ((C == '\n' || C == '\r') && C != PrevC) |
| NumWhitespaceChars++; |
| } |
| } |
| |
| return TokenLoc.getLocWithOffset(Tok->getLength() + NumWhitespaceChars); |
| } |
| |
| /// getCharAndSizeSlow - Peek a single 'character' from the specified buffer, |
| /// get its size, and return it. This is tricky in several cases: |
| /// 1. If currently at the start of a trigraph, we warn about the trigraph, |
| /// then either return the trigraph (skipping 3 chars) or the '?', |
| /// depending on whether trigraphs are enabled or not. |
| /// 2. If this is an escaped newline (potentially with whitespace between |
| /// the backslash and newline), implicitly skip the newline and return |
| /// the char after it. |
| /// |
| /// This handles the slow/uncommon case of the getCharAndSize method. Here we |
| /// know that we can accumulate into Size, and that we have already incremented |
| /// Ptr by Size bytes. |
| /// |
| /// NOTE: When this method is updated, getCharAndSizeSlowNoWarn (below) should |
| /// be updated to match. |
| char Lexer::getCharAndSizeSlow(const char *Ptr, unsigned &Size, |
| Token *Tok) { |
| // If we have a slash, look for an escaped newline. |
| if (Ptr[0] == '\\') { |
| ++Size; |
| ++Ptr; |
| Slash: |
| // Common case, backslash-char where the char is not whitespace. |
| if (!isWhitespace(Ptr[0])) return '\\'; |
| |
| // See if we have optional whitespace characters between the slash and |
| // newline. |
| if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) { |
| // Remember that this token needs to be cleaned. |
| if (Tok) Tok->setFlag(Token::NeedsCleaning); |
| |
| // Warn if there was whitespace between the backslash and newline. |
| if (Ptr[0] != '\n' && Ptr[0] != '\r' && Tok && !isLexingRawMode()) |
| Diag(Ptr, diag::backslash_newline_space); |
| |
| // Found backslash<whitespace><newline>. Parse the char after it. |
| Size += EscapedNewLineSize; |
| Ptr += EscapedNewLineSize; |
| |
| // Use slow version to accumulate a correct size field. |
| return getCharAndSizeSlow(Ptr, Size, Tok); |
| } |
| |
| // Otherwise, this is not an escaped newline, just return the slash. |
| return '\\'; |
| } |
| |
| // If this is a trigraph, process it. |
| if (Ptr[0] == '?' && Ptr[1] == '?') { |
| // If this is actually a legal trigraph (not something like "??x"), emit |
| // a trigraph warning. If so, and if trigraphs are enabled, return it. |
| if (char C = DecodeTrigraphChar(Ptr+2, Tok ? this : nullptr)) { |
| // Remember that this token needs to be cleaned. |
| if (Tok) Tok->setFlag(Token::NeedsCleaning); |
| |
| Ptr += 3; |
| Size += 3; |
| if (C == '\\') goto Slash; |
| return C; |
| } |
| } |
| |
| // If this is neither, return a single character. |
| ++Size; |
| return *Ptr; |
| } |
| |
| /// getCharAndSizeSlowNoWarn - Handle the slow/uncommon case of the |
| /// getCharAndSizeNoWarn method. Here we know that we can accumulate into Size, |
| /// and that we have already incremented Ptr by Size bytes. |
| /// |
| /// NOTE: When this method is updated, getCharAndSizeSlow (above) should |
| /// be updated to match. |
| char Lexer::getCharAndSizeSlowNoWarn(const char *Ptr, unsigned &Size, |
| const LangOptions &LangOpts) { |
| // If we have a slash, look for an escaped newline. |
| if (Ptr[0] == '\\') { |
| ++Size; |
| ++Ptr; |
| Slash: |
| // Common case, backslash-char where the char is not whitespace. |
| if (!isWhitespace(Ptr[0])) return '\\'; |
| |
| // See if we have optional whitespace characters followed by a newline. |
| if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) { |
| // Found backslash<whitespace><newline>. Parse the char after it. |
| Size += EscapedNewLineSize; |
| Ptr += EscapedNewLineSize; |
| |
| // Use slow version to accumulate a correct size field. |
| return getCharAndSizeSlowNoWarn(Ptr, Size, LangOpts); |
| } |
| |
| // Otherwise, this is not an escaped newline, just return the slash. |
| return '\\'; |
| } |
| |
| // If this is a trigraph, process it. |
| if (LangOpts.Trigraphs && Ptr[0] == '?' && Ptr[1] == '?') { |
| // If this is actually a legal trigraph (not something like "??x"), return |
| // it. |
| if (char C = GetTrigraphCharForLetter(Ptr[2])) { |
| Ptr += 3; |
| Size += 3; |
| if (C == '\\') goto Slash; |
| return C; |
| } |
| } |
| |
| // If this is neither, return a single character. |
| ++Size; |
| return *Ptr; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helper methods for lexing. |
| //===----------------------------------------------------------------------===// |
| |
| /// Routine that indiscriminately sets the offset into the source file. |
| void Lexer::SetByteOffset(unsigned Offset, bool StartOfLine) { |
| BufferPtr = BufferStart + Offset; |
| if (BufferPtr > BufferEnd) |
| BufferPtr = BufferEnd; |
| // FIXME: What exactly does the StartOfLine bit mean? There are two |
| // possible meanings for the "start" of the line: the first token on the |
| // unexpanded line, or the first token on the expanded line. |
| IsAtStartOfLine = StartOfLine; |
| IsAtPhysicalStartOfLine = StartOfLine; |
| } |
| |
| static bool isAllowedIDChar(uint32_t C, const LangOptions &LangOpts) { |
| if (LangOpts.AsmPreprocessor) { |
| return false; |
| } else if (LangOpts.CPlusPlus11 || LangOpts.C11) { |
| static const llvm::sys::UnicodeCharSet C11AllowedIDChars( |
| C11AllowedIDCharRanges); |
| return C11AllowedIDChars.contains(C); |
| } else if (LangOpts.CPlusPlus) { |
| static const llvm::sys::UnicodeCharSet CXX03AllowedIDChars( |
| CXX03AllowedIDCharRanges); |
| return CXX03AllowedIDChars.contains(C); |
| } else { |
| static const llvm::sys::UnicodeCharSet C99AllowedIDChars( |
| C99AllowedIDCharRanges); |
| return C99AllowedIDChars.contains(C); |
| } |
| } |
| |
| static bool isAllowedInitiallyIDChar(uint32_t C, const LangOptions &LangOpts) { |
| assert(isAllowedIDChar(C, LangOpts)); |
| if (LangOpts.AsmPreprocessor) { |
| return false; |
| } else if (LangOpts.CPlusPlus11 || LangOpts.C11) { |
| static const llvm::sys::UnicodeCharSet C11DisallowedInitialIDChars( |
| C11DisallowedInitialIDCharRanges); |
| return !C11DisallowedInitialIDChars.contains(C); |
| } else if (LangOpts.CPlusPlus) { |
| return true; |
| } else { |
| static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars( |
| C99DisallowedInitialIDCharRanges); |
| return !C99DisallowedInitialIDChars.contains(C); |
| } |
| } |
| |
| static inline CharSourceRange makeCharRange(Lexer &L, const char *Begin, |
| const char *End) { |
| return CharSourceRange::getCharRange(L.getSourceLocation(Begin), |
| L.getSourceLocation(End)); |
| } |
| |
| static void maybeDiagnoseIDCharCompat(DiagnosticsEngine &Diags, uint32_t C, |
| CharSourceRange Range, bool IsFirst) { |
| // Check C99 compatibility. |
| if (!Diags.isIgnored(diag::warn_c99_compat_unicode_id, Range.getBegin())) { |
| enum { |
| CannotAppearInIdentifier = 0, |
| CannotStartIdentifier |
| }; |
| |
| static const llvm::sys::UnicodeCharSet C99AllowedIDChars( |
| C99AllowedIDCharRanges); |
| static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars( |
| C99DisallowedInitialIDCharRanges); |
| if (!C99AllowedIDChars.contains(C)) { |
| Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id) |
| << Range |
| << CannotAppearInIdentifier; |
| } else if (IsFirst && C99DisallowedInitialIDChars.contains(C)) { |
| Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id) |
| << Range |
| << CannotStartIdentifier; |
| } |
| } |
| |
| // Check C++98 compatibility. |
| if (!Diags.isIgnored(diag::warn_cxx98_compat_unicode_id, Range.getBegin())) { |
| static const llvm::sys::UnicodeCharSet CXX03AllowedIDChars( |
| CXX03AllowedIDCharRanges); |
| if (!CXX03AllowedIDChars.contains(C)) { |
| Diags.Report(Range.getBegin(), diag::warn_cxx98_compat_unicode_id) |
| << Range; |
| } |
| } |
| } |
| |
| /// After encountering UTF-8 character C and interpreting it as an identifier |
| /// character, check whether it's a homoglyph for a common non-identifier |
| /// source character that is unlikely to be an intentional identifier |
| /// character and warn if so. |
| static void maybeDiagnoseUTF8Homoglyph(DiagnosticsEngine &Diags, uint32_t C, |
| CharSourceRange Range) { |
| // FIXME: Handle Unicode quotation marks (smart quotes, fullwidth quotes). |
| struct HomoglyphPair { |
| uint32_t Character; |
| char LooksLike; |
| bool operator<(HomoglyphPair R) const { return Character < R.Character; } |
| }; |
| static constexpr HomoglyphPair SortedHomoglyphs[] = { |
| {U'\u01c3', '!'}, // LATIN LETTER RETROFLEX CLICK |
| {U'\u037e', ';'}, // GREEK QUESTION MARK |
| {U'\u2212', '-'}, // MINUS SIGN |
| {U'\u2215', '/'}, // DIVISION SLASH |
| {U'\u2216', '\\'}, // SET MINUS |
| {U'\u2217', '*'}, // ASTERISK OPERATOR |
| {U'\u2223', '|'}, // DIVIDES |
| {U'\u2227', '^'}, // LOGICAL AND |
| {U'\u2236', ':'}, // RATIO |
| {U'\u223c', '~'}, // TILDE OPERATOR |
| {U'\ua789', ':'}, // MODIFIER LETTER COLON |
| {U'\uff01', '!'}, // FULLWIDTH EXCLAMATION MARK |
| {U'\uff03', '#'}, // FULLWIDTH NUMBER SIGN |
| {U'\uff04', '$'}, // FULLWIDTH DOLLAR SIGN |
| {U'\uff05', '%'}, // FULLWIDTH PERCENT SIGN |
| {U'\uff06', '&'}, // FULLWIDTH AMPERSAND |
| {U'\uff08', '('}, // FULLWIDTH LEFT PARENTHESIS |
| {U'\uff09', ')'}, // FULLWIDTH RIGHT PARENTHESIS |
| {U'\uff0a', '*'}, // FULLWIDTH ASTERISK |
| {U'\uff0b', '+'}, // FULLWIDTH ASTERISK |
| {U'\uff0c', ','}, // FULLWIDTH COMMA |
| {U'\uff0d', '-'}, // FULLWIDTH HYPHEN-MINUS |
| {U'\uff0e', '.'}, // FULLWIDTH FULL STOP |
| {U'\uff0f', '/'}, // FULLWIDTH SOLIDUS |
| {U'\uff1a', ':'}, // FULLWIDTH COLON |
| {U'\uff1b', ';'}, // FULLWIDTH SEMICOLON |
| {U'\uff1c', '<'}, // FULLWIDTH LESS-THAN SIGN |
| {U'\uff1d', '='}, // FULLWIDTH EQUALS SIGN |
| {U'\uff1e', '>'}, // FULLWIDTH GREATER-THAN SIGN |
| {U'\uff1f', '?'}, // FULLWIDTH QUESTION MARK |
| {U'\uff20', '@'}, // FULLWIDTH COMMERCIAL AT |
| {U'\uff3b', '['}, // FULLWIDTH LEFT SQUARE BRACKET |
| {U'\uff3c', '\\'}, // FULLWIDTH REVERSE SOLIDUS |
| {U'\uff3d', ']'}, // FULLWIDTH RIGHT SQUARE BRACKET |
| {U'\uff3e', '^'}, // FULLWIDTH CIRCUMFLEX ACCENT |
| {U'\uff5b', '{'}, // FULLWIDTH LEFT CURLY BRACKET |
| {U'\uff5c', '|'}, // FULLWIDTH VERTICAL LINE |
| {U'\uff5d', '}'}, // FULLWIDTH RIGHT CURLY BRACKET |
| {U'\uff5e', '~'}, // FULLWIDTH TILDE |
| {0, 0} |
| }; |
| auto Homoglyph = |
| std::lower_bound(std::begin(SortedHomoglyphs), |
| std::end(SortedHomoglyphs) - 1, HomoglyphPair{C, '\0'}); |
| if (Homoglyph->Character == C) { |
| llvm::SmallString<5> CharBuf; |
| { |
| llvm::raw_svector_ostream CharOS(CharBuf); |
| llvm::write_hex(CharOS, C, llvm::HexPrintStyle::Upper, 4); |
| } |
| const char LooksLikeStr[] = {Homoglyph->LooksLike, 0}; |
| Diags.Report(Range.getBegin(), diag::warn_utf8_symbol_homoglyph) |
| << Range << CharBuf << LooksLikeStr; |
| } |
| } |
| |
| bool Lexer::tryConsumeIdentifierUCN(const char *&CurPtr, unsigned Size, |
| Token &Result) { |
| const char *UCNPtr = CurPtr + Size; |
| uint32_t CodePoint = tryReadUCN(UCNPtr, CurPtr, /*Token=*/nullptr); |
| if (CodePoint == 0 || !isAllowedIDChar(CodePoint, LangOpts)) |
| return false; |
| |
| if (!isLexingRawMode()) |
| maybeDiagnoseIDCharCompat(PP->getDiagnostics(), CodePoint, |
| makeCharRange(*this, CurPtr, UCNPtr), |
| /*IsFirst=*/false); |
| |
| Result.setFlag(Token::HasUCN); |
| if ((UCNPtr - CurPtr == 6 && CurPtr[1] == 'u') || |
| (UCNPtr - CurPtr == 10 && CurPtr[1] == 'U')) |
| CurPtr = UCNPtr; |
| else |
| while (CurPtr != UCNPtr) |
| (void)getAndAdvanceChar(CurPtr, Result); |
| return true; |
| } |
| |
| bool Lexer::tryConsumeIdentifierUTF8Char(const char *&CurPtr) { |
| const char *UnicodePtr = CurPtr; |
| llvm::UTF32 CodePoint; |
| llvm::ConversionResult Result = |
| llvm::convertUTF8Sequence((const llvm::UTF8 **)&UnicodePtr, |
| (const llvm::UTF8 *)BufferEnd, |
| &CodePoint, |
| llvm::strictConversion); |
| if (Result != llvm::conversionOK || |
| !isAllowedIDChar(static_cast<uint32_t>(CodePoint), LangOpts)) |
| return false; |
| |
| if (!isLexingRawMode()) { |
| maybeDiagnoseIDCharCompat(PP->getDiagnostics(), CodePoint, |
| makeCharRange(*this, CurPtr, UnicodePtr), |
| /*IsFirst=*/false); |
| maybeDiagnoseUTF8Homoglyph(PP->getDiagnostics(), CodePoint, |
| makeCharRange(*this, CurPtr, UnicodePtr)); |
| } |
| |
| CurPtr = UnicodePtr; |
| return true; |
| } |
| |
| bool Lexer::LexIdentifier(Token &Result, const char *CurPtr) { |
| // Match [_A-Za-z0-9]*, we have already matched [_A-Za-z$] |
| unsigned Size; |
| unsigned char C = *CurPtr++; |
| while (isIdentifierBody(C)) |
| C = *CurPtr++; |
| |
| --CurPtr; // Back up over the skipped character. |
| |
| // Fast path, no $,\,? in identifier found. '\' might be an escaped newline |
| // or UCN, and ? might be a trigraph for '\', an escaped newline or UCN. |
| // |
| // TODO: Could merge these checks into an InfoTable flag to make the |
| // comparison cheaper |
| if (isASCII(C) && C != '\\' && C != '?' && |
| (C != '$' || !LangOpts.DollarIdents)) { |
| FinishIdentifier: |
| const char *IdStart = BufferPtr; |
| FormTokenWithChars(Result, CurPtr, tok::raw_identifier); |
| Result.setRawIdentifierData(IdStart); |
| |
| // If we are in raw mode, return this identifier raw. There is no need to |
| // look up identifier information or attempt to macro expand it. |
| if (LexingRawMode) |
| return true; |
| |
| // Fill in Result.IdentifierInfo and update the token kind, |
| // looking up the identifier in the identifier table. |
| IdentifierInfo *II = PP->LookUpIdentifierInfo(Result); |
| // Note that we have to call PP->LookUpIdentifierInfo() even for code |
| // completion, it writes IdentifierInfo into Result, and callers rely on it. |
| |
| // If the completion point is at the end of an identifier, we want to treat |
| // the identifier as incomplete even if it resolves to a macro or a keyword. |
| // This allows e.g. 'class^' to complete to 'classifier'. |
| if (isCodeCompletionPoint(CurPtr)) { |
| // Return the code-completion token. |
| Result.setKind(tok::code_completion); |
| // Skip the code-completion char and all immediate identifier characters. |
| // This ensures we get consistent behavior when completing at any point in |
| // an identifier (i.e. at the start, in the middle, at the end). Note that |
| // only simple cases (i.e. [a-zA-Z0-9_]) are supported to keep the code |
| // simpler. |
| assert(*CurPtr == 0 && "Completion character must be 0"); |
| ++CurPtr; |
| // Note that code completion token is not added as a separate character |
| // when the completion point is at the end of the buffer. Therefore, we need |
| // to check if the buffer has ended. |
| if (CurPtr < BufferEnd) { |
| while (isIdentifierBody(*CurPtr)) |
| ++CurPtr; |
| } |
| BufferPtr = CurPtr; |
| return true; |
| } |
| |
| // Finally, now that we know we have an identifier, pass this off to the |
| // preprocessor, which may macro expand it or something. |
| if (II->isHandleIdentifierCase()) |
| return PP->HandleIdentifier(Result); |
| |
| return true; |
| } |
| |
| // Otherwise, $,\,? in identifier found. Enter slower path. |
| |
| C = getCharAndSize(CurPtr, Size); |
| while (true) { |
| if (C == '$') { |
| // If we hit a $ and they are not supported in identifiers, we are done. |
| if (!LangOpts.DollarIdents) goto FinishIdentifier; |
| |
| // Otherwise, emit a diagnostic and continue. |
| if (!isLexingRawMode()) |
| Diag(CurPtr, diag::ext_dollar_in_identifier); |
| CurPtr = ConsumeChar(CurPtr, Size, Result); |
| C = getCharAndSize(CurPtr, Size); |
| continue; |
| } else if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) { |
| C = getCharAndSize(CurPtr, Size); |
| continue; |
| } else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr)) { |
| C = getCharAndSize(CurPtr, Size); |
| continue; |
| } else if (!isIdentifierBody(C)) { |
| goto FinishIdentifier; |
| } |
| |
| // Otherwise, this character is good, consume it. |
| CurPtr = ConsumeChar(CurPtr, Size, Result); |
| |
| C = getCharAndSize(CurPtr, Size); |
| while (isIdentifierBody(C)) { |
| CurPtr = ConsumeChar(CurPtr, Size, Result); |
| C = getCharAndSize(CurPtr, Size); |
| } |
| } |
| } |
| |
| /// isHexaLiteral - Return true if Start points to a hex constant. |
| /// in microsoft mode (where this is supposed to be several different tokens). |
| bool Lexer::isHexaLiteral(const char *Start, const LangOptions &LangOpts) { |
| unsigned Size; |
| char C1 = Lexer::getCharAndSizeNoWarn(Start, Size, LangOpts); |
| if (C1 != '0') |
| return false; |
| char C2 = Lexer::getCharAndSizeNoWarn(Start + Size, Size, LangOpts); |
| return (C2 == 'x' || C2 == 'X'); |
| } |
| |
| /// LexNumericConstant - Lex the remainder of a integer or floating point |
| /// constant. From[-1] is the first character lexed. Return the end of the |
| /// constant. |
| bool Lexer::LexNumericConstant(Token &Result, const char *CurPtr) { |
| unsigned Size; |
| char C = getCharAndSize(CurPtr, Size); |
| char PrevCh = 0; |
| while (isPreprocessingNumberBody(C)) { |
| CurPtr = ConsumeChar(CurPtr, Size, Result); |
| PrevCh = C; |
| C = getCharAndSize(CurPtr, Size); |
| } |
| |
| // If we fell out, check for a sign, due to 1e+12. If we have one, continue. |
| if ((C == '-' || C == '+') && (PrevCh == 'E' || PrevCh == 'e')) { |
| // If we are in Microsoft mode, don't continue if the constant is hex. |
| // For example, MSVC will accept the following as 3 tokens: 0x1234567e+1 |
| if (!LangOpts.MicrosoftExt || !isHexaLiteral(BufferPtr, LangOpts)) |
| return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result)); |
| } |
| |
| // If we have a hex FP constant, continue. |
| if ((C == '-' || C == '+') && (PrevCh == 'P' || PrevCh == 'p')) { |
| // Outside C99 and C++17, we accept hexadecimal floating point numbers as a |
| // not-quite-conforming extension. Only do so if this looks like it's |
| // actually meant to be a hexfloat, and not if it has a ud-suffix. |
| bool IsHexFloat = true; |
| if (!LangOpts.C99) { |
| if (!isHexaLiteral(BufferPtr, LangOpts)) |
| IsHexFloat = false; |
| else if (!getLangOpts().CPlusPlus17 && |
| std::find(BufferPtr, CurPtr, '_') != CurPtr) |
| IsHexFloat = false; |
| } |
| if (IsHexFloat) |
| return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result)); |
| } |
| |
| // If we have a digit separator, continue. |
| if (C == '\'' && getLangOpts().CPlusPlus14) { |
| unsigned NextSize; |
| char Next = getCharAndSizeNoWarn(CurPtr + Size, NextSize, getLangOpts()); |
| if (isIdentifierBody(Next)) { |
| if (!isLexingRawMode()) |
| Diag(CurPtr, diag::warn_cxx11_compat_digit_separator); |
| CurPtr = ConsumeChar(CurPtr, Size, Result); |
| CurPtr = ConsumeChar(CurPtr, NextSize, Result); |
| return LexNumericConstant(Result, CurPtr); |
| } |
| } |
| |
| // If we have a UCN or UTF-8 character (perhaps in a ud-suffix), continue. |
| if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) |
| return LexNumericConstant(Result, CurPtr); |
| if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr)) |
| return LexNumericConstant(Result, CurPtr); |
| |
| // Update the location of token as well as BufferPtr. |
| const char *TokStart = BufferPtr; |
| FormTokenWithChars(Result, CurPtr, tok::numeric_constant); |
| Result.setLiteralData(TokStart); |
| return true; |
| } |
| |
| /// LexUDSuffix - Lex the ud-suffix production for user-defined literal suffixes |
| /// in C++11, or warn on a ud-suffix in C++98. |
| const char *Lexer::LexUDSuffix(Token &Result, const char *CurPtr, |
| bool IsStringLiteral) { |
| assert(getLangOpts().CPlusPlus); |
| |
| // Maximally munch an identifier. |
| unsigned Size; |
| char C = getCharAndSize(CurPtr, Size); |
| bool Consumed = false; |
| |
| if (!isIdentifierHead(C)) { |
| if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) |
| Consumed = true; |
| else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr)) |
| Consumed = true; |
| else |
| return CurPtr; |
| } |
| |
| if (!getLangOpts().CPlusPlus11) { |
| if (!isLexingRawMode()) |
| Diag(CurPtr, |
| C == '_' ? diag::warn_cxx11_compat_user_defined_literal |
| : diag::warn_cxx11_compat_reserved_user_defined_literal) |
| << FixItHint::CreateInsertion(getSourceLocation(CurPtr), " "); |
| return CurPtr; |
| } |
| |
| // C++11 [lex.ext]p10, [usrlit.suffix]p1: A program containing a ud-suffix |
| // that does not start with an underscore is ill-formed. As a conforming |
| // extension, we treat all such suffixes as if they had whitespace before |
| // them. We assume a suffix beginning with a UCN or UTF-8 character is more |
| // likely to be a ud-suffix than a macro, however, and accept that. |
| if (!Consumed) { |
| bool IsUDSuffix = false; |
| if (C == '_') |
| IsUDSuffix = true; |
| else if (IsStringLiteral && getLangOpts().CPlusPlus14) { |
| // In C++1y, we need to look ahead a few characters to see if this is a |
| // valid suffix for a string literal or a numeric literal (this could be |
| // the 'operator""if' defining a numeric literal operator). |
| const unsigned MaxStandardSuffixLength = 3; |
| char Buffer[MaxStandardSuffixLength] = { C }; |
| unsigned Consumed = Size; |
| unsigned Chars = 1; |
| while (true) { |
| unsigned NextSize; |
| char Next = getCharAndSizeNoWarn(CurPtr + Consumed, NextSize, |
| getLangOpts()); |
| if (!isIdentifierBody(Next)) { |
| // End of suffix. Check whether this is on the whitelist. |
| const StringRef CompleteSuffix(Buffer, Chars); |
| IsUDSuffix = StringLiteralParser::isValidUDSuffix(getLangOpts(), |
| CompleteSuffix); |
| break; |
| } |
| |
| if (Chars == MaxStandardSuffixLength) |
| // Too long: can't be a standard suffix. |
| break; |
| |
| Buffer[Chars++] = Next; |
| Consumed += NextSize; |
| } |
| } |
| |
| if (!IsUDSuffix) { |
| if (!isLexingRawMode()) |
| Diag(CurPtr, getLangOpts().MSVCCompat |
| ? diag::ext_ms_reserved_user_defined_literal |
| : diag::ext_reserved_user_defined_literal) |
| << FixItHint::CreateInsertion(getSourceLocation(CurPtr), " "); |
| return CurPtr; |
| } |
| |
| CurPtr = ConsumeChar(CurPtr, Size, Result); |
| } |
| |
| Result.setFlag(Token::HasUDSuffix); |
| while (true) { |
| C = getCharAndSize(CurPtr, Size); |
| if (isIdentifierBody(C)) { CurPtr = ConsumeChar(CurPtr, Size, Result); } |
| else if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) {} |
| else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr)) {} |
| else break; |
| } |
| |
| return CurPtr; |
| } |
| |
| /// LexStringLiteral - Lex the remainder of a string literal, after having lexed |
| /// either " or L" or u8" or u" or U". |
| bool Lexer::LexStringLiteral(Token &Result, const char *CurPtr, |
| tok::TokenKind Kind) { |
| // Does this string contain the \0 character? |
| const char *NulCharacter = nullptr; |
| |
| if (!isLexingRawMode() && |
| (Kind == tok::utf8_string_literal || |
| Kind == tok::utf16_string_literal || |
| Kind == tok::utf32_string_literal)) |
| Diag(BufferPtr, getLangOpts().CPlusPlus |
| ? diag::warn_cxx98_compat_unicode_literal |
| : diag::warn_c99_compat_unicode_literal); |
| |
| char C = getAndAdvanceChar(CurPtr, Result); |
| while (C != '"') { |
| // Skip escaped characters. Escaped newlines will already be processed by |
| // getAndAdvanceChar. |
| if (C == '\\') |
| C = getAndAdvanceChar(CurPtr, Result); |
| |
| if (C == '\n' || C == '\r' || // Newline. |
| (C == 0 && CurPtr-1 == BufferEnd)) { // End of file. |
| if (!isLexingRawMode() && !LangOpts.AsmPreprocessor) |
| Diag(BufferPtr, diag::ext_unterminated_char_or_string) << 1; |
| FormTokenWithChars(Result, CurPtr-1, tok::unknown); |
| return true; |
| } |
| |
| if (C == 0) { |
| if (isCodeCompletionPoint(CurPtr-1)) { |
| PP->CodeCompleteNaturalLanguage(); |
| FormTokenWithChars(Result, CurPtr-1, tok::unknown); |
| cutOffLexing(); |
| return true; |
| } |
| |
| NulCharacter = CurPtr-1; |
| } |
| C = getAndAdvanceChar(CurPtr, Result); |
| } |
| |
| // If we are in C++11, lex the optional ud-suffix. |
| if (getLangOpts().CPlusPlus) |
| CurPtr = LexUDSuffix(Result, CurPtr, true); |
| |
| // If a nul character existed in the string, warn about it. |
| if (NulCharacter && !isLexingRawMode()) |
| Diag(NulCharacter, diag::null_in_char_or_string) << 1; |
| |
| // Update the location of the token as well as the BufferPtr instance var. |
| const char *TokStart = BufferPtr; |
| FormTokenWithChars(Result, CurPtr, Kind); |
| Result.setLiteralData(TokStart); |
| return true; |
| } |
| |
| /// LexRawStringLiteral - Lex the remainder of a raw string literal, after |
| /// having lexed R", LR", u8R", uR", or UR". |
| bool Lexer::LexRawStringLiteral(Token &Result, const char *CurPtr, |
| tok::TokenKind Kind) { |
| // This function doesn't use getAndAdvanceChar because C++0x [lex.pptoken]p3: |
| // Between the initial and final double quote characters of the raw string, |
| // any transformations performed in phases 1 and 2 (trigraphs, |
| // universal-character-names, and line splicing) are reverted. |
| |
| if (!isLexingRawMode()) |
| Diag(BufferPtr, diag::warn_cxx98_compat_raw_string_literal); |
| |
| unsigned PrefixLen = 0; |
| |
| while (PrefixLen != 16 && isRawStringDelimBody(CurPtr[PrefixLen])) |
| ++PrefixLen; |
| |
| // If the last character was not a '(', then we didn't lex a valid delimiter. |
| if (CurPtr[PrefixLen] != '(') { |
| if (!isLexingRawMode()) { |
| const char *PrefixEnd = &CurPtr[PrefixLen]; |
| if (PrefixLen == 16) { |
| Diag(PrefixEnd, diag::err_raw_delim_too_long); |
| } else { |
| Diag(PrefixEnd, diag::err_invalid_char_raw_delim) |
| << StringRef(PrefixEnd, 1); |
| } |
| } |
| |
| // Search for the next '"' in hopes of salvaging the lexer. Unfortunately, |
| // it's possible the '"' was intended to be part of the raw string, but |
| // there's not much we can do about that. |
| while (true) { |
| char C = *CurPtr++; |
| |
| if (C == '"') |
| break; |
| if (C == 0 && CurPtr-1 == BufferEnd) { |
| --CurPtr; |
| break; |
| } |
| } |
| |
| FormTokenWithChars(Result, CurPtr, tok::unknown); |
| return true; |
| } |
| |
| // Save prefix and move CurPtr past it |
| const char *Prefix = CurPtr; |
| CurPtr += PrefixLen + 1; // skip over prefix and '(' |
| |
| while (true) { |
| char C = *CurPtr++; |
| |
| if (C == ')') { |
| // Check for prefix match and closing quote. |
| if (strncmp(CurPtr, Prefix, PrefixLen) == 0 && CurPtr[PrefixLen] == '"') { |
| CurPtr += PrefixLen + 1; // skip over prefix and '"' |
| break; |
| } |
| } else if (C == 0 && CurPtr-1 == BufferEnd) { // End of file. |
| if (!isLexingRawMode()) |
| Diag(BufferPtr, diag::err_unterminated_raw_string) |
| << StringRef(Prefix, PrefixLen); |
| FormTokenWithChars(Result, CurPtr-1, tok::unknown); |
| return true; |
| } |
| } |
| |
| // If we are in C++11, lex the optional ud-suffix. |
| if (getLangOpts().CPlusPlus) |
| CurPtr = LexUDSuffix(Result, CurPtr, true); |
| |
| // Update the location of token as well as BufferPtr. |
| const char *TokStart = BufferPtr; |
| FormTokenWithChars(Result, CurPtr, Kind); |
| Result.setLiteralData(TokStart); |
| return true; |
| } |
| |
| /// LexAngledStringLiteral - Lex the remainder of an angled string literal, |
| /// after having lexed the '<' character. This is used for #include filenames. |
| bool Lexer::LexAngledStringLiteral(Token &Result, const char *CurPtr) { |
| // Does this string contain the \0 character? |
| const char *NulCharacter = nullptr; |
| const char *AfterLessPos = CurPtr; |
| char C = getAndAdvanceChar(CurPtr, Result); |
| while (C != '>') { |
| // Skip escaped characters. Escaped newlines will already be processed by |
| // getAndAdvanceChar. |
| if (C == '\\') |
| C = getAndAdvanceChar(CurPtr, Result); |
| |
| if (C == '\n' || C == '\r' || // Newline. |
| (C == 0 && (CurPtr-1 == BufferEnd || // End of file. |
| isCodeCompletionPoint(CurPtr-1)))) { |
| // If the filename is unterminated, then it must just be a lone < |
| // character. Return this as such. |
| FormTokenWithChars(Result, AfterLessPos, tok::less); |
| return true; |
| } |
| |
| if (C == 0) { |
| NulCharacter = CurPtr-1; |
| } |
| C = getAndAdvanceChar(CurPtr, Result); |
| } |
| |
| // If a nul character existed in the string, warn about it. |
| if (NulCharacter && !isLexingRawMode()) |
| Diag(NulCharacter, diag::null_in_char_or_string) << 1; |
| |
| // Update the location of token as well as BufferPtr. |
| const char *TokStart = BufferPtr; |
| FormTokenWithChars(Result, CurPtr, tok::angle_string_literal); |
| Result.setLiteralData(TokStart); |
| return true; |
| } |
| |
| /// LexCharConstant - Lex the remainder of a character constant, after having |
| /// lexed either ' or L' or u8' or u' or U'. |
| bool Lexer::LexCharConstant(Token &Result, const char *CurPtr, |
| tok::TokenKind Kind) { |
| // Does this character contain the \0 character? |
| const char *NulCharacter = nullptr; |
| |
| if (!isLexingRawMode()) { |
| if (Kind == tok::utf16_char_constant || Kind == tok::utf32_char_constant) |
| Diag(BufferPtr, getLangOpts().CPlusPlus |
| ? diag::warn_cxx98_compat_unicode_literal |
| : diag::warn_c99_compat_unicode_literal); |
| else if (Kind == tok::utf8_char_constant) |
| Diag(BufferPtr, diag::warn_cxx14_compat_u8_character_literal); |
| } |
| |
| char C = getAndAdvanceChar(CurPtr, Result); |
| if (C == '\'') { |
| if (!isLexingRawMode() && !LangOpts.AsmPreprocessor) |
| Diag(BufferPtr, diag::ext_empty_character); |
| FormTokenWithChars(Result, CurPtr, tok::unknown); |
| return true; |
| } |
| |
| while (C != '\'') { |
| // Skip escaped characters. |
| if (C == '\\') |
| C = getAndAdvanceChar(CurPtr, Result); |
| |
| if (C == '\n' || C == '\r' || // Newline. |
| (C == 0 && CurPtr-1 == BufferEnd)) { // End of file. |
| if (!isLexingRawMode() && !LangOpts.AsmPreprocessor) |
| Diag(BufferPtr, diag::ext_unterminated_char_or_string) << 0; |
| FormTokenWithChars(Result, CurPtr-1, tok::unknown); |
| return true; |
| } |
| |
| if (C == 0) { |
| if (isCodeCompletionPoint(CurPtr-1)) { |
| PP->CodeCompleteNaturalLanguage(); |
| FormTokenWithChars(Result, CurPtr-1, tok::unknown); |
| cutOffLexing(); |
| return true; |
| } |
| |
| NulCharacter = CurPtr-1; |
| } |
| C = getAndAdvanceChar(CurPtr, Result); |
| } |
| |
| // If we are in C++11, lex the optional ud-suffix. |
| if (getLangOpts().CPlusPlus) |
| CurPtr = LexUDSuffix(Result, CurPtr, false); |
| |
| // If a nul character existed in the character, warn about it. |
| if (NulCharacter && !isLexingRawMode()) |
| Diag(NulCharacter, diag::null_in_char_or_string) << 0; |
| |
| // Update the location of token as well as BufferPtr. |
| const char *TokStart = BufferPtr; |
| FormTokenWithChars(Result, CurPtr, Kind); |
| Result.setLiteralData(TokStart); |
| return true; |
| } |
| |
| /// SkipWhitespace - Efficiently skip over a series of whitespace characters. |
| /// Update BufferPtr to point to the next non-whitespace character and return. |
| /// |
| /// This method forms a token and returns true if KeepWhitespaceMode is enabled. |
| bool Lexer::SkipWhitespace(Token &Result, const char *CurPtr, |
| bool &TokAtPhysicalStartOfLine) { |
| // Whitespace - Skip it, then return the token after the whitespace. |
| bool SawNewline = isVerticalWhitespace(CurPtr[-1]); |
| |
| unsigned char Char = *CurPtr; |
| |
| // Skip consecutive spaces efficiently. |
| while (true) { |
| // Skip horizontal whitespace very aggressively. |
| while (isHorizontalWhitespace(Char)) |
| Char = *++CurPtr; |
| |
| // Otherwise if we have something other than whitespace, we're done. |
| if (!isVerticalWhitespace(Char)) |
| break; |
| |
| if (ParsingPreprocessorDirective) { |
| // End of preprocessor directive line, let LexTokenInternal handle this. |
| BufferPtr = CurPtr; |
| return false; |
| } |
| |
| // OK, but handle newline. |
| SawNewline = true; |
| Char = *++CurPtr; |
| } |
| |
| // If the client wants us to return whitespace, return it now. |
| if (isKeepWhitespaceMode()) { |
| FormTokenWithChars(Result, CurPtr, tok::unknown); |
| if (SawNewline) { |
| IsAtStartOfLine = true; |
| IsAtPhysicalStartOfLine = true; |
| } |
| // FIXME: The next token will not have LeadingSpace set. |
| return true; |
| } |
| |
| // If this isn't immediately after a newline, there is leading space. |
| char PrevChar = CurPtr[-1]; |
| bool HasLeadingSpace = !isVerticalWhitespace(PrevChar); |
| |
| Result.setFlagValue(Token::LeadingSpace, HasLeadingSpace); |
| if (SawNewline) { |
| Result.setFlag(Token::StartOfLine); |
| TokAtPhysicalStartOfLine = true; |
| } |
| |
| BufferPtr = CurPtr; |
| return false; |
| } |
| |
| /// We have just read the // characters from input. Skip until we find the |
| /// newline character that terminates the comment. Then update BufferPtr and |
| /// return. |
| /// |
| /// If we're in KeepCommentMode or any CommentHandler has inserted |
| /// some tokens, this will store the first token and return true. |
| bool Lexer::SkipLineComment(Token &Result, const char *CurPtr, |
| bool &TokAtPhysicalStartOfLine) { |
| // If Line comments aren't explicitly enabled for this language, emit an |
| // extension warning. |
| if (!LangOpts.LineComment && !isLexingRawMode()) { |
| Diag(BufferPtr, diag::ext_line_comment); |
| |
| // Mark them enabled so we only emit one warning for this translation |
| // unit. |
| LangOpts.LineComment = true; |
| } |
| |
| // Scan over the body of the comment. The common case, when scanning, is that |
| // the comment contains normal ascii characters with nothing interesting in |
| // them. As such, optimize for this case with the inner loop. |
| // |
| // This loop terminates with CurPtr pointing at the newline (or end of buffer) |
| // character that ends the line comment. |
| char C; |
| while (true) { |
| C = *CurPtr; |
| // Skip over characters in the fast loop. |
| while (C != 0 && // Potentially EOF. |
| C != '\n' && C != '\r') // Newline or DOS-style newline. |
| C = *++CurPtr; |
| |
| const char *NextLine = CurPtr; |
| if (C != 0) { |
| // We found a newline, see if it's escaped. |
| const char *EscapePtr = CurPtr-1; |
| bool HasSpace = false; |
| while (isHorizontalWhitespace(*EscapePtr)) { // Skip whitespace. |
| --EscapePtr; |
| HasSpace = true; |
| } |
| |
| if (*EscapePtr == '\\') |
| // Escaped newline. |
| CurPtr = EscapePtr; |
| else if (EscapePtr[0] == '/' && EscapePtr[-1] == '?' && |
| EscapePtr[-2] == '?' && LangOpts.Trigraphs) |
| // Trigraph-escaped newline. |
| CurPtr = EscapePtr-2; |
| else |
| break; // This is a newline, we're done. |
| |
| // If there was space between the backslash and newline, warn about it. |
| if (HasSpace && !isLexingRawMode()) |
| Diag(EscapePtr, diag::backslash_newline_space); |
| } |
| |
| // Otherwise, this is a hard case. Fall back on getAndAdvanceChar to |
| // properly decode the character. Read it in raw mode to avoid emitting |
| // diagnostics about things like trigraphs. If we see an escaped newline, |
| // we'll handle it below. |
| const char *OldPtr = CurPtr; |
| bool OldRawMode = isLexingRawMode(); |
| LexingRawMode = true; |
| C = getAndAdvanceChar(CurPtr, Result); |
| LexingRawMode = OldRawMode; |
| |
| // If we only read only one character, then no special handling is needed. |
| // We're done and can skip forward to the newline. |
| if (C != 0 && CurPtr == OldPtr+1) { |
| CurPtr = NextLine; |
| break; |
| } |
| |
| // If we read multiple characters, and one of those characters was a \r or |
| // \n, then we had an escaped newline within the comment. Emit diagnostic |
| // unless the next line is also a // comment. |
| if (CurPtr != OldPtr + 1 && C != '/' && |
| (CurPtr == BufferEnd + 1 || CurPtr[0] != '/')) { |
| for (; OldPtr != CurPtr; ++OldPtr) |
| if (OldPtr[0] == '\n' || OldPtr[0] == '\r') { |
| // Okay, we found a // comment that ends in a newline, if the next |
| // line is also a // comment, but has spaces, don't emit a diagnostic. |
| if (isWhitespace(C)) { |
| const char *ForwardPtr = CurPtr; |
| while (isWhitespace(*ForwardPtr)) // Skip whitespace. |
| ++ForwardPtr; |
| if (ForwardPtr[0] == '/' && ForwardPtr[1] == '/') |
| break; |
| } |
| |
| if (!isLexingRawMode()) |
| Diag(OldPtr-1, diag::ext_multi_line_line_comment); |
| break; |
| } |
| } |
| |
| if (C == '\r' || C == '\n' || CurPtr == BufferEnd + 1) { |
| --CurPtr; |
| break; |
| } |
| |
| if (C == '\0' && isCodeCompletionPoint(CurPtr-1)) { |
| PP->CodeCompleteNaturalLanguage(); |
| cutOffLexing(); |
| return false; |
| } |
| } |
| |
| // Found but did not consume the newline. Notify comment handlers about the |
| // comment unless we're in a #if 0 block. |
| if (PP && !isLexingRawMode() && |
| PP->HandleComment(Result, SourceRange(getSourceLocation(BufferPtr), |
| getSourceLocation(CurPtr)))) { |
| BufferPtr = CurPtr; |
| return true; // A token has to be returned. |
| } |
| |
| // If we are returning comments as tokens, return this comment as a token. |
| if (inKeepCommentMode()) |
| return SaveLineComment(Result, CurPtr); |
| |
| // If we are inside a preprocessor directive and we see the end of line, |
| // return immediately, so that the lexer can return this as an EOD token. |
| if (ParsingPreprocessorDirective || CurPtr == BufferEnd) { |
| BufferPtr = CurPtr; |
| return false; |
| } |
| |
| // Otherwise, eat the \n character. We don't care if this is a \n\r or |
| // \r\n sequence. This is an efficiency hack (because we know the \n can't |
| // contribute to another token), it isn't needed for correctness. Note that |
| // this is ok even in KeepWhitespaceMode, because we would have returned the |
| /// comment above in that mode. |
| ++CurPtr; |
| |
| // The next returned token is at the start of the line. |
| Result.setFlag(Token::StartOfLine); |
| TokAtPhysicalStartOfLine = true; |
| // No leading whitespace seen so far. |
| Result.clearFlag(Token::LeadingSpace); |
| BufferPtr = CurPtr; |
| return false; |
| } |
| |
| /// If in save-comment mode, package up this Line comment in an appropriate |
| /// way and return it. |
| bool Lexer::SaveLineComment(Token &Result, const char *CurPtr) { |
| // If we're not in a preprocessor directive, just return the // comment |
| // directly. |
| FormTokenWithChars(Result, CurPtr, tok::comment); |
| |
| if (!ParsingPreprocessorDirective || LexingRawMode) |
| return true; |
| |
| // If this Line-style comment is in a macro definition, transmogrify it into |
| // a C-style block comment. |
| bool Invalid = false; |
| std::string Spelling = PP->getSpelling(Result, &Invalid); |
| if (Invalid) |
| return true; |
| |
| assert(Spelling[0] == '/' && Spelling[1] == '/' && "Not line comment?"); |
| Spelling[1] = '*'; // Change prefix to "/*". |
| Spelling += "*/"; // add suffix. |
| |
| Result.setKind(tok::comment); |
| PP->CreateString(Spelling, Result, |
| Result.getLocation(), Result.getLocation()); |
| return true; |
| } |
| |
| /// isBlockCommentEndOfEscapedNewLine - Return true if the specified newline |
| /// character (either \\n or \\r) is part of an escaped newline sequence. Issue |
| /// a diagnostic if so. We know that the newline is inside of a block comment. |
| static bool isEndOfBlockCommentWithEscapedNewLine(const char *CurPtr, |
| Lexer *L) { |
| assert(CurPtr[0] == '\n' || CurPtr[0] == '\r'); |
| |
| // Back up off the newline. |
| --CurPtr; |
| |
| // If this is a two-character newline sequence, skip the other character. |
| if (CurPtr[0] == '\n' || CurPtr[0] == '\r') { |
| // \n\n or \r\r -> not escaped newline. |
| if (CurPtr[0] == CurPtr[1]) |
| return false; |
| // \n\r or \r\n -> skip the newline. |
| --CurPtr; |
| } |
| |
| // If we have horizontal whitespace, skip over it. We allow whitespace |
| // between the slash and newline. |
| bool HasSpace = false; |
| while (isHorizontalWhitespace(*CurPtr) || *CurPtr == 0) { |
| --CurPtr; |
| HasSpace = true; |
| } |
| |
| // If we have a slash, we know this is an escaped newline. |
| if (*CurPtr == '\\') { |
| if (CurPtr[-1] != '*') return false; |
| } else { |
| // It isn't a slash, is it the ?? / trigraph? |
| if (CurPtr[0] != '/' || CurPtr[-1] != '?' || CurPtr[-2] != '?' || |
| CurPtr[-3] != '*') |
| return false; |
| |
| // This is the trigraph ending the comment. Emit a stern warning! |
| CurPtr -= 2; |
| |
| // If no trigraphs are enabled, warn that we ignored this trigraph and |
| // ignore this * character. |
| if (!L->getLangOpts().Trigraphs) { |
| if (!L->isLexingRawMode()) |
| L->Diag(CurPtr, diag::trigraph_ignored_block_comment); |
| return false; |
| } |
| if (!L->isLexingRawMode()) |
| L->Diag(CurPtr, diag::trigraph_ends_block_comment); |
| } |
| |
| // Warn about having an escaped newline between the */ characters. |
| if (!L->isLexingRawMode()) |
| L->Diag(CurPtr, diag::escaped_newline_block_comment_end); |
| |
| // If there was space between the backslash and newline, warn about it. |
| if (HasSpace && !L->isLexingRawMode()) |
| L->Diag(CurPtr, diag::backslash_newline_space); |
| |
| return true; |
| } |
| |
| #ifdef __SSE2__ |
| #include <emmintrin.h> |
| #elif __ALTIVEC__ |
| #include <altivec.h> |
| #undef bool |
| #endif |
| |
| /// We have just read from input the / and * characters that started a comment. |
| /// Read until we find the * and / characters that terminate the comment. |
| /// Note that we don't bother decoding trigraphs or escaped newlines in block |
| /// comments, because they cannot cause the comment to end. The only thing |
| /// that can happen is the comment could end with an escaped newline between |
| /// the terminating * and /. |
| /// |
| /// If we're in KeepCommentMode or any CommentHandler has inserted |
| /// some tokens, this will store the first token and return true. |
| bool Lexer::SkipBlockComment(Token &Result, const char *CurPtr, |
| bool &TokAtPhysicalStartOfLine) { |
| // Scan one character past where we should, looking for a '/' character. Once |
| // we find it, check to see if it was preceded by a *. This common |
| // optimization helps people who like to put a lot of * characters in their |
| // comments. |
| |
| // The first character we get with newlines and trigraphs skipped to handle |
| // the degenerate /*/ case below correctly if the * has an escaped newline |
| // after it. |
| unsigned CharSize; |
| unsigned char C = getCharAndSize(CurPtr, CharSize); |
| CurPtr += CharSize; |
| if (C == 0 && CurPtr == BufferEnd+1) { |
| if (!isLexingRawMode()) |
| Diag(BufferPtr, diag::err_unterminated_block_comment); |
| --CurPtr; |
| |
| // KeepWhitespaceMode should return this broken comment as a token. Since |
| // it isn't a well formed comment, just return it as an 'unknown' token. |
| if (isKeepWhitespaceMode()) { |
| FormTokenWithChars(Result, CurPtr, tok::unknown); |
| return true; |
| } |
| |
| BufferPtr = CurPtr; |
| return false; |
| } |
| |
| // Check to see if the first character after the '/*' is another /. If so, |
| // then this slash does not end the block comment, it is part of it. |
| if (C == '/') |
| C = *CurPtr++; |
| |
| while (true) { |
| // Skip over all non-interesting characters until we find end of buffer or a |
| // (probably ending) '/' character. |
| if (CurPtr + 24 < BufferEnd && |
| // If there is a code-completion point avoid the fast scan because it |
| // doesn't check for '\0'. |
| !(PP && PP->getCodeCompletionFileLoc() == FileLoc)) { |
| // While not aligned to a 16-byte boundary. |
| while (C != '/' && ((intptr_t)CurPtr & 0x0F) != 0) |
| C = *CurPtr++; |
| |
| if (C == '/') goto FoundSlash; |
| |
| #ifdef __SSE2__ |
| __m128i Slashes = _mm_set1_epi8('/'); |
| while (CurPtr+16 <= BufferEnd) { |
| int cmp = _mm_movemask_epi8(_mm_cmpeq_epi8(*(const __m128i*)CurPtr, |
| Slashes)); |
| if (cmp != 0) { |
| // Adjust the pointer to point directly after the first slash. It's |
| // not necessary to set C here, it will be overwritten at the end of |
| // the outer loop. |
| CurPtr += llvm::countTrailingZeros<unsigned>(cmp) + 1; |
| goto FoundSlash; |
| } |
| CurPtr += 16; |
| } |
| #elif __ALTIVEC__ |
| __vector unsigned char Slashes = { |
| '/', '/', '/', '/', '/', '/', '/', '/', |
| '/', '/', '/', '/', '/', '/', '/', '/' |
| }; |
| while (CurPtr+16 <= BufferEnd && |
| !vec_any_eq(*(const vector unsigned char*)CurPtr, Slashes)) |
| CurPtr += 16; |
| #else |
| // Scan for '/' quickly. Many block comments are very large. |
| while (CurPtr[0] != '/' && |
| CurPtr[1] != '/' && |
| CurPtr[2] != '/' && |
| CurPtr[3] != '/' && |
| CurPtr+4 < BufferEnd) { |
| CurPtr += 4; |
| } |
| #endif |
| |
| // It has to be one of the bytes scanned, increment to it and read one. |
| C = *CurPtr++; |
| } |
| |
| // Loop to scan the remainder. |
| while (C != '/' && C != '\0') |
| C = *CurPtr++; |
| |
| if (C == '/') { |
| FoundSlash: |
| if (CurPtr[-2] == '*') // We found the final */. We're done! |
| break; |
| |
| if ((CurPtr[-2] == '\n' || CurPtr[-2] == '\r')) { |
| if (isEndOfBlockCommentWithEscapedNewLine(CurPtr-2, this)) { |
| // We found the final */, though it had an escaped newline between the |
| // * and /. We're done! |
| break; |
| } |
| } |
| if (CurPtr[0] == '*' && CurPtr[1] != '/') { |
| // If this is a /* inside of the comment, emit a warning. Don't do this |
| // if this is a /*/, which will end the comment. This misses cases with |
| // embedded escaped newlines, but oh well. |
| if (!isLexingRawMode()) |
| Diag(CurPtr-1, diag::warn_nested_block_comment); |
| } |
| } else if (C == 0 && CurPtr == BufferEnd+1) { |
| if (!isLexingRawMode()) |
| Diag(BufferPtr, diag::err_unterminated_block_comment); |
| // Note: the user probably forgot a */. We could continue immediately |
| // after the /*, but this would involve lexing a lot of what really is the |
| // comment, which surely would confuse the parser. |
| --CurPtr; |
| |
| // KeepWhitespaceMode should return this broken comment as a token. Since |
| // it isn't a well formed comment, just return it as an 'unknown' token. |
| if (isKeepWhitespaceMode()) { |
| FormTokenWithChars(Result, CurPtr, tok::unknown); |
| return true; |
| } |
| |
| BufferPtr = CurPtr; |
| return false; |
| } else if (C == '\0' && isCodeCompletionPoint(CurPtr-1)) { |
| PP->CodeCompleteNaturalLanguage(); |
| cutOffLexing(); |
| return false; |
| } |
| |
| C = *CurPtr++; |
| } |
| |
| // Notify comment handlers about the comment unless we're in a #if 0 block. |
| if (PP && !isLexingRawMode() && |
| PP->HandleComment(Result, SourceRange(getSourceLocation(BufferPtr), |
| getSourceLocation(CurPtr)))) { |
| BufferPtr = CurPtr; |
| return true; // A token has to be returned. |
| } |
| |
| // If we are returning comments as tokens, return this comment as a token. |
| if (inKeepCommentMode()) { |
| FormTokenWithChars(Result, CurPtr, tok::comment); |
| return true; |
| } |
| |
| // It is common for the tokens immediately after a /**/ comment to be |
| // whitespace. Instead of going through the big switch, handle it |
| // efficiently now. This is safe even in KeepWhitespaceMode because we would |
| // have already returned above with the comment as a token. |
| if (isHorizontalWhitespace(*CurPtr)) { |
| SkipWhitespace(Result, CurPtr+1, TokAtPhysicalStartOfLine); |
| return false; |
| } |
| |
| // Otherwise, just return so that the next character will be lexed as a token. |
| BufferPtr = CurPtr; |
| Result.setFlag(Token::LeadingSpace); |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Primary Lexing Entry Points |
| //===----------------------------------------------------------------------===// |
| |
| /// ReadToEndOfLine - Read the rest of the current preprocessor line as an |
| /// uninterpreted string. This switches the lexer out of directive mode. |
| void Lexer::ReadToEndOfLine(SmallVectorImpl<char> *Result) { |
| assert(ParsingPreprocessorDirective && ParsingFilename == false && |
| "Must be in a preprocessing directive!"); |
| Token Tmp; |
| |
| // CurPtr - Cache BufferPtr in an automatic variable. |
| const char *CurPtr = BufferPtr; |
| while (true) { |
| char Char = getAndAdvanceChar(CurPtr, Tmp); |
| switch (Char) { |
| default: |
| if (Result) |
| Result->push_back(Char); |
| break; |
| case 0: // Null. |
| // Found end of file? |
| if (CurPtr-1 != BufferEnd) { |
| if (isCodeCompletionPoint(CurPtr-1)) { |
| PP->CodeCompleteNaturalLanguage(); |
| cutOffLexing(); |
| return; |
| } |
| |
| // Nope, normal character, continue. |
| if (Result) |
| Result->push_back(Char); |
| break; |
| } |
| // FALL THROUGH. |
| LLVM_FALLTHROUGH; |
| case '\r': |
| case '\n': |
| // Okay, we found the end of the line. First, back up past the \0, \r, \n. |
| assert(CurPtr[-1] == Char && "Trigraphs for newline?"); |
| BufferPtr = CurPtr-1; |
| |
| // Next, lex the character, which should handle the EOD transition. |
| Lex(Tmp); |
| if (Tmp.is(tok::code_completion)) { |
| if (PP) |
| PP->CodeCompleteNaturalLanguage(); |
| Lex(Tmp); |
| } |
| assert(Tmp.is(tok::eod) && "Unexpected token!"); |
| |
| // Finally, we're done; |
| return; |
| } |
| } |
| } |
| |
| /// LexEndOfFile - CurPtr points to the end of this file. Handle this |
| /// condition, reporting diagnostics and handling other edge cases as required. |
| /// This returns true if Result contains a token, false if PP.Lex should be |
| /// called again. |
| bool Lexer::LexEndOfFile(Token &Result, const char *CurPtr) { |
| // If we hit the end of the file while parsing a preprocessor directive, |
| // end the preprocessor directive first. The next token returned will |
| // then be the end of file. |
| if (ParsingPreprocessorDirective) { |
| // Done parsing the "line". |
| ParsingPreprocessorDirective = false; |
| // Update the location of token as well as BufferPtr. |
| FormTokenWithChars(Result, CurPtr, tok::eod); |
| |
| // Restore comment saving mode, in case it was disabled for directive. |
| if (PP) |
| resetExtendedTokenMode(); |
| return true; // Have a token. |
| } |
| |
| // If we are in raw mode, return this event as an EOF token. Let the caller |
| // that put us in raw mode handle the event. |
| if (isLexingRawMode()) { |
| Result.startToken(); |
| BufferPtr = BufferEnd; |
| FormTokenWithChars(Result, BufferEnd, tok::eof); |
| return true; |
| } |
| |
| if (PP->isRecordingPreamble() && PP->isInPrimaryFile()) { |
| PP->setRecordedPreambleConditionalStack(ConditionalStack); |
| ConditionalStack.clear(); |
| } |
| |
| // Issue diagnostics for unterminated #if and missing newline. |
| |
| // If we are in a #if directive, emit an error. |
| while (!ConditionalStack.empty()) { |
| if (PP->getCodeCompletionFileLoc() != FileLoc) |
| PP->Diag(ConditionalStack.back().IfLoc, |
| diag::err_pp_unterminated_conditional); |
| ConditionalStack.pop_back(); |
| } |
| |
| // C99 5.1.1.2p2: If the file is non-empty and didn't end in a newline, issue |
| // a pedwarn. |
| if (CurPtr != BufferStart && (CurPtr[-1] != '\n' && CurPtr[-1] != '\r')) { |
| DiagnosticsEngine &Diags = PP->getDiagnostics(); |
| SourceLocation EndLoc = getSourceLocation(BufferEnd); |
| unsigned DiagID; |
| |
| if (LangOpts.CPlusPlus11) { |
| // C++11 [lex.phases] 2.2 p2 |
| // Prefer the C++98 pedantic compatibility warning over the generic, |
| // non-extension, user-requested "missing newline at EOF" warning. |
| if (!Diags.isIgnored(diag::warn_cxx98_compat_no_newline_eof, EndLoc)) { |
| DiagID = diag::warn_cxx98_compat_no_newline_eof; |
| } else { |
| DiagID = diag::warn_no_newline_eof; |
| } |
| } else { |
| DiagID = diag::ext_no_newline_eof; |
| } |
| |
| Diag(BufferEnd, DiagID) |
| << FixItHint::CreateInsertion(EndLoc, "\n"); |
| } |
| |
| BufferPtr = CurPtr; |
| |
| // Finally, let the preprocessor handle this. |
| return PP->HandleEndOfFile(Result, isPragmaLexer()); |
| } |
| |
| /// isNextPPTokenLParen - Return 1 if the next unexpanded token lexed from |
| /// the specified lexer will return a tok::l_paren token, 0 if it is something |
| /// else and 2 if there are no more tokens in the buffer controlled by the |
| /// lexer. |
| unsigned Lexer::isNextPPTokenLParen() { |
| assert(!LexingRawMode && "How can we expand a macro from a skipping buffer?"); |
| |
| // Switch to 'skipping' mode. This will ensure that we can lex a token |
| // without emitting diagnostics, disables macro expansion, and will cause EOF |
| // to return an EOF token instead of popping the include stack. |
| LexingRawMode = true; |
| |
| // Save state that can be changed while lexing so that we can restore it. |
| const char *TmpBufferPtr = BufferPtr; |
| bool inPPDirectiveMode = ParsingPreprocessorDirective; |
| bool atStartOfLine = IsAtStartOfLine; |
| bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine; |
| bool leadingSpace = HasLeadingSpace; |
| |
| Token Tok; |
| Lex(Tok); |
| |
| // Restore state that may have changed. |
| BufferPtr = TmpBufferPtr; |
| ParsingPreprocessorDirective = inPPDirectiveMode; |
| HasLeadingSpace = leadingSpace; |
| IsAtStartOfLine = atStartOfLine; |
| IsAtPhysicalStartOfLine = atPhysicalStartOfLine; |
| |
| // Restore the lexer back to non-skipping mode. |
| LexingRawMode = false; |
| |
| if (Tok.is(tok::eof)) |
| return 2; |
| return Tok.is(tok::l_paren); |
| } |
| |
| /// Find the end of a version control conflict marker. |
| static const char *FindConflictEnd(const char *CurPtr, const char *BufferEnd, |
| ConflictMarkerKind CMK) { |
| const char *Terminator = CMK == CMK_Perforce ? "<<<<\n" : ">>>>>>>"; |
| size_t TermLen = CMK == CMK_Perforce ? 5 : 7; |
| auto RestOfBuffer = StringRef(CurPtr, BufferEnd - CurPtr).substr(TermLen); |
| size_t Pos = RestOfBuffer.find(Terminator); |
| while (Pos != StringRef::npos) { |
| // Must occur at start of line. |
| if (Pos == 0 || |
| (RestOfBuffer[Pos - 1] != '\r' && RestOfBuffer[Pos - 1] != '\n')) { |
| RestOfBuffer = RestOfBuffer.substr(Pos+TermLen); |
| Pos = RestOfBuffer.find(Terminator); |
| continue; |
| } |
| return RestOfBuffer.data()+Pos; |
| } |
| return nullptr; |
| } |
| |
| /// IsStartOfConflictMarker - If the specified pointer is the start of a version |
| /// control conflict marker like '<<<<<<<', recognize it as such, emit an error |
| /// and recover nicely. This returns true if it is a conflict marker and false |
| /// if not. |
| bool Lexer::IsStartOfConflictMarker(const char *CurPtr) { |
| // Only a conflict marker if it starts at the beginning of a line. |
| if (CurPtr != BufferStart && |
| CurPtr[-1] != '\n' && CurPtr[-1] != '\r') |
| return false; |
| |
| // Check to see if we have <<<<<<< or >>>>. |
| if (!StringRef(CurPtr, BufferEnd - CurPtr).startswith("<<<<<<<") && |
| !StringRef(CurPtr, BufferEnd - CurPtr).startswith(">>>> ")) |
| return false; |
| |
| // If we have a situation where we don't care about conflict markers, ignore |
| // it. |
| if (CurrentConflictMarkerState || isLexingRawMode()) |
| return false; |
| |
| ConflictMarkerKind Kind = *CurPtr == '<' ? CMK_Normal : CMK_Perforce; |
| |
| // Check to see if there is an ending marker somewhere in the buffer at the |
| // start of a line to terminate this conflict marker. |
| if (FindConflictEnd(CurPtr, BufferEnd, Kind)) { |
| // We found a match. We are really in a conflict marker. |
| // Diagnose this, and ignore to the end of line. |
| Diag(CurPtr, diag::err_conflict_marker); |
| CurrentConflictMarkerState = Kind; |
| |
| // Skip ahead to the end of line. We know this exists because the |
| // end-of-conflict marker starts with \r or \n. |
| while (*CurPtr != '\r' && *CurPtr != '\n') { |
| assert(CurPtr != BufferEnd && "Didn't find end of line"); |
| ++CurPtr; |
| } |
| BufferPtr = CurPtr; |
| return true; |
| } |
| |
| // No end of conflict marker found. |
| return false; |
| } |
| |
| /// HandleEndOfConflictMarker - If this is a '====' or '||||' or '>>>>', or if |
| /// it is '<<<<' and the conflict marker started with a '>>>>' marker, then it |
| /// is the end of a conflict marker. Handle it by ignoring up until the end of |
| /// the line. This returns true if it is a conflict marker and false if not. |
| bool Lexer::HandleEndOfConflictMarker(const char *CurPtr) { |
| // Only a conflict marker if it starts at the beginning of a line. |
| if (CurPtr != BufferStart && |
| CurPtr[-1] != '\n' && CurPtr[-1] != '\r') |
| return false; |
| |
| // If we have a situation where we don't care about conflict markers, ignore |
| // it. |
| if (!CurrentConflictMarkerState || isLexingRawMode()) |
| return false; |
| |
| // Check to see if we have the marker (4 characters in a row). |
| for (unsigned i = 1; i != 4; ++i) |
| if (CurPtr[i] != CurPtr[0]) |
| return false; |
| |
| // If we do have it, search for the end of the conflict marker. This could |
| // fail if it got skipped with a '#if 0' or something. Note that CurPtr might |
| // be the end of conflict marker. |
| if (const char *End = FindConflictEnd(CurPtr, BufferEnd, |
| CurrentConflictMarkerState)) { |
| CurPtr = End; |
| |
| // Skip ahead to the end of line. |
| while (CurPtr != BufferEnd && *CurPtr != '\r' && *CurPtr != '\n') |
| ++CurPtr; |
| |
| BufferPtr = CurPtr; |
| |
| // No longer in the conflict marker. |
| CurrentConflictMarkerState = CMK_None; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static const char *findPlaceholderEnd(const char *CurPtr, |
| const char *BufferEnd) { |
| if (CurPtr == BufferEnd) |
| return nullptr; |
| BufferEnd -= 1; // Scan until the second last character. |
| for (; CurPtr != BufferEnd; ++CurPtr) { |
| if (CurPtr[0] == '#' && CurPtr[1] == '>') |
| return CurPtr + 2; |
| } |
| return nullptr; |
| } |
| |
| bool Lexer::lexEditorPlaceholder(Token &Result, const char *CurPtr) { |
| assert(CurPtr[-1] == '<' && CurPtr[0] == '#' && "Not a placeholder!"); |
| if (!PP || !PP->getPreprocessorOpts().LexEditorPlaceholders || LexingRawMode) |
| return false; |
| const char *End = findPlaceholderEnd(CurPtr + 1, BufferEnd); |
| if (!End) |
| return false; |
| const char *Start = CurPtr - 1; |
| if (!LangOpts.AllowEditorPlaceholders) |
| Diag(Start, diag::err_placeholder_in_source); |
| Result.startToken(); |
| FormTokenWithChars(Result, End, tok::raw_identifier); |
| Result.setRawIdentifierData(Start); |
| PP->LookUpIdentifierInfo(Result); |
| Result.setFlag(Token::IsEditorPlaceholder); |
| BufferPtr = End; |
| return true; |
| } |
| |
| bool Lexer::isCodeCompletionPoint(const char *CurPtr) const { |
| if (PP && PP->isCodeCompletionEnabled()) { |
| SourceLocation Loc = FileLoc.getLocWithOffset(CurPtr-BufferStart); |
| return Loc == PP->getCodeCompletionLoc(); |
| } |
| |
| return false; |
| } |
| |
| uint32_t Lexer::tryReadUCN(const char *&StartPtr, const char *SlashLoc, |
| Token *Result) { |
| unsigned CharSize; |
| char Kind = getCharAndSize(StartPtr, CharSize); |
| |
| unsigned NumHexDigits; |
| if (Kind == 'u') |
| NumHexDigits = 4; |
| else if (Kind == 'U') |
| NumHexDigits = 8; |
| else |
| return 0; |
| |
| if (!LangOpts.CPlusPlus && !LangOpts.C99) { |
| if (Result && !isLexingRawMode()) |
| Diag(SlashLoc, diag::warn_ucn_not_valid_in_c89); |
| return 0; |
| } |
| |
| const char *CurPtr = StartPtr + CharSize; |
| const char *KindLoc = &CurPtr[-1]; |
| |
| uint32_t CodePoint = 0; |
| for (unsigned i = 0; i < NumHexDigits; ++i) { |
| char C = getCharAndSize(CurPtr, CharSize); |
| |
| unsigned Value = llvm::hexDigitValue(C); |
| if (Value == -1U) { |
| if (Result && !isLexingRawMode()) { |
| if (i == 0) { |
| Diag(BufferPtr, diag::warn_ucn_escape_no_digits) |
| << StringRef(KindLoc, 1); |
| } else { |
| Diag(BufferPtr, diag::warn_ucn_escape_incomplete); |
| |
| // If the user wrote \U1234, suggest a fixit to \u. |
| if (i == 4 && NumHexDigits == 8) { |
| CharSourceRange URange = makeCharRange(*this, KindLoc, KindLoc + 1); |
| Diag(KindLoc, diag::note_ucn_four_not_eight) |
| << FixItHint::CreateReplacement(URange, "u"); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| CodePoint <<= 4; |
| CodePoint += Value; |
| |
| CurPtr += CharSize; |
| } |
| |
| if (Result) { |
| Result->setFlag(Token::HasUCN); |
| if (CurPtr - StartPtr == (ptrdiff_t)NumHexDigits + 2) |
| StartPtr = CurPtr; |
| else |
| while (StartPtr != CurPtr) |
| (void)getAndAdvanceChar(StartPtr, *Result); |
| } else { |
| StartPtr = CurPtr; |
| } |
| |
| // Don't apply C family restrictions to UCNs in assembly mode |
| if (LangOpts.AsmPreprocessor) |
| return CodePoint; |
| |
| // C99 6.4.3p2: A universal character name shall not specify a character whose |
| // short identifier is less than 00A0 other than 0024 ($), 0040 (@), or |
| // 0060 (`), nor one in the range D800 through DFFF inclusive.) |
| // C++11 [lex.charset]p2: If the hexadecimal value for a |
| // universal-character-name corresponds to a surrogate code point (in the |
| // range 0xD800-0xDFFF, inclusive), the program is ill-formed. Additionally, |
| // if the hexadecimal value for a universal-character-name outside the |
| // c-char-sequence, s-char-sequence, or r-char-sequence of a character or |
| // string literal corresponds to a control character (in either of the |
| // ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a character in the |
| // basic source character set, the program is ill-formed. |
| if (CodePoint < 0xA0) { |
| if (CodePoint == 0x24 || CodePoint == 0x40 || CodePoint == 0x60) |
| return CodePoint; |
| |
| // We don't use isLexingRawMode() here because we need to warn about bad |
| // UCNs even when skipping preprocessing tokens in a #if block. |
| if (Result && PP) { |
| if (CodePoint < 0x20 || CodePoint >= 0x7F) |
| Diag(BufferPtr, diag::err_ucn_control_character); |
| else { |
| char C = static_cast<char>(CodePoint); |
| Diag(BufferPtr, diag::err_ucn_escape_basic_scs) << StringRef(&C, 1); |
| } |
| } |
| |
| return 0; |
| } else if (CodePoint >= 0xD800 && CodePoint <= 0xDFFF) { |
| // C++03 allows UCNs representing surrogate characters. C99 and C++11 don't. |
| // We don't use isLexingRawMode() here because we need to diagnose bad |
| // UCNs even when skipping preprocessing tokens in a #if block. |
| if (Result && PP) { |
| if (LangOpts.CPlusPlus && !LangOpts.CPlusPlus11) |
| Diag(BufferPtr, diag::warn_ucn_escape_surrogate); |
| else |
| Diag(BufferPtr, diag::err_ucn_escape_invalid); |
| } |
| return 0; |
| } |
| |
| return CodePoint; |
| } |
| |
| bool Lexer::CheckUnicodeWhitespace(Token &Result, uint32_t C, |
| const char *CurPtr) { |
| static const llvm::sys::UnicodeCharSet UnicodeWhitespaceChars( |
| UnicodeWhitespaceCharRanges); |
| if (!isLexingRawMode() && !PP->isPreprocessedOutput() && |
| UnicodeWhitespaceChars.contains(C)) { |
| Diag(BufferPtr, diag::ext_unicode_whitespace) |
| << makeCharRange(*this, BufferPtr, CurPtr); |
| |
| Result.setFlag(Token::LeadingSpace); |
| return true; |
| } |
| return false; |
| } |
| |
| bool Lexer::LexUnicode(Token &Result, uint32_t C, const char *CurPtr) { |
| if (isAllowedIDChar(C, LangOpts) && isAllowedInitiallyIDChar(C, LangOpts)) { |
| if (!isLexingRawMode() && !ParsingPreprocessorDirective && |
| !PP->isPreprocessedOutput()) { |
| maybeDiagnoseIDCharCompat(PP->getDiagnostics(), C, |
| makeCharRange(*this, BufferPtr, CurPtr), |
| /*IsFirst=*/true); |
| } |
| |
| MIOpt.ReadToken(); |
| return LexIdentifier(Result, CurPtr); |
| } |
| |
| if (!isLexingRawMode() && !ParsingPreprocessorDirective && |
| !PP->isPreprocessedOutput() && |
| !isASCII(*BufferPtr) && !isAllowedIDChar(C, LangOpts)) { |
| // Non-ASCII characters tend to creep into source code unintentionally. |
| // Instead of letting the parser complain about the unknown token, |
| // just drop the character. |
| // Note that we can /only/ do this when the non-ASCII character is actually |
| // spelled as Unicode, not written as a UCN. The standard requires that |
| // we not throw away any possible preprocessor tokens, but there's a |
| // loophole in the mapping of Unicode characters to basic character set |
| // characters that allows us to map these particular characters to, say, |
| // whitespace. |
| Diag(BufferPtr, diag::err_non_ascii) |
| << FixItHint::CreateRemoval(makeCharRange(*this, BufferPtr, CurPtr)); |
| |
| BufferPtr = CurPtr; |
| return false; |
| } |
| |
| // Otherwise, we have an explicit UCN or a character that's unlikely to show |
| // up by accident. |
| MIOpt.ReadToken(); |
| FormTokenWithChars(Result, CurPtr, tok::unknown); |
| return true; |
| } |
| |
| void Lexer::PropagateLineStartLeadingSpaceInfo(Token &Result) { |
| IsAtStartOfLine = Result.isAtStartOfLine(); |
| HasLeadingSpace = Result.hasLeadingSpace(); |
| HasLeadingEmptyMacro = Result.hasLeadingEmptyMacro(); |
| // Note that this doesn't affect IsAtPhysicalStartOfLine. |
| } |
| |
| bool Lexer::Lex(Token &Result) { |
| // Start a new token. |
| Result.startToken(); |
| |
| // Set up misc whitespace flags for LexTokenInternal. |
| if (IsAtStartOfLine) { |
| Result.setFlag(Token::StartOfLine); |
| IsAtStartOfLine = false; |
| } |
| |
| if (HasLeadingSpace) { |
| Result.setFlag(Token::LeadingSpace); |
| HasLeadingSpace = false; |
| } |
| |
| if (HasLeadingEmptyMacro) { |
| Result.setFlag(Token::LeadingEmptyMacro); |
| HasLeadingEmptyMacro = false; |
| } |
| |
| bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine; |
| IsAtPhysicalStartOfLine = false; |
| bool isRawLex = isLexingRawMode(); |
| (void) isRawLex; |
| bool returnedToken = LexTokenInternal(Result, atPhysicalStartOfLine); |
| // (After the LexTokenInternal call, the lexer might be destroyed.) |
| assert((returnedToken || !isRawLex) && "Raw lex must succeed"); |
| return returnedToken; |
| } |
| |
| /// LexTokenInternal - This implements a simple C family lexer. It is an |
| /// extremely performance critical piece of code. This assumes that the buffer |
| /// has a null character at the end of the file. This returns a preprocessing |
| /// token, not a normal token, as such, it is an internal interface. It assumes |
| /// that the Flags of result have been cleared before calling this. |
| bool Lexer::LexTokenInternal(Token &Result, bool TokAtPhysicalStartOfLine) { |
| LexNextToken: |
| // New token, can't need cleaning yet. |
| Result.clearFlag(Token::NeedsCleaning); |
| Result.setIdentifierInfo(nullptr); |
| |
| // CurPtr - Cache BufferPtr in an automatic variable. |
| const char *CurPtr = BufferPtr; |
| |
| // Small amounts of horizontal whitespace is very common between tokens. |
| if ((*CurPtr == ' ') || (*CurPtr == '\t')) { |
| ++CurPtr; |
| while ((*CurPtr == ' ') || (*CurPtr == '\t')) |
| ++CurPtr; |
| |
| // If we are keeping whitespace and other tokens, just return what we just |
| // skipped. The next lexer invocation will return the token after the |
| // whitespace. |
| if (isKeepWhitespaceMode()) { |
| FormTokenWithChars(Result, CurPtr, tok::unknown); |
| // FIXME: The next token will not have LeadingSpace set. |
| return true; |
| } |
| |
| BufferPtr = CurPtr; |
| Result.setFlag(Token::LeadingSpace); |
| } |
| |
| unsigned SizeTmp, SizeTmp2; // Temporaries for use in cases below. |
| |
| // Read a character, advancing over it. |
| char Char = getAndAdvanceChar(CurPtr, Result); |
| tok::TokenKind Kind; |
| |
| switch (Char) { |
| case 0: // Null. |
| // Found end of file? |
| if (CurPtr-1 == BufferEnd) |
| return LexEndOfFile(Result, CurPtr-1); |
| |
| // Check if we are performing code completion. |
| if (isCodeCompletionPoint(CurPtr-1)) { |
| // Return the code-completion token. |
| Result.startToken(); |
| FormTokenWithChars(Result, CurPtr, tok::code_completion); |
| return true; |
| } |
| |
| if (!isLexingRawMode()) |
| Diag(CurPtr-1, diag::null_in_file); |
| Result.setFlag(Token::LeadingSpace); |
| if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine)) |
| return true; // KeepWhitespaceMode |
| |
| // We know the lexer hasn't changed, so just try again with this lexer. |
| // (We manually eliminate the tail call to avoid recursion.) |
| goto LexNextToken; |
| |
| case 26: // DOS & CP/M EOF: "^Z". |
| // If we're in Microsoft extensions mode, treat this as end of file. |
| if (LangOpts.MicrosoftExt) { |
| if (!isLexingRawMode()) |
| Diag(CurPtr-1, diag::ext_ctrl_z_eof_microsoft); |
| return LexEndOfFile(Result, CurPtr-1); |
| } |
| |
| // If Microsoft extensions are disabled, this is just random garbage. |
| Kind = tok::unknown; |
| break; |
| |
| case '\r': |
| if (CurPtr[0] == '\n') |
| Char = getAndAdvanceChar(CurPtr, Result); |
| LLVM_FALLTHROUGH; |
| case '\n': |
| // If we are inside a preprocessor directive and we see the end of line, |
| // we know we are done with the directive, so return an EOD token. |
| if (ParsingPreprocessorDirective) { |
| // Done parsing the "line". |
| ParsingPreprocessorDirective = false; |
| |
| // Restore comment saving mode, in case it was disabled for directive. |
| if (PP) |
| resetExtendedTokenMode(); |
| |
| // Since we consumed a newline, we are back at the start of a line. |
| IsAtStartOfLine = true; |
| IsAtPhysicalStartOfLine = true; |
| |
| Kind = tok::eod; |
| break; |
| } |
| |
| // No leading whitespace seen so far. |
| Result.clearFlag(Token::LeadingSpace); |
| |
| if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine)) |
| return true; // KeepWhitespaceMode |
| |
| // We only saw whitespace, so just try again with this lexer. |
| // (We manually eliminate the tail call to avoid recursion.) |
| goto LexNextToken; |
| case ' ': |
| case '\t': |
| case '\f': |
| case '\v': |
| SkipHorizontalWhitespace: |
| Result.setFlag(Token::LeadingSpace); |
| if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine)) |
| return true; // KeepWhitespaceMode |
| |
| SkipIgnoredUnits: |
| CurPtr = BufferPtr; |
| |
| // If the next token is obviously a // or /* */ comment, skip it efficiently |
| // too (without going through the big switch stmt). |
| if (CurPtr[0] == '/' && CurPtr[1] == '/' && !inKeepCommentMode() && |
| LangOpts.LineComment && |
| (LangOpts.CPlusPlus || !LangOpts.TraditionalCPP)) { |
| if (SkipLineComment(Result, CurPtr+2, TokAtPhysicalStartOfLine)) |
| return true; // There is a token to return. |
| goto SkipIgnoredUnits; |
| } else if (CurPtr[0] == '/' && CurPtr[1] == '*' && !inKeepCommentMode()) { |
| if (SkipBlockComment(Result, CurPtr+2, TokAtPhysicalStartOfLine)) |
| return true; // There is a token to return. |
| goto SkipIgnoredUnits; |
| } else if (isHorizontalWhitespace(*CurPtr)) { |
| goto SkipHorizontalWhitespace; |
| } |
| // We only saw whitespace, so just try again with this lexer. |
| // (We manually eliminate the tail call to avoid recursion.) |
| goto LexNextToken; |
| |
| // C99 6.4.4.1: Integer Constants. |
| // C99 6.4.4.2: Floating Constants. |
| case '0': case '1': case '2': case '3': case '4': |
| case '5': case '6': case '7': case '8': case '9': |
| // Notify MIOpt that we read a non-whitespace/non-comment token. |
| MIOpt.ReadToken(); |
| return LexNumericConstant(Result, CurPtr); |
| |
| case 'u': // Identifier (uber) or C11/C++11 UTF-8 or UTF-16 string literal |
| // Notify MIOpt that we read a non-whitespace/non-comment token. |
| MIOpt.ReadToken(); |
| |
| if (LangOpts.CPlusPlus11 || LangOpts.C11) { |
| Char = getCharAndSize(CurPtr, SizeTmp); |
| |
| // UTF-16 string literal |
| if (Char == '"') |
| return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result), |
| tok::utf16_string_literal); |
| |
| // UTF-16 character constant |
| if (Char == '\'') |
| return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result), |
| tok::utf16_char_constant); |
| |
| // UTF-16 raw string literal |
| if (Char == 'R' && LangOpts.CPlusPlus11 && |
| getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"') |
| return LexRawStringLiteral(Result, |
| ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), |
| SizeTmp2, Result), |
| tok::utf16_string_literal); |
| |
| if (Char == '8') { |
| char Char2 = getCharAndSize(CurPtr + SizeTmp, SizeTmp2); |
| |
| // UTF-8 string literal |
| if (Char2 == '"') |
| return LexStringLiteral(Result, |
| ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), |
| SizeTmp2, Result), |
| tok::utf8_string_literal); |
| if (Char2 == '\'' && LangOpts.CPlusPlus17) |
| return LexCharConstant( |
| Result, ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), |
| SizeTmp2, Result), |
| tok::utf8_char_constant); |
| |
| if (Char2 == 'R' && LangOpts.CPlusPlus11) { |
| unsigned SizeTmp3; |
| char Char3 = getCharAndSize(CurPtr + SizeTmp + SizeTmp2, SizeTmp3); |
| // UTF-8 raw string literal |
| if (Char3 == '"') { |
| return LexRawStringLiteral(Result, |
| ConsumeChar(ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), |
| SizeTmp2, Result), |
| SizeTmp3, Result), |
| tok::utf8_string_literal); |
| } |
| } |
| } |
| } |
| |
| // treat u like the start of an identifier. |
| return LexIdentifier(Result, CurPtr); |
| |
| case 'U': // Identifier (Uber) or C11/C++11 UTF-32 string literal |
| // Notify MIOpt that we read a non-whitespace/non-comment token. |
| MIOpt.ReadToken(); |
| |
| if (LangOpts.CPlusPlus11 || LangOpts.C11) { |
| Char = getCharAndSize(CurPtr, SizeTmp); |
| |
| // UTF-32 string literal |
| if (Char == '"') |
| return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result), |
| tok::utf32_string_literal); |
| |
| // UTF-32 character constant |
| if (Char == '\'') |
| return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result), |
| tok::utf32_char_constant); |
| |
| // UTF-32 raw string literal |
| if (Char == 'R' && LangOpts.CPlusPlus11 && |
| getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"') |
| return LexRawStringLiteral(Result, |
| ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), |
| SizeTmp2, Result), |
| tok::utf32_string_literal); |
| } |
| |
| // treat U like the start of an identifier. |
| return LexIdentifier(Result, CurPtr); |
| |
| case 'R': // Identifier or C++0x raw string literal |
| // Notify MIOpt that we read a non-whitespace/non-comment token. |
| MIOpt.ReadToken(); |
| |
| if (LangOpts.CPlusPlus11) { |
| Char = getCharAndSize(CurPtr, SizeTmp); |
| |
| if (Char == '"') |
| return LexRawStringLiteral(Result, |
| ConsumeChar(CurPtr, SizeTmp, Result), |
| tok::string_literal); |
| } |
| |
| // treat R like the start of an identifier. |
| return LexIdentifier(Result, CurPtr); |
| |
| case 'L': // Identifier (Loony) or wide literal (L'x' or L"xyz"). |
| // Notify MIOpt that we read a non-whitespace/non-comment token. |
| MIOpt.ReadToken(); |
| Char = getCharAndSize(CurPtr, SizeTmp); |
| |
| // Wide string literal. |
| if (Char == '"') |
| return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result), |
| tok::wide_string_literal); |
| |
| // Wide raw string literal. |
| if (LangOpts.CPlusPlus11 && Char == 'R' && |
| getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"') |
| return LexRawStringLiteral(Result, |
| ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), |
| SizeTmp2, Result), |
| tok::wide_string_literal); |
| |
| // Wide character constant. |
| if (Char == '\'') |
| return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result), |
| tok::wide_char_constant); |
| // FALL THROUGH, treating L like the start of an identifier. |
| LLVM_FALLTHROUGH; |
| |
| // C99 6.4.2: Identifiers. |
| case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G': |
| case 'H': case 'I': case 'J': case 'K': /*'L'*/case 'M': case 'N': |
| case 'O': case 'P': case 'Q': /*'R'*/case 'S': case 'T': /*'U'*/ |
| case 'V': case 'W': case 'X': case 'Y': case 'Z': |
| case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g': |
| case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n': |
| case 'o': case 'p': case 'q': case 'r': case 's': case 't': /*'u'*/ |
| case 'v': case 'w': case 'x': case 'y': case 'z': |
| case '_': |
| // Notify MIOpt that we read a non-whitespace/non-comment token. |
| MIOpt.ReadToken(); |
| return LexIdentifier(Result, CurPtr); |
| |
| case '$': // $ in identifiers. |
| if (LangOpts.DollarIdents) { |
| if (!isLexingRawMode()) |
| Diag(CurPtr-1, diag::ext_dollar_in_identifier); |
| // Notify MIOpt that we read a non-whitespace/non-comment token. |
| MIOpt.ReadToken(); |
| return LexIdentifier(Result, CurPtr); |
| } |
| |
| Kind = tok::unknown; |
| break; |
| |
| // C99 6.4.4: Character Constants. |
| case '\'': |
| // Notify MIOpt that we read a non-whitespace/non-comment token. |
| MIOpt.ReadToken(); |
| return LexCharConstant(Result, CurPtr, tok::char_constant); |
| |
| // C99 6.4.5: String Literals. |
| case '"': |
| // Notify MIOpt that we read a non-whitespace/non-comment token. |
| MIOpt.ReadToken(); |
| return LexStringLiteral(Result, CurPtr, tok::string_literal); |
| |
| // C99 6.4.6: Punctuators. |
| case '?': |
| Kind = tok::question; |
| break; |
| case '[': |
| Kind = tok::l_square; |
| break; |
| case ']': |
| Kind = tok::r_square; |
| break; |
| case '(': |
| Kind = tok::l_paren; |
| break; |
| case ')': |
| Kind = tok::r_paren; |
| break; |
| case '{': |
| Kind = tok::l_brace; |
| break; |
| case '}': |
| Kind = tok::r_brace; |
| break; |
| case '.': |
| Char = getCharAndSize(CurPtr, SizeTmp); |
| if (Char >= '0' && Char <= '9') { |
| // Notify MIOpt that we read a non-whitespace/non-comment token. |
| MIOpt.ReadToken(); |
| |
| return LexNumericConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result)); |
| } else if (LangOpts.CPlusPlus && Char == '*') { |
| Kind = tok::periodstar; |
| CurPtr += SizeTmp; |
| } else if (Char == '.' && |
| getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '.') { |
| Kind = tok::ellipsis; |
| CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), |
| SizeTmp2, Result); |
| } else { |
| Kind = tok::period; |
| } |
| break; |
| case '&': |
| Char = getCharAndSize(CurPtr, SizeTmp); |
| if (Char == '&') { |
| Kind = tok::ampamp; |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| } else if (Char == '=') { |
| Kind = tok::ampequal; |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| } else { |
| Kind = tok::amp; |
| } |
| break; |
| case '*': |
| if (getCharAndSize(CurPtr, SizeTmp) == '=') { |
| Kind = tok::starequal; |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| } else { |
| Kind = tok::star; |
| } |
| break; |
| case '+': |
| Char = getCharAndSize(CurPtr, SizeTmp); |
| if (Char == '+') { |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| Kind = tok::plusplus; |
| } else if (Char == '=') { |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| Kind = tok::plusequal; |
| } else { |
| Kind = tok::plus; |
| } |
| break; |
| case '-': |
| Char = getCharAndSize(CurPtr, SizeTmp); |
| if (Char == '-') { // -- |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| Kind = tok::minusminus; |
| } else if (Char == '>' && LangOpts.CPlusPlus && |
| getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '*') { // C++ ->* |
| CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), |
| SizeTmp2, Result); |
| Kind = tok::arrowstar; |
| } else if (Char == '>') { // -> |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| Kind = tok::arrow; |
| } else if (Char == '=') { // -= |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| Kind = tok::minusequal; |
| } else { |
| Kind = tok::minus; |
| } |
| break; |
| case '~': |
| Kind = tok::tilde; |
| break; |
| case '!': |
| if (getCharAndSize(CurPtr, SizeTmp) == '=') { |
| Kind = tok::exclaimequal; |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| } else { |
| Kind = tok::exclaim; |
| } |
| break; |
| case '/': |
| // 6.4.9: Comments |
| Char = getCharAndSize(CurPtr, SizeTmp); |
| if (Char == '/') { // Line comment. |
| // Even if Line comments are disabled (e.g. in C89 mode), we generally |
| // want to lex this as a comment. There is one problem with this though, |
| // that in one particular corner case, this can change the behavior of the |
| // resultant program. For example, In "foo //**/ bar", C89 would lex |
| // this as "foo / bar" and languages with Line comments would lex it as |
| // "foo". Check to see if the character after the second slash is a '*'. |
| // If so, we will lex that as a "/" instead of the start of a comment. |
| // However, we never do this if we are just preprocessing. |
| bool TreatAsComment = LangOpts.LineComment && |
| (LangOpts.CPlusPlus || !LangOpts.TraditionalCPP); |
| if (!TreatAsComment) |
| if (!(PP && PP->isPreprocessedOutput())) |
| TreatAsComment = getCharAndSize(CurPtr+SizeTmp, SizeTmp2) != '*'; |
| |
| if (TreatAsComment) { |
| if (SkipLineComment(Result, ConsumeChar(CurPtr, SizeTmp, Result), |
| TokAtPhysicalStartOfLine)) |
| return true; // There is a token to return. |
| |
| // It is common for the tokens immediately after a // comment to be |
| // whitespace (indentation for the next line). Instead of going through |
| // the big switch, handle it efficiently now. |
| goto SkipIgnoredUnits; |
| } |
| } |
| |
| if (Char == '*') { // /**/ comment. |
| if (SkipBlockComment(Result, ConsumeChar(CurPtr, SizeTmp, Result), |
| TokAtPhysicalStartOfLine)) |
| return true; // There is a token to return. |
| |
| // We only saw whitespace, so just try again with this lexer. |
| // (We manually eliminate the tail call to avoid recursion.) |
| goto LexNextToken; |
| } |
| |
| if (Char == '=') { |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| Kind = tok::slashequal; |
| } else { |
| Kind = tok::slash; |
| } |
| break; |
| case '%': |
| Char = getCharAndSize(CurPtr, SizeTmp); |
| if (Char == '=') { |
| Kind = tok::percentequal; |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| } else if (LangOpts.Digraphs && Char == '>') { |
| Kind = tok::r_brace; // '%>' -> '}' |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| } else if (LangOpts.Digraphs && Char == ':') { |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| Char = getCharAndSize(CurPtr, SizeTmp); |
| if (Char == '%' && getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == ':') { |
| Kind = tok::hashhash; // '%:%:' -> '##' |
| CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), |
| SizeTmp2, Result); |
| } else if (Char == '@' && LangOpts.MicrosoftExt) {// %:@ -> #@ -> Charize |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| if (!isLexingRawMode()) |
| Diag(BufferPtr, diag::ext_charize_microsoft); |
| Kind = tok::hashat; |
| } else { // '%:' -> '#' |
| // We parsed a # character. If this occurs at the start of the line, |
| // it's actually the start of a preprocessing directive. Callback to |
| // the preprocessor to handle it. |
| // TODO: -fpreprocessed mode?? |
| if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer) |
| goto HandleDirective; |
| |
| Kind = tok::hash; |
| } |
| } else { |
| Kind = tok::percent; |
| } |
| break; |
| case '<': |
| Char = getCharAndSize(CurPtr, SizeTmp); |
| if (ParsingFilename) { |
| return LexAngledStringLiteral(Result, CurPtr); |
| } else if (Char == '<') { |
| char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2); |
| if (After == '=') { |
| Kind = tok::lesslessequal; |
| CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), |
| SizeTmp2, Result); |
| } else if (After == '<' && IsStartOfConflictMarker(CurPtr-1)) { |
| // If this is actually a '<<<<<<<' version control conflict marker, |
| // recognize it as such and recover nicely. |
| goto LexNextToken; |
| } else if (After == '<' && HandleEndOfConflictMarker(CurPtr-1)) { |
| // If this is '<<<<' and we're in a Perforce-style conflict marker, |
| // ignore it. |
| goto LexNextToken; |
| } else if (LangOpts.CUDA && After == '<') { |
| Kind = tok::lesslessless; |
| CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), |
| SizeTmp2, Result); |
| } else { |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| Kind = tok::lessless; |
| } |
| } else if (Char == '=') { |
| char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2); |
| if (After == '>') { |
| if (getLangOpts().CPlusPlus2a) { |
| if (!isLexingRawMode()) |
| Diag(BufferPtr, diag::warn_cxx17_compat_spaceship); |
| CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), |
| SizeTmp2, Result); |
| Kind = tok::spaceship; |
| break; |
| } |
| // Suggest adding a space between the '<=' and the '>' to avoid a |
| // change in semantics if this turns up in C++ <=17 mode. |
| if (getLangOpts().CPlusPlus && !isLexingRawMode()) { |
| Diag(BufferPtr, diag::warn_cxx2a_compat_spaceship) |
| << FixItHint::CreateInsertion( |
| getSourceLocation(CurPtr + SizeTmp, SizeTmp2), " "); |
| } |
| } |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| Kind = tok::lessequal; |
| } else if (LangOpts.Digraphs && Char == ':') { // '<:' -> '[' |
| if (LangOpts.CPlusPlus11 && |
| getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == ':') { |
| // C++0x [lex.pptoken]p3: |
| // Otherwise, if the next three characters are <:: and the subsequent |
| // character is neither : nor >, the < is treated as a preprocessor |
| // token by itself and not as the first character of the alternative |
| // token <:. |
| unsigned SizeTmp3; |
| char After = getCharAndSize(CurPtr + SizeTmp + SizeTmp2, SizeTmp3); |
| if (After != ':' && After != '>') { |
| Kind = tok::less; |
| if (!isLexingRawMode()) |
| Diag(BufferPtr, diag::warn_cxx98_compat_less_colon_colon); |
| break; |
| } |
| } |
| |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| Kind = tok::l_square; |
| } else if (LangOpts.Digraphs && Char == '%') { // '<%' -> '{' |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| Kind = tok::l_brace; |
| } else if (Char == '#' && /*Not a trigraph*/ SizeTmp == 1 && |
| lexEditorPlaceholder(Result, CurPtr)) { |
| return true; |
| } else { |
| Kind = tok::less; |
| } |
| break; |
| case '>': |
| Char = getCharAndSize(CurPtr, SizeTmp); |
| if (Char == '=') { |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| Kind = tok::greaterequal; |
| } else if (Char == '>') { |
| char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2); |
| if (After == '=') { |
| CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), |
| SizeTmp2, Result); |
| Kind = tok::greatergreaterequal; |
| } else if (After == '>' && IsStartOfConflictMarker(CurPtr-1)) { |
| // If this is actually a '>>>>' conflict marker, recognize it as such |
| // and recover nicely. |
| goto LexNextToken; |
| } else if (After == '>' && HandleEndOfConflictMarker(CurPtr-1)) { |
| // If this is '>>>>>>>' and we're in a conflict marker, ignore it. |
| goto LexNextToken; |
| } else if (LangOpts.CUDA && After == '>') { |
| Kind = tok::greatergreatergreater; |
| CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), |
| SizeTmp2, Result); |
| } else { |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| Kind = tok::greatergreater; |
| } |
| } else { |
| Kind = tok::greater; |
| } |
| break; |
| case '^': |
| Char = getCharAndSize(CurPtr, SizeTmp); |
| if (Char == '=') { |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| Kind = tok::caretequal; |
| } else if (LangOpts.OpenCL && Char == '^') { |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| Kind = tok::caretcaret; |
| } else { |
| Kind = tok::caret; |
| } |
| break; |
| case '|': |
| Char = getCharAndSize(CurPtr, SizeTmp); |
| if (Char == '=') { |
| Kind = tok::pipeequal; |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| } else if (Char == '|') { |
| // If this is '|||||||' and we're in a conflict marker, ignore it. |
| if (CurPtr[1] == '|' && HandleEndOfConflictMarker(CurPtr-1)) |
| goto LexNextToken; |
| Kind = tok::pipepipe; |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| } else { |
| Kind = tok::pipe; |
| } |
| break; |
| case ':': |
| Char = getCharAndSize(CurPtr, SizeTmp); |
| if (LangOpts.Digraphs && Char == '>') { |
| Kind = tok::r_square; // ':>' -> ']' |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| } else if ((LangOpts.CPlusPlus || |
| LangOpts.DoubleSquareBracketAttributes) && |
| Char == ':') { |
| Kind = tok::coloncolon; |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| } else { |
| Kind = tok::colon; |
| } |
| break; |
| case ';': |
| Kind = tok::semi; |
| break; |
| case '=': |
| Char = getCharAndSize(CurPtr, SizeTmp); |
| if (Char == '=') { |
| // If this is '====' and we're in a conflict marker, ignore it. |
| if (CurPtr[1] == '=' && HandleEndOfConflictMarker(CurPtr-1)) |
| goto LexNextToken; |
| |
| Kind = tok::equalequal; |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| } else { |
| Kind = tok::equal; |
| } |
| break; |
| case ',': |
| Kind = tok::comma; |
| break; |
| case '#': |
| Char = getCharAndSize(CurPtr, SizeTmp); |
| if (Char == '#') { |
| Kind = tok::hashhash; |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| } else if (Char == '@' && LangOpts.MicrosoftExt) { // #@ -> Charize |
| Kind = tok::hashat; |
| if (!isLexingRawMode()) |
| Diag(BufferPtr, diag::ext_charize_microsoft); |
| CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); |
| } else { |
| // We parsed a # character. If this occurs at the start of the line, |
| // it's actually the start of a preprocessing directive. Callback to |
| // the preprocessor to handle it. |
| // TODO: -fpreprocessed mode?? |
| if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer) |
| goto HandleDirective; |
| |
| Kind = tok::hash; |
| } |
| break; |
| |
| case '@': |
| // Objective C support. |
| if (CurPtr[-1] == '@' && LangOpts.ObjC1) |
| Kind = tok::at; |
| else |
| Kind = tok::unknown; |
| break; |
| |
| // UCNs (C99 6.4.3, C++11 [lex.charset]p2) |
| case '\\': |
| if (!LangOpts.AsmPreprocessor) { |
| if (uint32_t CodePoint = tryReadUCN(CurPtr, BufferPtr, &Result)) { |
| if (CheckUnicodeWhitespace(Result, CodePoint, CurPtr)) { |
| if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine)) |
| return true; // KeepWhitespaceMode |
| |
| // We only saw whitespace, so just try again with this lexer. |
| // (We manually eliminate the tail call to avoid recursion.) |
| goto LexNextToken; |
| } |
| |
| return LexUnicode(Result, CodePoint, CurPtr); |
| } |
| } |
| |
| Kind = tok::unknown; |
| break; |
| |
| default: { |
| if (isASCII(Char)) { |
| Kind = tok::unknown; |
| break; |
| } |
| |
| llvm::UTF32 CodePoint; |
| |
| // We can't just reset CurPtr to BufferPtr because BufferPtr may point to |
| // an escaped newline. |
| --CurPtr; |
| const char *UTF8StartPtr = CurPtr; |
| llvm::ConversionResult Status = |
| llvm::convertUTF8Sequence((const llvm::UTF8 **)&CurPtr, |
| (const llvm::UTF8 *)BufferEnd, |
| &CodePoint, |
| llvm::strictConversion); |
| if (Status == llvm::conversionOK) { |
| if (CheckUnicodeWhitespace(Result, CodePoint, CurPtr)) { |
| if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine)) |
| return true; // KeepWhitespaceMode |
| |
| // We only saw whitespace, so just try again with this lexer. |
| // (We manually eliminate the tail call to avoid recursion.) |
| goto LexNextToken; |
| } |
| if (!isLexingRawMode()) |
| maybeDiagnoseUTF8Homoglyph(PP->getDiagnostics(), CodePoint, |
| makeCharRange(*this, UTF8StartPtr, CurPtr)); |
| return LexUnicode(Result, CodePoint, CurPtr); |
| } |
| |
| if (isLexingRawMode() || ParsingPreprocessorDirective || |
| PP->isPreprocessedOutput()) { |
| ++CurPtr; |
| Kind = tok::unknown; |
| break; |
| } |
| |
| // Non-ASCII characters tend to creep into source code unintentionally. |
| // Instead of letting the parser complain about the unknown token, |
| // just diagnose the invalid UTF-8, then drop the character. |
| Diag(CurPtr, diag::err_invalid_utf8); |
| |
| BufferPtr = CurPtr+1; |
| // We're pretending the character didn't exist, so just try again with |
| // this lexer. |
| // (We manually eliminate the tail call to avoid recursion.) |
| goto LexNextToken; |
| } |
| } |
| |
| // Notify MIOpt that we read a non-whitespace/non-comment token. |
| MIOpt.ReadToken(); |
| |
| // Update the location of token as well as BufferPtr. |
| FormTokenWithChars(Result, CurPtr, Kind); |
| return true; |
| |
| HandleDirective: |
| // We parsed a # character and it's the start of a preprocessing directive. |
| |
| FormTokenWithChars(Result, CurPtr, tok::hash); |
| PP->HandleDirective(Result); |
| |
| if (PP->hadModuleLoaderFatalFailure()) { |
| // With a fatal failure in the module loader, we abort parsing. |
| assert(Result.is(tok::eof) && "Preprocessor did not set tok:eof"); |
| return true; |
| } |
| |
| // We parsed the directive; lex a token with the new state. |
| return false; |
| } |