// Copyright 2017 Google Inc. All Rights Reserved. | |
// | |
// Licensed under the Apache License, Version 2.0 (the "License"); | |
// you may not use this file except in compliance with the License. | |
// You may obtain a copy of the License at | |
// | |
// http://www.apache.org/licenses/LICENSE-2.0 | |
// | |
// Unless required by applicable law or agreed to in writing, software | |
// distributed under the License is distributed on an "AS IS" BASIS, | |
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
// See the License for the specific language governing permissions and | |
// limitations under the License. | |
precision mediump float; | |
// The rounded spread rect is represented in a way to optimize calculation of | |
// the extents. Each element of a vec4 represents a corner's value -- order | |
// is top left, top right, bottom left, bottom right. Extents for each corner | |
// can be calculated as: | |
// extents_x = start_x + radius_x * sqrt(1 - scaled_y^2) where | |
// scaled_y = clamp((pos.yyyy - start_y) * scale_y, 0.0, 1.0) | |
// To simplify handling left vs right and top vs bottom corners, the sign of | |
// scale_y and radius_x handles negation as needed. | |
uniform vec4 u_spread_start_x; | |
uniform vec4 u_spread_start_y; | |
uniform vec4 u_spread_scale_y; | |
uniform vec4 u_spread_radius_x; | |
// The blur extent specifies (3 * sigma, min_rect_y, max_rect_y). This is used | |
// to clamp the interval over which integration should be evaluated. | |
uniform vec3 u_blur_extent; | |
// The gaussian scale uniform is used to simplify calculation of the gaussian | |
// function at a particular point. | |
uniform vec2 u_gaussian_scale; | |
// The scale_add uniform is used to switch the shader between generating | |
// outset shadows and inset shadows. It impacts the shadow gradient and | |
// scissor behavior. Use (1, 0) to get an outset shadow with the provided | |
// scissor rect behaving as an exclusive scissor, and (-1, 1) to get an | |
// inset shadow with scissor rect behaving as an inclusive scissor. | |
uniform vec2 u_scale_add; | |
uniform vec4 u_color; | |
// Blur calculations happen in terms in sigma distances. Use sigma_scale to | |
// translate pixel distances into sigma distances. | |
uniform vec2 u_sigma_scale; | |
varying vec2 v_offset; | |
varying vec4 v_rcorner; | |
#include "function_is_outside_rcorner.inc" | |
#include "function_gaussian_integral.inc" | |
vec2 GetXExtents(float y) { | |
// Use x^2 / a^2 + y^2 / b^2 = 1 to solve for the x value of each rounded | |
// corner at the given y. | |
vec4 scaled = clamp((y - u_spread_start_y) * u_spread_scale_y, 0.0, 1.0); | |
vec4 root = sqrt(1.0 - scaled * scaled); | |
vec4 extent = u_spread_start_x + u_spread_radius_x * root; | |
// If the y value was before a corner started, then the calculated extent | |
// would equal the unrounded rectangle's extents (since negative values were | |
// clamped to 0 in the above calculation). So smaller extents (i.e. extents | |
// closer to the rectangle center), represent the relevant corners' extents. | |
return vec2(max(extent.x, extent.z), min(extent.y, extent.w)); | |
} | |
float GetXBlur(float x, float y) { | |
// Get the integral over the interval occupied by the rectangle. | |
vec2 pos = (GetXExtents(y) - x) * u_sigma_scale; | |
return GaussianIntegral(pos); | |
} | |
vec3 GetGaussian(vec3 offset) { | |
// Evaluate the gaussian at the given offsets. | |
return exp(offset * offset * u_gaussian_scale.x); | |
} | |
float GetBlur(vec2 pos) { | |
// Approximate the 2D gaussian filter using numerical integration. Sample | |
// points between the y extents of the rectangle. | |
float low = clamp(pos.y - u_blur_extent.x, u_blur_extent.y, u_blur_extent.z); | |
float high = clamp(pos.y + u_blur_extent.x, u_blur_extent.y, u_blur_extent.z); | |
// Use the Gauss–Legendre quadrature with 6 points to numerically integrate. | |
// Using fewer samples will show artifacts with elliptical corners that are | |
// likely to be used. | |
const vec3 kStepScale1 = vec3(-0.932470, -0.661209, -0.238619); | |
const vec3 kStepScale2 = vec3( 0.932470, 0.661209, 0.238619); | |
const vec3 kWeight = vec3(0.171324, 0.360762, 0.467914); | |
float half_size = (high - low) * 0.5; | |
float middle = (high + low) * 0.5; | |
vec3 weight = half_size * kWeight; | |
vec3 pos1 = middle + half_size * kStepScale1; | |
vec3 pos2 = middle + half_size * kStepScale2; | |
vec3 offset1 = pos1 - pos.yyy; | |
vec3 offset2 = pos2 - pos.yyy; | |
// The integral along the x-axis is computed. The integral along the y-axis | |
// is roughly approximated. To get the 2D filter, multiply the two integrals. | |
// Visual artifacts appear when the computed integrals along the x-axis | |
// change rapidly between samples (e.g. elliptical corners that are much | |
// wider than they are tall). | |
vec3 xblur1 = vec3(GetXBlur(pos.x, pos1.x), | |
GetXBlur(pos.x, pos1.y), | |
GetXBlur(pos.x, pos1.z)); | |
vec3 xblur2 = vec3(GetXBlur(pos.x, pos2.x), | |
GetXBlur(pos.x, pos2.y), | |
GetXBlur(pos.x, pos2.z)); | |
vec3 yblur1 = GetGaussian(offset1) * weight; | |
vec3 yblur2 = GetGaussian(offset2) * weight; | |
// Since each yblur value should be scaled by u_gaussian_scale.y, save some | |
// cycles and multiply the sum by it. | |
return (dot(xblur1, yblur1) + dot(xblur2, yblur2)) * u_gaussian_scale.y; | |
} | |
void main() { | |
float scissor_scale = | |
IsOutsideRCorner(v_rcorner) * u_scale_add.x + u_scale_add.y; | |
float blur_scale = GetBlur(v_offset) * u_scale_add.x + u_scale_add.y; | |
gl_FragColor = u_color * (blur_scale * scissor_scale); | |
} |