| //===-- xray_interface.cpp --------------------------------------*- C++ -*-===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file is a part of XRay, a dynamic runtime instrumentation system. | 
 | // | 
 | // Implementation of the API functions. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "xray_interface_internal.h" | 
 |  | 
 | #include <cstdint> | 
 | #include <cstdio> | 
 | #include <errno.h> | 
 | #include <limits> | 
 | #include <string.h> | 
 | #include <sys/mman.h> | 
 |  | 
 | #include "sanitizer_common/sanitizer_addrhashmap.h" | 
 | #include "sanitizer_common/sanitizer_common.h" | 
 |  | 
 | #include "xray_defs.h" | 
 | #include "xray_flags.h" | 
 |  | 
 | extern __sanitizer::SpinMutex XRayInstrMapMutex; | 
 | extern __sanitizer::atomic_uint8_t XRayInitialized; | 
 | extern __xray::XRaySledMap XRayInstrMap; | 
 |  | 
 | namespace __xray { | 
 |  | 
 | #if defined(__x86_64__) | 
 | static const int16_t cSledLength = 12; | 
 | #elif defined(__aarch64__) | 
 | static const int16_t cSledLength = 32; | 
 | #elif defined(__arm__) | 
 | static const int16_t cSledLength = 28; | 
 | #elif SANITIZER_MIPS32 | 
 | static const int16_t cSledLength = 48; | 
 | #elif SANITIZER_MIPS64 | 
 | static const int16_t cSledLength = 64; | 
 | #elif defined(__powerpc64__) | 
 | static const int16_t cSledLength = 8; | 
 | #else | 
 | #error "Unsupported CPU Architecture" | 
 | #endif /* CPU architecture */ | 
 |  | 
 | // This is the function to call when we encounter the entry or exit sleds. | 
 | atomic_uintptr_t XRayPatchedFunction{0}; | 
 |  | 
 | // This is the function to call from the arg1-enabled sleds/trampolines. | 
 | atomic_uintptr_t XRayArgLogger{0}; | 
 |  | 
 | // This is the function to call when we encounter a custom event log call. | 
 | atomic_uintptr_t XRayPatchedCustomEvent{0}; | 
 |  | 
 | // This is the function to call when we encounter a typed event log call. | 
 | atomic_uintptr_t XRayPatchedTypedEvent{0}; | 
 |  | 
 | // This is the global status to determine whether we are currently | 
 | // patching/unpatching. | 
 | atomic_uint8_t XRayPatching{0}; | 
 |  | 
 | struct TypeDescription { | 
 |   uint32_t type_id; | 
 |   std::size_t description_string_length; | 
 | }; | 
 |  | 
 | using TypeDescriptorMapType = AddrHashMap<TypeDescription, 11>; | 
 | // An address map from immutable descriptors to type ids. | 
 | TypeDescriptorMapType TypeDescriptorAddressMap{}; | 
 |  | 
 | atomic_uint32_t TypeEventDescriptorCounter{0}; | 
 |  | 
 | // MProtectHelper is an RAII wrapper for calls to mprotect(...) that will | 
 | // undo any successful mprotect(...) changes. This is used to make a page | 
 | // writeable and executable, and upon destruction if it was successful in | 
 | // doing so returns the page into a read-only and executable page. | 
 | // | 
 | // This is only used specifically for runtime-patching of the XRay | 
 | // instrumentation points. This assumes that the executable pages are | 
 | // originally read-and-execute only. | 
 | class MProtectHelper { | 
 |   void *PageAlignedAddr; | 
 |   std::size_t MProtectLen; | 
 |   bool MustCleanup; | 
 |  | 
 | public: | 
 |   explicit MProtectHelper(void *PageAlignedAddr, | 
 |                           std::size_t MProtectLen) XRAY_NEVER_INSTRUMENT | 
 |       : PageAlignedAddr(PageAlignedAddr), | 
 |         MProtectLen(MProtectLen), | 
 |         MustCleanup(false) {} | 
 |  | 
 |   int MakeWriteable() XRAY_NEVER_INSTRUMENT { | 
 |     auto R = mprotect(PageAlignedAddr, MProtectLen, | 
 |                       PROT_READ | PROT_WRITE | PROT_EXEC); | 
 |     if (R != -1) | 
 |       MustCleanup = true; | 
 |     return R; | 
 |   } | 
 |  | 
 |   ~MProtectHelper() XRAY_NEVER_INSTRUMENT { | 
 |     if (MustCleanup) { | 
 |       mprotect(PageAlignedAddr, MProtectLen, PROT_READ | PROT_EXEC); | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | namespace { | 
 |  | 
 | bool patchSled(const XRaySledEntry &Sled, bool Enable, | 
 |                int32_t FuncId) XRAY_NEVER_INSTRUMENT { | 
 |   bool Success = false; | 
 |   switch (Sled.Kind) { | 
 |   case XRayEntryType::ENTRY: | 
 |     Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_FunctionEntry); | 
 |     break; | 
 |   case XRayEntryType::EXIT: | 
 |     Success = patchFunctionExit(Enable, FuncId, Sled); | 
 |     break; | 
 |   case XRayEntryType::TAIL: | 
 |     Success = patchFunctionTailExit(Enable, FuncId, Sled); | 
 |     break; | 
 |   case XRayEntryType::LOG_ARGS_ENTRY: | 
 |     Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_ArgLoggerEntry); | 
 |     break; | 
 |   case XRayEntryType::CUSTOM_EVENT: | 
 |     Success = patchCustomEvent(Enable, FuncId, Sled); | 
 |     break; | 
 |   case XRayEntryType::TYPED_EVENT: | 
 |     Success = patchTypedEvent(Enable, FuncId, Sled); | 
 |     break; | 
 |   default: | 
 |     Report("Unsupported sled kind '%d' @%04x\n", Sled.Address, int(Sled.Kind)); | 
 |     return false; | 
 |   } | 
 |   return Success; | 
 | } | 
 |  | 
 | XRayPatchingStatus patchFunction(int32_t FuncId, | 
 |                                  bool Enable) XRAY_NEVER_INSTRUMENT { | 
 |   if (!atomic_load(&XRayInitialized, | 
 |                                 memory_order_acquire)) | 
 |     return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized. | 
 |  | 
 |   uint8_t NotPatching = false; | 
 |   if (!atomic_compare_exchange_strong( | 
 |           &XRayPatching, &NotPatching, true, memory_order_acq_rel)) | 
 |     return XRayPatchingStatus::ONGOING; // Already patching. | 
 |  | 
 |   // Next, we look for the function index. | 
 |   XRaySledMap InstrMap; | 
 |   { | 
 |     SpinMutexLock Guard(&XRayInstrMapMutex); | 
 |     InstrMap = XRayInstrMap; | 
 |   } | 
 |  | 
 |   // If we don't have an index, we can't patch individual functions. | 
 |   if (InstrMap.Functions == 0) | 
 |     return XRayPatchingStatus::NOT_INITIALIZED; | 
 |  | 
 |   // FuncId must be a positive number, less than the number of functions | 
 |   // instrumented. | 
 |   if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) { | 
 |     Report("Invalid function id provided: %d\n", FuncId); | 
 |     return XRayPatchingStatus::FAILED; | 
 |   } | 
 |  | 
 |   // Now we patch ths sleds for this specific function. | 
 |   auto SledRange = InstrMap.SledsIndex[FuncId - 1]; | 
 |   auto *f = SledRange.Begin; | 
 |   auto *e = SledRange.End; | 
 |  | 
 |   bool SucceedOnce = false; | 
 |   while (f != e) | 
 |     SucceedOnce |= patchSled(*f++, Enable, FuncId); | 
 |  | 
 |   atomic_store(&XRayPatching, false, | 
 |                             memory_order_release); | 
 |  | 
 |   if (!SucceedOnce) { | 
 |     Report("Failed patching any sled for function '%d'.", FuncId); | 
 |     return XRayPatchingStatus::FAILED; | 
 |   } | 
 |  | 
 |   return XRayPatchingStatus::SUCCESS; | 
 | } | 
 |  | 
 | // controlPatching implements the common internals of the patching/unpatching | 
 | // implementation. |Enable| defines whether we're enabling or disabling the | 
 | // runtime XRay instrumentation. | 
 | XRayPatchingStatus controlPatching(bool Enable) XRAY_NEVER_INSTRUMENT { | 
 |   if (!atomic_load(&XRayInitialized, | 
 |                                 memory_order_acquire)) | 
 |     return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized. | 
 |  | 
 |   uint8_t NotPatching = false; | 
 |   if (!atomic_compare_exchange_strong( | 
 |           &XRayPatching, &NotPatching, true, memory_order_acq_rel)) | 
 |     return XRayPatchingStatus::ONGOING; // Already patching. | 
 |  | 
 |   uint8_t PatchingSuccess = false; | 
 |   auto XRayPatchingStatusResetter = | 
 |       at_scope_exit([&PatchingSuccess] { | 
 |         if (!PatchingSuccess) | 
 |           atomic_store(&XRayPatching, false, | 
 |                                     memory_order_release); | 
 |       }); | 
 |  | 
 |   XRaySledMap InstrMap; | 
 |   { | 
 |     SpinMutexLock Guard(&XRayInstrMapMutex); | 
 |     InstrMap = XRayInstrMap; | 
 |   } | 
 |   if (InstrMap.Entries == 0) | 
 |     return XRayPatchingStatus::NOT_INITIALIZED; | 
 |  | 
 |   uint32_t FuncId = 1; | 
 |   uint64_t CurFun = 0; | 
 |  | 
 |   // First we want to find the bounds for which we have instrumentation points, | 
 |   // and try to get as few calls to mprotect(...) as possible. We're assuming | 
 |   // that all the sleds for the instrumentation map are contiguous as a single | 
 |   // set of pages. When we do support dynamic shared object instrumentation, | 
 |   // we'll need to do this for each set of page load offsets per DSO loaded. For | 
 |   // now we're assuming we can mprotect the whole section of text between the | 
 |   // minimum sled address and the maximum sled address (+ the largest sled | 
 |   // size). | 
 |   auto MinSled = InstrMap.Sleds[0]; | 
 |   auto MaxSled = InstrMap.Sleds[InstrMap.Entries - 1]; | 
 |   for (std::size_t I = 0; I < InstrMap.Entries; I++) { | 
 |     const auto &Sled = InstrMap.Sleds[I]; | 
 |     if (Sled.Address < MinSled.Address) | 
 |       MinSled = Sled; | 
 |     if (Sled.Address > MaxSled.Address) | 
 |       MaxSled = Sled; | 
 |   } | 
 |  | 
 |   const size_t PageSize = flags()->xray_page_size_override > 0 | 
 |                               ? flags()->xray_page_size_override | 
 |                               : GetPageSizeCached(); | 
 |   if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) { | 
 |     Report("System page size is not a power of two: %lld\n", PageSize); | 
 |     return XRayPatchingStatus::FAILED; | 
 |   } | 
 |  | 
 |   void *PageAlignedAddr = | 
 |       reinterpret_cast<void *>(MinSled.Address & ~(PageSize - 1)); | 
 |   size_t MProtectLen = | 
 |       (MaxSled.Address - reinterpret_cast<uptr>(PageAlignedAddr)) + cSledLength; | 
 |   MProtectHelper Protector(PageAlignedAddr, MProtectLen); | 
 |   if (Protector.MakeWriteable() == -1) { | 
 |     Report("Failed mprotect: %d\n", errno); | 
 |     return XRayPatchingStatus::FAILED; | 
 |   } | 
 |  | 
 |   for (std::size_t I = 0; I < InstrMap.Entries; ++I) { | 
 |     auto &Sled = InstrMap.Sleds[I]; | 
 |     auto F = Sled.Function; | 
 |     if (CurFun == 0) | 
 |       CurFun = F; | 
 |     if (F != CurFun) { | 
 |       ++FuncId; | 
 |       CurFun = F; | 
 |     } | 
 |     patchSled(Sled, Enable, FuncId); | 
 |   } | 
 |   atomic_store(&XRayPatching, false, | 
 |                             memory_order_release); | 
 |   PatchingSuccess = true; | 
 |   return XRayPatchingStatus::SUCCESS; | 
 | } | 
 |  | 
 | XRayPatchingStatus mprotectAndPatchFunction(int32_t FuncId, | 
 |                                             bool Enable) XRAY_NEVER_INSTRUMENT { | 
 |   XRaySledMap InstrMap; | 
 |   { | 
 |     SpinMutexLock Guard(&XRayInstrMapMutex); | 
 |     InstrMap = XRayInstrMap; | 
 |   } | 
 |  | 
 |   // FuncId must be a positive number, less than the number of functions | 
 |   // instrumented. | 
 |   if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) { | 
 |     Report("Invalid function id provided: %d\n", FuncId); | 
 |     return XRayPatchingStatus::FAILED; | 
 |   } | 
 |  | 
 |   const size_t PageSize = flags()->xray_page_size_override > 0 | 
 |                               ? flags()->xray_page_size_override | 
 |                               : GetPageSizeCached(); | 
 |   if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) { | 
 |     Report("Provided page size is not a power of two: %lld\n", PageSize); | 
 |     return XRayPatchingStatus::FAILED; | 
 |   } | 
 |  | 
 |   // Here we compute the minumum sled and maximum sled associated with a | 
 |   // particular function ID. | 
 |   auto SledRange = InstrMap.SledsIndex[FuncId - 1]; | 
 |   auto *f = SledRange.Begin; | 
 |   auto *e = SledRange.End; | 
 |   auto MinSled = *f; | 
 |   auto MaxSled = *(SledRange.End - 1); | 
 |   while (f != e) { | 
 |     if (f->Address < MinSled.Address) | 
 |       MinSled = *f; | 
 |     if (f->Address > MaxSled.Address) | 
 |       MaxSled = *f; | 
 |     ++f; | 
 |   } | 
 |  | 
 |   void *PageAlignedAddr = | 
 |       reinterpret_cast<void *>(MinSled.Address & ~(PageSize - 1)); | 
 |   size_t MProtectLen = | 
 |       (MaxSled.Address - reinterpret_cast<uptr>(PageAlignedAddr)) + cSledLength; | 
 |   MProtectHelper Protector(PageAlignedAddr, MProtectLen); | 
 |   if (Protector.MakeWriteable() == -1) { | 
 |     Report("Failed mprotect: %d\n", errno); | 
 |     return XRayPatchingStatus::FAILED; | 
 |   } | 
 |   return patchFunction(FuncId, Enable); | 
 | } | 
 |  | 
 | } // namespace | 
 |  | 
 | } // namespace __xray | 
 |  | 
 | using namespace __xray; | 
 |  | 
 | // The following functions are declared `extern "C" {...}` in the header, hence | 
 | // they're defined in the global namespace. | 
 |  | 
 | int __xray_set_handler(void (*entry)(int32_t, | 
 |                                      XRayEntryType)) XRAY_NEVER_INSTRUMENT { | 
 |   if (atomic_load(&XRayInitialized, | 
 |                                memory_order_acquire)) { | 
 |  | 
 |     atomic_store(&__xray::XRayPatchedFunction, | 
 |                               reinterpret_cast<uintptr_t>(entry), | 
 |                               memory_order_release); | 
 |     return 1; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | int __xray_set_customevent_handler(void (*entry)(void *, size_t)) | 
 |     XRAY_NEVER_INSTRUMENT { | 
 |   if (atomic_load(&XRayInitialized, | 
 |                                memory_order_acquire)) { | 
 |     atomic_store(&__xray::XRayPatchedCustomEvent, | 
 |                               reinterpret_cast<uintptr_t>(entry), | 
 |                               memory_order_release); | 
 |     return 1; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | int __xray_set_typedevent_handler(void (*entry)( | 
 |     uint16_t, const void *, size_t)) XRAY_NEVER_INSTRUMENT { | 
 |   if (atomic_load(&XRayInitialized, | 
 |                                memory_order_acquire)) { | 
 |     atomic_store(&__xray::XRayPatchedTypedEvent, | 
 |                               reinterpret_cast<uintptr_t>(entry), | 
 |                               memory_order_release); | 
 |     return 1; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | int __xray_remove_handler() XRAY_NEVER_INSTRUMENT { | 
 |   return __xray_set_handler(nullptr); | 
 | } | 
 |  | 
 | int __xray_remove_customevent_handler() XRAY_NEVER_INSTRUMENT { | 
 |   return __xray_set_customevent_handler(nullptr); | 
 | } | 
 |  | 
 | int __xray_remove_typedevent_handler() XRAY_NEVER_INSTRUMENT { | 
 |   return __xray_set_typedevent_handler(nullptr); | 
 | } | 
 |  | 
 | uint16_t __xray_register_event_type( | 
 |     const char *const event_type) XRAY_NEVER_INSTRUMENT { | 
 |   TypeDescriptorMapType::Handle h(&TypeDescriptorAddressMap, (uptr)event_type); | 
 |   if (h.created()) { | 
 |     h->type_id = atomic_fetch_add( | 
 |         &TypeEventDescriptorCounter, 1, memory_order_acq_rel); | 
 |     h->description_string_length = strnlen(event_type, 1024); | 
 |   } | 
 |   return h->type_id; | 
 | } | 
 |  | 
 | XRayPatchingStatus __xray_patch() XRAY_NEVER_INSTRUMENT { | 
 |   return controlPatching(true); | 
 | } | 
 |  | 
 | XRayPatchingStatus __xray_unpatch() XRAY_NEVER_INSTRUMENT { | 
 |   return controlPatching(false); | 
 | } | 
 |  | 
 | XRayPatchingStatus __xray_patch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT { | 
 |   return mprotectAndPatchFunction(FuncId, true); | 
 | } | 
 |  | 
 | XRayPatchingStatus | 
 | __xray_unpatch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT { | 
 |   return mprotectAndPatchFunction(FuncId, false); | 
 | } | 
 |  | 
 | int __xray_set_handler_arg1(void (*entry)(int32_t, XRayEntryType, uint64_t)) { | 
 |   if (!atomic_load(&XRayInitialized, | 
 |                                 memory_order_acquire)) | 
 |     return 0; | 
 |  | 
 |   // A relaxed write might not be visible even if the current thread gets | 
 |   // scheduled on a different CPU/NUMA node.  We need to wait for everyone to | 
 |   // have this handler installed for consistency of collected data across CPUs. | 
 |   atomic_store(&XRayArgLogger, reinterpret_cast<uint64_t>(entry), | 
 |                             memory_order_release); | 
 |   return 1; | 
 | } | 
 |  | 
 | int __xray_remove_handler_arg1() { return __xray_set_handler_arg1(nullptr); } | 
 |  | 
 | uintptr_t __xray_function_address(int32_t FuncId) XRAY_NEVER_INSTRUMENT { | 
 |   SpinMutexLock Guard(&XRayInstrMapMutex); | 
 |   if (FuncId <= 0 || static_cast<size_t>(FuncId) > XRayInstrMap.Functions) | 
 |     return 0; | 
 |   return XRayInstrMap.SledsIndex[FuncId - 1].Begin->Function | 
 | // On PPC, function entries are always aligned to 16 bytes. The beginning of a | 
 | // sled might be a local entry, which is always +8 based on the global entry. | 
 | // Always return the global entry. | 
 | #ifdef __PPC__ | 
 |          & ~0xf | 
 | #endif | 
 |       ; | 
 | } | 
 |  | 
 | size_t __xray_max_function_id() XRAY_NEVER_INSTRUMENT { | 
 |   SpinMutexLock Guard(&XRayInstrMapMutex); | 
 |   return XRayInstrMap.Functions; | 
 | } |