|  | //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow | 
|  | /// analysis. | 
|  | /// | 
|  | /// Unlike other Sanitizer tools, this tool is not designed to detect a specific | 
|  | /// class of bugs on its own.  Instead, it provides a generic dynamic data flow | 
|  | /// analysis framework to be used by clients to help detect application-specific | 
|  | /// issues within their own code. | 
|  | /// | 
|  | /// The analysis is based on automatic propagation of data flow labels (also | 
|  | /// known as taint labels) through a program as it performs computation.  Each | 
|  | /// byte of application memory is backed by two bytes of shadow memory which | 
|  | /// hold the label.  On Linux/x86_64, memory is laid out as follows: | 
|  | /// | 
|  | /// +--------------------+ 0x800000000000 (top of memory) | 
|  | /// | application memory | | 
|  | /// +--------------------+ 0x700000008000 (kAppAddr) | 
|  | /// |                    | | 
|  | /// |       unused       | | 
|  | /// |                    | | 
|  | /// +--------------------+ 0x200200000000 (kUnusedAddr) | 
|  | /// |    union table     | | 
|  | /// +--------------------+ 0x200000000000 (kUnionTableAddr) | 
|  | /// |   shadow memory    | | 
|  | /// +--------------------+ 0x000000010000 (kShadowAddr) | 
|  | /// | reserved by kernel | | 
|  | /// +--------------------+ 0x000000000000 | 
|  | /// | 
|  | /// To derive a shadow memory address from an application memory address, | 
|  | /// bits 44-46 are cleared to bring the address into the range | 
|  | /// [0x000000008000,0x100000000000).  Then the address is shifted left by 1 to | 
|  | /// account for the double byte representation of shadow labels and move the | 
|  | /// address into the shadow memory range.  See the function | 
|  | /// DataFlowSanitizer::getShadowAddress below. | 
|  | /// | 
|  | /// For more information, please refer to the design document: | 
|  | /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/InstVisitor.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/MDBuilder.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/SpecialCaseList.h" | 
|  | #include "llvm/Transforms/Instrumentation.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <memory> | 
|  | #include <set> | 
|  | #include <string> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | // External symbol to be used when generating the shadow address for | 
|  | // architectures with multiple VMAs. Instead of using a constant integer | 
|  | // the runtime will set the external mask based on the VMA range. | 
|  | static const char *const kDFSanExternShadowPtrMask = "__dfsan_shadow_ptr_mask"; | 
|  |  | 
|  | // The -dfsan-preserve-alignment flag controls whether this pass assumes that | 
|  | // alignment requirements provided by the input IR are correct.  For example, | 
|  | // if the input IR contains a load with alignment 8, this flag will cause | 
|  | // the shadow load to have alignment 16.  This flag is disabled by default as | 
|  | // we have unfortunately encountered too much code (including Clang itself; | 
|  | // see PR14291) which performs misaligned access. | 
|  | static cl::opt<bool> ClPreserveAlignment( | 
|  | "dfsan-preserve-alignment", | 
|  | cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, | 
|  | cl::init(false)); | 
|  |  | 
|  | // The ABI list files control how shadow parameters are passed. The pass treats | 
|  | // every function labelled "uninstrumented" in the ABI list file as conforming | 
|  | // to the "native" (i.e. unsanitized) ABI.  Unless the ABI list contains | 
|  | // additional annotations for those functions, a call to one of those functions | 
|  | // will produce a warning message, as the labelling behaviour of the function is | 
|  | // unknown.  The other supported annotations are "functional" and "discard", | 
|  | // which are described below under DataFlowSanitizer::WrapperKind. | 
|  | static cl::list<std::string> ClABIListFiles( | 
|  | "dfsan-abilist", | 
|  | cl::desc("File listing native ABI functions and how the pass treats them"), | 
|  | cl::Hidden); | 
|  |  | 
|  | // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented | 
|  | // functions (see DataFlowSanitizer::InstrumentedABI below). | 
|  | static cl::opt<bool> ClArgsABI( | 
|  | "dfsan-args-abi", | 
|  | cl::desc("Use the argument ABI rather than the TLS ABI"), | 
|  | cl::Hidden); | 
|  |  | 
|  | // Controls whether the pass includes or ignores the labels of pointers in load | 
|  | // instructions. | 
|  | static cl::opt<bool> ClCombinePointerLabelsOnLoad( | 
|  | "dfsan-combine-pointer-labels-on-load", | 
|  | cl::desc("Combine the label of the pointer with the label of the data when " | 
|  | "loading from memory."), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | // Controls whether the pass includes or ignores the labels of pointers in | 
|  | // stores instructions. | 
|  | static cl::opt<bool> ClCombinePointerLabelsOnStore( | 
|  | "dfsan-combine-pointer-labels-on-store", | 
|  | cl::desc("Combine the label of the pointer with the label of the data when " | 
|  | "storing in memory."), | 
|  | cl::Hidden, cl::init(false)); | 
|  |  | 
|  | static cl::opt<bool> ClDebugNonzeroLabels( | 
|  | "dfsan-debug-nonzero-labels", | 
|  | cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " | 
|  | "load or return with a nonzero label"), | 
|  | cl::Hidden); | 
|  |  | 
|  | static StringRef GetGlobalTypeString(const GlobalValue &G) { | 
|  | // Types of GlobalVariables are always pointer types. | 
|  | Type *GType = G.getValueType(); | 
|  | // For now we support blacklisting struct types only. | 
|  | if (StructType *SGType = dyn_cast<StructType>(GType)) { | 
|  | if (!SGType->isLiteral()) | 
|  | return SGType->getName(); | 
|  | } | 
|  | return "<unknown type>"; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class DFSanABIList { | 
|  | std::unique_ptr<SpecialCaseList> SCL; | 
|  |  | 
|  | public: | 
|  | DFSanABIList() = default; | 
|  |  | 
|  | void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } | 
|  |  | 
|  | /// Returns whether either this function or its source file are listed in the | 
|  | /// given category. | 
|  | bool isIn(const Function &F, StringRef Category) const { | 
|  | return isIn(*F.getParent(), Category) || | 
|  | SCL->inSection("dataflow", "fun", F.getName(), Category); | 
|  | } | 
|  |  | 
|  | /// Returns whether this global alias is listed in the given category. | 
|  | /// | 
|  | /// If GA aliases a function, the alias's name is matched as a function name | 
|  | /// would be.  Similarly, aliases of globals are matched like globals. | 
|  | bool isIn(const GlobalAlias &GA, StringRef Category) const { | 
|  | if (isIn(*GA.getParent(), Category)) | 
|  | return true; | 
|  |  | 
|  | if (isa<FunctionType>(GA.getValueType())) | 
|  | return SCL->inSection("dataflow", "fun", GA.getName(), Category); | 
|  |  | 
|  | return SCL->inSection("dataflow", "global", GA.getName(), Category) || | 
|  | SCL->inSection("dataflow", "type", GetGlobalTypeString(GA), | 
|  | Category); | 
|  | } | 
|  |  | 
|  | /// Returns whether this module is listed in the given category. | 
|  | bool isIn(const Module &M, StringRef Category) const { | 
|  | return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// TransformedFunction is used to express the result of transforming one | 
|  | /// function type into another.  This struct is immutable.  It holds metadata | 
|  | /// useful for updating calls of the old function to the new type. | 
|  | struct TransformedFunction { | 
|  | TransformedFunction(FunctionType* OriginalType, | 
|  | FunctionType* TransformedType, | 
|  | std::vector<unsigned> ArgumentIndexMapping) | 
|  | : OriginalType(OriginalType), | 
|  | TransformedType(TransformedType), | 
|  | ArgumentIndexMapping(ArgumentIndexMapping) {} | 
|  |  | 
|  | // Disallow copies. | 
|  | TransformedFunction(const TransformedFunction&) = delete; | 
|  | TransformedFunction& operator=(const TransformedFunction&) = delete; | 
|  |  | 
|  | // Allow moves. | 
|  | TransformedFunction(TransformedFunction&&) = default; | 
|  | TransformedFunction& operator=(TransformedFunction&&) = default; | 
|  |  | 
|  | /// Type of the function before the transformation. | 
|  | FunctionType *OriginalType; | 
|  |  | 
|  | /// Type of the function after the transformation. | 
|  | FunctionType *TransformedType; | 
|  |  | 
|  | /// Transforming a function may change the position of arguments.  This | 
|  | /// member records the mapping from each argument's old position to its new | 
|  | /// position.  Argument positions are zero-indexed.  If the transformation | 
|  | /// from F to F' made the first argument of F into the third argument of F', | 
|  | /// then ArgumentIndexMapping[0] will equal 2. | 
|  | std::vector<unsigned> ArgumentIndexMapping; | 
|  | }; | 
|  |  | 
|  | /// Given function attributes from a call site for the original function, | 
|  | /// return function attributes appropriate for a call to the transformed | 
|  | /// function. | 
|  | AttributeList TransformFunctionAttributes( | 
|  | const TransformedFunction& TransformedFunction, | 
|  | LLVMContext& Ctx, AttributeList CallSiteAttrs) { | 
|  |  | 
|  | // Construct a vector of AttributeSet for each function argument. | 
|  | std::vector<llvm::AttributeSet> ArgumentAttributes( | 
|  | TransformedFunction.TransformedType->getNumParams()); | 
|  |  | 
|  | // Copy attributes from the parameter of the original function to the | 
|  | // transformed version.  'ArgumentIndexMapping' holds the mapping from | 
|  | // old argument position to new. | 
|  | for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size(); | 
|  | i < ie; ++i) { | 
|  | unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i]; | 
|  | ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i); | 
|  | } | 
|  |  | 
|  | // Copy annotations on varargs arguments. | 
|  | for (unsigned i = TransformedFunction.OriginalType->getNumParams(), | 
|  | ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) { | 
|  | ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i)); | 
|  | } | 
|  |  | 
|  | return AttributeList::get( | 
|  | Ctx, | 
|  | CallSiteAttrs.getFnAttributes(), | 
|  | CallSiteAttrs.getRetAttributes(), | 
|  | llvm::makeArrayRef(ArgumentAttributes)); | 
|  | } | 
|  |  | 
|  | class DataFlowSanitizer : public ModulePass { | 
|  | friend struct DFSanFunction; | 
|  | friend class DFSanVisitor; | 
|  |  | 
|  | enum { | 
|  | ShadowWidth = 16 | 
|  | }; | 
|  |  | 
|  | /// Which ABI should be used for instrumented functions? | 
|  | enum InstrumentedABI { | 
|  | /// Argument and return value labels are passed through additional | 
|  | /// arguments and by modifying the return type. | 
|  | IA_Args, | 
|  |  | 
|  | /// Argument and return value labels are passed through TLS variables | 
|  | /// __dfsan_arg_tls and __dfsan_retval_tls. | 
|  | IA_TLS | 
|  | }; | 
|  |  | 
|  | /// How should calls to uninstrumented functions be handled? | 
|  | enum WrapperKind { | 
|  | /// This function is present in an uninstrumented form but we don't know | 
|  | /// how it should be handled.  Print a warning and call the function anyway. | 
|  | /// Don't label the return value. | 
|  | WK_Warning, | 
|  |  | 
|  | /// This function does not write to (user-accessible) memory, and its return | 
|  | /// value is unlabelled. | 
|  | WK_Discard, | 
|  |  | 
|  | /// This function does not write to (user-accessible) memory, and the label | 
|  | /// of its return value is the union of the label of its arguments. | 
|  | WK_Functional, | 
|  |  | 
|  | /// Instead of calling the function, a custom wrapper __dfsw_F is called, | 
|  | /// where F is the name of the function.  This function may wrap the | 
|  | /// original function or provide its own implementation.  This is similar to | 
|  | /// the IA_Args ABI, except that IA_Args uses a struct return type to | 
|  | /// pass the return value shadow in a register, while WK_Custom uses an | 
|  | /// extra pointer argument to return the shadow.  This allows the wrapped | 
|  | /// form of the function type to be expressed in C. | 
|  | WK_Custom | 
|  | }; | 
|  |  | 
|  | Module *Mod; | 
|  | LLVMContext *Ctx; | 
|  | IntegerType *ShadowTy; | 
|  | PointerType *ShadowPtrTy; | 
|  | IntegerType *IntptrTy; | 
|  | ConstantInt *ZeroShadow; | 
|  | ConstantInt *ShadowPtrMask; | 
|  | ConstantInt *ShadowPtrMul; | 
|  | Constant *ArgTLS; | 
|  | Constant *RetvalTLS; | 
|  | void *(*GetArgTLSPtr)(); | 
|  | void *(*GetRetvalTLSPtr)(); | 
|  | Constant *GetArgTLS; | 
|  | Constant *GetRetvalTLS; | 
|  | Constant *ExternalShadowMask; | 
|  | FunctionType *DFSanUnionFnTy; | 
|  | FunctionType *DFSanUnionLoadFnTy; | 
|  | FunctionType *DFSanUnimplementedFnTy; | 
|  | FunctionType *DFSanSetLabelFnTy; | 
|  | FunctionType *DFSanNonzeroLabelFnTy; | 
|  | FunctionType *DFSanVarargWrapperFnTy; | 
|  | Constant *DFSanUnionFn; | 
|  | Constant *DFSanCheckedUnionFn; | 
|  | Constant *DFSanUnionLoadFn; | 
|  | Constant *DFSanUnimplementedFn; | 
|  | Constant *DFSanSetLabelFn; | 
|  | Constant *DFSanNonzeroLabelFn; | 
|  | Constant *DFSanVarargWrapperFn; | 
|  | MDNode *ColdCallWeights; | 
|  | DFSanABIList ABIList; | 
|  | DenseMap<Value *, Function *> UnwrappedFnMap; | 
|  | AttrBuilder ReadOnlyNoneAttrs; | 
|  | bool DFSanRuntimeShadowMask = false; | 
|  |  | 
|  | Value *getShadowAddress(Value *Addr, Instruction *Pos); | 
|  | bool isInstrumented(const Function *F); | 
|  | bool isInstrumented(const GlobalAlias *GA); | 
|  | FunctionType *getArgsFunctionType(FunctionType *T); | 
|  | FunctionType *getTrampolineFunctionType(FunctionType *T); | 
|  | TransformedFunction getCustomFunctionType(FunctionType *T); | 
|  | InstrumentedABI getInstrumentedABI(); | 
|  | WrapperKind getWrapperKind(Function *F); | 
|  | void addGlobalNamePrefix(GlobalValue *GV); | 
|  | Function *buildWrapperFunction(Function *F, StringRef NewFName, | 
|  | GlobalValue::LinkageTypes NewFLink, | 
|  | FunctionType *NewFT); | 
|  | Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | DataFlowSanitizer( | 
|  | const std::vector<std::string> &ABIListFiles = std::vector<std::string>(), | 
|  | void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr); | 
|  |  | 
|  | bool doInitialization(Module &M) override; | 
|  | bool runOnModule(Module &M) override; | 
|  | }; | 
|  |  | 
|  | struct DFSanFunction { | 
|  | DataFlowSanitizer &DFS; | 
|  | Function *F; | 
|  | DominatorTree DT; | 
|  | DataFlowSanitizer::InstrumentedABI IA; | 
|  | bool IsNativeABI; | 
|  | Value *ArgTLSPtr = nullptr; | 
|  | Value *RetvalTLSPtr = nullptr; | 
|  | AllocaInst *LabelReturnAlloca = nullptr; | 
|  | DenseMap<Value *, Value *> ValShadowMap; | 
|  | DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; | 
|  | std::vector<std::pair<PHINode *, PHINode *>> PHIFixups; | 
|  | DenseSet<Instruction *> SkipInsts; | 
|  | std::vector<Value *> NonZeroChecks; | 
|  | bool AvoidNewBlocks; | 
|  |  | 
|  | struct CachedCombinedShadow { | 
|  | BasicBlock *Block; | 
|  | Value *Shadow; | 
|  | }; | 
|  | DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow> | 
|  | CachedCombinedShadows; | 
|  | DenseMap<Value *, std::set<Value *>> ShadowElements; | 
|  |  | 
|  | DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) | 
|  | : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { | 
|  | DT.recalculate(*F); | 
|  | // FIXME: Need to track down the register allocator issue which causes poor | 
|  | // performance in pathological cases with large numbers of basic blocks. | 
|  | AvoidNewBlocks = F->size() > 1000; | 
|  | } | 
|  |  | 
|  | Value *getArgTLSPtr(); | 
|  | Value *getArgTLS(unsigned Index, Instruction *Pos); | 
|  | Value *getRetvalTLS(); | 
|  | Value *getShadow(Value *V); | 
|  | void setShadow(Instruction *I, Value *Shadow); | 
|  | Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); | 
|  | Value *combineOperandShadows(Instruction *Inst); | 
|  | Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, | 
|  | Instruction *Pos); | 
|  | void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow, | 
|  | Instruction *Pos); | 
|  | }; | 
|  |  | 
|  | class DFSanVisitor : public InstVisitor<DFSanVisitor> { | 
|  | public: | 
|  | DFSanFunction &DFSF; | 
|  |  | 
|  | DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} | 
|  |  | 
|  | const DataLayout &getDataLayout() const { | 
|  | return DFSF.F->getParent()->getDataLayout(); | 
|  | } | 
|  |  | 
|  | void visitOperandShadowInst(Instruction &I); | 
|  | void visitBinaryOperator(BinaryOperator &BO); | 
|  | void visitCastInst(CastInst &CI); | 
|  | void visitCmpInst(CmpInst &CI); | 
|  | void visitGetElementPtrInst(GetElementPtrInst &GEPI); | 
|  | void visitLoadInst(LoadInst &LI); | 
|  | void visitStoreInst(StoreInst &SI); | 
|  | void visitReturnInst(ReturnInst &RI); | 
|  | void visitCallSite(CallSite CS); | 
|  | void visitPHINode(PHINode &PN); | 
|  | void visitExtractElementInst(ExtractElementInst &I); | 
|  | void visitInsertElementInst(InsertElementInst &I); | 
|  | void visitShuffleVectorInst(ShuffleVectorInst &I); | 
|  | void visitExtractValueInst(ExtractValueInst &I); | 
|  | void visitInsertValueInst(InsertValueInst &I); | 
|  | void visitAllocaInst(AllocaInst &I); | 
|  | void visitSelectInst(SelectInst &I); | 
|  | void visitMemSetInst(MemSetInst &I); | 
|  | void visitMemTransferInst(MemTransferInst &I); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char DataFlowSanitizer::ID; | 
|  |  | 
|  | INITIALIZE_PASS(DataFlowSanitizer, "dfsan", | 
|  | "DataFlowSanitizer: dynamic data flow analysis.", false, false) | 
|  |  | 
|  | ModulePass * | 
|  | llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles, | 
|  | void *(*getArgTLS)(), | 
|  | void *(*getRetValTLS)()) { | 
|  | return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS); | 
|  | } | 
|  |  | 
|  | DataFlowSanitizer::DataFlowSanitizer( | 
|  | const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(), | 
|  | void *(*getRetValTLS)()) | 
|  | : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS) { | 
|  | std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); | 
|  | AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(), | 
|  | ClABIListFiles.end()); | 
|  | ABIList.set(SpecialCaseList::createOrDie(AllABIListFiles)); | 
|  | } | 
|  |  | 
|  | FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { | 
|  | SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); | 
|  | ArgTypes.append(T->getNumParams(), ShadowTy); | 
|  | if (T->isVarArg()) | 
|  | ArgTypes.push_back(ShadowPtrTy); | 
|  | Type *RetType = T->getReturnType(); | 
|  | if (!RetType->isVoidTy()) | 
|  | RetType = StructType::get(RetType, ShadowTy); | 
|  | return FunctionType::get(RetType, ArgTypes, T->isVarArg()); | 
|  | } | 
|  |  | 
|  | FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { | 
|  | assert(!T->isVarArg()); | 
|  | SmallVector<Type *, 4> ArgTypes; | 
|  | ArgTypes.push_back(T->getPointerTo()); | 
|  | ArgTypes.append(T->param_begin(), T->param_end()); | 
|  | ArgTypes.append(T->getNumParams(), ShadowTy); | 
|  | Type *RetType = T->getReturnType(); | 
|  | if (!RetType->isVoidTy()) | 
|  | ArgTypes.push_back(ShadowPtrTy); | 
|  | return FunctionType::get(T->getReturnType(), ArgTypes, false); | 
|  | } | 
|  |  | 
|  | TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { | 
|  | SmallVector<Type *, 4> ArgTypes; | 
|  |  | 
|  | // Some parameters of the custom function being constructed are | 
|  | // parameters of T.  Record the mapping from parameters of T to | 
|  | // parameters of the custom function, so that parameter attributes | 
|  | // at call sites can be updated. | 
|  | std::vector<unsigned> ArgumentIndexMapping; | 
|  | for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) { | 
|  | Type* param_type = T->getParamType(i); | 
|  | FunctionType *FT; | 
|  | if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>( | 
|  | cast<PointerType>(param_type)->getElementType()))) { | 
|  | ArgumentIndexMapping.push_back(ArgTypes.size()); | 
|  | ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); | 
|  | ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); | 
|  | } else { | 
|  | ArgumentIndexMapping.push_back(ArgTypes.size()); | 
|  | ArgTypes.push_back(param_type); | 
|  | } | 
|  | } | 
|  | for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) | 
|  | ArgTypes.push_back(ShadowTy); | 
|  | if (T->isVarArg()) | 
|  | ArgTypes.push_back(ShadowPtrTy); | 
|  | Type *RetType = T->getReturnType(); | 
|  | if (!RetType->isVoidTy()) | 
|  | ArgTypes.push_back(ShadowPtrTy); | 
|  | return TransformedFunction( | 
|  | T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), | 
|  | ArgumentIndexMapping); | 
|  | } | 
|  |  | 
|  | bool DataFlowSanitizer::doInitialization(Module &M) { | 
|  | Triple TargetTriple(M.getTargetTriple()); | 
|  | bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; | 
|  | bool IsMIPS64 = TargetTriple.isMIPS64(); | 
|  | bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || | 
|  | TargetTriple.getArch() == Triple::aarch64_be; | 
|  |  | 
|  | const DataLayout &DL = M.getDataLayout(); | 
|  |  | 
|  | Mod = &M; | 
|  | Ctx = &M.getContext(); | 
|  | ShadowTy = IntegerType::get(*Ctx, ShadowWidth); | 
|  | ShadowPtrTy = PointerType::getUnqual(ShadowTy); | 
|  | IntptrTy = DL.getIntPtrType(*Ctx); | 
|  | ZeroShadow = ConstantInt::getSigned(ShadowTy, 0); | 
|  | ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8); | 
|  | if (IsX86_64) | 
|  | ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); | 
|  | else if (IsMIPS64) | 
|  | ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); | 
|  | // AArch64 supports multiple VMAs and the shadow mask is set at runtime. | 
|  | else if (IsAArch64) | 
|  | DFSanRuntimeShadowMask = true; | 
|  | else | 
|  | report_fatal_error("unsupported triple"); | 
|  |  | 
|  | Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy }; | 
|  | DFSanUnionFnTy = | 
|  | FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false); | 
|  | Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy }; | 
|  | DFSanUnionLoadFnTy = | 
|  | FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false); | 
|  | DFSanUnimplementedFnTy = FunctionType::get( | 
|  | Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); | 
|  | Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy }; | 
|  | DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), | 
|  | DFSanSetLabelArgs, /*isVarArg=*/false); | 
|  | DFSanNonzeroLabelFnTy = FunctionType::get( | 
|  | Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); | 
|  | DFSanVarargWrapperFnTy = FunctionType::get( | 
|  | Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); | 
|  |  | 
|  | if (GetArgTLSPtr) { | 
|  | Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); | 
|  | ArgTLS = nullptr; | 
|  | GetArgTLS = ConstantExpr::getIntToPtr( | 
|  | ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)), | 
|  | PointerType::getUnqual( | 
|  | FunctionType::get(PointerType::getUnqual(ArgTLSTy), false))); | 
|  | } | 
|  | if (GetRetvalTLSPtr) { | 
|  | RetvalTLS = nullptr; | 
|  | GetRetvalTLS = ConstantExpr::getIntToPtr( | 
|  | ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)), | 
|  | PointerType::getUnqual( | 
|  | FunctionType::get(PointerType::getUnqual(ShadowTy), false))); | 
|  | } | 
|  |  | 
|  | ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DataFlowSanitizer::isInstrumented(const Function *F) { | 
|  | return !ABIList.isIn(*F, "uninstrumented"); | 
|  | } | 
|  |  | 
|  | bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { | 
|  | return !ABIList.isIn(*GA, "uninstrumented"); | 
|  | } | 
|  |  | 
|  | DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { | 
|  | return ClArgsABI ? IA_Args : IA_TLS; | 
|  | } | 
|  |  | 
|  | DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { | 
|  | if (ABIList.isIn(*F, "functional")) | 
|  | return WK_Functional; | 
|  | if (ABIList.isIn(*F, "discard")) | 
|  | return WK_Discard; | 
|  | if (ABIList.isIn(*F, "custom")) | 
|  | return WK_Custom; | 
|  |  | 
|  | return WK_Warning; | 
|  | } | 
|  |  | 
|  | void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { | 
|  | std::string GVName = GV->getName(), Prefix = "dfs$"; | 
|  | GV->setName(Prefix + GVName); | 
|  |  | 
|  | // Try to change the name of the function in module inline asm.  We only do | 
|  | // this for specific asm directives, currently only ".symver", to try to avoid | 
|  | // corrupting asm which happens to contain the symbol name as a substring. | 
|  | // Note that the substitution for .symver assumes that the versioned symbol | 
|  | // also has an instrumented name. | 
|  | std::string Asm = GV->getParent()->getModuleInlineAsm(); | 
|  | std::string SearchStr = ".symver " + GVName + ","; | 
|  | size_t Pos = Asm.find(SearchStr); | 
|  | if (Pos != std::string::npos) { | 
|  | Asm.replace(Pos, SearchStr.size(), | 
|  | ".symver " + Prefix + GVName + "," + Prefix); | 
|  | GV->getParent()->setModuleInlineAsm(Asm); | 
|  | } | 
|  | } | 
|  |  | 
|  | Function * | 
|  | DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, | 
|  | GlobalValue::LinkageTypes NewFLink, | 
|  | FunctionType *NewFT) { | 
|  | FunctionType *FT = F->getFunctionType(); | 
|  | Function *NewF = Function::Create(NewFT, NewFLink, NewFName, | 
|  | F->getParent()); | 
|  | NewF->copyAttributesFrom(F); | 
|  | NewF->removeAttributes( | 
|  | AttributeList::ReturnIndex, | 
|  | AttributeFuncs::typeIncompatible(NewFT->getReturnType())); | 
|  |  | 
|  | BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); | 
|  | if (F->isVarArg()) { | 
|  | NewF->removeAttributes(AttributeList::FunctionIndex, | 
|  | AttrBuilder().addAttribute("split-stack")); | 
|  | CallInst::Create(DFSanVarargWrapperFn, | 
|  | IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", | 
|  | BB); | 
|  | new UnreachableInst(*Ctx, BB); | 
|  | } else { | 
|  | std::vector<Value *> Args; | 
|  | unsigned n = FT->getNumParams(); | 
|  | for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) | 
|  | Args.push_back(&*ai); | 
|  | CallInst *CI = CallInst::Create(F, Args, "", BB); | 
|  | if (FT->getReturnType()->isVoidTy()) | 
|  | ReturnInst::Create(*Ctx, BB); | 
|  | else | 
|  | ReturnInst::Create(*Ctx, CI, BB); | 
|  | } | 
|  |  | 
|  | return NewF; | 
|  | } | 
|  |  | 
|  | Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, | 
|  | StringRef FName) { | 
|  | FunctionType *FTT = getTrampolineFunctionType(FT); | 
|  | Constant *C = Mod->getOrInsertFunction(FName, FTT); | 
|  | Function *F = dyn_cast<Function>(C); | 
|  | if (F && F->isDeclaration()) { | 
|  | F->setLinkage(GlobalValue::LinkOnceODRLinkage); | 
|  | BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); | 
|  | std::vector<Value *> Args; | 
|  | Function::arg_iterator AI = F->arg_begin(); ++AI; | 
|  | for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) | 
|  | Args.push_back(&*AI); | 
|  | CallInst *CI = CallInst::Create(&*F->arg_begin(), Args, "", BB); | 
|  | ReturnInst *RI; | 
|  | if (FT->getReturnType()->isVoidTy()) | 
|  | RI = ReturnInst::Create(*Ctx, BB); | 
|  | else | 
|  | RI = ReturnInst::Create(*Ctx, CI, BB); | 
|  |  | 
|  | DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); | 
|  | Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; | 
|  | for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) | 
|  | DFSF.ValShadowMap[&*ValAI] = &*ShadowAI; | 
|  | DFSanVisitor(DFSF).visitCallInst(*CI); | 
|  | if (!FT->getReturnType()->isVoidTy()) | 
|  | new StoreInst(DFSF.getShadow(RI->getReturnValue()), | 
|  | &*std::prev(F->arg_end()), RI); | 
|  | } | 
|  |  | 
|  | return C; | 
|  | } | 
|  |  | 
|  | bool DataFlowSanitizer::runOnModule(Module &M) { | 
|  | if (ABIList.isIn(M, "skip")) | 
|  | return false; | 
|  |  | 
|  | if (!GetArgTLSPtr) { | 
|  | Type *ArgTLSTy = ArrayType::get(ShadowTy, 64); | 
|  | ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy); | 
|  | if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) | 
|  | G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); | 
|  | } | 
|  | if (!GetRetvalTLSPtr) { | 
|  | RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy); | 
|  | if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) | 
|  | G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); | 
|  | } | 
|  |  | 
|  | ExternalShadowMask = | 
|  | Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy); | 
|  |  | 
|  | DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy); | 
|  | if (Function *F = dyn_cast<Function>(DFSanUnionFn)) { | 
|  | F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind); | 
|  | F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone); | 
|  | F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); | 
|  | F->addParamAttr(0, Attribute::ZExt); | 
|  | F->addParamAttr(1, Attribute::ZExt); | 
|  | } | 
|  | DFSanCheckedUnionFn = Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy); | 
|  | if (Function *F = dyn_cast<Function>(DFSanCheckedUnionFn)) { | 
|  | F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind); | 
|  | F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone); | 
|  | F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); | 
|  | F->addParamAttr(0, Attribute::ZExt); | 
|  | F->addParamAttr(1, Attribute::ZExt); | 
|  | } | 
|  | DFSanUnionLoadFn = | 
|  | Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy); | 
|  | if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) { | 
|  | F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind); | 
|  | F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadOnly); | 
|  | F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); | 
|  | } | 
|  | DFSanUnimplementedFn = | 
|  | Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); | 
|  | DFSanSetLabelFn = | 
|  | Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy); | 
|  | if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) { | 
|  | F->addParamAttr(0, Attribute::ZExt); | 
|  | } | 
|  | DFSanNonzeroLabelFn = | 
|  | Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); | 
|  | DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", | 
|  | DFSanVarargWrapperFnTy); | 
|  |  | 
|  | std::vector<Function *> FnsToInstrument; | 
|  | SmallPtrSet<Function *, 2> FnsWithNativeABI; | 
|  | for (Function &i : M) { | 
|  | if (!i.isIntrinsic() && | 
|  | &i != DFSanUnionFn && | 
|  | &i != DFSanCheckedUnionFn && | 
|  | &i != DFSanUnionLoadFn && | 
|  | &i != DFSanUnimplementedFn && | 
|  | &i != DFSanSetLabelFn && | 
|  | &i != DFSanNonzeroLabelFn && | 
|  | &i != DFSanVarargWrapperFn) | 
|  | FnsToInstrument.push_back(&i); | 
|  | } | 
|  |  | 
|  | // Give function aliases prefixes when necessary, and build wrappers where the | 
|  | // instrumentedness is inconsistent. | 
|  | for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { | 
|  | GlobalAlias *GA = &*i; | 
|  | ++i; | 
|  | // Don't stop on weak.  We assume people aren't playing games with the | 
|  | // instrumentedness of overridden weak aliases. | 
|  | if (auto F = dyn_cast<Function>(GA->getBaseObject())) { | 
|  | bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); | 
|  | if (GAInst && FInst) { | 
|  | addGlobalNamePrefix(GA); | 
|  | } else if (GAInst != FInst) { | 
|  | // Non-instrumented alias of an instrumented function, or vice versa. | 
|  | // Replace the alias with a native-ABI wrapper of the aliasee.  The pass | 
|  | // below will take care of instrumenting it. | 
|  | Function *NewF = | 
|  | buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); | 
|  | GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); | 
|  | NewF->takeName(GA); | 
|  | GA->eraseFromParent(); | 
|  | FnsToInstrument.push_back(NewF); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) | 
|  | .addAttribute(Attribute::ReadNone); | 
|  |  | 
|  | // First, change the ABI of every function in the module.  ABI-listed | 
|  | // functions keep their original ABI and get a wrapper function. | 
|  | for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), | 
|  | e = FnsToInstrument.end(); | 
|  | i != e; ++i) { | 
|  | Function &F = **i; | 
|  | FunctionType *FT = F.getFunctionType(); | 
|  |  | 
|  | bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && | 
|  | FT->getReturnType()->isVoidTy()); | 
|  |  | 
|  | if (isInstrumented(&F)) { | 
|  | // Instrumented functions get a 'dfs$' prefix.  This allows us to more | 
|  | // easily identify cases of mismatching ABIs. | 
|  | if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { | 
|  | FunctionType *NewFT = getArgsFunctionType(FT); | 
|  | Function *NewF = Function::Create(NewFT, F.getLinkage(), "", &M); | 
|  | NewF->copyAttributesFrom(&F); | 
|  | NewF->removeAttributes( | 
|  | AttributeList::ReturnIndex, | 
|  | AttributeFuncs::typeIncompatible(NewFT->getReturnType())); | 
|  | for (Function::arg_iterator FArg = F.arg_begin(), | 
|  | NewFArg = NewF->arg_begin(), | 
|  | FArgEnd = F.arg_end(); | 
|  | FArg != FArgEnd; ++FArg, ++NewFArg) { | 
|  | FArg->replaceAllUsesWith(&*NewFArg); | 
|  | } | 
|  | NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); | 
|  |  | 
|  | for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); | 
|  | UI != UE;) { | 
|  | BlockAddress *BA = dyn_cast<BlockAddress>(*UI); | 
|  | ++UI; | 
|  | if (BA) { | 
|  | BA->replaceAllUsesWith( | 
|  | BlockAddress::get(NewF, BA->getBasicBlock())); | 
|  | delete BA; | 
|  | } | 
|  | } | 
|  | F.replaceAllUsesWith( | 
|  | ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); | 
|  | NewF->takeName(&F); | 
|  | F.eraseFromParent(); | 
|  | *i = NewF; | 
|  | addGlobalNamePrefix(NewF); | 
|  | } else { | 
|  | addGlobalNamePrefix(&F); | 
|  | } | 
|  | } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { | 
|  | // Build a wrapper function for F.  The wrapper simply calls F, and is | 
|  | // added to FnsToInstrument so that any instrumentation according to its | 
|  | // WrapperKind is done in the second pass below. | 
|  | FunctionType *NewFT = getInstrumentedABI() == IA_Args | 
|  | ? getArgsFunctionType(FT) | 
|  | : FT; | 
|  |  | 
|  | // If the function being wrapped has local linkage, then preserve the | 
|  | // function's linkage in the wrapper function. | 
|  | GlobalValue::LinkageTypes wrapperLinkage = | 
|  | F.hasLocalLinkage() | 
|  | ? F.getLinkage() | 
|  | : GlobalValue::LinkOnceODRLinkage; | 
|  |  | 
|  | Function *NewF = buildWrapperFunction( | 
|  | &F, std::string("dfsw$") + std::string(F.getName()), | 
|  | wrapperLinkage, NewFT); | 
|  | if (getInstrumentedABI() == IA_TLS) | 
|  | NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); | 
|  |  | 
|  | Value *WrappedFnCst = | 
|  | ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); | 
|  | F.replaceAllUsesWith(WrappedFnCst); | 
|  |  | 
|  | UnwrappedFnMap[WrappedFnCst] = &F; | 
|  | *i = NewF; | 
|  |  | 
|  | if (!F.isDeclaration()) { | 
|  | // This function is probably defining an interposition of an | 
|  | // uninstrumented function and hence needs to keep the original ABI. | 
|  | // But any functions it may call need to use the instrumented ABI, so | 
|  | // we instrument it in a mode which preserves the original ABI. | 
|  | FnsWithNativeABI.insert(&F); | 
|  |  | 
|  | // This code needs to rebuild the iterators, as they may be invalidated | 
|  | // by the push_back, taking care that the new range does not include | 
|  | // any functions added by this code. | 
|  | size_t N = i - FnsToInstrument.begin(), | 
|  | Count = e - FnsToInstrument.begin(); | 
|  | FnsToInstrument.push_back(&F); | 
|  | i = FnsToInstrument.begin() + N; | 
|  | e = FnsToInstrument.begin() + Count; | 
|  | } | 
|  | // Hopefully, nobody will try to indirectly call a vararg | 
|  | // function... yet. | 
|  | } else if (FT->isVarArg()) { | 
|  | UnwrappedFnMap[&F] = &F; | 
|  | *i = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (Function *i : FnsToInstrument) { | 
|  | if (!i || i->isDeclaration()) | 
|  | continue; | 
|  |  | 
|  | removeUnreachableBlocks(*i); | 
|  |  | 
|  | DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i)); | 
|  |  | 
|  | // DFSanVisitor may create new basic blocks, which confuses df_iterator. | 
|  | // Build a copy of the list before iterating over it. | 
|  | SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock())); | 
|  |  | 
|  | for (BasicBlock *i : BBList) { | 
|  | Instruction *Inst = &i->front(); | 
|  | while (true) { | 
|  | // DFSanVisitor may split the current basic block, changing the current | 
|  | // instruction's next pointer and moving the next instruction to the | 
|  | // tail block from which we should continue. | 
|  | Instruction *Next = Inst->getNextNode(); | 
|  | // DFSanVisitor may delete Inst, so keep track of whether it was a | 
|  | // terminator. | 
|  | bool IsTerminator = isa<TerminatorInst>(Inst); | 
|  | if (!DFSF.SkipInsts.count(Inst)) | 
|  | DFSanVisitor(DFSF).visit(Inst); | 
|  | if (IsTerminator) | 
|  | break; | 
|  | Inst = Next; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We will not necessarily be able to compute the shadow for every phi node | 
|  | // until we have visited every block.  Therefore, the code that handles phi | 
|  | // nodes adds them to the PHIFixups list so that they can be properly | 
|  | // handled here. | 
|  | for (std::vector<std::pair<PHINode *, PHINode *>>::iterator | 
|  | i = DFSF.PHIFixups.begin(), | 
|  | e = DFSF.PHIFixups.end(); | 
|  | i != e; ++i) { | 
|  | for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; | 
|  | ++val) { | 
|  | i->second->setIncomingValue( | 
|  | val, DFSF.getShadow(i->first->getIncomingValue(val))); | 
|  | } | 
|  | } | 
|  |  | 
|  | // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy | 
|  | // places (i.e. instructions in basic blocks we haven't even begun visiting | 
|  | // yet).  To make our life easier, do this work in a pass after the main | 
|  | // instrumentation. | 
|  | if (ClDebugNonzeroLabels) { | 
|  | for (Value *V : DFSF.NonZeroChecks) { | 
|  | Instruction *Pos; | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | Pos = I->getNextNode(); | 
|  | else | 
|  | Pos = &DFSF.F->getEntryBlock().front(); | 
|  | while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) | 
|  | Pos = Pos->getNextNode(); | 
|  | IRBuilder<> IRB(Pos); | 
|  | Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow); | 
|  | BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( | 
|  | Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); | 
|  | IRBuilder<> ThenIRB(BI); | 
|  | ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Value *DFSanFunction::getArgTLSPtr() { | 
|  | if (ArgTLSPtr) | 
|  | return ArgTLSPtr; | 
|  | if (DFS.ArgTLS) | 
|  | return ArgTLSPtr = DFS.ArgTLS; | 
|  |  | 
|  | IRBuilder<> IRB(&F->getEntryBlock().front()); | 
|  | return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS, {}); | 
|  | } | 
|  |  | 
|  | Value *DFSanFunction::getRetvalTLS() { | 
|  | if (RetvalTLSPtr) | 
|  | return RetvalTLSPtr; | 
|  | if (DFS.RetvalTLS) | 
|  | return RetvalTLSPtr = DFS.RetvalTLS; | 
|  |  | 
|  | IRBuilder<> IRB(&F->getEntryBlock().front()); | 
|  | return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS, {}); | 
|  | } | 
|  |  | 
|  | Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) { | 
|  | IRBuilder<> IRB(Pos); | 
|  | return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx); | 
|  | } | 
|  |  | 
|  | Value *DFSanFunction::getShadow(Value *V) { | 
|  | if (!isa<Argument>(V) && !isa<Instruction>(V)) | 
|  | return DFS.ZeroShadow; | 
|  | Value *&Shadow = ValShadowMap[V]; | 
|  | if (!Shadow) { | 
|  | if (Argument *A = dyn_cast<Argument>(V)) { | 
|  | if (IsNativeABI) | 
|  | return DFS.ZeroShadow; | 
|  | switch (IA) { | 
|  | case DataFlowSanitizer::IA_TLS: { | 
|  | Value *ArgTLSPtr = getArgTLSPtr(); | 
|  | Instruction *ArgTLSPos = | 
|  | DFS.ArgTLS ? &*F->getEntryBlock().begin() | 
|  | : cast<Instruction>(ArgTLSPtr)->getNextNode(); | 
|  | IRBuilder<> IRB(ArgTLSPos); | 
|  | Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos)); | 
|  | break; | 
|  | } | 
|  | case DataFlowSanitizer::IA_Args: { | 
|  | unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; | 
|  | Function::arg_iterator i = F->arg_begin(); | 
|  | while (ArgIdx--) | 
|  | ++i; | 
|  | Shadow = &*i; | 
|  | assert(Shadow->getType() == DFS.ShadowTy); | 
|  | break; | 
|  | } | 
|  | } | 
|  | NonZeroChecks.push_back(Shadow); | 
|  | } else { | 
|  | Shadow = DFS.ZeroShadow; | 
|  | } | 
|  | } | 
|  | return Shadow; | 
|  | } | 
|  |  | 
|  | void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { | 
|  | assert(!ValShadowMap.count(I)); | 
|  | assert(Shadow->getType() == DFS.ShadowTy); | 
|  | ValShadowMap[I] = Shadow; | 
|  | } | 
|  |  | 
|  | Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { | 
|  | assert(Addr != RetvalTLS && "Reinstrumenting?"); | 
|  | IRBuilder<> IRB(Pos); | 
|  | Value *ShadowPtrMaskValue; | 
|  | if (DFSanRuntimeShadowMask) | 
|  | ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); | 
|  | else | 
|  | ShadowPtrMaskValue = ShadowPtrMask; | 
|  | return IRB.CreateIntToPtr( | 
|  | IRB.CreateMul( | 
|  | IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), | 
|  | IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)), | 
|  | ShadowPtrMul), | 
|  | ShadowPtrTy); | 
|  | } | 
|  |  | 
|  | // Generates IR to compute the union of the two given shadows, inserting it | 
|  | // before Pos.  Returns the computed union Value. | 
|  | Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { | 
|  | if (V1 == DFS.ZeroShadow) | 
|  | return V2; | 
|  | if (V2 == DFS.ZeroShadow) | 
|  | return V1; | 
|  | if (V1 == V2) | 
|  | return V1; | 
|  |  | 
|  | auto V1Elems = ShadowElements.find(V1); | 
|  | auto V2Elems = ShadowElements.find(V2); | 
|  | if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { | 
|  | if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), | 
|  | V2Elems->second.begin(), V2Elems->second.end())) { | 
|  | return V1; | 
|  | } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), | 
|  | V1Elems->second.begin(), V1Elems->second.end())) { | 
|  | return V2; | 
|  | } | 
|  | } else if (V1Elems != ShadowElements.end()) { | 
|  | if (V1Elems->second.count(V2)) | 
|  | return V1; | 
|  | } else if (V2Elems != ShadowElements.end()) { | 
|  | if (V2Elems->second.count(V1)) | 
|  | return V2; | 
|  | } | 
|  |  | 
|  | auto Key = std::make_pair(V1, V2); | 
|  | if (V1 > V2) | 
|  | std::swap(Key.first, Key.second); | 
|  | CachedCombinedShadow &CCS = CachedCombinedShadows[Key]; | 
|  | if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) | 
|  | return CCS.Shadow; | 
|  |  | 
|  | IRBuilder<> IRB(Pos); | 
|  | if (AvoidNewBlocks) { | 
|  | CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2}); | 
|  | Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); | 
|  | Call->addParamAttr(0, Attribute::ZExt); | 
|  | Call->addParamAttr(1, Attribute::ZExt); | 
|  |  | 
|  | CCS.Block = Pos->getParent(); | 
|  | CCS.Shadow = Call; | 
|  | } else { | 
|  | BasicBlock *Head = Pos->getParent(); | 
|  | Value *Ne = IRB.CreateICmpNE(V1, V2); | 
|  | BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( | 
|  | Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); | 
|  | IRBuilder<> ThenIRB(BI); | 
|  | CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2}); | 
|  | Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); | 
|  | Call->addParamAttr(0, Attribute::ZExt); | 
|  | Call->addParamAttr(1, Attribute::ZExt); | 
|  |  | 
|  | BasicBlock *Tail = BI->getSuccessor(0); | 
|  | PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); | 
|  | Phi->addIncoming(Call, Call->getParent()); | 
|  | Phi->addIncoming(V1, Head); | 
|  |  | 
|  | CCS.Block = Tail; | 
|  | CCS.Shadow = Phi; | 
|  | } | 
|  |  | 
|  | std::set<Value *> UnionElems; | 
|  | if (V1Elems != ShadowElements.end()) { | 
|  | UnionElems = V1Elems->second; | 
|  | } else { | 
|  | UnionElems.insert(V1); | 
|  | } | 
|  | if (V2Elems != ShadowElements.end()) { | 
|  | UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); | 
|  | } else { | 
|  | UnionElems.insert(V2); | 
|  | } | 
|  | ShadowElements[CCS.Shadow] = std::move(UnionElems); | 
|  |  | 
|  | return CCS.Shadow; | 
|  | } | 
|  |  | 
|  | // A convenience function which folds the shadows of each of the operands | 
|  | // of the provided instruction Inst, inserting the IR before Inst.  Returns | 
|  | // the computed union Value. | 
|  | Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { | 
|  | if (Inst->getNumOperands() == 0) | 
|  | return DFS.ZeroShadow; | 
|  |  | 
|  | Value *Shadow = getShadow(Inst->getOperand(0)); | 
|  | for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { | 
|  | Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); | 
|  | } | 
|  | return Shadow; | 
|  | } | 
|  |  | 
|  | void DFSanVisitor::visitOperandShadowInst(Instruction &I) { | 
|  | Value *CombinedShadow = DFSF.combineOperandShadows(&I); | 
|  | DFSF.setShadow(&I, CombinedShadow); | 
|  | } | 
|  |  | 
|  | // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where | 
|  | // Addr has alignment Align, and take the union of each of those shadows. | 
|  | Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, | 
|  | Instruction *Pos) { | 
|  | if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { | 
|  | const auto i = AllocaShadowMap.find(AI); | 
|  | if (i != AllocaShadowMap.end()) { | 
|  | IRBuilder<> IRB(Pos); | 
|  | return IRB.CreateLoad(i->second); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; | 
|  | SmallVector<Value *, 2> Objs; | 
|  | GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout()); | 
|  | bool AllConstants = true; | 
|  | for (Value *Obj : Objs) { | 
|  | if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) | 
|  | continue; | 
|  | if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) | 
|  | continue; | 
|  |  | 
|  | AllConstants = false; | 
|  | break; | 
|  | } | 
|  | if (AllConstants) | 
|  | return DFS.ZeroShadow; | 
|  |  | 
|  | Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); | 
|  | switch (Size) { | 
|  | case 0: | 
|  | return DFS.ZeroShadow; | 
|  | case 1: { | 
|  | LoadInst *LI = new LoadInst(ShadowAddr, "", Pos); | 
|  | LI->setAlignment(ShadowAlign); | 
|  | return LI; | 
|  | } | 
|  | case 2: { | 
|  | IRBuilder<> IRB(Pos); | 
|  | Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr, | 
|  | ConstantInt::get(DFS.IntptrTy, 1)); | 
|  | return combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign), | 
|  | IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign), Pos); | 
|  | } | 
|  | } | 
|  | if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) { | 
|  | // Fast path for the common case where each byte has identical shadow: load | 
|  | // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any | 
|  | // shadow is non-equal. | 
|  | BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); | 
|  | IRBuilder<> FallbackIRB(FallbackBB); | 
|  | CallInst *FallbackCall = FallbackIRB.CreateCall( | 
|  | DFS.DFSanUnionLoadFn, | 
|  | {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); | 
|  | FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); | 
|  |  | 
|  | // Compare each of the shadows stored in the loaded 64 bits to each other, | 
|  | // by computing (WideShadow rotl ShadowWidth) == WideShadow. | 
|  | IRBuilder<> IRB(Pos); | 
|  | Value *WideAddr = | 
|  | IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); | 
|  | Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign); | 
|  | Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy); | 
|  | Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth); | 
|  | Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth); | 
|  | Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); | 
|  | Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); | 
|  |  | 
|  | BasicBlock *Head = Pos->getParent(); | 
|  | BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); | 
|  |  | 
|  | if (DomTreeNode *OldNode = DT.getNode(Head)) { | 
|  | std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); | 
|  |  | 
|  | DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); | 
|  | for (auto Child : Children) | 
|  | DT.changeImmediateDominator(Child, NewNode); | 
|  | } | 
|  |  | 
|  | // In the following code LastBr will refer to the previous basic block's | 
|  | // conditional branch instruction, whose true successor is fixed up to point | 
|  | // to the next block during the loop below or to the tail after the final | 
|  | // iteration. | 
|  | BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); | 
|  | ReplaceInstWithInst(Head->getTerminator(), LastBr); | 
|  | DT.addNewBlock(FallbackBB, Head); | 
|  |  | 
|  | for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size; | 
|  | Ofs += 64 / DFS.ShadowWidth) { | 
|  | BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); | 
|  | DT.addNewBlock(NextBB, LastBr->getParent()); | 
|  | IRBuilder<> NextIRB(NextBB); | 
|  | WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, | 
|  | ConstantInt::get(DFS.IntptrTy, 1)); | 
|  | Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign); | 
|  | ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); | 
|  | LastBr->setSuccessor(0, NextBB); | 
|  | LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); | 
|  | } | 
|  |  | 
|  | LastBr->setSuccessor(0, Tail); | 
|  | FallbackIRB.CreateBr(Tail); | 
|  | PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front()); | 
|  | Shadow->addIncoming(FallbackCall, FallbackBB); | 
|  | Shadow->addIncoming(TruncShadow, LastBr->getParent()); | 
|  | return Shadow; | 
|  | } | 
|  |  | 
|  | IRBuilder<> IRB(Pos); | 
|  | CallInst *FallbackCall = IRB.CreateCall( | 
|  | DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); | 
|  | FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); | 
|  | return FallbackCall; | 
|  | } | 
|  |  | 
|  | void DFSanVisitor::visitLoadInst(LoadInst &LI) { | 
|  | auto &DL = LI.getModule()->getDataLayout(); | 
|  | uint64_t Size = DL.getTypeStoreSize(LI.getType()); | 
|  | if (Size == 0) { | 
|  | DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow); | 
|  | return; | 
|  | } | 
|  |  | 
|  | uint64_t Align; | 
|  | if (ClPreserveAlignment) { | 
|  | Align = LI.getAlignment(); | 
|  | if (Align == 0) | 
|  | Align = DL.getABITypeAlignment(LI.getType()); | 
|  | } else { | 
|  | Align = 1; | 
|  | } | 
|  | IRBuilder<> IRB(&LI); | 
|  | Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI); | 
|  | if (ClCombinePointerLabelsOnLoad) { | 
|  | Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); | 
|  | Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI); | 
|  | } | 
|  | if (Shadow != DFSF.DFS.ZeroShadow) | 
|  | DFSF.NonZeroChecks.push_back(Shadow); | 
|  |  | 
|  | DFSF.setShadow(&LI, Shadow); | 
|  | } | 
|  |  | 
|  | void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align, | 
|  | Value *Shadow, Instruction *Pos) { | 
|  | if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { | 
|  | const auto i = AllocaShadowMap.find(AI); | 
|  | if (i != AllocaShadowMap.end()) { | 
|  | IRBuilder<> IRB(Pos); | 
|  | IRB.CreateStore(Shadow, i->second); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8; | 
|  | IRBuilder<> IRB(Pos); | 
|  | Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); | 
|  | if (Shadow == DFS.ZeroShadow) { | 
|  | IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth); | 
|  | Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); | 
|  | Value *ExtShadowAddr = | 
|  | IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); | 
|  | IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const unsigned ShadowVecSize = 128 / DFS.ShadowWidth; | 
|  | uint64_t Offset = 0; | 
|  | if (Size >= ShadowVecSize) { | 
|  | VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize); | 
|  | Value *ShadowVec = UndefValue::get(ShadowVecTy); | 
|  | for (unsigned i = 0; i != ShadowVecSize; ++i) { | 
|  | ShadowVec = IRB.CreateInsertElement( | 
|  | ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); | 
|  | } | 
|  | Value *ShadowVecAddr = | 
|  | IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); | 
|  | do { | 
|  | Value *CurShadowVecAddr = | 
|  | IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); | 
|  | IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); | 
|  | Size -= ShadowVecSize; | 
|  | ++Offset; | 
|  | } while (Size >= ShadowVecSize); | 
|  | Offset *= ShadowVecSize; | 
|  | } | 
|  | while (Size > 0) { | 
|  | Value *CurShadowAddr = | 
|  | IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset); | 
|  | IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign); | 
|  | --Size; | 
|  | ++Offset; | 
|  | } | 
|  | } | 
|  |  | 
|  | void DFSanVisitor::visitStoreInst(StoreInst &SI) { | 
|  | auto &DL = SI.getModule()->getDataLayout(); | 
|  | uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType()); | 
|  | if (Size == 0) | 
|  | return; | 
|  |  | 
|  | uint64_t Align; | 
|  | if (ClPreserveAlignment) { | 
|  | Align = SI.getAlignment(); | 
|  | if (Align == 0) | 
|  | Align = DL.getABITypeAlignment(SI.getValueOperand()->getType()); | 
|  | } else { | 
|  | Align = 1; | 
|  | } | 
|  |  | 
|  | Value* Shadow = DFSF.getShadow(SI.getValueOperand()); | 
|  | if (ClCombinePointerLabelsOnStore) { | 
|  | Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); | 
|  | Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); | 
|  | } | 
|  | DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI); | 
|  | } | 
|  |  | 
|  | void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { | 
|  | visitOperandShadowInst(BO); | 
|  | } | 
|  |  | 
|  | void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } | 
|  |  | 
|  | void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); } | 
|  |  | 
|  | void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { | 
|  | visitOperandShadowInst(GEPI); | 
|  | } | 
|  |  | 
|  | void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { | 
|  | visitOperandShadowInst(I); | 
|  | } | 
|  |  | 
|  | void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { | 
|  | visitOperandShadowInst(I); | 
|  | } | 
|  |  | 
|  | void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { | 
|  | visitOperandShadowInst(I); | 
|  | } | 
|  |  | 
|  | void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { | 
|  | visitOperandShadowInst(I); | 
|  | } | 
|  |  | 
|  | void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { | 
|  | visitOperandShadowInst(I); | 
|  | } | 
|  |  | 
|  | void DFSanVisitor::visitAllocaInst(AllocaInst &I) { | 
|  | bool AllLoadsStores = true; | 
|  | for (User *U : I.users()) { | 
|  | if (isa<LoadInst>(U)) | 
|  | continue; | 
|  |  | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(U)) { | 
|  | if (SI->getPointerOperand() == &I) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | AllLoadsStores = false; | 
|  | break; | 
|  | } | 
|  | if (AllLoadsStores) { | 
|  | IRBuilder<> IRB(&I); | 
|  | DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy); | 
|  | } | 
|  | DFSF.setShadow(&I, DFSF.DFS.ZeroShadow); | 
|  | } | 
|  |  | 
|  | void DFSanVisitor::visitSelectInst(SelectInst &I) { | 
|  | Value *CondShadow = DFSF.getShadow(I.getCondition()); | 
|  | Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); | 
|  | Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); | 
|  |  | 
|  | if (isa<VectorType>(I.getCondition()->getType())) { | 
|  | DFSF.setShadow( | 
|  | &I, | 
|  | DFSF.combineShadows( | 
|  | CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I)); | 
|  | } else { | 
|  | Value *ShadowSel; | 
|  | if (TrueShadow == FalseShadow) { | 
|  | ShadowSel = TrueShadow; | 
|  | } else { | 
|  | ShadowSel = | 
|  | SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); | 
|  | } | 
|  | DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void DFSanVisitor::visitMemSetInst(MemSetInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | Value *ValShadow = DFSF.getShadow(I.getValue()); | 
|  | IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn, | 
|  | {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy( | 
|  | *DFSF.DFS.Ctx)), | 
|  | IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); | 
|  | } | 
|  |  | 
|  | void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { | 
|  | IRBuilder<> IRB(&I); | 
|  | Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); | 
|  | Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); | 
|  | Value *LenShadow = IRB.CreateMul( | 
|  | I.getLength(), | 
|  | ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8)); | 
|  | Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); | 
|  | DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr); | 
|  | SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); | 
|  | auto *MTI = cast<MemTransferInst>( | 
|  | IRB.CreateCall(I.getCalledValue(), | 
|  | {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); | 
|  | if (ClPreserveAlignment) { | 
|  | MTI->setDestAlignment(I.getDestAlignment() * (DFSF.DFS.ShadowWidth / 8)); | 
|  | MTI->setSourceAlignment(I.getSourceAlignment() * (DFSF.DFS.ShadowWidth / 8)); | 
|  | } else { | 
|  | MTI->setDestAlignment(DFSF.DFS.ShadowWidth / 8); | 
|  | MTI->setSourceAlignment(DFSF.DFS.ShadowWidth / 8); | 
|  | } | 
|  | } | 
|  |  | 
|  | void DFSanVisitor::visitReturnInst(ReturnInst &RI) { | 
|  | if (!DFSF.IsNativeABI && RI.getReturnValue()) { | 
|  | switch (DFSF.IA) { | 
|  | case DataFlowSanitizer::IA_TLS: { | 
|  | Value *S = DFSF.getShadow(RI.getReturnValue()); | 
|  | IRBuilder<> IRB(&RI); | 
|  | IRB.CreateStore(S, DFSF.getRetvalTLS()); | 
|  | break; | 
|  | } | 
|  | case DataFlowSanitizer::IA_Args: { | 
|  | IRBuilder<> IRB(&RI); | 
|  | Type *RT = DFSF.F->getFunctionType()->getReturnType(); | 
|  | Value *InsVal = | 
|  | IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); | 
|  | Value *InsShadow = | 
|  | IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); | 
|  | RI.setOperand(0, InsShadow); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void DFSanVisitor::visitCallSite(CallSite CS) { | 
|  | Function *F = CS.getCalledFunction(); | 
|  | if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) { | 
|  | visitOperandShadowInst(*CS.getInstruction()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Calls to this function are synthesized in wrappers, and we shouldn't | 
|  | // instrument them. | 
|  | if (F == DFSF.DFS.DFSanVarargWrapperFn) | 
|  | return; | 
|  |  | 
|  | IRBuilder<> IRB(CS.getInstruction()); | 
|  |  | 
|  | DenseMap<Value *, Function *>::iterator i = | 
|  | DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue()); | 
|  | if (i != DFSF.DFS.UnwrappedFnMap.end()) { | 
|  | Function *F = i->second; | 
|  | switch (DFSF.DFS.getWrapperKind(F)) { | 
|  | case DataFlowSanitizer::WK_Warning: | 
|  | CS.setCalledFunction(F); | 
|  | IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, | 
|  | IRB.CreateGlobalStringPtr(F->getName())); | 
|  | DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); | 
|  | return; | 
|  | case DataFlowSanitizer::WK_Discard: | 
|  | CS.setCalledFunction(F); | 
|  | DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow); | 
|  | return; | 
|  | case DataFlowSanitizer::WK_Functional: | 
|  | CS.setCalledFunction(F); | 
|  | visitOperandShadowInst(*CS.getInstruction()); | 
|  | return; | 
|  | case DataFlowSanitizer::WK_Custom: | 
|  | // Don't try to handle invokes of custom functions, it's too complicated. | 
|  | // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ | 
|  | // wrapper. | 
|  | if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) { | 
|  | FunctionType *FT = F->getFunctionType(); | 
|  | TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); | 
|  | std::string CustomFName = "__dfsw_"; | 
|  | CustomFName += F->getName(); | 
|  | Constant *CustomF = DFSF.DFS.Mod->getOrInsertFunction( | 
|  | CustomFName, CustomFn.TransformedType); | 
|  | if (Function *CustomFn = dyn_cast<Function>(CustomF)) { | 
|  | CustomFn->copyAttributesFrom(F); | 
|  |  | 
|  | // Custom functions returning non-void will write to the return label. | 
|  | if (!FT->getReturnType()->isVoidTy()) { | 
|  | CustomFn->removeAttributes(AttributeList::FunctionIndex, | 
|  | DFSF.DFS.ReadOnlyNoneAttrs); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::vector<Value *> Args; | 
|  |  | 
|  | CallSite::arg_iterator i = CS.arg_begin(); | 
|  | for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) { | 
|  | Type *T = (*i)->getType(); | 
|  | FunctionType *ParamFT; | 
|  | if (isa<PointerType>(T) && | 
|  | (ParamFT = dyn_cast<FunctionType>( | 
|  | cast<PointerType>(T)->getElementType()))) { | 
|  | std::string TName = "dfst"; | 
|  | TName += utostr(FT->getNumParams() - n); | 
|  | TName += "$"; | 
|  | TName += F->getName(); | 
|  | Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); | 
|  | Args.push_back(T); | 
|  | Args.push_back( | 
|  | IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); | 
|  | } else { | 
|  | Args.push_back(*i); | 
|  | } | 
|  | } | 
|  |  | 
|  | i = CS.arg_begin(); | 
|  | const unsigned ShadowArgStart = Args.size(); | 
|  | for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) | 
|  | Args.push_back(DFSF.getShadow(*i)); | 
|  |  | 
|  | if (FT->isVarArg()) { | 
|  | auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy, | 
|  | CS.arg_size() - FT->getNumParams()); | 
|  | auto *LabelVAAlloca = new AllocaInst( | 
|  | LabelVATy, getDataLayout().getAllocaAddrSpace(), | 
|  | "labelva", &DFSF.F->getEntryBlock().front()); | 
|  |  | 
|  | for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) { | 
|  | auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n); | 
|  | IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr); | 
|  | } | 
|  |  | 
|  | Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); | 
|  | } | 
|  |  | 
|  | if (!FT->getReturnType()->isVoidTy()) { | 
|  | if (!DFSF.LabelReturnAlloca) { | 
|  | DFSF.LabelReturnAlloca = | 
|  | new AllocaInst(DFSF.DFS.ShadowTy, | 
|  | getDataLayout().getAllocaAddrSpace(), | 
|  | "labelreturn", &DFSF.F->getEntryBlock().front()); | 
|  | } | 
|  | Args.push_back(DFSF.LabelReturnAlloca); | 
|  | } | 
|  |  | 
|  | for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i) | 
|  | Args.push_back(*i); | 
|  |  | 
|  | CallInst *CustomCI = IRB.CreateCall(CustomF, Args); | 
|  | CustomCI->setCallingConv(CI->getCallingConv()); | 
|  | CustomCI->setAttributes(TransformFunctionAttributes(CustomFn, | 
|  | CI->getContext(), CI->getAttributes())); | 
|  |  | 
|  | // Update the parameter attributes of the custom call instruction to | 
|  | // zero extend the shadow parameters. This is required for targets | 
|  | // which consider ShadowTy an illegal type. | 
|  | for (unsigned n = 0; n < FT->getNumParams(); n++) { | 
|  | const unsigned ArgNo = ShadowArgStart + n; | 
|  | if (CustomCI->getArgOperand(ArgNo)->getType() == DFSF.DFS.ShadowTy) | 
|  | CustomCI->addParamAttr(ArgNo, Attribute::ZExt); | 
|  | } | 
|  |  | 
|  | if (!FT->getReturnType()->isVoidTy()) { | 
|  | LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca); | 
|  | DFSF.setShadow(CustomCI, LabelLoad); | 
|  | } | 
|  |  | 
|  | CI->replaceAllUsesWith(CustomCI); | 
|  | CI->eraseFromParent(); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | FunctionType *FT = cast<FunctionType>( | 
|  | CS.getCalledValue()->getType()->getPointerElementType()); | 
|  | if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { | 
|  | for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) { | 
|  | IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)), | 
|  | DFSF.getArgTLS(i, CS.getInstruction())); | 
|  | } | 
|  | } | 
|  |  | 
|  | Instruction *Next = nullptr; | 
|  | if (!CS.getType()->isVoidTy()) { | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { | 
|  | if (II->getNormalDest()->getSinglePredecessor()) { | 
|  | Next = &II->getNormalDest()->front(); | 
|  | } else { | 
|  | BasicBlock *NewBB = | 
|  | SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); | 
|  | Next = &NewBB->front(); | 
|  | } | 
|  | } else { | 
|  | assert(CS->getIterator() != CS->getParent()->end()); | 
|  | Next = CS->getNextNode(); | 
|  | } | 
|  |  | 
|  | if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { | 
|  | IRBuilder<> NextIRB(Next); | 
|  | LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS()); | 
|  | DFSF.SkipInsts.insert(LI); | 
|  | DFSF.setShadow(CS.getInstruction(), LI); | 
|  | DFSF.NonZeroChecks.push_back(LI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Do all instrumentation for IA_Args down here to defer tampering with the | 
|  | // CFG in a way that SplitEdge may be able to detect. | 
|  | if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { | 
|  | FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); | 
|  | Value *Func = | 
|  | IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT)); | 
|  | std::vector<Value *> Args; | 
|  |  | 
|  | CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); | 
|  | for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) | 
|  | Args.push_back(*i); | 
|  |  | 
|  | i = CS.arg_begin(); | 
|  | for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) | 
|  | Args.push_back(DFSF.getShadow(*i)); | 
|  |  | 
|  | if (FT->isVarArg()) { | 
|  | unsigned VarArgSize = CS.arg_size() - FT->getNumParams(); | 
|  | ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize); | 
|  | AllocaInst *VarArgShadow = | 
|  | new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), | 
|  | "", &DFSF.F->getEntryBlock().front()); | 
|  | Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); | 
|  | for (unsigned n = 0; i != e; ++i, ++n) { | 
|  | IRB.CreateStore( | 
|  | DFSF.getShadow(*i), | 
|  | IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n)); | 
|  | Args.push_back(*i); | 
|  | } | 
|  | } | 
|  |  | 
|  | CallSite NewCS; | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { | 
|  | NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(), | 
|  | Args); | 
|  | } else { | 
|  | NewCS = IRB.CreateCall(Func, Args); | 
|  | } | 
|  | NewCS.setCallingConv(CS.getCallingConv()); | 
|  | NewCS.setAttributes(CS.getAttributes().removeAttributes( | 
|  | *DFSF.DFS.Ctx, AttributeList::ReturnIndex, | 
|  | AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType()))); | 
|  |  | 
|  | if (Next) { | 
|  | ExtractValueInst *ExVal = | 
|  | ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next); | 
|  | DFSF.SkipInsts.insert(ExVal); | 
|  | ExtractValueInst *ExShadow = | 
|  | ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next); | 
|  | DFSF.SkipInsts.insert(ExShadow); | 
|  | DFSF.setShadow(ExVal, ExShadow); | 
|  | DFSF.NonZeroChecks.push_back(ExShadow); | 
|  |  | 
|  | CS.getInstruction()->replaceAllUsesWith(ExVal); | 
|  | } | 
|  |  | 
|  | CS.getInstruction()->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void DFSanVisitor::visitPHINode(PHINode &PN) { | 
|  | PHINode *ShadowPN = | 
|  | PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN); | 
|  |  | 
|  | // Give the shadow phi node valid predecessors to fool SplitEdge into working. | 
|  | Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy); | 
|  | for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; | 
|  | ++i) { | 
|  | ShadowPN->addIncoming(UndefShadow, *i); | 
|  | } | 
|  |  | 
|  | DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); | 
|  | DFSF.setShadow(&PN, ShadowPN); | 
|  | } |