| /*********************************************************************** |
| Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions |
| are met: |
| - Redistributions of source code must retain the above copyright notice, |
| this list of conditions and the following disclaimer. |
| - Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| - Neither the name of Internet Society, IETF or IETF Trust, nor the |
| names of specific contributors, may be used to endorse or promote |
| products derived from this software without specific prior written |
| permission. |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| POSSIBILITY OF SUCH DAMAGE. |
| ***********************************************************************/ |
| |
| #ifndef SILK_SIGPROC_FIX_H |
| #define SILK_SIGPROC_FIX_H |
| |
| #ifdef __cplusplus |
| extern "C" |
| { |
| #endif |
| |
| /*#define silk_MACRO_COUNT */ /* Used to enable WMOPS counting */ |
| |
| #define SILK_MAX_ORDER_LPC 24 /* max order of the LPC analysis in schur() and k2a() */ |
| |
| #include <string.h> /* for memset(), memcpy(), memmove() */ |
| #include "typedef.h" |
| #include "resampler_structs.h" |
| #include "macros.h" |
| #include "cpu_support.h" |
| |
| #if defined(OPUS_X86_MAY_HAVE_SSE4_1) |
| #include "x86/SigProc_FIX_sse.h" |
| #endif |
| |
| #if (defined(OPUS_ARM_ASM) || defined(OPUS_ARM_MAY_HAVE_NEON_INTR)) |
| #include "arm/biquad_alt_arm.h" |
| #include "arm/LPC_inv_pred_gain_arm.h" |
| #endif |
| |
| /********************************************************************/ |
| /* SIGNAL PROCESSING FUNCTIONS */ |
| /********************************************************************/ |
| |
| /*! |
| * Initialize/reset the resampler state for a given pair of input/output sampling rates |
| */ |
| opus_int silk_resampler_init( |
| silk_resampler_state_struct *S, /* I/O Resampler state */ |
| opus_int32 Fs_Hz_in, /* I Input sampling rate (Hz) */ |
| opus_int32 Fs_Hz_out, /* I Output sampling rate (Hz) */ |
| opus_int forEnc /* I If 1: encoder; if 0: decoder */ |
| ); |
| |
| /*! |
| * Resampler: convert from one sampling rate to another |
| */ |
| opus_int silk_resampler( |
| silk_resampler_state_struct *S, /* I/O Resampler state */ |
| opus_int16 out[], /* O Output signal */ |
| const opus_int16 in[], /* I Input signal */ |
| opus_int32 inLen /* I Number of input samples */ |
| ); |
| |
| /*! |
| * Downsample 2x, mediocre quality |
| */ |
| void silk_resampler_down2( |
| opus_int32 *S, /* I/O State vector [ 2 ] */ |
| opus_int16 *out, /* O Output signal [ len ] */ |
| const opus_int16 *in, /* I Input signal [ floor(len/2) ] */ |
| opus_int32 inLen /* I Number of input samples */ |
| ); |
| |
| /*! |
| * Downsample by a factor 2/3, low quality |
| */ |
| void silk_resampler_down2_3( |
| opus_int32 *S, /* I/O State vector [ 6 ] */ |
| opus_int16 *out, /* O Output signal [ floor(2*inLen/3) ] */ |
| const opus_int16 *in, /* I Input signal [ inLen ] */ |
| opus_int32 inLen /* I Number of input samples */ |
| ); |
| |
| /*! |
| * second order ARMA filter; |
| * slower than biquad() but uses more precise coefficients |
| * can handle (slowly) varying coefficients |
| */ |
| void silk_biquad_alt_stride1( |
| const opus_int16 *in, /* I input signal */ |
| const opus_int32 *B_Q28, /* I MA coefficients [3] */ |
| const opus_int32 *A_Q28, /* I AR coefficients [2] */ |
| opus_int32 *S, /* I/O State vector [2] */ |
| opus_int16 *out, /* O output signal */ |
| const opus_int32 len /* I signal length (must be even) */ |
| ); |
| |
| void silk_biquad_alt_stride2_c( |
| const opus_int16 *in, /* I input signal */ |
| const opus_int32 *B_Q28, /* I MA coefficients [3] */ |
| const opus_int32 *A_Q28, /* I AR coefficients [2] */ |
| opus_int32 *S, /* I/O State vector [4] */ |
| opus_int16 *out, /* O output signal */ |
| const opus_int32 len /* I signal length (must be even) */ |
| ); |
| |
| /* Variable order MA prediction error filter. */ |
| void silk_LPC_analysis_filter( |
| opus_int16 *out, /* O Output signal */ |
| const opus_int16 *in, /* I Input signal */ |
| const opus_int16 *B, /* I MA prediction coefficients, Q12 [order] */ |
| const opus_int32 len, /* I Signal length */ |
| const opus_int32 d, /* I Filter order */ |
| int arch /* I Run-time architecture */ |
| ); |
| |
| /* Chirp (bandwidth expand) LP AR filter */ |
| void silk_bwexpander( |
| opus_int16 *ar, /* I/O AR filter to be expanded (without leading 1) */ |
| const opus_int d, /* I Length of ar */ |
| opus_int32 chirp_Q16 /* I Chirp factor (typically in the range 0 to 1) */ |
| ); |
| |
| /* Chirp (bandwidth expand) LP AR filter */ |
| void silk_bwexpander_32( |
| opus_int32 *ar, /* I/O AR filter to be expanded (without leading 1) */ |
| const opus_int d, /* I Length of ar */ |
| opus_int32 chirp_Q16 /* I Chirp factor in Q16 */ |
| ); |
| |
| /* Compute inverse of LPC prediction gain, and */ |
| /* test if LPC coefficients are stable (all poles within unit circle) */ |
| opus_int32 silk_LPC_inverse_pred_gain_c( /* O Returns inverse prediction gain in energy domain, Q30 */ |
| const opus_int16 *A_Q12, /* I Prediction coefficients, Q12 [order] */ |
| const opus_int order /* I Prediction order */ |
| ); |
| |
| /* Split signal in two decimated bands using first-order allpass filters */ |
| void silk_ana_filt_bank_1( |
| const opus_int16 *in, /* I Input signal [N] */ |
| opus_int32 *S, /* I/O State vector [2] */ |
| opus_int16 *outL, /* O Low band [N/2] */ |
| opus_int16 *outH, /* O High band [N/2] */ |
| const opus_int32 N /* I Number of input samples */ |
| ); |
| |
| #if !defined(OVERRIDE_silk_biquad_alt_stride2) |
| #define silk_biquad_alt_stride2(in, B_Q28, A_Q28, S, out, len, arch) ((void)(arch), silk_biquad_alt_stride2_c(in, B_Q28, A_Q28, S, out, len)) |
| #endif |
| |
| #if !defined(OVERRIDE_silk_LPC_inverse_pred_gain) |
| #define silk_LPC_inverse_pred_gain(A_Q12, order, arch) ((void)(arch), silk_LPC_inverse_pred_gain_c(A_Q12, order)) |
| #endif |
| |
| /********************************************************************/ |
| /* SCALAR FUNCTIONS */ |
| /********************************************************************/ |
| |
| /* Approximation of 128 * log2() (exact inverse of approx 2^() below) */ |
| /* Convert input to a log scale */ |
| opus_int32 silk_lin2log( |
| const opus_int32 inLin /* I input in linear scale */ |
| ); |
| |
| /* Approximation of a sigmoid function */ |
| opus_int silk_sigm_Q15( |
| opus_int in_Q5 /* I */ |
| ); |
| |
| /* Approximation of 2^() (exact inverse of approx log2() above) */ |
| /* Convert input to a linear scale */ |
| opus_int32 silk_log2lin( |
| const opus_int32 inLog_Q7 /* I input on log scale */ |
| ); |
| |
| /* Compute number of bits to right shift the sum of squares of a vector */ |
| /* of int16s to make it fit in an int32 */ |
| void silk_sum_sqr_shift( |
| opus_int32 *energy, /* O Energy of x, after shifting to the right */ |
| opus_int *shift, /* O Number of bits right shift applied to energy */ |
| const opus_int16 *x, /* I Input vector */ |
| opus_int len /* I Length of input vector */ |
| ); |
| |
| /* Calculates the reflection coefficients from the correlation sequence */ |
| /* Faster than schur64(), but much less accurate. */ |
| /* uses SMLAWB(), requiring armv5E and higher. */ |
| opus_int32 silk_schur( /* O Returns residual energy */ |
| opus_int16 *rc_Q15, /* O reflection coefficients [order] Q15 */ |
| const opus_int32 *c, /* I correlations [order+1] */ |
| const opus_int32 order /* I prediction order */ |
| ); |
| |
| /* Calculates the reflection coefficients from the correlation sequence */ |
| /* Slower than schur(), but more accurate. */ |
| /* Uses SMULL(), available on armv4 */ |
| opus_int32 silk_schur64( /* O returns residual energy */ |
| opus_int32 rc_Q16[], /* O Reflection coefficients [order] Q16 */ |
| const opus_int32 c[], /* I Correlations [order+1] */ |
| opus_int32 order /* I Prediction order */ |
| ); |
| |
| /* Step up function, converts reflection coefficients to prediction coefficients */ |
| void silk_k2a( |
| opus_int32 *A_Q24, /* O Prediction coefficients [order] Q24 */ |
| const opus_int16 *rc_Q15, /* I Reflection coefficients [order] Q15 */ |
| const opus_int32 order /* I Prediction order */ |
| ); |
| |
| /* Step up function, converts reflection coefficients to prediction coefficients */ |
| void silk_k2a_Q16( |
| opus_int32 *A_Q24, /* O Prediction coefficients [order] Q24 */ |
| const opus_int32 *rc_Q16, /* I Reflection coefficients [order] Q16 */ |
| const opus_int32 order /* I Prediction order */ |
| ); |
| |
| /* Apply sine window to signal vector. */ |
| /* Window types: */ |
| /* 1 -> sine window from 0 to pi/2 */ |
| /* 2 -> sine window from pi/2 to pi */ |
| /* every other sample of window is linearly interpolated, for speed */ |
| void silk_apply_sine_window( |
| opus_int16 px_win[], /* O Pointer to windowed signal */ |
| const opus_int16 px[], /* I Pointer to input signal */ |
| const opus_int win_type, /* I Selects a window type */ |
| const opus_int length /* I Window length, multiple of 4 */ |
| ); |
| |
| /* Compute autocorrelation */ |
| void silk_autocorr( |
| opus_int32 *results, /* O Result (length correlationCount) */ |
| opus_int *scale, /* O Scaling of the correlation vector */ |
| const opus_int16 *inputData, /* I Input data to correlate */ |
| const opus_int inputDataSize, /* I Length of input */ |
| const opus_int correlationCount, /* I Number of correlation taps to compute */ |
| int arch /* I Run-time architecture */ |
| ); |
| |
| void silk_decode_pitch( |
| opus_int16 lagIndex, /* I */ |
| opus_int8 contourIndex, /* O */ |
| opus_int pitch_lags[], /* O 4 pitch values */ |
| const opus_int Fs_kHz, /* I sampling frequency (kHz) */ |
| const opus_int nb_subfr /* I number of sub frames */ |
| ); |
| |
| opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 voiced, 1 unvoiced */ |
| const opus_int16 *frame, /* I Signal of length PE_FRAME_LENGTH_MS*Fs_kHz */ |
| opus_int *pitch_out, /* O 4 pitch lag values */ |
| opus_int16 *lagIndex, /* O Lag Index */ |
| opus_int8 *contourIndex, /* O Pitch contour Index */ |
| opus_int *LTPCorr_Q15, /* I/O Normalized correlation; input: value from previous frame */ |
| opus_int prevLag, /* I Last lag of previous frame; set to zero is unvoiced */ |
| const opus_int32 search_thres1_Q16, /* I First stage threshold for lag candidates 0 - 1 */ |
| const opus_int search_thres2_Q13, /* I Final threshold for lag candidates 0 - 1 */ |
| const opus_int Fs_kHz, /* I Sample frequency (kHz) */ |
| const opus_int complexity, /* I Complexity setting, 0-2, where 2 is highest */ |
| const opus_int nb_subfr, /* I number of 5 ms subframes */ |
| int arch /* I Run-time architecture */ |
| ); |
| |
| /* Compute Normalized Line Spectral Frequencies (NLSFs) from whitening filter coefficients */ |
| /* If not all roots are found, the a_Q16 coefficients are bandwidth expanded until convergence. */ |
| void silk_A2NLSF( |
| opus_int16 *NLSF, /* O Normalized Line Spectral Frequencies in Q15 (0..2^15-1) [d] */ |
| opus_int32 *a_Q16, /* I/O Monic whitening filter coefficients in Q16 [d] */ |
| const opus_int d /* I Filter order (must be even) */ |
| ); |
| |
| /* compute whitening filter coefficients from normalized line spectral frequencies */ |
| void silk_NLSF2A( |
| opus_int16 *a_Q12, /* O monic whitening filter coefficients in Q12, [ d ] */ |
| const opus_int16 *NLSF, /* I normalized line spectral frequencies in Q15, [ d ] */ |
| const opus_int d, /* I filter order (should be even) */ |
| int arch /* I Run-time architecture */ |
| ); |
| |
| /* Convert int32 coefficients to int16 coefs and make sure there's no wrap-around */ |
| void silk_LPC_fit( |
| opus_int16 *a_QOUT, /* O Output signal */ |
| opus_int32 *a_QIN, /* I/O Input signal */ |
| const opus_int QOUT, /* I Input Q domain */ |
| const opus_int QIN, /* I Input Q domain */ |
| const opus_int d /* I Filter order */ |
| ); |
| |
| void silk_insertion_sort_increasing( |
| opus_int32 *a, /* I/O Unsorted / Sorted vector */ |
| opus_int *idx, /* O Index vector for the sorted elements */ |
| const opus_int L, /* I Vector length */ |
| const opus_int K /* I Number of correctly sorted positions */ |
| ); |
| |
| void silk_insertion_sort_decreasing_int16( |
| opus_int16 *a, /* I/O Unsorted / Sorted vector */ |
| opus_int *idx, /* O Index vector for the sorted elements */ |
| const opus_int L, /* I Vector length */ |
| const opus_int K /* I Number of correctly sorted positions */ |
| ); |
| |
| void silk_insertion_sort_increasing_all_values_int16( |
| opus_int16 *a, /* I/O Unsorted / Sorted vector */ |
| const opus_int L /* I Vector length */ |
| ); |
| |
| /* NLSF stabilizer, for a single input data vector */ |
| void silk_NLSF_stabilize( |
| opus_int16 *NLSF_Q15, /* I/O Unstable/stabilized normalized LSF vector in Q15 [L] */ |
| const opus_int16 *NDeltaMin_Q15, /* I Min distance vector, NDeltaMin_Q15[L] must be >= 1 [L+1] */ |
| const opus_int L /* I Number of NLSF parameters in the input vector */ |
| ); |
| |
| /* Laroia low complexity NLSF weights */ |
| void silk_NLSF_VQ_weights_laroia( |
| opus_int16 *pNLSFW_Q_OUT, /* O Pointer to input vector weights [D] */ |
| const opus_int16 *pNLSF_Q15, /* I Pointer to input vector [D] */ |
| const opus_int D /* I Input vector dimension (even) */ |
| ); |
| |
| /* Compute reflection coefficients from input signal */ |
| void silk_burg_modified_c( |
| opus_int32 *res_nrg, /* O Residual energy */ |
| opus_int *res_nrg_Q, /* O Residual energy Q value */ |
| opus_int32 A_Q16[], /* O Prediction coefficients (length order) */ |
| const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */ |
| const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */ |
| const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */ |
| const opus_int nb_subfr, /* I Number of subframes stacked in x */ |
| const opus_int D, /* I Order */ |
| int arch /* I Run-time architecture */ |
| ); |
| |
| /* Copy and multiply a vector by a constant */ |
| void silk_scale_copy_vector16( |
| opus_int16 *data_out, |
| const opus_int16 *data_in, |
| opus_int32 gain_Q16, /* I Gain in Q16 */ |
| const opus_int dataSize /* I Length */ |
| ); |
| |
| /* Some for the LTP related function requires Q26 to work.*/ |
| void silk_scale_vector32_Q26_lshift_18( |
| opus_int32 *data1, /* I/O Q0/Q18 */ |
| opus_int32 gain_Q26, /* I Q26 */ |
| opus_int dataSize /* I length */ |
| ); |
| |
| /********************************************************************/ |
| /* INLINE ARM MATH */ |
| /********************************************************************/ |
| |
| /* return sum( inVec1[i] * inVec2[i] ) */ |
| |
| opus_int32 silk_inner_prod_aligned( |
| const opus_int16 *const inVec1, /* I input vector 1 */ |
| const opus_int16 *const inVec2, /* I input vector 2 */ |
| const opus_int len, /* I vector lengths */ |
| int arch /* I Run-time architecture */ |
| ); |
| |
| |
| opus_int32 silk_inner_prod_aligned_scale( |
| const opus_int16 *const inVec1, /* I input vector 1 */ |
| const opus_int16 *const inVec2, /* I input vector 2 */ |
| const opus_int scale, /* I number of bits to shift */ |
| const opus_int len /* I vector lengths */ |
| ); |
| |
| opus_int64 silk_inner_prod16_aligned_64_c( |
| const opus_int16 *inVec1, /* I input vector 1 */ |
| const opus_int16 *inVec2, /* I input vector 2 */ |
| const opus_int len /* I vector lengths */ |
| ); |
| |
| /********************************************************************/ |
| /* MACROS */ |
| /********************************************************************/ |
| |
| /* Rotate a32 right by 'rot' bits. Negative rot values result in rotating |
| left. Output is 32bit int. |
| Note: contemporary compilers recognize the C expression below and |
| compile it into a 'ror' instruction if available. No need for OPUS_INLINE ASM! */ |
| static OPUS_INLINE opus_int32 silk_ROR32( opus_int32 a32, opus_int rot ) |
| { |
| opus_uint32 x = (opus_uint32) a32; |
| opus_uint32 r = (opus_uint32) rot; |
| opus_uint32 m = (opus_uint32) -rot; |
| if( rot == 0 ) { |
| return a32; |
| } else if( rot < 0 ) { |
| return (opus_int32) ((x << m) | (x >> (32 - m))); |
| } else { |
| return (opus_int32) ((x << (32 - r)) | (x >> r)); |
| } |
| } |
| |
| /* Allocate opus_int16 aligned to 4-byte memory address */ |
| #if EMBEDDED_ARM |
| #define silk_DWORD_ALIGN __attribute__((aligned(4))) |
| #else |
| #define silk_DWORD_ALIGN |
| #endif |
| |
| /* Useful Macros that can be adjusted to other platforms */ |
| #define silk_memcpy(dest, src, size) memcpy((dest), (src), (size)) |
| #define silk_memset(dest, src, size) memset((dest), (src), (size)) |
| #define silk_memmove(dest, src, size) memmove((dest), (src), (size)) |
| |
| /* Fixed point macros */ |
| |
| /* (a32 * b32) output have to be 32bit int */ |
| #define silk_MUL(a32, b32) ((a32) * (b32)) |
| |
| /* (a32 * b32) output have to be 32bit uint */ |
| #define silk_MUL_uint(a32, b32) silk_MUL(a32, b32) |
| |
| /* a32 + (b32 * c32) output have to be 32bit int */ |
| #define silk_MLA(a32, b32, c32) silk_ADD32((a32),((b32) * (c32))) |
| |
| /* a32 + (b32 * c32) output have to be 32bit uint */ |
| #define silk_MLA_uint(a32, b32, c32) silk_MLA(a32, b32, c32) |
| |
| /* ((a32 >> 16) * (b32 >> 16)) output have to be 32bit int */ |
| #define silk_SMULTT(a32, b32) (((a32) >> 16) * ((b32) >> 16)) |
| |
| /* a32 + ((a32 >> 16) * (b32 >> 16)) output have to be 32bit int */ |
| #define silk_SMLATT(a32, b32, c32) silk_ADD32((a32),((b32) >> 16) * ((c32) >> 16)) |
| |
| #define silk_SMLALBB(a64, b16, c16) silk_ADD64((a64),(opus_int64)((opus_int32)(b16) * (opus_int32)(c16))) |
| |
| /* (a32 * b32) */ |
| #define silk_SMULL(a32, b32) ((opus_int64)(a32) * /*(opus_int64)*/(b32)) |
| |
| /* Adds two signed 32-bit values in a way that can overflow, while not relying on undefined behaviour |
| (just standard two's complement implementation-specific behaviour) */ |
| #define silk_ADD32_ovflw(a, b) ((opus_int32)((opus_uint32)(a) + (opus_uint32)(b))) |
| /* Subtractss two signed 32-bit values in a way that can overflow, while not relying on undefined behaviour |
| (just standard two's complement implementation-specific behaviour) */ |
| #define silk_SUB32_ovflw(a, b) ((opus_int32)((opus_uint32)(a) - (opus_uint32)(b))) |
| |
| /* Multiply-accumulate macros that allow overflow in the addition (ie, no asserts in debug mode) */ |
| #define silk_MLA_ovflw(a32, b32, c32) silk_ADD32_ovflw((a32), (opus_uint32)(b32) * (opus_uint32)(c32)) |
| #define silk_SMLABB_ovflw(a32, b32, c32) (silk_ADD32_ovflw((a32) , ((opus_int32)((opus_int16)(b32))) * (opus_int32)((opus_int16)(c32)))) |
| |
| #define silk_DIV32_16(a32, b16) ((opus_int32)((a32) / (b16))) |
| #define silk_DIV32(a32, b32) ((opus_int32)((a32) / (b32))) |
| |
| /* These macros enables checking for overflow in silk_API_Debug.h*/ |
| #define silk_ADD16(a, b) ((a) + (b)) |
| #define silk_ADD32(a, b) ((a) + (b)) |
| #define silk_ADD64(a, b) ((a) + (b)) |
| |
| #define silk_SUB16(a, b) ((a) - (b)) |
| #define silk_SUB32(a, b) ((a) - (b)) |
| #define silk_SUB64(a, b) ((a) - (b)) |
| |
| #define silk_SAT8(a) ((a) > silk_int8_MAX ? silk_int8_MAX : \ |
| ((a) < silk_int8_MIN ? silk_int8_MIN : (a))) |
| #define silk_SAT16(a) ((a) > silk_int16_MAX ? silk_int16_MAX : \ |
| ((a) < silk_int16_MIN ? silk_int16_MIN : (a))) |
| #define silk_SAT32(a) ((a) > silk_int32_MAX ? silk_int32_MAX : \ |
| ((a) < silk_int32_MIN ? silk_int32_MIN : (a))) |
| |
| #define silk_CHECK_FIT8(a) (a) |
| #define silk_CHECK_FIT16(a) (a) |
| #define silk_CHECK_FIT32(a) (a) |
| |
| #define silk_ADD_SAT16(a, b) (opus_int16)silk_SAT16( silk_ADD32( (opus_int32)(a), (b) ) ) |
| #define silk_ADD_SAT64(a, b) ((((a) + (b)) & 0x8000000000000000LL) == 0 ? \ |
| ((((a) & (b)) & 0x8000000000000000LL) != 0 ? silk_int64_MIN : (a)+(b)) : \ |
| ((((a) | (b)) & 0x8000000000000000LL) == 0 ? silk_int64_MAX : (a)+(b)) ) |
| |
| #define silk_SUB_SAT16(a, b) (opus_int16)silk_SAT16( silk_SUB32( (opus_int32)(a), (b) ) ) |
| #define silk_SUB_SAT64(a, b) ((((a)-(b)) & 0x8000000000000000LL) == 0 ? \ |
| (( (a) & ((b)^0x8000000000000000LL) & 0x8000000000000000LL) ? silk_int64_MIN : (a)-(b)) : \ |
| ((((a)^0x8000000000000000LL) & (b) & 0x8000000000000000LL) ? silk_int64_MAX : (a)-(b)) ) |
| |
| /* Saturation for positive input values */ |
| #define silk_POS_SAT32(a) ((a) > silk_int32_MAX ? silk_int32_MAX : (a)) |
| |
| /* Add with saturation for positive input values */ |
| #define silk_ADD_POS_SAT8(a, b) ((((a)+(b)) & 0x80) ? silk_int8_MAX : ((a)+(b))) |
| #define silk_ADD_POS_SAT16(a, b) ((((a)+(b)) & 0x8000) ? silk_int16_MAX : ((a)+(b))) |
| #define silk_ADD_POS_SAT32(a, b) ((((opus_uint32)(a)+(opus_uint32)(b)) & 0x80000000) ? silk_int32_MAX : ((a)+(b))) |
| |
| #define silk_LSHIFT8(a, shift) ((opus_int8)((opus_uint8)(a)<<(shift))) /* shift >= 0, shift < 8 */ |
| #define silk_LSHIFT16(a, shift) ((opus_int16)((opus_uint16)(a)<<(shift))) /* shift >= 0, shift < 16 */ |
| #define silk_LSHIFT32(a, shift) ((opus_int32)((opus_uint32)(a)<<(shift))) /* shift >= 0, shift < 32 */ |
| #define silk_LSHIFT64(a, shift) ((opus_int64)((opus_uint64)(a)<<(shift))) /* shift >= 0, shift < 64 */ |
| #define silk_LSHIFT(a, shift) silk_LSHIFT32(a, shift) /* shift >= 0, shift < 32 */ |
| |
| #define silk_RSHIFT8(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 8 */ |
| #define silk_RSHIFT16(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 16 */ |
| #define silk_RSHIFT32(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 32 */ |
| #define silk_RSHIFT64(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 64 */ |
| #define silk_RSHIFT(a, shift) silk_RSHIFT32(a, shift) /* shift >= 0, shift < 32 */ |
| |
| /* saturates before shifting */ |
| #define silk_LSHIFT_SAT32(a, shift) (silk_LSHIFT32( silk_LIMIT( (a), silk_RSHIFT32( silk_int32_MIN, (shift) ), \ |
| silk_RSHIFT32( silk_int32_MAX, (shift) ) ), (shift) )) |
| |
| #define silk_LSHIFT_ovflw(a, shift) ((opus_int32)((opus_uint32)(a) << (shift))) /* shift >= 0, allowed to overflow */ |
| #define silk_LSHIFT_uint(a, shift) ((a) << (shift)) /* shift >= 0 */ |
| #define silk_RSHIFT_uint(a, shift) ((a) >> (shift)) /* shift >= 0 */ |
| |
| #define silk_ADD_LSHIFT(a, b, shift) ((a) + silk_LSHIFT((b), (shift))) /* shift >= 0 */ |
| #define silk_ADD_LSHIFT32(a, b, shift) silk_ADD32((a), silk_LSHIFT32((b), (shift))) /* shift >= 0 */ |
| #define silk_ADD_LSHIFT_uint(a, b, shift) ((a) + silk_LSHIFT_uint((b), (shift))) /* shift >= 0 */ |
| #define silk_ADD_RSHIFT(a, b, shift) ((a) + silk_RSHIFT((b), (shift))) /* shift >= 0 */ |
| #define silk_ADD_RSHIFT32(a, b, shift) silk_ADD32((a), silk_RSHIFT32((b), (shift))) /* shift >= 0 */ |
| #define silk_ADD_RSHIFT_uint(a, b, shift) ((a) + silk_RSHIFT_uint((b), (shift))) /* shift >= 0 */ |
| #define silk_SUB_LSHIFT32(a, b, shift) silk_SUB32((a), silk_LSHIFT32((b), (shift))) /* shift >= 0 */ |
| #define silk_SUB_RSHIFT32(a, b, shift) silk_SUB32((a), silk_RSHIFT32((b), (shift))) /* shift >= 0 */ |
| |
| /* Requires that shift > 0 */ |
| #define silk_RSHIFT_ROUND(a, shift) ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1) |
| #define silk_RSHIFT_ROUND64(a, shift) ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1) |
| |
| /* Number of rightshift required to fit the multiplication */ |
| #define silk_NSHIFT_MUL_32_32(a, b) ( -(31- (32-silk_CLZ32(silk_abs(a)) + (32-silk_CLZ32(silk_abs(b))))) ) |
| #define silk_NSHIFT_MUL_16_16(a, b) ( -(15- (16-silk_CLZ16(silk_abs(a)) + (16-silk_CLZ16(silk_abs(b))))) ) |
| |
| |
| #define silk_min(a, b) (((a) < (b)) ? (a) : (b)) |
| #define silk_max(a, b) (((a) > (b)) ? (a) : (b)) |
| |
| /* Macro to convert floating-point constants to fixed-point */ |
| #define SILK_FIX_CONST( C, Q ) ((opus_int32)((C) * ((opus_int64)1 << (Q)) + 0.5)) |
| |
| /* silk_min() versions with typecast in the function call */ |
| static OPUS_INLINE opus_int silk_min_int(opus_int a, opus_int b) |
| { |
| return (((a) < (b)) ? (a) : (b)); |
| } |
| static OPUS_INLINE opus_int16 silk_min_16(opus_int16 a, opus_int16 b) |
| { |
| return (((a) < (b)) ? (a) : (b)); |
| } |
| static OPUS_INLINE opus_int32 silk_min_32(opus_int32 a, opus_int32 b) |
| { |
| return (((a) < (b)) ? (a) : (b)); |
| } |
| static OPUS_INLINE opus_int64 silk_min_64(opus_int64 a, opus_int64 b) |
| { |
| return (((a) < (b)) ? (a) : (b)); |
| } |
| |
| /* silk_min() versions with typecast in the function call */ |
| static OPUS_INLINE opus_int silk_max_int(opus_int a, opus_int b) |
| { |
| return (((a) > (b)) ? (a) : (b)); |
| } |
| static OPUS_INLINE opus_int16 silk_max_16(opus_int16 a, opus_int16 b) |
| { |
| return (((a) > (b)) ? (a) : (b)); |
| } |
| static OPUS_INLINE opus_int32 silk_max_32(opus_int32 a, opus_int32 b) |
| { |
| return (((a) > (b)) ? (a) : (b)); |
| } |
| static OPUS_INLINE opus_int64 silk_max_64(opus_int64 a, opus_int64 b) |
| { |
| return (((a) > (b)) ? (a) : (b)); |
| } |
| |
| #define silk_LIMIT( a, limit1, limit2) ((limit1) > (limit2) ? ((a) > (limit1) ? (limit1) : ((a) < (limit2) ? (limit2) : (a))) \ |
| : ((a) > (limit2) ? (limit2) : ((a) < (limit1) ? (limit1) : (a)))) |
| |
| #define silk_LIMIT_int silk_LIMIT |
| #define silk_LIMIT_16 silk_LIMIT |
| #define silk_LIMIT_32 silk_LIMIT |
| |
| #define silk_abs(a) (((a) > 0) ? (a) : -(a)) /* Be careful, silk_abs returns wrong when input equals to silk_intXX_MIN */ |
| #define silk_abs_int(a) (((a) ^ ((a) >> (8 * sizeof(a) - 1))) - ((a) >> (8 * sizeof(a) - 1))) |
| #define silk_abs_int32(a) (((a) ^ ((a) >> 31)) - ((a) >> 31)) |
| #define silk_abs_int64(a) (((a) > 0) ? (a) : -(a)) |
| |
| #define silk_sign(a) ((a) > 0 ? 1 : ( (a) < 0 ? -1 : 0 )) |
| |
| /* PSEUDO-RANDOM GENERATOR */ |
| /* Make sure to store the result as the seed for the next call (also in between */ |
| /* frames), otherwise result won't be random at all. When only using some of the */ |
| /* bits, take the most significant bits by right-shifting. */ |
| #define RAND_MULTIPLIER 196314165 |
| #define RAND_INCREMENT 907633515 |
| #define silk_RAND(seed) (silk_MLA_ovflw((RAND_INCREMENT), (seed), (RAND_MULTIPLIER))) |
| |
| /* Add some multiplication functions that can be easily mapped to ARM. */ |
| |
| /* silk_SMMUL: Signed top word multiply. |
| ARMv6 2 instruction cycles. |
| ARMv3M+ 3 instruction cycles. use SMULL and ignore LSB registers.(except xM)*/ |
| /*#define silk_SMMUL(a32, b32) (opus_int32)silk_RSHIFT(silk_SMLAL(silk_SMULWB((a32), (b32)), (a32), silk_RSHIFT_ROUND((b32), 16)), 16)*/ |
| /* the following seems faster on x86 */ |
| #define silk_SMMUL(a32, b32) (opus_int32)silk_RSHIFT64(silk_SMULL((a32), (b32)), 32) |
| |
| #if !defined(OPUS_X86_MAY_HAVE_SSE4_1) |
| #define silk_burg_modified(res_nrg, res_nrg_Q, A_Q16, x, minInvGain_Q30, subfr_length, nb_subfr, D, arch) \ |
| ((void)(arch), silk_burg_modified_c(res_nrg, res_nrg_Q, A_Q16, x, minInvGain_Q30, subfr_length, nb_subfr, D, arch)) |
| |
| #define silk_inner_prod16_aligned_64(inVec1, inVec2, len, arch) \ |
| ((void)(arch),silk_inner_prod16_aligned_64_c(inVec1, inVec2, len)) |
| #endif |
| |
| #include "Inlines.h" |
| #include "MacroCount.h" |
| #include "MacroDebug.h" |
| |
| #ifdef OPUS_ARM_INLINE_ASM |
| #include "arm/SigProc_FIX_armv4.h" |
| #endif |
| |
| #ifdef OPUS_ARM_INLINE_EDSP |
| #include "arm/SigProc_FIX_armv5e.h" |
| #endif |
| |
| #if defined(MIPSr1_ASM) |
| #include "mips/sigproc_fix_mipsr1.h" |
| #endif |
| |
| |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| #endif /* SILK_SIGPROC_FIX_H */ |