| // Copyright 2013 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <stdlib.h> |
| #include <iostream> // NOLINT(readability/streams) |
| |
| #include "src/api/api-inl.h" |
| #include "src/base/utils/random-number-generator.h" |
| #include "src/codegen/macro-assembler.h" |
| #include "src/execution/simulator.h" |
| #include "src/init/v8.h" |
| #include "src/objects/heap-number.h" |
| #include "src/objects/js-array-inl.h" |
| #include "src/objects/objects-inl.h" |
| #include "src/utils/ostreams.h" |
| #include "test/cctest/cctest.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // TODO(mips): Refine these signatures per test case. |
| using F1 = void*(int x, int p1, int p2, int p3, int p4); |
| using F3 = void*(void* p, int p1, int p2, int p3, int p4); |
| using F4 = void*(void* p0, void* p1, int p2, int p3, int p4); |
| |
| #define __ masm-> |
| |
| TEST(BYTESWAP) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| struct T { |
| uint32_t s4; |
| uint32_t s2; |
| uint32_t u2; |
| }; |
| |
| T t; |
| uint32_t test_values[] = {0x5612FFCD, 0x9D327ACC, 0x781A15C3, 0xFCDE, 0x9F, |
| 0xC81A15C3, 0x80000000, 0xFFFFFFFF, 0x00008000}; |
| |
| MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); |
| |
| MacroAssembler* masm = &assembler; |
| |
| __ lw(a1, MemOperand(a0, offsetof(T, s4))); |
| __ nop(); |
| __ ByteSwapSigned(a1, a1, 4); |
| __ sw(a1, MemOperand(a0, offsetof(T, s4))); |
| |
| __ lw(a1, MemOperand(a0, offsetof(T, s2))); |
| __ nop(); |
| __ ByteSwapSigned(a1, a1, 2); |
| __ sw(a1, MemOperand(a0, offsetof(T, s2))); |
| |
| __ lw(a1, MemOperand(a0, offsetof(T, u2))); |
| __ nop(); |
| __ ByteSwapUnsigned(a1, a1, 2); |
| __ sw(a1, MemOperand(a0, offsetof(T, u2))); |
| |
| __ jr(ra); |
| __ nop(); |
| |
| CodeDesc desc; |
| masm->GetCode(isolate, &desc); |
| Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build(); |
| auto f = GeneratedCode<F3>::FromCode(*code); |
| |
| for (size_t i = 0; i < arraysize(test_values); i++) { |
| int16_t in_s2 = static_cast<int16_t>(test_values[i]); |
| uint16_t in_u2 = static_cast<uint16_t>(test_values[i]); |
| |
| t.s4 = test_values[i]; |
| t.s2 = static_cast<uint64_t>(in_s2); |
| t.u2 = static_cast<uint64_t>(in_u2); |
| |
| f.Call(&t, 0, 0, 0, 0); |
| |
| CHECK_EQ(ByteReverse(test_values[i]), t.s4); |
| CHECK_EQ(ByteReverse<int16_t>(in_s2), static_cast<int16_t>(t.s2)); |
| CHECK_EQ(ByteReverse<uint16_t>(in_u2), static_cast<uint16_t>(t.u2)); |
| } |
| } |
| |
| static void TestNaN(const char *code) { |
| // NaN value is different on MIPS and x86 architectures, and TEST(NaNx) |
| // tests checks the case where a x86 NaN value is serialized into the |
| // snapshot on the simulator during cross compilation. |
| v8::HandleScope scope(CcTest::isolate()); |
| v8::Local<v8::Context> context = CcTest::NewContext({PRINT_EXTENSION_ID}); |
| v8::Context::Scope context_scope(context); |
| |
| v8::Local<v8::Script> script = |
| v8::Script::Compile(context, v8_str(code)).ToLocalChecked(); |
| v8::Local<v8::Object> result = |
| v8::Local<v8::Object>::Cast(script->Run(context).ToLocalChecked()); |
| i::Handle<i::JSReceiver> o = v8::Utils::OpenHandle(*result); |
| i::Handle<i::JSArray> array1(i::JSArray::cast(*o), o->GetIsolate()); |
| i::FixedDoubleArray a = i::FixedDoubleArray::cast(array1->elements()); |
| double value = a.get_scalar(0); |
| CHECK(std::isnan(value) && |
| bit_cast<uint64_t>(value) == |
| bit_cast<uint64_t>(std::numeric_limits<double>::quiet_NaN())); |
| } |
| |
| |
| TEST(NaN0) { |
| TestNaN( |
| "var result;" |
| "for (var i = 0; i < 2; i++) {" |
| " result = new Array(Number.NaN, Number.POSITIVE_INFINITY);" |
| "}" |
| "result;"); |
| } |
| |
| |
| TEST(NaN1) { |
| TestNaN( |
| "var result;" |
| "for (var i = 0; i < 2; i++) {" |
| " result = [NaN];" |
| "}" |
| "result;"); |
| } |
| |
| |
| TEST(jump_tables4) { |
| // Similar to test-assembler-mips jump_tables1, with extra test for branch |
| // trampoline required before emission of the dd table (where trampolines are |
| // blocked), and proper transition to long-branch mode. |
| // Regression test for v8:4294. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); |
| MacroAssembler* masm = &assembler; |
| |
| const int kNumCases = 512; |
| int values[kNumCases]; |
| isolate->random_number_generator()->NextBytes(values, sizeof(values)); |
| Label labels[kNumCases]; |
| Label near_start, end, done; |
| |
| __ Push(ra); |
| __ mov(v0, zero_reg); |
| |
| __ Branch(&end); |
| __ bind(&near_start); |
| |
| // Generate slightly less than 32K instructions, which will soon require |
| // trampoline for branch distance fixup. |
| for (int i = 0; i < 32768 - 256; ++i) { |
| __ addiu(v0, v0, 1); |
| } |
| |
| __ GenerateSwitchTable(a0, kNumCases, |
| [&labels](size_t i) { return labels + i; }); |
| |
| for (int i = 0; i < kNumCases; ++i) { |
| __ bind(&labels[i]); |
| __ li(v0, values[i]); |
| __ Branch(&done); |
| } |
| |
| __ bind(&done); |
| __ Pop(ra); |
| __ jr(ra); |
| __ nop(); |
| |
| __ bind(&end); |
| __ Branch(&near_start); |
| |
| CodeDesc desc; |
| masm->GetCode(isolate, &desc); |
| Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build(); |
| #ifdef OBJECT_PRINT |
| code->Print(std::cout); |
| #endif |
| auto f = GeneratedCode<F1>::FromCode(*code); |
| for (int i = 0; i < kNumCases; ++i) { |
| int res = reinterpret_cast<int>(f.Call(i, 0, 0, 0, 0)); |
| ::printf("f(%d) = %d\n", i, res); |
| CHECK_EQ(values[i], res); |
| } |
| } |
| |
| |
| TEST(jump_tables5) { |
| if (!IsMipsArchVariant(kMips32r6)) return; |
| |
| // Similar to test-assembler-mips jump_tables1, with extra test for emitting a |
| // compact branch instruction before emission of the dd table. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); |
| MacroAssembler* masm = &assembler; |
| |
| const int kNumCases = 512; |
| int values[kNumCases]; |
| isolate->random_number_generator()->NextBytes(values, sizeof(values)); |
| Label labels[kNumCases]; |
| Label done; |
| |
| __ Push(ra); |
| |
| { |
| __ BlockTrampolinePoolFor(kNumCases + 6 + 1); |
| |
| __ addiupc(at, 6 + 1); |
| __ Lsa(at, at, a0, 2); |
| __ lw(at, MemOperand(at)); |
| __ jalr(at); |
| __ nop(); // Branch delay slot nop. |
| __ bc(&done); |
| // A nop instruction must be generated by the forbidden slot guard |
| // (Assembler::dd(Label*)). |
| for (int i = 0; i < kNumCases; ++i) { |
| __ dd(&labels[i]); |
| } |
| } |
| |
| for (int i = 0; i < kNumCases; ++i) { |
| __ bind(&labels[i]); |
| __ li(v0, values[i]); |
| __ jr(ra); |
| __ nop(); |
| } |
| |
| __ bind(&done); |
| __ Pop(ra); |
| __ jr(ra); |
| __ nop(); |
| |
| CodeDesc desc; |
| masm->GetCode(isolate, &desc); |
| Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build(); |
| #ifdef OBJECT_PRINT |
| code->Print(std::cout); |
| #endif |
| auto f = GeneratedCode<F1>::FromCode(*code); |
| for (int i = 0; i < kNumCases; ++i) { |
| int32_t res = reinterpret_cast<int32_t>(f.Call(i, 0, 0, 0, 0)); |
| ::printf("f(%d) = %d\n", i, res); |
| CHECK_EQ(values[i], res); |
| } |
| } |
| |
| TEST(jump_tables6) { |
| // Similar to test-assembler-mips jump_tables1, with extra test for branch |
| // trampoline required after emission of the dd table (where trampolines are |
| // blocked). This test checks if number of really generated instructions is |
| // greater than number of counted instructions from code, as we are expecting |
| // generation of trampoline in this case (when number of kFillInstr |
| // instructions is close to 32K) |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); |
| MacroAssembler* masm = &assembler; |
| |
| const int kSwitchTableCases = 40; |
| |
| const int kMaxBranchOffset = Assembler::kMaxBranchOffset; |
| const int kTrampolineSlotsSize = Assembler::kTrampolineSlotsSize; |
| const int kSwitchTablePrologueSize = MacroAssembler::kSwitchTablePrologueSize; |
| |
| const int kMaxOffsetForTrampolineStart = |
| kMaxBranchOffset - 16 * kTrampolineSlotsSize; |
| const int kFillInstr = (kMaxOffsetForTrampolineStart / kInstrSize) - |
| (kSwitchTablePrologueSize + kSwitchTableCases) - 20; |
| |
| int values[kSwitchTableCases]; |
| isolate->random_number_generator()->NextBytes(values, sizeof(values)); |
| Label labels[kSwitchTableCases]; |
| Label near_start, end, done; |
| |
| __ Push(ra); |
| __ mov(v0, zero_reg); |
| |
| int offs1 = masm->pc_offset(); |
| int gen_insn = 0; |
| |
| __ Branch(&end); |
| gen_insn += Assembler::IsCompactBranchSupported() ? 1 : 2; |
| __ bind(&near_start); |
| |
| // Generate slightly less than 32K instructions, which will soon require |
| // trampoline for branch distance fixup. |
| for (int i = 0; i < kFillInstr; ++i) { |
| __ addiu(v0, v0, 1); |
| } |
| gen_insn += kFillInstr; |
| |
| __ GenerateSwitchTable(a0, kSwitchTableCases, |
| [&labels](size_t i) { return labels + i; }); |
| gen_insn += (kSwitchTablePrologueSize + kSwitchTableCases); |
| |
| for (int i = 0; i < kSwitchTableCases; ++i) { |
| __ bind(&labels[i]); |
| __ li(v0, values[i]); |
| __ Branch(&done); |
| } |
| gen_insn += |
| ((Assembler::IsCompactBranchSupported() ? 3 : 4) * kSwitchTableCases); |
| |
| // If offset from here to first branch instr is greater than max allowed |
| // offset for trampoline ... |
| CHECK_LT(kMaxOffsetForTrampolineStart, masm->pc_offset() - offs1); |
| // ... number of generated instructions must be greater then "gen_insn", |
| // as we are expecting trampoline generation |
| CHECK_LT(gen_insn, (masm->pc_offset() - offs1) / kInstrSize); |
| |
| __ bind(&done); |
| __ Pop(ra); |
| __ jr(ra); |
| __ nop(); |
| |
| __ bind(&end); |
| __ Branch(&near_start); |
| |
| CodeDesc desc; |
| masm->GetCode(isolate, &desc); |
| Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build(); |
| #ifdef OBJECT_PRINT |
| code->Print(std::cout); |
| #endif |
| auto f = GeneratedCode<F1>::FromCode(*code); |
| for (int i = 0; i < kSwitchTableCases; ++i) { |
| int res = reinterpret_cast<int>(f.Call(i, 0, 0, 0, 0)); |
| ::printf("f(%d) = %d\n", i, res); |
| CHECK_EQ(values[i], res); |
| } |
| } |
| |
| static uint32_t run_lsa(uint32_t rt, uint32_t rs, int8_t sa) { |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); |
| MacroAssembler* masm = &assembler; |
| |
| __ Lsa(v0, a0, a1, sa); |
| __ jr(ra); |
| __ nop(); |
| |
| CodeDesc desc; |
| assembler.GetCode(isolate, &desc); |
| Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build(); |
| |
| auto f = GeneratedCode<F1>::FromCode(*code); |
| |
| uint32_t res = reinterpret_cast<uint32_t>(f.Call(rt, rs, 0, 0, 0)); |
| |
| return res; |
| } |
| |
| |
| TEST(Lsa) { |
| CcTest::InitializeVM(); |
| struct TestCaseLsa { |
| int32_t rt; |
| int32_t rs; |
| uint8_t sa; |
| uint32_t expected_res; |
| }; |
| |
| struct TestCaseLsa tc[] = {// rt, rs, sa, expected_res |
| {0x4, 0x1, 1, 0x6}, |
| {0x4, 0x1, 2, 0x8}, |
| {0x4, 0x1, 3, 0xC}, |
| {0x4, 0x1, 4, 0x14}, |
| {0x4, 0x1, 5, 0x24}, |
| {0x0, 0x1, 1, 0x2}, |
| {0x0, 0x1, 2, 0x4}, |
| {0x0, 0x1, 3, 0x8}, |
| {0x0, 0x1, 4, 0x10}, |
| {0x0, 0x1, 5, 0x20}, |
| {0x4, 0x0, 1, 0x4}, |
| {0x4, 0x0, 2, 0x4}, |
| {0x4, 0x0, 3, 0x4}, |
| {0x4, 0x0, 4, 0x4}, |
| {0x4, 0x0, 5, 0x4}, |
| |
| // Shift overflow. |
| {0x4, INT32_MAX, 1, 0x2}, |
| {0x4, INT32_MAX >> 1, 2, 0x0}, |
| {0x4, INT32_MAX >> 2, 3, 0xFFFFFFFC}, |
| {0x4, INT32_MAX >> 3, 4, 0xFFFFFFF4}, |
| {0x4, INT32_MAX >> 4, 5, 0xFFFFFFE4}, |
| |
| // Signed addition overflow. |
| {INT32_MAX - 1, 0x1, 1, 0x80000000}, |
| {INT32_MAX - 3, 0x1, 2, 0x80000000}, |
| {INT32_MAX - 7, 0x1, 3, 0x80000000}, |
| {INT32_MAX - 15, 0x1, 4, 0x80000000}, |
| {INT32_MAX - 31, 0x1, 5, 0x80000000}, |
| |
| // Addition overflow. |
| {-2, 0x1, 1, 0x0}, |
| {-4, 0x1, 2, 0x0}, |
| {-8, 0x1, 3, 0x0}, |
| {-16, 0x1, 4, 0x0}, |
| {-32, 0x1, 5, 0x0}}; |
| |
| size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa); |
| for (size_t i = 0; i < nr_test_cases; ++i) { |
| uint32_t res = run_lsa(tc[i].rt, tc[i].rs, tc[i].sa); |
| PrintF("0x%x =? 0x%x == lsa(v0, %x, %x, %hhu)\n", tc[i].expected_res, res, |
| tc[i].rt, tc[i].rs, tc[i].sa); |
| CHECK_EQ(tc[i].expected_res, res); |
| } |
| } |
| |
| static const std::vector<uint32_t> cvt_trunc_uint32_test_values() { |
| static const uint32_t kValues[] = {0x00000000, 0x00000001, 0x00FFFF00, |
| 0x7FFFFFFF, 0x80000000, 0x80000001, |
| 0x80FFFF00, 0x8FFFFFFF, 0xFFFFFFFF}; |
| return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]); |
| } |
| |
| static const std::vector<int32_t> cvt_trunc_int32_test_values() { |
| static const int32_t kValues[] = { |
| static_cast<int32_t>(0x00000000), static_cast<int32_t>(0x00000001), |
| static_cast<int32_t>(0x00FFFF00), static_cast<int32_t>(0x7FFFFFFF), |
| static_cast<int32_t>(0x80000000), static_cast<int32_t>(0x80000001), |
| static_cast<int32_t>(0x80FFFF00), static_cast<int32_t>(0x8FFFFFFF), |
| static_cast<int32_t>(0xFFFFFFFF)}; |
| return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]); |
| } |
| |
| // Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... } |
| #define FOR_INPUTS(ctype, itype, var, test_vector) \ |
| std::vector<ctype> var##_vec = test_vector(); \ |
| for (std::vector<ctype>::iterator var = var##_vec.begin(); \ |
| var != var##_vec.end(); ++var) |
| |
| #define FOR_INPUTS2(ctype, itype, var, var2, test_vector) \ |
| std::vector<ctype> var##_vec = test_vector(); \ |
| std::vector<ctype>::iterator var; \ |
| std::vector<ctype>::reverse_iterator var2; \ |
| for (var = var##_vec.begin(), var2 = var##_vec.rbegin(); \ |
| var != var##_vec.end(); ++var, ++var2) |
| |
| #define FOR_ENUM_INPUTS(var, type, test_vector) \ |
| FOR_INPUTS(enum type, type, var, test_vector) |
| #define FOR_STRUCT_INPUTS(var, type, test_vector) \ |
| FOR_INPUTS(struct type, type, var, test_vector) |
| #define FOR_UINT32_INPUTS(var, test_vector) \ |
| FOR_INPUTS(uint32_t, uint32, var, test_vector) |
| #define FOR_INT32_INPUTS(var, test_vector) \ |
| FOR_INPUTS(int32_t, int32, var, test_vector) |
| #define FOR_INT32_INPUTS2(var, var2, test_vector) \ |
| FOR_INPUTS2(int32_t, int32, var, var2, test_vector) |
| |
| #define FOR_UINT64_INPUTS(var, test_vector) \ |
| FOR_INPUTS(uint64_t, uint32, var, test_vector) |
| |
| template <typename RET_TYPE, typename IN_TYPE, typename Func> |
| RET_TYPE run_Cvt(IN_TYPE x, Func GenerateConvertInstructionFunc) { |
| using F_CVT = RET_TYPE(IN_TYPE x0, int x1, int x2, int x3, int x4); |
| |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes); |
| MacroAssembler* masm = &assm; |
| |
| __ mtc1(a0, f4); |
| GenerateConvertInstructionFunc(masm); |
| __ mfc1(v0, f2); |
| __ jr(ra); |
| __ nop(); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build(); |
| |
| auto f = GeneratedCode<F_CVT>::FromCode(*code); |
| |
| return reinterpret_cast<RET_TYPE>(f.Call(x, 0, 0, 0, 0)); |
| } |
| |
| TEST(cvt_s_w_Trunc_uw_s) { |
| CcTest::InitializeVM(); |
| FOR_UINT32_INPUTS(i, cvt_trunc_uint32_test_values) { |
| uint32_t input = *i; |
| auto fn = [](MacroAssembler* masm) { |
| __ cvt_s_w(f0, f4); |
| __ Trunc_uw_s(f2, f0, f6); |
| }; |
| CHECK_EQ(static_cast<float>(input), run_Cvt<uint32_t>(input, fn)); |
| } |
| } |
| |
| TEST(cvt_d_w_Trunc_w_d) { |
| CcTest::InitializeVM(); |
| FOR_INT32_INPUTS(i, cvt_trunc_int32_test_values) { |
| int32_t input = *i; |
| auto fn = [](MacroAssembler* masm) { |
| __ cvt_d_w(f0, f4); |
| __ Trunc_w_d(f2, f0); |
| }; |
| CHECK_EQ(static_cast<double>(input), run_Cvt<int32_t>(input, fn)); |
| } |
| } |
| |
| static const std::vector<int32_t> overflow_int32_test_values() { |
| static const int32_t kValues[] = { |
| static_cast<int32_t>(0xF0000000), static_cast<int32_t>(0x00000001), |
| static_cast<int32_t>(0xFF000000), static_cast<int32_t>(0x0000F000), |
| static_cast<int32_t>(0x0F000000), static_cast<int32_t>(0x991234AB), |
| static_cast<int32_t>(0xB0FFFF01), static_cast<int32_t>(0x00006FFF), |
| static_cast<int32_t>(0xFFFFFFFF)}; |
| return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]); |
| } |
| |
| TEST(OverflowInstructions) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope handles(isolate); |
| |
| struct T { |
| int32_t lhs; |
| int32_t rhs; |
| int32_t output_add; |
| int32_t output_add2; |
| int32_t output_sub; |
| int32_t output_sub2; |
| int32_t output_mul; |
| int32_t output_mul2; |
| int32_t overflow_add; |
| int32_t overflow_add2; |
| int32_t overflow_sub; |
| int32_t overflow_sub2; |
| int32_t overflow_mul; |
| int32_t overflow_mul2; |
| }; |
| T t; |
| |
| FOR_INT32_INPUTS(i, overflow_int32_test_values) { |
| FOR_INT32_INPUTS(j, overflow_int32_test_values) { |
| int32_t ii = *i; |
| int32_t jj = *j; |
| int32_t expected_add, expected_sub, expected_mul; |
| bool expected_add_ovf, expected_sub_ovf, expected_mul_ovf; |
| MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); |
| MacroAssembler* masm = &assembler; |
| |
| __ lw(t0, MemOperand(a0, offsetof(T, lhs))); |
| __ lw(t1, MemOperand(a0, offsetof(T, rhs))); |
| |
| __ AddOverflow(t2, t0, Operand(t1), t3); |
| __ sw(t2, MemOperand(a0, offsetof(T, output_add))); |
| __ sw(t3, MemOperand(a0, offsetof(T, overflow_add))); |
| __ mov(t3, zero_reg); |
| __ AddOverflow(t0, t0, Operand(t1), t3); |
| __ sw(t0, MemOperand(a0, offsetof(T, output_add2))); |
| __ sw(t3, MemOperand(a0, offsetof(T, overflow_add2))); |
| |
| __ lw(t0, MemOperand(a0, offsetof(T, lhs))); |
| __ lw(t1, MemOperand(a0, offsetof(T, rhs))); |
| |
| __ SubOverflow(t2, t0, Operand(t1), t3); |
| __ sw(t2, MemOperand(a0, offsetof(T, output_sub))); |
| __ sw(t3, MemOperand(a0, offsetof(T, overflow_sub))); |
| __ mov(t3, zero_reg); |
| __ SubOverflow(t0, t0, Operand(t1), t3); |
| __ sw(t0, MemOperand(a0, offsetof(T, output_sub2))); |
| __ sw(t3, MemOperand(a0, offsetof(T, overflow_sub2))); |
| |
| __ lw(t0, MemOperand(a0, offsetof(T, lhs))); |
| __ lw(t1, MemOperand(a0, offsetof(T, rhs))); |
| |
| __ MulOverflow(t2, t0, Operand(t1), t3); |
| __ sw(t2, MemOperand(a0, offsetof(T, output_mul))); |
| __ sw(t3, MemOperand(a0, offsetof(T, overflow_mul))); |
| __ mov(t3, zero_reg); |
| __ MulOverflow(t0, t0, Operand(t1), t3); |
| __ sw(t0, MemOperand(a0, offsetof(T, output_mul2))); |
| __ sw(t3, MemOperand(a0, offsetof(T, overflow_mul2))); |
| |
| __ jr(ra); |
| __ nop(); |
| |
| CodeDesc desc; |
| masm->GetCode(isolate, &desc); |
| Handle<Code> code = |
| Factory::CodeBuilder(isolate, desc, Code::STUB).Build(); |
| auto f = GeneratedCode<F3>::FromCode(*code); |
| t.lhs = ii; |
| t.rhs = jj; |
| f.Call(&t, 0, 0, 0, 0); |
| |
| expected_add_ovf = base::bits::SignedAddOverflow32(ii, jj, &expected_add); |
| expected_sub_ovf = base::bits::SignedSubOverflow32(ii, jj, &expected_sub); |
| expected_mul_ovf = base::bits::SignedMulOverflow32(ii, jj, &expected_mul); |
| |
| CHECK_EQ(expected_add_ovf, t.overflow_add < 0); |
| CHECK_EQ(expected_sub_ovf, t.overflow_sub < 0); |
| CHECK_EQ(expected_mul_ovf, t.overflow_mul != 0); |
| |
| CHECK_EQ(t.overflow_add, t.overflow_add2); |
| CHECK_EQ(t.overflow_sub, t.overflow_sub2); |
| CHECK_EQ(t.overflow_mul, t.overflow_mul2); |
| |
| CHECK_EQ(expected_add, t.output_add); |
| CHECK_EQ(expected_add, t.output_add2); |
| CHECK_EQ(expected_sub, t.output_sub); |
| CHECK_EQ(expected_sub, t.output_sub2); |
| if (!expected_mul_ovf) { |
| CHECK_EQ(expected_mul, t.output_mul); |
| CHECK_EQ(expected_mul, t.output_mul2); |
| } |
| } |
| } |
| } |
| |
| |
| TEST(min_max_nan) { |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); |
| MacroAssembler* masm = &assembler; |
| |
| struct TestFloat { |
| double a; |
| double b; |
| double c; |
| double d; |
| float e; |
| float f; |
| float g; |
| float h; |
| }; |
| |
| TestFloat test; |
| const double dnan = std::numeric_limits<double>::quiet_NaN(); |
| const double dinf = std::numeric_limits<double>::infinity(); |
| const double dminf = -std::numeric_limits<double>::infinity(); |
| const float fnan = std::numeric_limits<float>::quiet_NaN(); |
| const float finf = std::numeric_limits<float>::infinity(); |
| const float fminf = std::numeric_limits<float>::infinity(); |
| const int kTableLength = 13; |
| |
| double inputsa[kTableLength] = {2.0, 3.0, -0.0, 0.0, 42.0, dinf, dminf, |
| dinf, dnan, 3.0, dinf, dnan, dnan}; |
| double inputsb[kTableLength] = {3.0, 2.0, 0.0, -0.0, dinf, 42.0, dinf, |
| dminf, 3.0, dnan, dnan, dinf, dnan}; |
| double outputsdmin[kTableLength] = {2.0, 2.0, -0.0, -0.0, 42.0, |
| 42.0, dminf, dminf, dnan, dnan, |
| dnan, dnan, dnan}; |
| double outputsdmax[kTableLength] = {3.0, 3.0, 0.0, 0.0, dinf, dinf, dinf, |
| dinf, dnan, dnan, dnan, dnan, dnan}; |
| |
| float inputse[kTableLength] = {2.0, 3.0, -0.0, 0.0, 42.0, finf, fminf, |
| finf, fnan, 3.0, finf, fnan, fnan}; |
| float inputsf[kTableLength] = {3.0, 2.0, 0.0, -0.0, finf, 42.0, finf, |
| fminf, 3.0, fnan, fnan, finf, fnan}; |
| float outputsfmin[kTableLength] = {2.0, 2.0, -0.0, -0.0, 42.0, 42.0, fminf, |
| fminf, fnan, fnan, fnan, fnan, fnan}; |
| float outputsfmax[kTableLength] = {3.0, 3.0, 0.0, 0.0, finf, finf, finf, |
| finf, fnan, fnan, fnan, fnan, fnan}; |
| |
| auto handle_dnan = [masm](FPURegister dst, Label* nan, Label* back) { |
| __ bind(nan); |
| __ LoadRoot(t8, RootIndex::kNanValue); |
| __ Ldc1(dst, FieldMemOperand(t8, HeapNumber::kValueOffset)); |
| __ Branch(back); |
| }; |
| |
| auto handle_snan = [masm, fnan](FPURegister dst, Label* nan, Label* back) { |
| __ bind(nan); |
| __ Move(dst, fnan); |
| __ Branch(back); |
| }; |
| |
| Label handle_mind_nan, handle_maxd_nan, handle_mins_nan, handle_maxs_nan; |
| Label back_mind_nan, back_maxd_nan, back_mins_nan, back_maxs_nan; |
| |
| __ push(s6); |
| __ InitializeRootRegister(); |
| __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a))); |
| __ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, b))); |
| __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, e))); |
| __ lwc1(f6, MemOperand(a0, offsetof(TestFloat, f))); |
| __ Float64Min(f10, f4, f8, &handle_mind_nan); |
| __ bind(&back_mind_nan); |
| __ Float64Max(f12, f4, f8, &handle_maxd_nan); |
| __ bind(&back_maxd_nan); |
| __ Float32Min(f14, f2, f6, &handle_mins_nan); |
| __ bind(&back_mins_nan); |
| __ Float32Max(f16, f2, f6, &handle_maxs_nan); |
| __ bind(&back_maxs_nan); |
| __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, c))); |
| __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, d))); |
| __ swc1(f14, MemOperand(a0, offsetof(TestFloat, g))); |
| __ swc1(f16, MemOperand(a0, offsetof(TestFloat, h))); |
| __ pop(s6); |
| __ jr(ra); |
| __ nop(); |
| |
| handle_dnan(f10, &handle_mind_nan, &back_mind_nan); |
| handle_dnan(f12, &handle_maxd_nan, &back_maxd_nan); |
| handle_snan(f14, &handle_mins_nan, &back_mins_nan); |
| handle_snan(f16, &handle_maxs_nan, &back_maxs_nan); |
| |
| CodeDesc desc; |
| masm->GetCode(isolate, &desc); |
| Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build(); |
| auto f = GeneratedCode<F3>::FromCode(*code); |
| for (int i = 0; i < kTableLength; i++) { |
| test.a = inputsa[i]; |
| test.b = inputsb[i]; |
| test.e = inputse[i]; |
| test.f = inputsf[i]; |
| |
| f.Call(&test, 0, 0, 0, 0); |
| |
| CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c))); |
| CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d))); |
| CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g))); |
| CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h))); |
| } |
| } |
| |
| template <typename IN_TYPE, typename Func> |
| bool run_Unaligned(char* memory_buffer, int32_t in_offset, int32_t out_offset, |
| IN_TYPE value, Func GenerateUnalignedInstructionFunc) { |
| using F_CVT = int32_t(char* x0, int x1, int x2, int x3, int x4); |
| |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes); |
| MacroAssembler* masm = &assm; |
| IN_TYPE res; |
| |
| GenerateUnalignedInstructionFunc(masm, in_offset, out_offset); |
| __ jr(ra); |
| __ nop(); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build(); |
| |
| auto f = GeneratedCode<F_CVT>::FromCode(*code); |
| |
| MemCopy(memory_buffer + in_offset, &value, sizeof(IN_TYPE)); |
| f.Call(memory_buffer, 0, 0, 0, 0); |
| MemCopy(&res, memory_buffer + out_offset, sizeof(IN_TYPE)); |
| |
| return res == value; |
| } |
| |
| static const std::vector<uint64_t> unsigned_test_values() { |
| static const uint64_t kValues[] = { |
| 0x2180F18A06384414, 0x000A714532102277, 0xBC1ACCCF180649F0, |
| 0x8000000080008000, 0x0000000000000001, 0xFFFFFFFFFFFFFFFF, |
| }; |
| return std::vector<uint64_t>(&kValues[0], &kValues[arraysize(kValues)]); |
| } |
| |
| static const std::vector<int32_t> unsigned_test_offset() { |
| static const int32_t kValues[] = {// value, offset |
| -132 * KB, -21 * KB, 0, 19 * KB, 135 * KB}; |
| return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]); |
| } |
| |
| static const std::vector<int32_t> unsigned_test_offset_increment() { |
| static const int32_t kValues[] = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}; |
| return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]); |
| } |
| |
| TEST(Ulh) { |
| CcTest::InitializeVM(); |
| |
| static const int kBufferSize = 300 * KB; |
| char memory_buffer[kBufferSize]; |
| char* buffer_middle = memory_buffer + (kBufferSize / 2); |
| |
| FOR_UINT64_INPUTS(i, unsigned_test_values) { |
| FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { |
| FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { |
| uint16_t value = static_cast<uint64_t>(*i & 0xFFFF); |
| int32_t in_offset = *j1 + *k1; |
| int32_t out_offset = *j2 + *k2; |
| |
| auto fn_1 = [](MacroAssembler* masm, int32_t in_offset, |
| int32_t out_offset) { |
| __ Ulh(v0, MemOperand(a0, in_offset)); |
| __ Ush(v0, MemOperand(a0, out_offset), v0); |
| }; |
| CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset, |
| out_offset, value, fn_1)); |
| |
| auto fn_2 = [](MacroAssembler* masm, int32_t in_offset, |
| int32_t out_offset) { |
| __ mov(t0, a0); |
| __ Ulh(a0, MemOperand(a0, in_offset)); |
| __ Ush(a0, MemOperand(t0, out_offset), v0); |
| }; |
| CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset, |
| out_offset, value, fn_2)); |
| |
| auto fn_3 = [](MacroAssembler* masm, int32_t in_offset, |
| int32_t out_offset) { |
| __ mov(t0, a0); |
| __ Ulhu(a0, MemOperand(a0, in_offset)); |
| __ Ush(a0, MemOperand(t0, out_offset), t1); |
| }; |
| CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset, |
| out_offset, value, fn_3)); |
| |
| auto fn_4 = [](MacroAssembler* masm, int32_t in_offset, |
| int32_t out_offset) { |
| __ Ulhu(v0, MemOperand(a0, in_offset)); |
| __ Ush(v0, MemOperand(a0, out_offset), t1); |
| }; |
| CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset, |
| out_offset, value, fn_4)); |
| } |
| } |
| } |
| } |
| |
| TEST(Ulh_bitextension) { |
| CcTest::InitializeVM(); |
| |
| static const int kBufferSize = 300 * KB; |
| char memory_buffer[kBufferSize]; |
| char* buffer_middle = memory_buffer + (kBufferSize / 2); |
| |
| FOR_UINT64_INPUTS(i, unsigned_test_values) { |
| FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { |
| FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { |
| uint16_t value = static_cast<uint64_t>(*i & 0xFFFF); |
| int32_t in_offset = *j1 + *k1; |
| int32_t out_offset = *j2 + *k2; |
| |
| auto fn = [](MacroAssembler* masm, int32_t in_offset, |
| int32_t out_offset) { |
| Label success, fail, end, different; |
| __ Ulh(t0, MemOperand(a0, in_offset)); |
| __ Ulhu(t1, MemOperand(a0, in_offset)); |
| __ Branch(&different, ne, t0, Operand(t1)); |
| |
| // If signed and unsigned values are same, check |
| // the upper bits to see if they are zero |
| __ sra(t0, t0, 15); |
| __ Branch(&success, eq, t0, Operand(zero_reg)); |
| __ Branch(&fail); |
| |
| // If signed and unsigned values are different, |
| // check that the upper bits are complementary |
| __ bind(&different); |
| __ sra(t1, t1, 15); |
| __ Branch(&fail, ne, t1, Operand(1)); |
| __ sra(t0, t0, 15); |
| __ addiu(t0, t0, 1); |
| __ Branch(&fail, ne, t0, Operand(zero_reg)); |
| // Fall through to success |
| |
| __ bind(&success); |
| __ Ulh(t0, MemOperand(a0, in_offset)); |
| __ Ush(t0, MemOperand(a0, out_offset), v0); |
| __ Branch(&end); |
| __ bind(&fail); |
| __ Ush(zero_reg, MemOperand(a0, out_offset), v0); |
| __ bind(&end); |
| }; |
| CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset, |
| out_offset, value, fn)); |
| } |
| } |
| } |
| } |
| |
| TEST(Ulw) { |
| CcTest::InitializeVM(); |
| |
| static const int kBufferSize = 300 * KB; |
| char memory_buffer[kBufferSize]; |
| char* buffer_middle = memory_buffer + (kBufferSize / 2); |
| |
| FOR_UINT64_INPUTS(i, unsigned_test_values) { |
| FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { |
| FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { |
| uint32_t value = static_cast<uint32_t>(*i & 0xFFFFFFFF); |
| int32_t in_offset = *j1 + *k1; |
| int32_t out_offset = *j2 + *k2; |
| |
| auto fn_1 = [](MacroAssembler* masm, int32_t in_offset, |
| int32_t out_offset) { |
| __ Ulw(v0, MemOperand(a0, in_offset)); |
| __ Usw(v0, MemOperand(a0, out_offset)); |
| }; |
| CHECK_EQ(true, run_Unaligned<uint32_t>(buffer_middle, in_offset, |
| out_offset, value, fn_1)); |
| |
| auto fn_2 = [](MacroAssembler* masm, int32_t in_offset, |
| int32_t out_offset) { |
| __ mov(t0, a0); |
| __ Ulw(a0, MemOperand(a0, in_offset)); |
| __ Usw(a0, MemOperand(t0, out_offset)); |
| }; |
| CHECK_EQ(true, |
| run_Unaligned<uint32_t>(buffer_middle, in_offset, out_offset, |
| (uint32_t)value, fn_2)); |
| } |
| } |
| } |
| } |
| |
| TEST(Ulwc1) { |
| CcTest::InitializeVM(); |
| |
| static const int kBufferSize = 300 * KB; |
| char memory_buffer[kBufferSize]; |
| char* buffer_middle = memory_buffer + (kBufferSize / 2); |
| |
| FOR_UINT64_INPUTS(i, unsigned_test_values) { |
| FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { |
| FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { |
| float value = static_cast<float>(*i & 0xFFFFFFFF); |
| int32_t in_offset = *j1 + *k1; |
| int32_t out_offset = *j2 + *k2; |
| |
| auto fn = [](MacroAssembler* masm, int32_t in_offset, |
| int32_t out_offset) { |
| __ Ulwc1(f0, MemOperand(a0, in_offset), t0); |
| __ Uswc1(f0, MemOperand(a0, out_offset), t0); |
| }; |
| CHECK_EQ(true, run_Unaligned<float>(buffer_middle, in_offset, |
| out_offset, value, fn)); |
| } |
| } |
| } |
| } |
| |
| TEST(Uldc1) { |
| CcTest::InitializeVM(); |
| |
| static const int kBufferSize = 300 * KB; |
| char memory_buffer[kBufferSize]; |
| char* buffer_middle = memory_buffer + (kBufferSize / 2); |
| |
| FOR_UINT64_INPUTS(i, unsigned_test_values) { |
| FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { |
| FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { |
| double value = static_cast<double>(*i); |
| int32_t in_offset = *j1 + *k1; |
| int32_t out_offset = *j2 + *k2; |
| |
| auto fn = [](MacroAssembler* masm, int32_t in_offset, |
| int32_t out_offset) { |
| __ Uldc1(f0, MemOperand(a0, in_offset), t0); |
| __ Usdc1(f0, MemOperand(a0, out_offset), t0); |
| }; |
| CHECK_EQ(true, run_Unaligned<double>(buffer_middle, in_offset, |
| out_offset, value, fn)); |
| } |
| } |
| } |
| } |
| |
| static const std::vector<uint32_t> sltu_test_values() { |
| static const uint32_t kValues[] = { |
| 0, 1, 0x7FFE, 0x7FFF, 0x8000, |
| 0x8001, 0xFFFE, 0xFFFF, 0xFFFF7FFE, 0xFFFF7FFF, |
| 0xFFFF8000, 0xFFFF8001, 0xFFFFFFFE, 0xFFFFFFFF, |
| }; |
| return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]); |
| } |
| |
| template <typename Func> |
| bool run_Sltu(uint32_t rs, uint32_t rd, Func GenerateSltuInstructionFunc) { |
| using F_CVT = int32_t(uint32_t x0, uint32_t x1, int x2, int x3, int x4); |
| |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes); |
| MacroAssembler* masm = &assm; |
| |
| GenerateSltuInstructionFunc(masm, rd); |
| __ jr(ra); |
| __ nop(); |
| |
| CodeDesc desc; |
| assm.GetCode(isolate, &desc); |
| Handle<Code> code = Factory::CodeBuilder(isolate, desc, Code::STUB).Build(); |
| |
| auto f = GeneratedCode<F_CVT>::FromCode(*code); |
| int32_t res = reinterpret_cast<int32_t>(f.Call(rs, rd, 0, 0, 0)); |
| return res == 1; |
| } |
| |
| TEST(Sltu) { |
| CcTest::InitializeVM(); |
| |
| FOR_UINT32_INPUTS(i, sltu_test_values) { |
| FOR_UINT32_INPUTS(j, sltu_test_values) { |
| uint32_t rs = *i; |
| uint32_t rd = *j; |
| |
| auto fn_1 = [](MacroAssembler* masm, uint32_t imm) { |
| __ Sltu(v0, a0, Operand(imm)); |
| }; |
| CHECK_EQ(rs < rd, run_Sltu(rs, rd, fn_1)); |
| |
| auto fn_2 = [](MacroAssembler* masm, uint32_t imm) { |
| __ Sltu(v0, a0, a1); |
| }; |
| CHECK_EQ(rs < rd, run_Sltu(rs, rd, fn_2)); |
| } |
| } |
| } |
| |
| template <typename T, typename Inputs, typename Results> |
| static GeneratedCode<F4> GenerateMacroFloat32MinMax(MacroAssembler* masm) { |
| T a = T::from_code(4); // f4 |
| T b = T::from_code(6); // f6 |
| T c = T::from_code(8); // f8 |
| |
| Label ool_min_abc, ool_min_aab, ool_min_aba; |
| Label ool_max_abc, ool_max_aab, ool_max_aba; |
| |
| Label done_min_abc, done_min_aab, done_min_aba; |
| Label done_max_abc, done_max_aab, done_max_aba; |
| |
| #define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \ |
| __ lwc1(x, MemOperand(a0, offsetof(Inputs, src1_))); \ |
| __ lwc1(y, MemOperand(a0, offsetof(Inputs, src2_))); \ |
| __ fminmax(res, x, y, &ool); \ |
| __ bind(&done); \ |
| __ swc1(a, MemOperand(a1, offsetof(Results, res_field))) |
| |
| // a = min(b, c); |
| FLOAT_MIN_MAX(Float32Min, a, b, c, done_min_abc, ool_min_abc, min_abc_); |
| // a = min(a, b); |
| FLOAT_MIN_MAX(Float32Min, a, a, b, done_min_aab, ool_min_aab, min_aab_); |
| // a = min(b, a); |
| FLOAT_MIN_MAX(Float32Min, a, b, a, done_min_aba, ool_min_aba, min_aba_); |
| |
| // a = max(b, c); |
| FLOAT_MIN_MAX(Float32Max, a, b, c, done_max_abc, ool_max_abc, max_abc_); |
| // a = max(a, b); |
| FLOAT_MIN_MAX(Float32Max, a, a, b, done_max_aab, ool_max_aab, max_aab_); |
| // a = max(b, a); |
| FLOAT_MIN_MAX(Float32Max, a, b, a, done_max_aba, ool_max_aba, max_aba_); |
| |
| #undef FLOAT_MIN_MAX |
| |
| __ jr(ra); |
| __ nop(); |
| |
| // Generate out-of-line cases. |
| __ bind(&ool_min_abc); |
| __ Float32MinOutOfLine(a, b, c); |
| __ Branch(&done_min_abc); |
| |
| __ bind(&ool_min_aab); |
| __ Float32MinOutOfLine(a, a, b); |
| __ Branch(&done_min_aab); |
| |
| __ bind(&ool_min_aba); |
| __ Float32MinOutOfLine(a, b, a); |
| __ Branch(&done_min_aba); |
| |
| __ bind(&ool_max_abc); |
| __ Float32MaxOutOfLine(a, b, c); |
| __ Branch(&done_max_abc); |
| |
| __ bind(&ool_max_aab); |
| __ Float32MaxOutOfLine(a, a, b); |
| __ Branch(&done_max_aab); |
| |
| __ bind(&ool_max_aba); |
| __ Float32MaxOutOfLine(a, b, a); |
| __ Branch(&done_max_aba); |
| |
| CodeDesc desc; |
| masm->GetCode(masm->isolate(), &desc); |
| Handle<Code> code = |
| Factory::CodeBuilder(masm->isolate(), desc, Code::STUB).Build(); |
| #ifdef DEBUG |
| StdoutStream os; |
| code->Print(os); |
| #endif |
| return GeneratedCode<F4>::FromCode(*code); |
| } |
| |
| TEST(macro_float_minmax_f32) { |
| // Test the Float32Min and Float32Max macros. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); |
| MacroAssembler* masm = &assembler; |
| |
| struct Inputs { |
| float src1_; |
| float src2_; |
| }; |
| |
| struct Results { |
| // Check all register aliasing possibilities in order to exercise all |
| // code-paths in the macro assembler. |
| float min_abc_; |
| float min_aab_; |
| float min_aba_; |
| float max_abc_; |
| float max_aab_; |
| float max_aba_; |
| }; |
| |
| GeneratedCode<F4> f = |
| GenerateMacroFloat32MinMax<FPURegister, Inputs, Results>(masm); |
| |
| #define CHECK_MINMAX(src1, src2, min, max) \ |
| do { \ |
| Inputs inputs = {src1, src2}; \ |
| Results results; \ |
| f.Call(&inputs, &results, 0, 0, 0); \ |
| CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_abc_)); \ |
| CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aab_)); \ |
| CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aba_)); \ |
| CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_abc_)); \ |
| CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_aab_)); \ |
| CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_aba_)); \ |
| /* Use a bit_cast to correctly identify -0.0 and NaNs. */ \ |
| } while (0) |
| |
| float nan_a = std::numeric_limits<float>::quiet_NaN(); |
| float nan_b = std::numeric_limits<float>::quiet_NaN(); |
| |
| CHECK_MINMAX(1.0f, -1.0f, -1.0f, 1.0f); |
| CHECK_MINMAX(-1.0f, 1.0f, -1.0f, 1.0f); |
| CHECK_MINMAX(0.0f, -1.0f, -1.0f, 0.0f); |
| CHECK_MINMAX(-1.0f, 0.0f, -1.0f, 0.0f); |
| CHECK_MINMAX(-0.0f, -1.0f, -1.0f, -0.0f); |
| CHECK_MINMAX(-1.0f, -0.0f, -1.0f, -0.0f); |
| CHECK_MINMAX(0.0f, 1.0f, 0.0f, 1.0f); |
| CHECK_MINMAX(1.0f, 0.0f, 0.0f, 1.0f); |
| |
| CHECK_MINMAX(0.0f, 0.0f, 0.0f, 0.0f); |
| CHECK_MINMAX(-0.0f, -0.0f, -0.0f, -0.0f); |
| CHECK_MINMAX(-0.0f, 0.0f, -0.0f, 0.0f); |
| CHECK_MINMAX(0.0f, -0.0f, -0.0f, 0.0f); |
| |
| CHECK_MINMAX(0.0f, nan_a, nan_a, nan_a); |
| CHECK_MINMAX(nan_a, 0.0f, nan_a, nan_a); |
| CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a); |
| CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b); |
| |
| #undef CHECK_MINMAX |
| } |
| |
| template <typename T, typename Inputs, typename Results> |
| static GeneratedCode<F4> GenerateMacroFloat64MinMax(MacroAssembler* masm) { |
| T a = T::from_code(4); // f4 |
| T b = T::from_code(6); // f6 |
| T c = T::from_code(8); // f8 |
| |
| Label ool_min_abc, ool_min_aab, ool_min_aba; |
| Label ool_max_abc, ool_max_aab, ool_max_aba; |
| |
| Label done_min_abc, done_min_aab, done_min_aba; |
| Label done_max_abc, done_max_aab, done_max_aba; |
| |
| #define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \ |
| __ Ldc1(x, MemOperand(a0, offsetof(Inputs, src1_))); \ |
| __ Ldc1(y, MemOperand(a0, offsetof(Inputs, src2_))); \ |
| __ fminmax(res, x, y, &ool); \ |
| __ bind(&done); \ |
| __ Sdc1(a, MemOperand(a1, offsetof(Results, res_field))) |
| |
| // a = min(b, c); |
| FLOAT_MIN_MAX(Float64Min, a, b, c, done_min_abc, ool_min_abc, min_abc_); |
| // a = min(a, b); |
| FLOAT_MIN_MAX(Float64Min, a, a, b, done_min_aab, ool_min_aab, min_aab_); |
| // a = min(b, a); |
| FLOAT_MIN_MAX(Float64Min, a, b, a, done_min_aba, ool_min_aba, min_aba_); |
| |
| // a = max(b, c); |
| FLOAT_MIN_MAX(Float64Max, a, b, c, done_max_abc, ool_max_abc, max_abc_); |
| // a = max(a, b); |
| FLOAT_MIN_MAX(Float64Max, a, a, b, done_max_aab, ool_max_aab, max_aab_); |
| // a = max(b, a); |
| FLOAT_MIN_MAX(Float64Max, a, b, a, done_max_aba, ool_max_aba, max_aba_); |
| |
| #undef FLOAT_MIN_MAX |
| |
| __ jr(ra); |
| __ nop(); |
| |
| // Generate out-of-line cases. |
| __ bind(&ool_min_abc); |
| __ Float64MinOutOfLine(a, b, c); |
| __ Branch(&done_min_abc); |
| |
| __ bind(&ool_min_aab); |
| __ Float64MinOutOfLine(a, a, b); |
| __ Branch(&done_min_aab); |
| |
| __ bind(&ool_min_aba); |
| __ Float64MinOutOfLine(a, b, a); |
| __ Branch(&done_min_aba); |
| |
| __ bind(&ool_max_abc); |
| __ Float64MaxOutOfLine(a, b, c); |
| __ Branch(&done_max_abc); |
| |
| __ bind(&ool_max_aab); |
| __ Float64MaxOutOfLine(a, a, b); |
| __ Branch(&done_max_aab); |
| |
| __ bind(&ool_max_aba); |
| __ Float64MaxOutOfLine(a, b, a); |
| __ Branch(&done_max_aba); |
| |
| CodeDesc desc; |
| masm->GetCode(masm->isolate(), &desc); |
| Handle<Code> code = |
| Factory::CodeBuilder(masm->isolate(), desc, Code::STUB).Build(); |
| #ifdef DEBUG |
| StdoutStream os; |
| code->Print(os); |
| #endif |
| return GeneratedCode<F4>::FromCode(*code); |
| } |
| |
| TEST(macro_float_minmax_f64) { |
| // Test the Float64Min and Float64Max macros. |
| CcTest::InitializeVM(); |
| Isolate* isolate = CcTest::i_isolate(); |
| HandleScope scope(isolate); |
| |
| MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes); |
| MacroAssembler* masm = &assembler; |
| |
| struct Inputs { |
| double src1_; |
| double src2_; |
| }; |
| |
| struct Results { |
| // Check all register aliasing possibilities in order to exercise all |
| // code-paths in the macro assembler. |
| double min_abc_; |
| double min_aab_; |
| double min_aba_; |
| double max_abc_; |
| double max_aab_; |
| double max_aba_; |
| }; |
| |
| GeneratedCode<F4> f = |
| GenerateMacroFloat64MinMax<DoubleRegister, Inputs, Results>(masm); |
| |
| #define CHECK_MINMAX(src1, src2, min, max) \ |
| do { \ |
| Inputs inputs = {src1, src2}; \ |
| Results results; \ |
| f.Call(&inputs, &results, 0, 0, 0); \ |
| CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_abc_)); \ |
| CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aab_)); \ |
| CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aba_)); \ |
| CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_abc_)); \ |
| CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aab_)); \ |
| CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aba_)); \ |
| /* Use a bit_cast to correctly identify -0.0 and NaNs. */ \ |
| } while (0) |
| |
| double nan_a = std::numeric_limits<double>::quiet_NaN(); |
| double nan_b = std::numeric_limits<double>::quiet_NaN(); |
| |
| CHECK_MINMAX(1.0, -1.0, -1.0, 1.0); |
| CHECK_MINMAX(-1.0, 1.0, -1.0, 1.0); |
| CHECK_MINMAX(0.0, -1.0, -1.0, 0.0); |
| CHECK_MINMAX(-1.0, 0.0, -1.0, 0.0); |
| CHECK_MINMAX(-0.0, -1.0, -1.0, -0.0); |
| CHECK_MINMAX(-1.0, -0.0, -1.0, -0.0); |
| CHECK_MINMAX(0.0, 1.0, 0.0, 1.0); |
| CHECK_MINMAX(1.0, 0.0, 0.0, 1.0); |
| |
| CHECK_MINMAX(0.0, 0.0, 0.0, 0.0); |
| CHECK_MINMAX(-0.0, -0.0, -0.0, -0.0); |
| CHECK_MINMAX(-0.0, 0.0, -0.0, 0.0); |
| CHECK_MINMAX(0.0, -0.0, -0.0, 0.0); |
| |
| CHECK_MINMAX(0.0, nan_a, nan_a, nan_a); |
| CHECK_MINMAX(nan_a, 0.0, nan_a, nan_a); |
| CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a); |
| CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b); |
| |
| #undef CHECK_MINMAX |
| } |
| |
| #undef __ |
| |
| } // namespace internal |
| } // namespace v8 |