| // Copyright 2019 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // Tier-up behavior differs between slow and fast paths in |
| // RegExp.prototype.replace with a function as an argument. |
| // Flags: --regexp-tier-up --regexp-tier-up-ticks=5 |
| // Flags: --allow-natives-syntax --no-force-slow-path --no-regexp-interpret-all |
| // Flags: --no-enable-experimental-regexp-engine |
| |
| const kLatin1 = true; |
| const kUnicode = false; |
| |
| function CheckRegexpNotYetCompiled(regexp) { |
| assertFalse(%RegexpHasBytecode(regexp, kLatin1) && |
| %RegexpHasNativeCode(regexp, kLatin1)); |
| assertFalse(%RegexpHasBytecode(regexp, kUnicode) && |
| %RegexpHasNativeCode(regexp, kUnicode)); |
| } |
| |
| // Testing RegExp.test method which calls into Runtime_RegExpExec. |
| let re = new RegExp('^.$'); |
| CheckRegexpNotYetCompiled(re); |
| |
| // Testing first five executions of regexp with one-byte string subject. |
| for (var i = 0; i < 5; i++) { |
| re.test("a"); |
| assertTrue(%RegexpHasBytecode(re, kLatin1)); |
| assertTrue(!%RegexpHasBytecode(re, kUnicode) && |
| !%RegexpHasNativeCode(re, kUnicode)); |
| } |
| // Testing the tier-up to native code. |
| re.test("a"); |
| assertTrue(!%RegexpHasBytecode(re, kLatin1) && |
| %RegexpHasNativeCode(re,kLatin1)); |
| assertTrue(!%RegexpHasBytecode(re, kUnicode) && |
| !%RegexpHasNativeCode(re,kUnicode)); |
| re.test("a"); |
| assertTrue(!%RegexpHasBytecode(re, kLatin1) && |
| %RegexpHasNativeCode(re,kLatin1)); |
| assertTrue(!%RegexpHasBytecode(re, kUnicode) && |
| !%RegexpHasNativeCode(re,kUnicode)); |
| // Testing that the regexp will compile to native code for two-byte string |
| // subject as well, because we have a single tick counter for both string |
| // representations. |
| re.test("π"); |
| assertTrue(!%RegexpHasBytecode(re, kLatin1) && |
| %RegexpHasNativeCode(re,kLatin1)); |
| assertTrue(!%RegexpHasBytecode(re, kUnicode) && |
| %RegexpHasNativeCode(re,kUnicode)); |
| |
| // Testing String.replace method for non-global regexps. |
| var subject = "a1111"; |
| re = /\w1/; |
| CheckRegexpNotYetCompiled(re); |
| |
| for (var i = 0; i < 5; i++) { |
| subject.replace(re, "x"); |
| assertTrue(%RegexpHasBytecode(re, kLatin1)); |
| assertTrue(!%RegexpHasBytecode(re, kUnicode) && |
| !%RegexpHasNativeCode(re, kUnicode)); |
| } |
| |
| subject.replace(re, "x"); |
| assertTrue(!%RegexpHasBytecode(re, kLatin1) && |
| %RegexpHasNativeCode(re, kLatin1)); |
| assertTrue(!%RegexpHasBytecode(re, kUnicode) && |
| !%RegexpHasNativeCode(re, kUnicode)); |
| |
| // Testing String.replace method for global regexps. |
| let re_g = /\w11111/g; |
| CheckRegexpNotYetCompiled(re_g); |
| // This regexp will not match, so it will only execute the bytecode once, |
| // each time the replace method is invoked, without tiering-up and |
| // recompiling to native code. |
| for (var i = 0; i < 5; i++) { |
| subject.replace(re_g, "x"); |
| assertTrue(%RegexpHasBytecode(re_g, kLatin1)); |
| assertTrue(!%RegexpHasBytecode(re_g, kUnicode) && |
| !%RegexpHasNativeCode(re_g, kUnicode)); |
| } |
| |
| // This regexp will match, so it will execute five times, and tier-up. |
| re_g = /\w/g; |
| CheckRegexpNotYetCompiled(re_g); |
| subject.replace(re_g, "x"); |
| assertTrue(!%RegexpHasBytecode(re_g, kLatin1) && |
| %RegexpHasNativeCode(re_g, kLatin1)); |
| assertTrue(!%RegexpHasBytecode(re_g, kUnicode) && |
| !%RegexpHasNativeCode(re_g, kUnicode)); |
| |
| // Testing String.replace method for global regexps with a function as a |
| // parameter. This will tier-up eagerly and compile to native code right |
| // away, even though the regexp is only executed once. |
| function f() { return "x"; } |
| re_g = /\w2/g; |
| CheckRegexpNotYetCompiled(re_g); |
| subject.replace(re_g, f); |
| assertTrue(!%RegexpHasBytecode(re_g, kLatin1) && |
| %RegexpHasNativeCode(re_g, kLatin1)); |
| assertTrue(!%RegexpHasBytecode(re_g, kUnicode) && |
| !%RegexpHasNativeCode(re_g, kUnicode)); |