| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <utility> |
| |
| #include "base/bind.h" |
| #include "base/bind_helpers.h" |
| #include "base/files/file.h" |
| #include "base/files/file_util.h" |
| #include "base/macros.h" |
| #include "base/metrics/field_trial.h" |
| #include "base/metrics/field_trial_param_associator.h" |
| #include "base/run_loop.h" |
| #include "base/strings/string_number_conversions.h" |
| #include "base/strings/string_util.h" |
| #include "base/test/metrics/histogram_tester.h" |
| #include "base/test/mock_entropy_provider.h" |
| #include "base/test/scoped_feature_list.h" |
| #include "base/threading/platform_thread.h" |
| #include "net/base/completion_once_callback.h" |
| #include "net/base/io_buffer.h" |
| #include "net/base/net_errors.h" |
| #include "net/base/request_priority.h" |
| #include "net/base/test_completion_callback.h" |
| #include "net/disk_cache/blockfile/backend_impl.h" |
| #include "net/disk_cache/blockfile/entry_impl.h" |
| #include "net/disk_cache/cache_util.h" |
| #include "net/disk_cache/disk_cache_test_base.h" |
| #include "net/disk_cache/disk_cache_test_util.h" |
| #include "net/disk_cache/memory/mem_entry_impl.h" |
| #include "net/disk_cache/simple/simple_backend_impl.h" |
| #include "net/disk_cache/simple/simple_entry_format.h" |
| #include "net/disk_cache/simple/simple_entry_impl.h" |
| #include "net/disk_cache/simple/simple_histogram_enums.h" |
| #include "net/disk_cache/simple/simple_synchronous_entry.h" |
| #include "net/disk_cache/simple/simple_test_util.h" |
| #include "net/disk_cache/simple/simple_util.h" |
| #include "net/test/gtest_util.h" |
| #include "starboard/memory.h" |
| #include "testing/gmock/include/gmock/gmock.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| using net::test::IsError; |
| using net::test::IsOk; |
| |
| using base::Time; |
| using disk_cache::ScopedEntryPtr; |
| |
| // Tests that can run with different types of caches. |
| class DiskCacheEntryTest : public DiskCacheTestWithCache { |
| public: |
| void InternalSyncIOBackground(disk_cache::Entry* entry); |
| void ExternalSyncIOBackground(disk_cache::Entry* entry); |
| |
| protected: |
| void InternalSyncIO(); |
| void InternalAsyncIO(); |
| void ExternalSyncIO(); |
| void ExternalAsyncIO(); |
| void ReleaseBuffer(int stream_index); |
| void StreamAccess(); |
| void GetKey(); |
| void GetTimes(int stream_index); |
| void GrowData(int stream_index); |
| void TruncateData(int stream_index); |
| void ZeroLengthIO(int stream_index); |
| void Buffering(); |
| void SizeAtCreate(); |
| void SizeChanges(int stream_index); |
| void ReuseEntry(int size, int stream_index); |
| void InvalidData(int stream_index); |
| void ReadWriteDestroyBuffer(int stream_index); |
| void DoomNormalEntry(); |
| void DoomEntryNextToOpenEntry(); |
| void DoomedEntry(int stream_index); |
| void BasicSparseIO(); |
| void HugeSparseIO(); |
| void GetAvailableRange(); |
| void CouldBeSparse(); |
| void UpdateSparseEntry(); |
| void DoomSparseEntry(); |
| void PartialSparseEntry(); |
| bool SimpleCacheMakeBadChecksumEntry(const std::string& key, int data_size); |
| bool SimpleCacheThirdStreamFileExists(const char* key); |
| void SyncDoomEntry(const char* key); |
| void UseAfterBackendDestruction(); |
| }; |
| |
| // This part of the test runs on the background thread. |
| void DiskCacheEntryTest::InternalSyncIOBackground(disk_cache::Entry* entry) { |
| const int kSize1 = 10; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize1); |
| CacheTestFillBuffer(buffer1->data(), kSize1, false); |
| EXPECT_EQ(0, entry->ReadData(0, 0, buffer1.get(), kSize1, |
| net::CompletionOnceCallback())); |
| base::strlcpy(buffer1->data(), "the data", kSize1); |
| EXPECT_EQ(10, entry->WriteData(0, 0, buffer1.get(), kSize1, |
| net::CompletionOnceCallback(), false)); |
| memset(buffer1->data(), 0, kSize1); |
| EXPECT_EQ(10, entry->ReadData(0, 0, buffer1.get(), kSize1, |
| net::CompletionOnceCallback())); |
| EXPECT_STREQ("the data", buffer1->data()); |
| |
| const int kSize2 = 5000; |
| const int kSize3 = 10000; |
| scoped_refptr<net::IOBuffer> buffer2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize2); |
| scoped_refptr<net::IOBuffer> buffer3 = |
| base::MakeRefCounted<net::IOBuffer>(kSize3); |
| memset(buffer3->data(), 0, kSize3); |
| CacheTestFillBuffer(buffer2->data(), kSize2, false); |
| base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); |
| EXPECT_EQ(5000, entry->WriteData(1, 1500, buffer2.get(), kSize2, |
| net::CompletionOnceCallback(), false)); |
| memset(buffer2->data(), 0, kSize2); |
| EXPECT_EQ(4989, entry->ReadData(1, 1511, buffer2.get(), kSize2, |
| net::CompletionOnceCallback())); |
| EXPECT_STREQ("big data goes here", buffer2->data()); |
| EXPECT_EQ(5000, entry->ReadData(1, 0, buffer2.get(), kSize2, |
| net::CompletionOnceCallback())); |
| EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500)); |
| EXPECT_EQ(1500, entry->ReadData(1, 5000, buffer2.get(), kSize2, |
| net::CompletionOnceCallback())); |
| |
| EXPECT_EQ(0, entry->ReadData(1, 6500, buffer2.get(), kSize2, |
| net::CompletionOnceCallback())); |
| EXPECT_EQ(6500, entry->ReadData(1, 0, buffer3.get(), kSize3, |
| net::CompletionOnceCallback())); |
| EXPECT_EQ(8192, entry->WriteData(1, 0, buffer3.get(), 8192, |
| net::CompletionOnceCallback(), false)); |
| EXPECT_EQ(8192, entry->ReadData(1, 0, buffer3.get(), kSize3, |
| net::CompletionOnceCallback())); |
| EXPECT_EQ(8192, entry->GetDataSize(1)); |
| |
| // We need to delete the memory buffer on this thread. |
| EXPECT_EQ( |
| 0, entry->WriteData(0, 0, NULL, 0, net::CompletionOnceCallback(), true)); |
| EXPECT_EQ( |
| 0, entry->WriteData(1, 0, NULL, 0, net::CompletionOnceCallback(), true)); |
| } |
| |
| // We need to support synchronous IO even though it is not a supported operation |
| // from the point of view of the disk cache's public interface, because we use |
| // it internally, not just by a few tests, but as part of the implementation |
| // (see sparse_control.cc, for example). |
| void DiskCacheEntryTest::InternalSyncIO() { |
| disk_cache::Entry* entry = NULL; |
| ASSERT_THAT(CreateEntry("the first key", &entry), IsOk()); |
| ASSERT_TRUE(NULL != entry); |
| |
| // The bulk of the test runs from within the callback, on the cache thread. |
| RunTaskForTest(base::Bind(&DiskCacheEntryTest::InternalSyncIOBackground, |
| base::Unretained(this), |
| entry)); |
| |
| |
| entry->Doom(); |
| entry->Close(); |
| FlushQueueForTest(); |
| EXPECT_EQ(0, cache_->GetEntryCount()); |
| } |
| |
| TEST_F(DiskCacheEntryTest, InternalSyncIO) { |
| InitCache(); |
| InternalSyncIO(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyInternalSyncIO) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| InternalSyncIO(); |
| } |
| |
| void DiskCacheEntryTest::InternalAsyncIO() { |
| disk_cache::Entry* entry = NULL; |
| ASSERT_THAT(CreateEntry("the first key", &entry), IsOk()); |
| ASSERT_TRUE(NULL != entry); |
| |
| // Avoid using internal buffers for the test. We have to write something to |
| // the entry and close it so that we flush the internal buffer to disk. After |
| // that, IO operations will be really hitting the disk. We don't care about |
| // the content, so just extending the entry is enough (all extensions zero- |
| // fill any holes). |
| EXPECT_EQ(0, WriteData(entry, 0, 15 * 1024, NULL, 0, false)); |
| EXPECT_EQ(0, WriteData(entry, 1, 15 * 1024, NULL, 0, false)); |
| entry->Close(); |
| ASSERT_THAT(OpenEntry("the first key", &entry), IsOk()); |
| |
| MessageLoopHelper helper; |
| // Let's verify that each IO goes to the right callback object. |
| CallbackTest callback1(&helper, false); |
| CallbackTest callback2(&helper, false); |
| CallbackTest callback3(&helper, false); |
| CallbackTest callback4(&helper, false); |
| CallbackTest callback5(&helper, false); |
| CallbackTest callback6(&helper, false); |
| CallbackTest callback7(&helper, false); |
| CallbackTest callback8(&helper, false); |
| CallbackTest callback9(&helper, false); |
| CallbackTest callback10(&helper, false); |
| CallbackTest callback11(&helper, false); |
| CallbackTest callback12(&helper, false); |
| CallbackTest callback13(&helper, false); |
| |
| const int kSize1 = 10; |
| const int kSize2 = 5000; |
| const int kSize3 = 10000; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize1); |
| scoped_refptr<net::IOBuffer> buffer2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize2); |
| scoped_refptr<net::IOBuffer> buffer3 = |
| base::MakeRefCounted<net::IOBuffer>(kSize3); |
| CacheTestFillBuffer(buffer1->data(), kSize1, false); |
| CacheTestFillBuffer(buffer2->data(), kSize2, false); |
| CacheTestFillBuffer(buffer3->data(), kSize3, false); |
| |
| EXPECT_EQ(0, |
| entry->ReadData( |
| 0, |
| 15 * 1024, |
| buffer1.get(), |
| kSize1, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback1)))); |
| base::strlcpy(buffer1->data(), "the data", kSize1); |
| int expected = 0; |
| int ret = entry->WriteData( |
| 0, |
| 0, |
| buffer1.get(), |
| kSize1, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback2)), |
| false); |
| EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| memset(buffer2->data(), 0, kSize2); |
| ret = entry->ReadData( |
| 0, |
| 0, |
| buffer2.get(), |
| kSize1, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback3))); |
| EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| EXPECT_STREQ("the data", buffer2->data()); |
| |
| base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); |
| ret = entry->WriteData( |
| 1, |
| 1500, |
| buffer2.get(), |
| kSize2, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback4)), |
| true); |
| EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| memset(buffer3->data(), 0, kSize3); |
| ret = entry->ReadData( |
| 1, |
| 1511, |
| buffer3.get(), |
| kSize2, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback5))); |
| EXPECT_TRUE(4989 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| EXPECT_STREQ("big data goes here", buffer3->data()); |
| ret = entry->ReadData( |
| 1, |
| 0, |
| buffer2.get(), |
| kSize2, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback6))); |
| EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| memset(buffer3->data(), 0, kSize3); |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500)); |
| ret = entry->ReadData( |
| 1, |
| 5000, |
| buffer2.get(), |
| kSize2, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback7))); |
| EXPECT_TRUE(1500 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| ret = entry->ReadData( |
| 1, |
| 0, |
| buffer3.get(), |
| kSize3, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback9))); |
| EXPECT_TRUE(6500 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| ret = entry->WriteData( |
| 1, |
| 0, |
| buffer3.get(), |
| 8192, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback10)), |
| true); |
| EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| ret = entry->ReadData( |
| 1, |
| 0, |
| buffer3.get(), |
| kSize3, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback11))); |
| EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_EQ(8192, entry->GetDataSize(1)); |
| |
| ret = entry->ReadData( |
| 0, |
| 0, |
| buffer1.get(), |
| kSize1, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback12))); |
| EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| ret = entry->ReadData( |
| 1, |
| 0, |
| buffer2.get(), |
| kSize2, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback13))); |
| EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| |
| EXPECT_FALSE(helper.callback_reused_error()); |
| |
| entry->Doom(); |
| entry->Close(); |
| FlushQueueForTest(); |
| EXPECT_EQ(0, cache_->GetEntryCount()); |
| } |
| |
| TEST_F(DiskCacheEntryTest, InternalAsyncIO) { |
| InitCache(); |
| InternalAsyncIO(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyInternalAsyncIO) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| InternalAsyncIO(); |
| } |
| |
| // This part of the test runs on the background thread. |
| void DiskCacheEntryTest::ExternalSyncIOBackground(disk_cache::Entry* entry) { |
| const int kSize1 = 17000; |
| const int kSize2 = 25000; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize1); |
| scoped_refptr<net::IOBuffer> buffer2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize2); |
| CacheTestFillBuffer(buffer1->data(), kSize1, false); |
| CacheTestFillBuffer(buffer2->data(), kSize2, false); |
| base::strlcpy(buffer1->data(), "the data", kSize1); |
| EXPECT_EQ(17000, entry->WriteData(0, 0, buffer1.get(), kSize1, |
| net::CompletionOnceCallback(), false)); |
| memset(buffer1->data(), 0, kSize1); |
| EXPECT_EQ(17000, entry->ReadData(0, 0, buffer1.get(), kSize1, |
| net::CompletionOnceCallback())); |
| EXPECT_STREQ("the data", buffer1->data()); |
| |
| base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); |
| EXPECT_EQ(25000, entry->WriteData(1, 10000, buffer2.get(), kSize2, |
| net::CompletionOnceCallback(), false)); |
| memset(buffer2->data(), 0, kSize2); |
| EXPECT_EQ(24989, entry->ReadData(1, 10011, buffer2.get(), kSize2, |
| net::CompletionOnceCallback())); |
| EXPECT_STREQ("big data goes here", buffer2->data()); |
| EXPECT_EQ(25000, entry->ReadData(1, 0, buffer2.get(), kSize2, |
| net::CompletionOnceCallback())); |
| EXPECT_EQ(5000, entry->ReadData(1, 30000, buffer2.get(), kSize2, |
| net::CompletionOnceCallback())); |
| |
| EXPECT_EQ(0, entry->ReadData(1, 35000, buffer2.get(), kSize2, |
| net::CompletionOnceCallback())); |
| EXPECT_EQ(17000, entry->ReadData(1, 0, buffer1.get(), kSize1, |
| net::CompletionOnceCallback())); |
| EXPECT_EQ(17000, entry->WriteData(1, 20000, buffer1.get(), kSize1, |
| net::CompletionOnceCallback(), false)); |
| EXPECT_EQ(37000, entry->GetDataSize(1)); |
| |
| // We need to delete the memory buffer on this thread. |
| EXPECT_EQ( |
| 0, entry->WriteData(0, 0, NULL, 0, net::CompletionOnceCallback(), true)); |
| EXPECT_EQ( |
| 0, entry->WriteData(1, 0, NULL, 0, net::CompletionOnceCallback(), true)); |
| } |
| |
| void DiskCacheEntryTest::ExternalSyncIO() { |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry("the first key", &entry), IsOk()); |
| |
| // The bulk of the test runs from within the callback, on the cache thread. |
| RunTaskForTest(base::Bind(&DiskCacheEntryTest::ExternalSyncIOBackground, |
| base::Unretained(this), |
| entry)); |
| |
| entry->Doom(); |
| entry->Close(); |
| FlushQueueForTest(); |
| EXPECT_EQ(0, cache_->GetEntryCount()); |
| } |
| |
| TEST_F(DiskCacheEntryTest, ExternalSyncIO) { |
| InitCache(); |
| ExternalSyncIO(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, ExternalSyncIONoBuffer) { |
| InitCache(); |
| cache_impl_->SetFlags(disk_cache::kNoBuffering); |
| ExternalSyncIO(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyExternalSyncIO) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| ExternalSyncIO(); |
| } |
| |
| void DiskCacheEntryTest::ExternalAsyncIO() { |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry("the first key", &entry), IsOk()); |
| |
| int expected = 0; |
| |
| MessageLoopHelper helper; |
| // Let's verify that each IO goes to the right callback object. |
| CallbackTest callback1(&helper, false); |
| CallbackTest callback2(&helper, false); |
| CallbackTest callback3(&helper, false); |
| CallbackTest callback4(&helper, false); |
| CallbackTest callback5(&helper, false); |
| CallbackTest callback6(&helper, false); |
| CallbackTest callback7(&helper, false); |
| CallbackTest callback8(&helper, false); |
| CallbackTest callback9(&helper, false); |
| |
| const int kSize1 = 17000; |
| const int kSize2 = 25000; |
| const int kSize3 = 25000; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize1); |
| scoped_refptr<net::IOBuffer> buffer2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize2); |
| scoped_refptr<net::IOBuffer> buffer3 = |
| base::MakeRefCounted<net::IOBuffer>(kSize3); |
| CacheTestFillBuffer(buffer1->data(), kSize1, false); |
| CacheTestFillBuffer(buffer2->data(), kSize2, false); |
| CacheTestFillBuffer(buffer3->data(), kSize3, false); |
| base::strlcpy(buffer1->data(), "the data", kSize1); |
| int ret = entry->WriteData( |
| 0, |
| 0, |
| buffer1.get(), |
| kSize1, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback1)), |
| false); |
| EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| |
| memset(buffer2->data(), 0, kSize1); |
| ret = entry->ReadData( |
| 0, |
| 0, |
| buffer2.get(), |
| kSize1, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback2))); |
| EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| EXPECT_STREQ("the data", buffer2->data()); |
| |
| base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); |
| ret = entry->WriteData( |
| 1, |
| 10000, |
| buffer2.get(), |
| kSize2, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback3)), |
| false); |
| EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| |
| memset(buffer3->data(), 0, kSize3); |
| ret = entry->ReadData( |
| 1, |
| 10011, |
| buffer3.get(), |
| kSize3, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback4))); |
| EXPECT_TRUE(24989 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| EXPECT_STREQ("big data goes here", buffer3->data()); |
| ret = entry->ReadData( |
| 1, |
| 0, |
| buffer2.get(), |
| kSize2, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback5))); |
| EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| memset(buffer3->data(), 0, kSize3); |
| EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 10000)); |
| ret = entry->ReadData( |
| 1, |
| 30000, |
| buffer2.get(), |
| kSize2, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback6))); |
| EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| ret = entry->ReadData( |
| 1, 35000, buffer2.get(), kSize2, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback7))); |
| EXPECT_TRUE(0 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| ret = entry->ReadData( |
| 1, |
| 0, |
| buffer1.get(), |
| kSize1, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback8))); |
| EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| ret = entry->WriteData( |
| 1, |
| 20000, |
| buffer3.get(), |
| kSize1, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback9)), |
| false); |
| EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| EXPECT_EQ(37000, entry->GetDataSize(1)); |
| |
| EXPECT_FALSE(helper.callback_reused_error()); |
| |
| entry->Doom(); |
| entry->Close(); |
| FlushQueueForTest(); |
| EXPECT_EQ(0, cache_->GetEntryCount()); |
| } |
| |
| TEST_F(DiskCacheEntryTest, ExternalAsyncIO) { |
| InitCache(); |
| ExternalAsyncIO(); |
| } |
| |
| // TODO(http://crbug.com/497101): This test is flaky. |
| #if defined(OS_IOS) |
| #define MAYBE_ExternalAsyncIONoBuffer DISABLED_ExternalAsyncIONoBuffer |
| #else |
| #define MAYBE_ExternalAsyncIONoBuffer ExternalAsyncIONoBuffer |
| #endif |
| TEST_F(DiskCacheEntryTest, MAYBE_ExternalAsyncIONoBuffer) { |
| InitCache(); |
| cache_impl_->SetFlags(disk_cache::kNoBuffering); |
| ExternalAsyncIO(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyExternalAsyncIO) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| ExternalAsyncIO(); |
| } |
| |
| // Tests that IOBuffers are not referenced after IO completes. |
| void DiskCacheEntryTest::ReleaseBuffer(int stream_index) { |
| disk_cache::Entry* entry = NULL; |
| ASSERT_THAT(CreateEntry("the first key", &entry), IsOk()); |
| ASSERT_TRUE(NULL != entry); |
| |
| const int kBufferSize = 1024; |
| scoped_refptr<net::IOBuffer> buffer = |
| base::MakeRefCounted<net::IOBuffer>(kBufferSize); |
| CacheTestFillBuffer(buffer->data(), kBufferSize, false); |
| |
| net::ReleaseBufferCompletionCallback cb(buffer.get()); |
| int rv = entry->WriteData( |
| stream_index, 0, buffer.get(), kBufferSize, cb.callback(), false); |
| EXPECT_EQ(kBufferSize, cb.GetResult(rv)); |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, ReleaseBuffer) { |
| InitCache(); |
| cache_impl_->SetFlags(disk_cache::kNoBuffering); |
| ReleaseBuffer(0); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyReleaseBuffer) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| ReleaseBuffer(0); |
| } |
| |
| void DiskCacheEntryTest::StreamAccess() { |
| disk_cache::Entry* entry = NULL; |
| ASSERT_THAT(CreateEntry("the first key", &entry), IsOk()); |
| ASSERT_TRUE(NULL != entry); |
| |
| const int kBufferSize = 1024; |
| const int kNumStreams = 3; |
| scoped_refptr<net::IOBuffer> reference_buffers[kNumStreams]; |
| for (int i = 0; i < kNumStreams; i++) { |
| reference_buffers[i] = base::MakeRefCounted<net::IOBuffer>(kBufferSize); |
| CacheTestFillBuffer(reference_buffers[i]->data(), kBufferSize, false); |
| } |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kBufferSize); |
| for (int i = 0; i < kNumStreams; i++) { |
| EXPECT_EQ( |
| kBufferSize, |
| WriteData(entry, i, 0, reference_buffers[i].get(), kBufferSize, false)); |
| memset(buffer1->data(), 0, kBufferSize); |
| EXPECT_EQ(kBufferSize, ReadData(entry, i, 0, buffer1.get(), kBufferSize)); |
| EXPECT_EQ(0, memcmp(reference_buffers[i]->data(), buffer1->data(), |
| kBufferSize)); |
| } |
| EXPECT_EQ(net::ERR_INVALID_ARGUMENT, |
| ReadData(entry, kNumStreams, 0, buffer1.get(), kBufferSize)); |
| entry->Close(); |
| |
| // Open the entry and read it in chunks, including a read past the end. |
| ASSERT_THAT(OpenEntry("the first key", &entry), IsOk()); |
| ASSERT_TRUE(NULL != entry); |
| const int kReadBufferSize = 600; |
| const int kFinalReadSize = kBufferSize - kReadBufferSize; |
| static_assert(kFinalReadSize < kReadBufferSize, |
| "should be exactly two reads"); |
| scoped_refptr<net::IOBuffer> buffer2 = |
| base::MakeRefCounted<net::IOBuffer>(kReadBufferSize); |
| for (int i = 0; i < kNumStreams; i++) { |
| memset(buffer2->data(), 0, kReadBufferSize); |
| EXPECT_EQ(kReadBufferSize, |
| ReadData(entry, i, 0, buffer2.get(), kReadBufferSize)); |
| EXPECT_EQ(0, memcmp(reference_buffers[i]->data(), buffer2->data(), |
| kReadBufferSize)); |
| |
| memset(buffer2->data(), 0, kReadBufferSize); |
| EXPECT_EQ( |
| kFinalReadSize, |
| ReadData(entry, i, kReadBufferSize, buffer2.get(), kReadBufferSize)); |
| EXPECT_EQ(0, memcmp(reference_buffers[i]->data() + kReadBufferSize, |
| buffer2->data(), kFinalReadSize)); |
| } |
| |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, StreamAccess) { |
| InitCache(); |
| StreamAccess(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyStreamAccess) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| StreamAccess(); |
| } |
| |
| void DiskCacheEntryTest::GetKey() { |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| EXPECT_EQ(key, entry->GetKey()) << "short key"; |
| entry->Close(); |
| |
| int seed = static_cast<int>(Time::Now().ToInternalValue()); |
| srand(seed); |
| char key_buffer[20000]; |
| |
| CacheTestFillBuffer(key_buffer, 3000, true); |
| key_buffer[1000] = '\0'; |
| |
| key = key_buffer; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| EXPECT_TRUE(key == entry->GetKey()) << "1000 bytes key"; |
| entry->Close(); |
| |
| key_buffer[1000] = 'p'; |
| key_buffer[3000] = '\0'; |
| key = key_buffer; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| EXPECT_TRUE(key == entry->GetKey()) << "medium size key"; |
| entry->Close(); |
| |
| CacheTestFillBuffer(key_buffer, sizeof(key_buffer), true); |
| key_buffer[19999] = '\0'; |
| |
| key = key_buffer; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| EXPECT_TRUE(key == entry->GetKey()) << "long key"; |
| entry->Close(); |
| |
| CacheTestFillBuffer(key_buffer, 0x4000, true); |
| key_buffer[0x4000] = '\0'; |
| |
| key = key_buffer; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| EXPECT_TRUE(key == entry->GetKey()) << "16KB key"; |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, GetKey) { |
| InitCache(); |
| GetKey(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyGetKey) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| GetKey(); |
| } |
| |
| void DiskCacheEntryTest::GetTimes(int stream_index) { |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| |
| Time t1 = Time::Now(); |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| EXPECT_TRUE(entry->GetLastModified() >= t1); |
| EXPECT_TRUE(entry->GetLastModified() == entry->GetLastUsed()); |
| |
| AddDelay(); |
| Time t2 = Time::Now(); |
| EXPECT_TRUE(t2 > t1); |
| EXPECT_EQ(0, WriteData(entry, stream_index, 200, NULL, 0, false)); |
| if (type_ == net::APP_CACHE) { |
| EXPECT_TRUE(entry->GetLastModified() < t2); |
| } else { |
| EXPECT_TRUE(entry->GetLastModified() >= t2); |
| } |
| EXPECT_TRUE(entry->GetLastModified() == entry->GetLastUsed()); |
| |
| AddDelay(); |
| Time t3 = Time::Now(); |
| EXPECT_TRUE(t3 > t2); |
| const int kSize = 200; |
| scoped_refptr<net::IOBuffer> buffer = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| EXPECT_EQ(kSize, ReadData(entry, stream_index, 0, buffer.get(), kSize)); |
| if (type_ == net::APP_CACHE) { |
| EXPECT_TRUE(entry->GetLastUsed() < t2); |
| EXPECT_TRUE(entry->GetLastModified() < t2); |
| } else if (type_ == net::SHADER_CACHE) { |
| EXPECT_TRUE(entry->GetLastUsed() < t3); |
| EXPECT_TRUE(entry->GetLastModified() < t3); |
| } else { |
| EXPECT_TRUE(entry->GetLastUsed() >= t3); |
| EXPECT_TRUE(entry->GetLastModified() < t3); |
| } |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, GetTimes) { |
| InitCache(); |
| GetTimes(0); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyGetTimes) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| GetTimes(0); |
| } |
| |
| TEST_F(DiskCacheEntryTest, AppCacheGetTimes) { |
| SetCacheType(net::APP_CACHE); |
| InitCache(); |
| GetTimes(0); |
| } |
| |
| TEST_F(DiskCacheEntryTest, ShaderCacheGetTimes) { |
| SetCacheType(net::SHADER_CACHE); |
| InitCache(); |
| GetTimes(0); |
| } |
| |
| void DiskCacheEntryTest::GrowData(int stream_index) { |
| std::string key1("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key1, &entry), IsOk()); |
| |
| const int kSize = 20000; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| scoped_refptr<net::IOBuffer> buffer2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer1->data(), kSize, false); |
| memset(buffer2->data(), 0, kSize); |
| |
| base::strlcpy(buffer1->data(), "the data", kSize); |
| EXPECT_EQ(10, WriteData(entry, stream_index, 0, buffer1.get(), 10, false)); |
| EXPECT_EQ(10, ReadData(entry, stream_index, 0, buffer2.get(), 10)); |
| EXPECT_STREQ("the data", buffer2->data()); |
| EXPECT_EQ(10, entry->GetDataSize(stream_index)); |
| |
| EXPECT_EQ(2000, |
| WriteData(entry, stream_index, 0, buffer1.get(), 2000, false)); |
| EXPECT_EQ(2000, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(2000, ReadData(entry, stream_index, 0, buffer2.get(), 2000)); |
| EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000)); |
| |
| EXPECT_EQ(20000, |
| WriteData(entry, stream_index, 0, buffer1.get(), kSize, false)); |
| EXPECT_EQ(20000, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(20000, ReadData(entry, stream_index, 0, buffer2.get(), kSize)); |
| EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize)); |
| entry->Close(); |
| |
| memset(buffer2->data(), 0, kSize); |
| std::string key2("Second key"); |
| ASSERT_THAT(CreateEntry(key2, &entry), IsOk()); |
| EXPECT_EQ(10, WriteData(entry, stream_index, 0, buffer1.get(), 10, false)); |
| EXPECT_EQ(10, entry->GetDataSize(stream_index)); |
| entry->Close(); |
| |
| // Go from an internal address to a bigger block size. |
| ASSERT_THAT(OpenEntry(key2, &entry), IsOk()); |
| EXPECT_EQ(2000, |
| WriteData(entry, stream_index, 0, buffer1.get(), 2000, false)); |
| EXPECT_EQ(2000, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(2000, ReadData(entry, stream_index, 0, buffer2.get(), 2000)); |
| EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000)); |
| entry->Close(); |
| memset(buffer2->data(), 0, kSize); |
| |
| // Go from an internal address to an external one. |
| ASSERT_THAT(OpenEntry(key2, &entry), IsOk()); |
| EXPECT_EQ(20000, |
| WriteData(entry, stream_index, 0, buffer1.get(), kSize, false)); |
| EXPECT_EQ(20000, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(20000, ReadData(entry, stream_index, 0, buffer2.get(), kSize)); |
| EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize)); |
| entry->Close(); |
| |
| // Double check the size from disk. |
| ASSERT_THAT(OpenEntry(key2, &entry), IsOk()); |
| EXPECT_EQ(20000, entry->GetDataSize(stream_index)); |
| |
| // Now extend the entry without actual data. |
| EXPECT_EQ(0, WriteData(entry, stream_index, 45500, buffer1.get(), 0, false)); |
| entry->Close(); |
| |
| // And check again from disk. |
| ASSERT_THAT(OpenEntry(key2, &entry), IsOk()); |
| EXPECT_EQ(45500, entry->GetDataSize(stream_index)); |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, GrowData) { |
| InitCache(); |
| GrowData(0); |
| } |
| |
| TEST_F(DiskCacheEntryTest, GrowDataNoBuffer) { |
| InitCache(); |
| cache_impl_->SetFlags(disk_cache::kNoBuffering); |
| GrowData(0); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyGrowData) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| GrowData(0); |
| } |
| |
| void DiskCacheEntryTest::TruncateData(int stream_index) { |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| const int kSize1 = 20000; |
| const int kSize2 = 20000; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize1); |
| scoped_refptr<net::IOBuffer> buffer2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize2); |
| |
| CacheTestFillBuffer(buffer1->data(), kSize1, false); |
| memset(buffer2->data(), 0, kSize2); |
| |
| // Simple truncation: |
| EXPECT_EQ(200, WriteData(entry, stream_index, 0, buffer1.get(), 200, false)); |
| EXPECT_EQ(200, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(100, WriteData(entry, stream_index, 0, buffer1.get(), 100, false)); |
| EXPECT_EQ(200, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(100, WriteData(entry, stream_index, 0, buffer1.get(), 100, true)); |
| EXPECT_EQ(100, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(0, WriteData(entry, stream_index, 50, buffer1.get(), 0, true)); |
| EXPECT_EQ(50, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(0, WriteData(entry, stream_index, 0, buffer1.get(), 0, true)); |
| EXPECT_EQ(0, entry->GetDataSize(stream_index)); |
| entry->Close(); |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| |
| // Go to an external file. |
| EXPECT_EQ(20000, |
| WriteData(entry, stream_index, 0, buffer1.get(), 20000, true)); |
| EXPECT_EQ(20000, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(20000, ReadData(entry, stream_index, 0, buffer2.get(), 20000)); |
| EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 20000)); |
| memset(buffer2->data(), 0, kSize2); |
| |
| // External file truncation |
| EXPECT_EQ(18000, |
| WriteData(entry, stream_index, 0, buffer1.get(), 18000, false)); |
| EXPECT_EQ(20000, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(18000, |
| WriteData(entry, stream_index, 0, buffer1.get(), 18000, true)); |
| EXPECT_EQ(18000, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(0, WriteData(entry, stream_index, 17500, buffer1.get(), 0, true)); |
| EXPECT_EQ(17500, entry->GetDataSize(stream_index)); |
| |
| // And back to an internal block. |
| EXPECT_EQ(600, |
| WriteData(entry, stream_index, 1000, buffer1.get(), 600, true)); |
| EXPECT_EQ(1600, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(600, ReadData(entry, stream_index, 1000, buffer2.get(), 600)); |
| EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 600)); |
| EXPECT_EQ(1000, ReadData(entry, stream_index, 0, buffer2.get(), 1000)); |
| EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 1000)) |
| << "Preserves previous data"; |
| |
| // Go from external file to zero length. |
| EXPECT_EQ(20000, |
| WriteData(entry, stream_index, 0, buffer1.get(), 20000, true)); |
| EXPECT_EQ(20000, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(0, WriteData(entry, stream_index, 0, buffer1.get(), 0, true)); |
| EXPECT_EQ(0, entry->GetDataSize(stream_index)); |
| |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, TruncateData) { |
| InitCache(); |
| TruncateData(0); |
| } |
| |
| TEST_F(DiskCacheEntryTest, TruncateDataNoBuffer) { |
| InitCache(); |
| cache_impl_->SetFlags(disk_cache::kNoBuffering); |
| TruncateData(0); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyTruncateData) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| TruncateData(0); |
| } |
| |
| void DiskCacheEntryTest::ZeroLengthIO(int stream_index) { |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| EXPECT_EQ(0, ReadData(entry, stream_index, 0, NULL, 0)); |
| EXPECT_EQ(0, WriteData(entry, stream_index, 0, NULL, 0, false)); |
| |
| // This write should extend the entry. |
| EXPECT_EQ(0, WriteData(entry, stream_index, 1000, NULL, 0, false)); |
| EXPECT_EQ(0, ReadData(entry, stream_index, 500, NULL, 0)); |
| EXPECT_EQ(0, ReadData(entry, stream_index, 2000, NULL, 0)); |
| EXPECT_EQ(1000, entry->GetDataSize(stream_index)); |
| |
| EXPECT_EQ(0, WriteData(entry, stream_index, 100000, NULL, 0, true)); |
| EXPECT_EQ(0, ReadData(entry, stream_index, 50000, NULL, 0)); |
| EXPECT_EQ(100000, entry->GetDataSize(stream_index)); |
| |
| // Let's verify the actual content. |
| const int kSize = 20; |
| const char zeros[kSize] = {}; |
| scoped_refptr<net::IOBuffer> buffer = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| |
| CacheTestFillBuffer(buffer->data(), kSize, false); |
| EXPECT_EQ(kSize, ReadData(entry, stream_index, 500, buffer.get(), kSize)); |
| EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize)); |
| |
| CacheTestFillBuffer(buffer->data(), kSize, false); |
| EXPECT_EQ(kSize, ReadData(entry, stream_index, 5000, buffer.get(), kSize)); |
| EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize)); |
| |
| CacheTestFillBuffer(buffer->data(), kSize, false); |
| EXPECT_EQ(kSize, ReadData(entry, stream_index, 50000, buffer.get(), kSize)); |
| EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize)); |
| |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, ZeroLengthIO) { |
| InitCache(); |
| ZeroLengthIO(0); |
| } |
| |
| TEST_F(DiskCacheEntryTest, ZeroLengthIONoBuffer) { |
| InitCache(); |
| cache_impl_->SetFlags(disk_cache::kNoBuffering); |
| ZeroLengthIO(0); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyZeroLengthIO) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| ZeroLengthIO(0); |
| } |
| |
| // Tests that we handle the content correctly when buffering, a feature of the |
| // standard cache that permits fast responses to certain reads. |
| void DiskCacheEntryTest::Buffering() { |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| const int kSize = 200; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| scoped_refptr<net::IOBuffer> buffer2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer1->data(), kSize, true); |
| CacheTestFillBuffer(buffer2->data(), kSize, true); |
| |
| EXPECT_EQ(kSize, WriteData(entry, 1, 0, buffer1.get(), kSize, false)); |
| entry->Close(); |
| |
| // Write a little more and read what we wrote before. |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| EXPECT_EQ(kSize, WriteData(entry, 1, 5000, buffer1.get(), kSize, false)); |
| EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2.get(), kSize)); |
| EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); |
| |
| // Now go to an external file. |
| EXPECT_EQ(kSize, WriteData(entry, 1, 18000, buffer1.get(), kSize, false)); |
| entry->Close(); |
| |
| // Write something else and verify old data. |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| EXPECT_EQ(kSize, WriteData(entry, 1, 10000, buffer1.get(), kSize, false)); |
| CacheTestFillBuffer(buffer2->data(), kSize, true); |
| EXPECT_EQ(kSize, ReadData(entry, 1, 5000, buffer2.get(), kSize)); |
| EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); |
| CacheTestFillBuffer(buffer2->data(), kSize, true); |
| EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2.get(), kSize)); |
| EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); |
| CacheTestFillBuffer(buffer2->data(), kSize, true); |
| EXPECT_EQ(kSize, ReadData(entry, 1, 18000, buffer2.get(), kSize)); |
| EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); |
| |
| // Extend the file some more. |
| EXPECT_EQ(kSize, WriteData(entry, 1, 23000, buffer1.get(), kSize, false)); |
| entry->Close(); |
| |
| // And now make sure that we can deal with data in both places (ram/disk). |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| EXPECT_EQ(kSize, WriteData(entry, 1, 17000, buffer1.get(), kSize, false)); |
| |
| // We should not overwrite the data at 18000 with this. |
| EXPECT_EQ(kSize, WriteData(entry, 1, 19000, buffer1.get(), kSize, false)); |
| CacheTestFillBuffer(buffer2->data(), kSize, true); |
| EXPECT_EQ(kSize, ReadData(entry, 1, 18000, buffer2.get(), kSize)); |
| EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); |
| CacheTestFillBuffer(buffer2->data(), kSize, true); |
| EXPECT_EQ(kSize, ReadData(entry, 1, 17000, buffer2.get(), kSize)); |
| EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); |
| |
| EXPECT_EQ(kSize, WriteData(entry, 1, 22900, buffer1.get(), kSize, false)); |
| CacheTestFillBuffer(buffer2->data(), kSize, true); |
| EXPECT_EQ(100, ReadData(entry, 1, 23000, buffer2.get(), kSize)); |
| EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + 100, 100)); |
| |
| CacheTestFillBuffer(buffer2->data(), kSize, true); |
| EXPECT_EQ(100, ReadData(entry, 1, 23100, buffer2.get(), kSize)); |
| EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + 100, 100)); |
| |
| // Extend the file again and read before without closing the entry. |
| EXPECT_EQ(kSize, WriteData(entry, 1, 25000, buffer1.get(), kSize, false)); |
| EXPECT_EQ(kSize, WriteData(entry, 1, 45000, buffer1.get(), kSize, false)); |
| CacheTestFillBuffer(buffer2->data(), kSize, true); |
| EXPECT_EQ(kSize, ReadData(entry, 1, 25000, buffer2.get(), kSize)); |
| EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); |
| CacheTestFillBuffer(buffer2->data(), kSize, true); |
| EXPECT_EQ(kSize, ReadData(entry, 1, 45000, buffer2.get(), kSize)); |
| EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); |
| |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, Buffering) { |
| InitCache(); |
| Buffering(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, BufferingNoBuffer) { |
| InitCache(); |
| cache_impl_->SetFlags(disk_cache::kNoBuffering); |
| Buffering(); |
| } |
| |
| // Checks that entries are zero length when created. |
| void DiskCacheEntryTest::SizeAtCreate() { |
| const char key[] = "the first key"; |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| const int kNumStreams = 3; |
| for (int i = 0; i < kNumStreams; ++i) |
| EXPECT_EQ(0, entry->GetDataSize(i)); |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SizeAtCreate) { |
| InitCache(); |
| SizeAtCreate(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlySizeAtCreate) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| SizeAtCreate(); |
| } |
| |
| // Some extra tests to make sure that buffering works properly when changing |
| // the entry size. |
| void DiskCacheEntryTest::SizeChanges(int stream_index) { |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| const int kSize = 200; |
| const char zeros[kSize] = {}; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| scoped_refptr<net::IOBuffer> buffer2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer1->data(), kSize, true); |
| CacheTestFillBuffer(buffer2->data(), kSize, true); |
| |
| EXPECT_EQ(kSize, |
| WriteData(entry, stream_index, 0, buffer1.get(), kSize, true)); |
| EXPECT_EQ(kSize, |
| WriteData(entry, stream_index, 17000, buffer1.get(), kSize, true)); |
| EXPECT_EQ(kSize, |
| WriteData(entry, stream_index, 23000, buffer1.get(), kSize, true)); |
| entry->Close(); |
| |
| // Extend the file and read between the old size and the new write. |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| EXPECT_EQ(23000 + kSize, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(kSize, |
| WriteData(entry, stream_index, 25000, buffer1.get(), kSize, true)); |
| EXPECT_EQ(25000 + kSize, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(kSize, ReadData(entry, stream_index, 24000, buffer2.get(), kSize)); |
| EXPECT_TRUE(!memcmp(buffer2->data(), zeros, kSize)); |
| |
| // Read at the end of the old file size. |
| EXPECT_EQ( |
| kSize, |
| ReadData(entry, stream_index, 23000 + kSize - 35, buffer2.get(), kSize)); |
| EXPECT_TRUE( |
| !memcmp(buffer2->data(), buffer1->data() + kSize - 35, 35)); |
| |
| // Read slightly before the last write. |
| CacheTestFillBuffer(buffer2->data(), kSize, true); |
| EXPECT_EQ(kSize, ReadData(entry, stream_index, 24900, buffer2.get(), kSize)); |
| EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100)); |
| EXPECT_TRUE( |
| !memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100)); |
| |
| // Extend the entry a little more. |
| EXPECT_EQ(kSize, |
| WriteData(entry, stream_index, 26000, buffer1.get(), kSize, true)); |
| EXPECT_EQ(26000 + kSize, entry->GetDataSize(stream_index)); |
| CacheTestFillBuffer(buffer2->data(), kSize, true); |
| EXPECT_EQ(kSize, ReadData(entry, stream_index, 25900, buffer2.get(), kSize)); |
| EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100)); |
| EXPECT_TRUE( |
| !memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100)); |
| |
| // And now reduce the size. |
| EXPECT_EQ(kSize, |
| WriteData(entry, stream_index, 25000, buffer1.get(), kSize, true)); |
| EXPECT_EQ(25000 + kSize, entry->GetDataSize(stream_index)); |
| EXPECT_EQ( |
| 28, |
| ReadData(entry, stream_index, 25000 + kSize - 28, buffer2.get(), kSize)); |
| EXPECT_TRUE( |
| !memcmp(buffer2->data(), buffer1->data() + kSize - 28, 28)); |
| |
| // Reduce the size with a buffer that is not extending the size. |
| EXPECT_EQ(kSize, |
| WriteData(entry, stream_index, 24000, buffer1.get(), kSize, false)); |
| EXPECT_EQ(25000 + kSize, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(kSize, |
| WriteData(entry, stream_index, 24500, buffer1.get(), kSize, true)); |
| EXPECT_EQ(24500 + kSize, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(kSize, ReadData(entry, stream_index, 23900, buffer2.get(), kSize)); |
| EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100)); |
| EXPECT_TRUE( |
| !memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100)); |
| |
| // And now reduce the size below the old size. |
| EXPECT_EQ(kSize, |
| WriteData(entry, stream_index, 19000, buffer1.get(), kSize, true)); |
| EXPECT_EQ(19000 + kSize, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(kSize, ReadData(entry, stream_index, 18900, buffer2.get(), kSize)); |
| EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100)); |
| EXPECT_TRUE( |
| !memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100)); |
| |
| // Verify that the actual file is truncated. |
| entry->Close(); |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| EXPECT_EQ(19000 + kSize, entry->GetDataSize(stream_index)); |
| |
| // Extend the newly opened file with a zero length write, expect zero fill. |
| EXPECT_EQ( |
| 0, |
| WriteData(entry, stream_index, 20000 + kSize, buffer1.get(), 0, false)); |
| EXPECT_EQ(kSize, |
| ReadData(entry, stream_index, 19000 + kSize, buffer1.get(), kSize)); |
| EXPECT_EQ(0, memcmp(buffer1->data(), zeros, kSize)); |
| |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SizeChanges) { |
| InitCache(); |
| SizeChanges(1); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SizeChangesNoBuffer) { |
| InitCache(); |
| cache_impl_->SetFlags(disk_cache::kNoBuffering); |
| SizeChanges(1); |
| } |
| |
| // Write more than the total cache capacity but to a single entry. |size| is the |
| // amount of bytes to write each time. |
| void DiskCacheEntryTest::ReuseEntry(int size, int stream_index) { |
| std::string key1("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key1, &entry), IsOk()); |
| |
| entry->Close(); |
| std::string key2("the second key"); |
| ASSERT_THAT(CreateEntry(key2, &entry), IsOk()); |
| |
| scoped_refptr<net::IOBuffer> buffer = |
| base::MakeRefCounted<net::IOBuffer>(size); |
| CacheTestFillBuffer(buffer->data(), size, false); |
| |
| for (int i = 0; i < 15; i++) { |
| EXPECT_EQ(0, WriteData(entry, stream_index, 0, buffer.get(), 0, true)); |
| EXPECT_EQ(size, |
| WriteData(entry, stream_index, 0, buffer.get(), size, false)); |
| entry->Close(); |
| ASSERT_THAT(OpenEntry(key2, &entry), IsOk()); |
| } |
| |
| entry->Close(); |
| ASSERT_EQ(net::OK, OpenEntry(key1, &entry)) << "have not evicted this entry"; |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, ReuseExternalEntry) { |
| SetMaxSize(200 * 1024); |
| InitCache(); |
| ReuseEntry(20 * 1024, 0); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyReuseExternalEntry) { |
| SetMemoryOnlyMode(); |
| SetMaxSize(200 * 1024); |
| InitCache(); |
| ReuseEntry(20 * 1024, 0); |
| } |
| |
| TEST_F(DiskCacheEntryTest, ReuseInternalEntry) { |
| SetMaxSize(100 * 1024); |
| InitCache(); |
| ReuseEntry(10 * 1024, 0); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyReuseInternalEntry) { |
| SetMemoryOnlyMode(); |
| SetMaxSize(100 * 1024); |
| InitCache(); |
| ReuseEntry(10 * 1024, 0); |
| } |
| |
| // Reading somewhere that was not written should return zeros. |
| void DiskCacheEntryTest::InvalidData(int stream_index) { |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| const int kSize1 = 20000; |
| const int kSize2 = 20000; |
| const int kSize3 = 20000; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize1); |
| scoped_refptr<net::IOBuffer> buffer2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize2); |
| scoped_refptr<net::IOBuffer> buffer3 = |
| base::MakeRefCounted<net::IOBuffer>(kSize3); |
| |
| CacheTestFillBuffer(buffer1->data(), kSize1, false); |
| memset(buffer2->data(), 0, kSize2); |
| |
| // Simple data grow: |
| EXPECT_EQ(200, |
| WriteData(entry, stream_index, 400, buffer1.get(), 200, false)); |
| EXPECT_EQ(600, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(100, ReadData(entry, stream_index, 300, buffer3.get(), 100)); |
| EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100)); |
| entry->Close(); |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| |
| // The entry is now on disk. Load it and extend it. |
| EXPECT_EQ(200, |
| WriteData(entry, stream_index, 800, buffer1.get(), 200, false)); |
| EXPECT_EQ(1000, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(100, ReadData(entry, stream_index, 700, buffer3.get(), 100)); |
| EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100)); |
| entry->Close(); |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| |
| // This time using truncate. |
| EXPECT_EQ(200, |
| WriteData(entry, stream_index, 1800, buffer1.get(), 200, true)); |
| EXPECT_EQ(2000, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(100, ReadData(entry, stream_index, 1500, buffer3.get(), 100)); |
| EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100)); |
| |
| // Go to an external file. |
| EXPECT_EQ(200, |
| WriteData(entry, stream_index, 19800, buffer1.get(), 200, false)); |
| EXPECT_EQ(20000, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(4000, ReadData(entry, stream_index, 14000, buffer3.get(), 4000)); |
| EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 4000)); |
| |
| // And back to an internal block. |
| EXPECT_EQ(600, |
| WriteData(entry, stream_index, 1000, buffer1.get(), 600, true)); |
| EXPECT_EQ(1600, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(600, ReadData(entry, stream_index, 1000, buffer3.get(), 600)); |
| EXPECT_TRUE(!memcmp(buffer3->data(), buffer1->data(), 600)); |
| |
| // Extend it again. |
| EXPECT_EQ(600, |
| WriteData(entry, stream_index, 2000, buffer1.get(), 600, false)); |
| EXPECT_EQ(2600, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(200, ReadData(entry, stream_index, 1800, buffer3.get(), 200)); |
| EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200)); |
| |
| // And again (with truncation flag). |
| EXPECT_EQ(600, |
| WriteData(entry, stream_index, 3000, buffer1.get(), 600, true)); |
| EXPECT_EQ(3600, entry->GetDataSize(stream_index)); |
| EXPECT_EQ(200, ReadData(entry, stream_index, 2800, buffer3.get(), 200)); |
| EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200)); |
| |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, InvalidData) { |
| InitCache(); |
| InvalidData(0); |
| } |
| |
| TEST_F(DiskCacheEntryTest, InvalidDataNoBuffer) { |
| InitCache(); |
| cache_impl_->SetFlags(disk_cache::kNoBuffering); |
| InvalidData(0); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyInvalidData) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| InvalidData(0); |
| } |
| |
| // Tests that the cache preserves the buffer of an IO operation. |
| void DiskCacheEntryTest::ReadWriteDestroyBuffer(int stream_index) { |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| const int kSize = 200; |
| scoped_refptr<net::IOBuffer> buffer = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer->data(), kSize, false); |
| |
| net::TestCompletionCallback cb; |
| EXPECT_EQ(net::ERR_IO_PENDING, |
| entry->WriteData( |
| stream_index, 0, buffer.get(), kSize, cb.callback(), false)); |
| |
| // Release our reference to the buffer. |
| buffer = NULL; |
| EXPECT_EQ(kSize, cb.WaitForResult()); |
| |
| // And now test with a Read(). |
| buffer = base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer->data(), kSize, false); |
| |
| EXPECT_EQ( |
| net::ERR_IO_PENDING, |
| entry->ReadData(stream_index, 0, buffer.get(), kSize, cb.callback())); |
| buffer = NULL; |
| EXPECT_EQ(kSize, cb.WaitForResult()); |
| |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, ReadWriteDestroyBuffer) { |
| InitCache(); |
| ReadWriteDestroyBuffer(0); |
| } |
| |
| void DiskCacheEntryTest::DoomNormalEntry() { |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| entry->Doom(); |
| entry->Close(); |
| |
| const int kSize = 20000; |
| scoped_refptr<net::IOBuffer> buffer = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer->data(), kSize, true); |
| buffer->data()[19999] = '\0'; |
| |
| key = buffer->data(); |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer.get(), kSize, false)); |
| EXPECT_EQ(20000, WriteData(entry, 1, 0, buffer.get(), kSize, false)); |
| entry->Doom(); |
| entry->Close(); |
| |
| FlushQueueForTest(); |
| EXPECT_EQ(0, cache_->GetEntryCount()); |
| } |
| |
| TEST_F(DiskCacheEntryTest, DoomEntry) { |
| InitCache(); |
| DoomNormalEntry(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyDoomEntry) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| DoomNormalEntry(); |
| } |
| |
| // Tests dooming an entry that's linked to an open entry. |
| void DiskCacheEntryTest::DoomEntryNextToOpenEntry() { |
| disk_cache::Entry* entry1; |
| disk_cache::Entry* entry2; |
| ASSERT_THAT(CreateEntry("fixed", &entry1), IsOk()); |
| entry1->Close(); |
| ASSERT_THAT(CreateEntry("foo", &entry1), IsOk()); |
| entry1->Close(); |
| ASSERT_THAT(CreateEntry("bar", &entry1), IsOk()); |
| entry1->Close(); |
| |
| ASSERT_THAT(OpenEntry("foo", &entry1), IsOk()); |
| ASSERT_THAT(OpenEntry("bar", &entry2), IsOk()); |
| entry2->Doom(); |
| entry2->Close(); |
| |
| ASSERT_THAT(OpenEntry("foo", &entry2), IsOk()); |
| entry2->Doom(); |
| entry2->Close(); |
| entry1->Close(); |
| |
| ASSERT_THAT(OpenEntry("fixed", &entry1), IsOk()); |
| entry1->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, DoomEntryNextToOpenEntry) { |
| InitCache(); |
| DoomEntryNextToOpenEntry(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, NewEvictionDoomEntryNextToOpenEntry) { |
| SetNewEviction(); |
| InitCache(); |
| DoomEntryNextToOpenEntry(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, AppCacheDoomEntryNextToOpenEntry) { |
| SetCacheType(net::APP_CACHE); |
| InitCache(); |
| DoomEntryNextToOpenEntry(); |
| } |
| |
| // Verify that basic operations work as expected with doomed entries. |
| void DiskCacheEntryTest::DoomedEntry(int stream_index) { |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| entry->Doom(); |
| |
| FlushQueueForTest(); |
| EXPECT_EQ(0, cache_->GetEntryCount()); |
| Time initial = Time::Now(); |
| AddDelay(); |
| |
| const int kSize1 = 2000; |
| const int kSize2 = 2000; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize1); |
| scoped_refptr<net::IOBuffer> buffer2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize2); |
| CacheTestFillBuffer(buffer1->data(), kSize1, false); |
| memset(buffer2->data(), 0, kSize2); |
| |
| EXPECT_EQ(2000, |
| WriteData(entry, stream_index, 0, buffer1.get(), 2000, false)); |
| EXPECT_EQ(2000, ReadData(entry, stream_index, 0, buffer2.get(), 2000)); |
| EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kSize1)); |
| EXPECT_EQ(key, entry->GetKey()); |
| EXPECT_TRUE(initial < entry->GetLastModified()); |
| EXPECT_TRUE(initial < entry->GetLastUsed()); |
| |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, DoomedEntry) { |
| InitCache(); |
| DoomedEntry(0); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyDoomedEntry) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| DoomedEntry(0); |
| } |
| |
| // Tests that we discard entries if the data is missing. |
| TEST_F(DiskCacheEntryTest, MissingData) { |
| InitCache(); |
| |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| // Write to an external file. |
| const int kSize = 20000; |
| scoped_refptr<net::IOBuffer> buffer = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer->data(), kSize, false); |
| EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer.get(), kSize, false)); |
| entry->Close(); |
| FlushQueueForTest(); |
| |
| disk_cache::Addr address(0x80000001); |
| base::FilePath name = cache_impl_->GetFileName(address); |
| EXPECT_TRUE(base::DeleteFile(name, false)); |
| |
| // Attempt to read the data. |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| EXPECT_EQ(net::ERR_FILE_NOT_FOUND, |
| ReadData(entry, 0, 0, buffer.get(), kSize)); |
| entry->Close(); |
| |
| // The entry should be gone. |
| ASSERT_NE(net::OK, OpenEntry(key, &entry)); |
| } |
| |
| // Test that child entries in a memory cache backend are not visible from |
| // enumerations. |
| TEST_F(DiskCacheEntryTest, MemoryOnlyEnumerationWithSparseEntries) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| |
| const int kSize = 4096; |
| scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buf->data(), kSize, false); |
| |
| std::string key("the first key"); |
| disk_cache::Entry* parent_entry; |
| ASSERT_THAT(CreateEntry(key, &parent_entry), IsOk()); |
| |
| // Writes to the parent entry. |
| EXPECT_EQ(kSize, parent_entry->WriteSparseData( |
| 0, buf.get(), kSize, net::CompletionOnceCallback())); |
| |
| // This write creates a child entry and writes to it. |
| EXPECT_EQ(kSize, parent_entry->WriteSparseData( |
| 8192, buf.get(), kSize, net::CompletionOnceCallback())); |
| |
| parent_entry->Close(); |
| |
| // Perform the enumerations. |
| std::unique_ptr<TestIterator> iter = CreateIterator(); |
| disk_cache::Entry* entry = NULL; |
| int count = 0; |
| while (iter->OpenNextEntry(&entry) == net::OK) { |
| ASSERT_TRUE(entry != NULL); |
| ++count; |
| disk_cache::MemEntryImpl* mem_entry = |
| reinterpret_cast<disk_cache::MemEntryImpl*>(entry); |
| EXPECT_EQ(disk_cache::MemEntryImpl::PARENT_ENTRY, mem_entry->type()); |
| mem_entry->Close(); |
| } |
| EXPECT_EQ(1, count); |
| } |
| |
| // Writes |buf_1| to offset and reads it back as |buf_2|. |
| void VerifySparseIO(disk_cache::Entry* entry, |
| int64_t offset, |
| net::IOBuffer* buf_1, |
| int size, |
| net::IOBuffer* buf_2) { |
| net::TestCompletionCallback cb; |
| |
| memset(buf_2->data(), 0, size); |
| int ret = entry->ReadSparseData(offset, buf_2, size, cb.callback()); |
| EXPECT_EQ(0, cb.GetResult(ret)); |
| |
| ret = entry->WriteSparseData(offset, buf_1, size, cb.callback()); |
| EXPECT_EQ(size, cb.GetResult(ret)); |
| |
| ret = entry->ReadSparseData(offset, buf_2, size, cb.callback()); |
| EXPECT_EQ(size, cb.GetResult(ret)); |
| |
| EXPECT_EQ(0, memcmp(buf_1->data(), buf_2->data(), size)); |
| } |
| |
| // Reads |size| bytes from |entry| at |offset| and verifies that they are the |
| // same as the content of the provided |buffer|. |
| void VerifyContentSparseIO(disk_cache::Entry* entry, |
| int64_t offset, |
| char* buffer, |
| int size) { |
| net::TestCompletionCallback cb; |
| |
| scoped_refptr<net::IOBuffer> buf_1 = |
| base::MakeRefCounted<net::IOBuffer>(size); |
| memset(buf_1->data(), 0, size); |
| int ret = entry->ReadSparseData(offset, buf_1.get(), size, cb.callback()); |
| EXPECT_EQ(size, cb.GetResult(ret)); |
| EXPECT_EQ(0, memcmp(buf_1->data(), buffer, size)); |
| } |
| |
| void DiskCacheEntryTest::BasicSparseIO() { |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| const int kSize = 2048; |
| scoped_refptr<net::IOBuffer> buf_1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| scoped_refptr<net::IOBuffer> buf_2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buf_1->data(), kSize, false); |
| |
| // Write at offset 0. |
| VerifySparseIO(entry, 0, buf_1.get(), kSize, buf_2.get()); |
| |
| // Write at offset 0x400000 (4 MB). |
| VerifySparseIO(entry, 0x400000, buf_1.get(), kSize, buf_2.get()); |
| |
| // Write at offset 0x800000000 (32 GB). |
| VerifySparseIO(entry, 0x800000000LL, buf_1.get(), kSize, buf_2.get()); |
| |
| entry->Close(); |
| |
| // Check everything again. |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| VerifyContentSparseIO(entry, 0, buf_1->data(), kSize); |
| VerifyContentSparseIO(entry, 0x400000, buf_1->data(), kSize); |
| VerifyContentSparseIO(entry, 0x800000000LL, buf_1->data(), kSize); |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, BasicSparseIO) { |
| InitCache(); |
| BasicSparseIO(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyBasicSparseIO) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| BasicSparseIO(); |
| } |
| |
| void DiskCacheEntryTest::HugeSparseIO() { |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| // Write 1.2 MB so that we cover multiple entries. |
| const int kSize = 1200 * 1024; |
| scoped_refptr<net::IOBuffer> buf_1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| scoped_refptr<net::IOBuffer> buf_2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buf_1->data(), kSize, false); |
| |
| // Write at offset 0x20F0000 (33 MB - 64 KB). |
| VerifySparseIO(entry, 0x20F0000, buf_1.get(), kSize, buf_2.get()); |
| entry->Close(); |
| |
| // Check it again. |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| VerifyContentSparseIO(entry, 0x20F0000, buf_1->data(), kSize); |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, HugeSparseIO) { |
| InitCache(); |
| HugeSparseIO(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyHugeSparseIO) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| HugeSparseIO(); |
| } |
| |
| void DiskCacheEntryTest::GetAvailableRange() { |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| const int kSize = 16 * 1024; |
| scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buf->data(), kSize, false); |
| |
| // Write at offset 0x20F0000 (33 MB - 64 KB), and 0x20F4400 (33 MB - 47 KB). |
| EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F0000, buf.get(), kSize)); |
| EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F4400, buf.get(), kSize)); |
| |
| // We stop at the first empty block. |
| int64_t start; |
| net::TestCompletionCallback cb; |
| int rv = entry->GetAvailableRange( |
| 0x20F0000, kSize * 2, &start, cb.callback()); |
| EXPECT_EQ(kSize, cb.GetResult(rv)); |
| EXPECT_EQ(0x20F0000, start); |
| |
| start = 0; |
| rv = entry->GetAvailableRange(0, kSize, &start, cb.callback()); |
| EXPECT_EQ(0, cb.GetResult(rv)); |
| rv = entry->GetAvailableRange( |
| 0x20F0000 - kSize, kSize, &start, cb.callback()); |
| EXPECT_EQ(0, cb.GetResult(rv)); |
| rv = entry->GetAvailableRange(0, 0x2100000, &start, cb.callback()); |
| EXPECT_EQ(kSize, cb.GetResult(rv)); |
| EXPECT_EQ(0x20F0000, start); |
| |
| // We should be able to Read based on the results of GetAvailableRange. |
| start = -1; |
| rv = entry->GetAvailableRange(0x2100000, kSize, &start, cb.callback()); |
| EXPECT_EQ(0, cb.GetResult(rv)); |
| rv = entry->ReadSparseData(start, buf.get(), kSize, cb.callback()); |
| EXPECT_EQ(0, cb.GetResult(rv)); |
| |
| start = 0; |
| rv = entry->GetAvailableRange(0x20F2000, kSize, &start, cb.callback()); |
| EXPECT_EQ(0x2000, cb.GetResult(rv)); |
| EXPECT_EQ(0x20F2000, start); |
| EXPECT_EQ(0x2000, ReadSparseData(entry, start, buf.get(), kSize)); |
| |
| // Make sure that we respect the |len| argument. |
| start = 0; |
| rv = entry->GetAvailableRange( |
| 0x20F0001 - kSize, kSize, &start, cb.callback()); |
| EXPECT_EQ(1, cb.GetResult(rv)); |
| EXPECT_EQ(0x20F0000, start); |
| |
| // Use very small ranges. Write at offset 50. |
| const int kTinyLen = 10; |
| EXPECT_EQ(kTinyLen, WriteSparseData(entry, 50, buf.get(), kTinyLen)); |
| |
| start = -1; |
| rv = entry->GetAvailableRange(kTinyLen * 2, kTinyLen, &start, cb.callback()); |
| EXPECT_EQ(0, cb.GetResult(rv)); |
| EXPECT_EQ(kTinyLen * 2, start); |
| |
| // Get a huge range with maximum boundary |
| start = -1; |
| rv = entry->GetAvailableRange(0x2100000, std::numeric_limits<int32_t>::max(), |
| &start, cb.callback()); |
| EXPECT_EQ(0, cb.GetResult(rv)); |
| |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, GetAvailableRange) { |
| InitCache(); |
| GetAvailableRange(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyGetAvailableRange) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| GetAvailableRange(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, GetAvailableRangeBlockFileDiscontinuous) { |
| // crbug.com/791056 --- blockfile problem when there is a sub-KiB write before |
| // a bunch of full 1KiB blocks, and a GetAvailableRange is issued to which |
| // both are a potentially relevant. |
| InitCache(); |
| |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| scoped_refptr<net::IOBuffer> buf_2k = |
| base::MakeRefCounted<net::IOBuffer>(2 * 1024); |
| CacheTestFillBuffer(buf_2k->data(), 2 * 1024, false); |
| |
| const int kSmallSize = 612; // sub-1k |
| scoped_refptr<net::IOBuffer> buf_small = |
| base::MakeRefCounted<net::IOBuffer>(kSmallSize); |
| CacheTestFillBuffer(buf_small->data(), kSmallSize, false); |
| |
| // Sets some bits for blocks representing 1K ranges [1024, 3072), |
| // which will be relevant for the next GetAvailableRange call. |
| EXPECT_EQ(2 * 1024, WriteSparseData(entry, /* offset = */ 1024, buf_2k.get(), |
| /* size = */ 2 * 1024)); |
| |
| // Now record a partial write from start of the first kb. |
| EXPECT_EQ(kSmallSize, WriteSparseData(entry, /* offset = */ 0, |
| buf_small.get(), kSmallSize)); |
| |
| // Try to query a range starting from that block 0. |
| // The cache tracks: [0, 612) [1024, 3072). |
| // The request is for: [812, 2059) so response should be [1024, 2059), which |
| // has lenth = 1035. Previously this return a negative number for rv. |
| int64_t start = -1; |
| net::TestCompletionCallback cb; |
| int rv = entry->GetAvailableRange(812, 1247, &start, cb.callback()); |
| EXPECT_EQ(1035, cb.GetResult(rv)); |
| EXPECT_EQ(1024, start); |
| |
| // Now query [512, 1536). This matches both [512, 612) and [1024, 1536), |
| // so this should return [512, 612). |
| rv = entry->GetAvailableRange(512, 1024, &start, cb.callback()); |
| EXPECT_EQ(100, cb.GetResult(rv)); |
| EXPECT_EQ(512, start); |
| |
| // Now query next portion, [612, 1636). This now just should produce |
| // [1024, 1636) |
| rv = entry->GetAvailableRange(612, 1024, &start, cb.callback()); |
| EXPECT_EQ(612, cb.GetResult(rv)); |
| EXPECT_EQ(1024, start); |
| |
| // Do a continuous small write, this one at [3072, 3684). |
| // This means the cache tracks [1024, 3072) via bitmaps and [3072, 3684) |
| // as the last write. |
| EXPECT_EQ(kSmallSize, WriteSparseData(entry, /* offset = */ 3072, |
| buf_small.get(), kSmallSize)); |
| |
| // Query [2048, 4096). Should get [2048, 3684) |
| rv = entry->GetAvailableRange(2048, 2048, &start, cb.callback()); |
| EXPECT_EQ(1636, cb.GetResult(rv)); |
| EXPECT_EQ(2048, start); |
| |
| // Now write at [4096, 4708). Since only one sub-kb thing is tracked, this |
| // now tracks [1024, 3072) via bitmaps and [4096, 4708) as the last write. |
| EXPECT_EQ(kSmallSize, WriteSparseData(entry, /* offset = */ 4096, |
| buf_small.get(), kSmallSize)); |
| |
| // Query [2048, 4096). Should get [2048, 3072) |
| rv = entry->GetAvailableRange(2048, 2048, &start, cb.callback()); |
| EXPECT_EQ(1024, cb.GetResult(rv)); |
| EXPECT_EQ(2048, start); |
| |
| // Query 2K more after that: [3072, 5120). Should get [4096, 4708) |
| rv = entry->GetAvailableRange(3072, 2048, &start, cb.callback()); |
| EXPECT_EQ(612, cb.GetResult(rv)); |
| EXPECT_EQ(4096, start); |
| |
| // Also double-check that offsets within later children are correctly |
| // computed. |
| EXPECT_EQ(kSmallSize, WriteSparseData(entry, /* offset = */ 0x200400, |
| buf_small.get(), kSmallSize)); |
| rv = entry->GetAvailableRange(0x100000, 0x200000, &start, cb.callback()); |
| EXPECT_EQ(kSmallSize, cb.GetResult(rv)); |
| EXPECT_EQ(0x200400, start); |
| |
| entry->Close(); |
| } |
| |
| // Tests that non-sequential writes that are not aligned with the minimum sparse |
| // data granularity (1024 bytes) do in fact result in dropped data. |
| TEST_F(DiskCacheEntryTest, SparseWriteDropped) { |
| InitCache(); |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| const int kSize = 180; |
| scoped_refptr<net::IOBuffer> buf_1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| scoped_refptr<net::IOBuffer> buf_2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buf_1->data(), kSize, false); |
| |
| // Do small writes (180 bytes) that get increasingly close to a 1024-byte |
| // boundary. All data should be dropped until a boundary is crossed, at which |
| // point the data after the boundary is saved (at least for a while). |
| int offset = 1024 - 500; |
| int rv = 0; |
| net::TestCompletionCallback cb; |
| int64_t start; |
| for (int i = 0; i < 5; i++) { |
| // Check result of last GetAvailableRange. |
| EXPECT_EQ(0, rv); |
| |
| rv = entry->WriteSparseData(offset, buf_1.get(), kSize, cb.callback()); |
| EXPECT_EQ(kSize, cb.GetResult(rv)); |
| |
| rv = entry->GetAvailableRange(offset - 100, kSize, &start, cb.callback()); |
| EXPECT_EQ(0, cb.GetResult(rv)); |
| |
| rv = entry->GetAvailableRange(offset, kSize, &start, cb.callback()); |
| rv = cb.GetResult(rv); |
| if (!rv) { |
| rv = entry->ReadSparseData(offset, buf_2.get(), kSize, cb.callback()); |
| EXPECT_EQ(0, cb.GetResult(rv)); |
| rv = 0; |
| } |
| offset += 1024 * i + 100; |
| } |
| |
| // The last write started 100 bytes below a bundary, so there should be 80 |
| // bytes after the boundary. |
| EXPECT_EQ(80, rv); |
| EXPECT_EQ(1024 * 7, start); |
| rv = entry->ReadSparseData(start, buf_2.get(), kSize, cb.callback()); |
| EXPECT_EQ(80, cb.GetResult(rv)); |
| EXPECT_EQ( |
| 0, memcmp(buf_1.get()->data() + 100, buf_2.get()->data(), 80)); |
| |
| // And even that part is dropped when another write changes the offset. |
| offset = start; |
| rv = entry->WriteSparseData(0, buf_1.get(), kSize, cb.callback()); |
| EXPECT_EQ(kSize, cb.GetResult(rv)); |
| |
| rv = entry->GetAvailableRange(offset, kSize, &start, cb.callback()); |
| EXPECT_EQ(0, cb.GetResult(rv)); |
| entry->Close(); |
| } |
| |
| // Tests that small sequential writes are not dropped. |
| TEST_F(DiskCacheEntryTest, SparseSquentialWriteNotDropped) { |
| InitCache(); |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| const int kSize = 180; |
| scoped_refptr<net::IOBuffer> buf_1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| scoped_refptr<net::IOBuffer> buf_2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buf_1->data(), kSize, false); |
| |
| // Any starting offset is fine as long as it is 1024-bytes aligned. |
| int rv = 0; |
| net::TestCompletionCallback cb; |
| int64_t start; |
| int64_t offset = 1024 * 11; |
| for (; offset < 20000; offset += kSize) { |
| rv = entry->WriteSparseData(offset, buf_1.get(), kSize, cb.callback()); |
| EXPECT_EQ(kSize, cb.GetResult(rv)); |
| |
| rv = entry->GetAvailableRange(offset, kSize, &start, cb.callback()); |
| EXPECT_EQ(kSize, cb.GetResult(rv)); |
| EXPECT_EQ(offset, start); |
| |
| rv = entry->ReadSparseData(offset, buf_2.get(), kSize, cb.callback()); |
| EXPECT_EQ(kSize, cb.GetResult(rv)); |
| EXPECT_EQ(0, |
| memcmp(buf_1.get()->data(), buf_2.get()->data(), kSize)); |
| } |
| |
| entry->Close(); |
| FlushQueueForTest(); |
| |
| // Verify again the last write made. |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| offset -= kSize; |
| rv = entry->GetAvailableRange(offset, kSize, &start, cb.callback()); |
| EXPECT_EQ(kSize, cb.GetResult(rv)); |
| EXPECT_EQ(offset, start); |
| |
| rv = entry->ReadSparseData(offset, buf_2.get(), kSize, cb.callback()); |
| EXPECT_EQ(kSize, cb.GetResult(rv)); |
| EXPECT_EQ(0, |
| memcmp(buf_1.get()->data(), buf_2.get()->data(), kSize)); |
| |
| entry->Close(); |
| } |
| |
| void DiskCacheEntryTest::CouldBeSparse() { |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| const int kSize = 16 * 1024; |
| scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buf->data(), kSize, false); |
| |
| // Write at offset 0x20F0000 (33 MB - 64 KB). |
| EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F0000, buf.get(), kSize)); |
| |
| EXPECT_TRUE(entry->CouldBeSparse()); |
| entry->Close(); |
| |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| EXPECT_TRUE(entry->CouldBeSparse()); |
| entry->Close(); |
| |
| // Now verify a regular entry. |
| key.assign("another key"); |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| EXPECT_FALSE(entry->CouldBeSparse()); |
| |
| EXPECT_EQ(kSize, WriteData(entry, 0, 0, buf.get(), kSize, false)); |
| EXPECT_EQ(kSize, WriteData(entry, 1, 0, buf.get(), kSize, false)); |
| EXPECT_EQ(kSize, WriteData(entry, 2, 0, buf.get(), kSize, false)); |
| |
| EXPECT_FALSE(entry->CouldBeSparse()); |
| entry->Close(); |
| |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| EXPECT_FALSE(entry->CouldBeSparse()); |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, CouldBeSparse) { |
| InitCache(); |
| CouldBeSparse(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryCouldBeSparse) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| CouldBeSparse(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedSparseIO) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| |
| const int kSize = 8192; |
| scoped_refptr<net::IOBuffer> buf_1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| scoped_refptr<net::IOBuffer> buf_2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buf_1->data(), kSize, false); |
| |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| // This loop writes back to back starting from offset 0 and 9000. |
| for (int i = 0; i < kSize; i += 1024) { |
| scoped_refptr<net::WrappedIOBuffer> buf_3 = |
| base::MakeRefCounted<net::WrappedIOBuffer>(buf_1->data() + i); |
| VerifySparseIO(entry, i, buf_3.get(), 1024, buf_2.get()); |
| VerifySparseIO(entry, 9000 + i, buf_3.get(), 1024, buf_2.get()); |
| } |
| |
| // Make sure we have data written. |
| VerifyContentSparseIO(entry, 0, buf_1->data(), kSize); |
| VerifyContentSparseIO(entry, 9000, buf_1->data(), kSize); |
| |
| // This tests a large write that spans 3 entries from a misaligned offset. |
| VerifySparseIO(entry, 20481, buf_1.get(), 8192, buf_2.get()); |
| |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedGetAvailableRange) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| |
| const int kSize = 8192; |
| scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buf->data(), kSize, false); |
| |
| disk_cache::Entry* entry; |
| std::string key("the first key"); |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| // Writes in the middle of an entry. |
| EXPECT_EQ(1024, entry->WriteSparseData(0, buf.get(), 1024, |
| net::CompletionOnceCallback())); |
| EXPECT_EQ(1024, entry->WriteSparseData(5120, buf.get(), 1024, |
| net::CompletionOnceCallback())); |
| EXPECT_EQ(1024, entry->WriteSparseData(10000, buf.get(), 1024, |
| net::CompletionOnceCallback())); |
| |
| // Writes in the middle of an entry and spans 2 child entries. |
| EXPECT_EQ(8192, entry->WriteSparseData(50000, buf.get(), 8192, |
| net::CompletionOnceCallback())); |
| |
| int64_t start; |
| net::TestCompletionCallback cb; |
| // Test that we stop at a discontinuous child at the second block. |
| int rv = entry->GetAvailableRange(0, 10000, &start, cb.callback()); |
| EXPECT_EQ(1024, cb.GetResult(rv)); |
| EXPECT_EQ(0, start); |
| |
| // Test that number of bytes is reported correctly when we start from the |
| // middle of a filled region. |
| rv = entry->GetAvailableRange(512, 10000, &start, cb.callback()); |
| EXPECT_EQ(512, cb.GetResult(rv)); |
| EXPECT_EQ(512, start); |
| |
| // Test that we found bytes in the child of next block. |
| rv = entry->GetAvailableRange(1024, 10000, &start, cb.callback()); |
| EXPECT_EQ(1024, cb.GetResult(rv)); |
| EXPECT_EQ(5120, start); |
| |
| // Test that the desired length is respected. It starts within a filled |
| // region. |
| rv = entry->GetAvailableRange(5500, 512, &start, cb.callback()); |
| EXPECT_EQ(512, cb.GetResult(rv)); |
| EXPECT_EQ(5500, start); |
| |
| // Test that the desired length is respected. It starts before a filled |
| // region. |
| rv = entry->GetAvailableRange(5000, 620, &start, cb.callback()); |
| EXPECT_EQ(500, cb.GetResult(rv)); |
| EXPECT_EQ(5120, start); |
| |
| // Test that multiple blocks are scanned. |
| rv = entry->GetAvailableRange(40000, 20000, &start, cb.callback()); |
| EXPECT_EQ(8192, cb.GetResult(rv)); |
| EXPECT_EQ(50000, start); |
| |
| entry->Close(); |
| } |
| |
| void DiskCacheEntryTest::UpdateSparseEntry() { |
| std::string key("the first key"); |
| disk_cache::Entry* entry1; |
| ASSERT_THAT(CreateEntry(key, &entry1), IsOk()); |
| |
| const int kSize = 2048; |
| scoped_refptr<net::IOBuffer> buf_1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| scoped_refptr<net::IOBuffer> buf_2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buf_1->data(), kSize, false); |
| |
| // Write at offset 0. |
| VerifySparseIO(entry1, 0, buf_1.get(), kSize, buf_2.get()); |
| entry1->Close(); |
| |
| // Write at offset 2048. |
| ASSERT_THAT(OpenEntry(key, &entry1), IsOk()); |
| VerifySparseIO(entry1, 2048, buf_1.get(), kSize, buf_2.get()); |
| |
| disk_cache::Entry* entry2; |
| ASSERT_THAT(CreateEntry("the second key", &entry2), IsOk()); |
| |
| entry1->Close(); |
| entry2->Close(); |
| FlushQueueForTest(); |
| if (memory_only_ || simple_cache_mode_) |
| EXPECT_EQ(2, cache_->GetEntryCount()); |
| else |
| EXPECT_EQ(3, cache_->GetEntryCount()); |
| } |
| |
| TEST_F(DiskCacheEntryTest, UpdateSparseEntry) { |
| SetCacheType(net::MEDIA_CACHE); |
| InitCache(); |
| UpdateSparseEntry(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyUpdateSparseEntry) { |
| SetMemoryOnlyMode(); |
| SetCacheType(net::MEDIA_CACHE); |
| InitCache(); |
| UpdateSparseEntry(); |
| } |
| |
| void DiskCacheEntryTest::DoomSparseEntry() { |
| std::string key1("the first key"); |
| std::string key2("the second key"); |
| disk_cache::Entry *entry1, *entry2; |
| ASSERT_THAT(CreateEntry(key1, &entry1), IsOk()); |
| ASSERT_THAT(CreateEntry(key2, &entry2), IsOk()); |
| |
| const int kSize = 4 * 1024; |
| scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buf->data(), kSize, false); |
| |
| int64_t offset = 1024; |
| // Write to a bunch of ranges. |
| for (int i = 0; i < 12; i++) { |
| EXPECT_EQ(kSize, WriteSparseData(entry1, offset, buf.get(), kSize)); |
| // Keep the second map under the default size. |
| if (i < 9) |
| EXPECT_EQ(kSize, WriteSparseData(entry2, offset, buf.get(), kSize)); |
| |
| offset *= 4; |
| } |
| |
| if (memory_only_ || simple_cache_mode_) |
| EXPECT_EQ(2, cache_->GetEntryCount()); |
| else |
| EXPECT_EQ(15, cache_->GetEntryCount()); |
| |
| // Doom the first entry while it's still open. |
| entry1->Doom(); |
| entry1->Close(); |
| entry2->Close(); |
| |
| // Doom the second entry after it's fully saved. |
| EXPECT_THAT(DoomEntry(key2), IsOk()); |
| |
| // Make sure we do all needed work. This may fail for entry2 if between Close |
| // and DoomEntry the system decides to remove all traces of the file from the |
| // system cache so we don't see that there is pending IO. |
| base::RunLoop().RunUntilIdle(); |
| |
| if (memory_only_) { |
| EXPECT_EQ(0, cache_->GetEntryCount()); |
| } else { |
| if (5 == cache_->GetEntryCount()) { |
| // Most likely we are waiting for the result of reading the sparse info |
| // (it's always async on Posix so it is easy to miss). Unfortunately we |
| // don't have any signal to watch for so we can only wait. |
| base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds(500)); |
| base::RunLoop().RunUntilIdle(); |
| } |
| EXPECT_EQ(0, cache_->GetEntryCount()); |
| } |
| } |
| |
| TEST_F(DiskCacheEntryTest, DoomSparseEntry) { |
| UseCurrentThread(); |
| InitCache(); |
| DoomSparseEntry(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyDoomSparseEntry) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| DoomSparseEntry(); |
| } |
| |
| // A TestCompletionCallback wrapper that deletes the cache from within the |
| // callback. The way TestCompletionCallback works means that all tasks (even |
| // new ones) are executed by the message loop before returning to the caller so |
| // the only way to simulate a race is to execute what we want on the callback. |
| class SparseTestCompletionCallback: public net::TestCompletionCallback { |
| public: |
| explicit SparseTestCompletionCallback( |
| std::unique_ptr<disk_cache::Backend> cache) |
| : cache_(std::move(cache)) {} |
| |
| private: |
| void SetResult(int result) override { |
| cache_.reset(); |
| TestCompletionCallback::SetResult(result); |
| } |
| |
| std::unique_ptr<disk_cache::Backend> cache_; |
| DISALLOW_COPY_AND_ASSIGN(SparseTestCompletionCallback); |
| }; |
| |
| // Tests that we don't crash when the backend is deleted while we are working |
| // deleting the sub-entries of a sparse entry. |
| TEST_F(DiskCacheEntryTest, DoomSparseEntry2) { |
| UseCurrentThread(); |
| InitCache(); |
| std::string key("the key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| const int kSize = 4 * 1024; |
| scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buf->data(), kSize, false); |
| |
| int64_t offset = 1024; |
| // Write to a bunch of ranges. |
| for (int i = 0; i < 12; i++) { |
| EXPECT_EQ(kSize, entry->WriteSparseData(offset, buf.get(), kSize, |
| net::CompletionOnceCallback())); |
| offset *= 4; |
| } |
| EXPECT_EQ(9, cache_->GetEntryCount()); |
| |
| entry->Close(); |
| disk_cache::Backend* cache = cache_.get(); |
| SparseTestCompletionCallback cb(std::move(cache_)); |
| int rv = cache->DoomEntry(key, net::HIGHEST, cb.callback()); |
| EXPECT_THAT(rv, IsError(net::ERR_IO_PENDING)); |
| EXPECT_THAT(cb.WaitForResult(), IsOk()); |
| } |
| |
| void DiskCacheEntryTest::PartialSparseEntry() { |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| // We should be able to deal with IO that is not aligned to the block size |
| // of a sparse entry, at least to write a big range without leaving holes. |
| const int kSize = 4 * 1024; |
| const int kSmallSize = 128; |
| scoped_refptr<net::IOBuffer> buf1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buf1->data(), kSize, false); |
| |
| // The first write is just to extend the entry. The third write occupies |
| // a 1KB block partially, it may not be written internally depending on the |
| // implementation. |
| EXPECT_EQ(kSize, WriteSparseData(entry, 20000, buf1.get(), kSize)); |
| EXPECT_EQ(kSize, WriteSparseData(entry, 500, buf1.get(), kSize)); |
| EXPECT_EQ(kSmallSize, |
| WriteSparseData(entry, 1080321, buf1.get(), kSmallSize)); |
| entry->Close(); |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| |
| scoped_refptr<net::IOBuffer> buf2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| memset(buf2->data(), 0, kSize); |
| EXPECT_EQ(0, ReadSparseData(entry, 8000, buf2.get(), kSize)); |
| |
| EXPECT_EQ(500, ReadSparseData(entry, kSize, buf2.get(), kSize)); |
| EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500)); |
| EXPECT_EQ(0, ReadSparseData(entry, 0, buf2.get(), kSize)); |
| |
| // This read should not change anything. |
| if (memory_only_ || simple_cache_mode_) |
| EXPECT_EQ(96, ReadSparseData(entry, 24000, buf2.get(), kSize)); |
| else |
| EXPECT_EQ(0, ReadSparseData(entry, 24000, buf2.get(), kSize)); |
| |
| EXPECT_EQ(500, ReadSparseData(entry, kSize, buf2.get(), kSize)); |
| EXPECT_EQ(0, ReadSparseData(entry, 99, buf2.get(), kSize)); |
| |
| int rv; |
| int64_t start; |
| net::TestCompletionCallback cb; |
| if (memory_only_ || simple_cache_mode_) { |
| rv = entry->GetAvailableRange(0, 600, &start, cb.callback()); |
| EXPECT_EQ(100, cb.GetResult(rv)); |
| EXPECT_EQ(500, start); |
| } else { |
| rv = entry->GetAvailableRange(0, 2048, &start, cb.callback()); |
| EXPECT_EQ(1024, cb.GetResult(rv)); |
| EXPECT_EQ(1024, start); |
| } |
| rv = entry->GetAvailableRange(kSize, kSize, &start, cb.callback()); |
| EXPECT_EQ(500, cb.GetResult(rv)); |
| EXPECT_EQ(kSize, start); |
| rv = entry->GetAvailableRange(20 * 1024, 10000, &start, cb.callback()); |
| if (memory_only_ || simple_cache_mode_) |
| EXPECT_EQ(3616, cb.GetResult(rv)); |
| else |
| EXPECT_EQ(3072, cb.GetResult(rv)); |
| |
| EXPECT_EQ(20 * 1024, start); |
| |
| // 1. Query before a filled 1KB block. |
| // 2. Query within a filled 1KB block. |
| // 3. Query beyond a filled 1KB block. |
| if (memory_only_ || simple_cache_mode_) { |
| rv = entry->GetAvailableRange(19400, kSize, &start, cb.callback()); |
| EXPECT_EQ(3496, cb.GetResult(rv)); |
| EXPECT_EQ(20000, start); |
| } else { |
| rv = entry->GetAvailableRange(19400, kSize, &start, cb.callback()); |
| EXPECT_EQ(3016, cb.GetResult(rv)); |
| EXPECT_EQ(20480, start); |
| } |
| rv = entry->GetAvailableRange(3073, kSize, &start, cb.callback()); |
| EXPECT_EQ(1523, cb.GetResult(rv)); |
| EXPECT_EQ(3073, start); |
| rv = entry->GetAvailableRange(4600, kSize, &start, cb.callback()); |
| EXPECT_EQ(0, cb.GetResult(rv)); |
| EXPECT_EQ(4600, start); |
| |
| // Now make another write and verify that there is no hole in between. |
| EXPECT_EQ(kSize, WriteSparseData(entry, 500 + kSize, buf1.get(), kSize)); |
| rv = entry->GetAvailableRange(1024, 10000, &start, cb.callback()); |
| EXPECT_EQ(7 * 1024 + 500, cb.GetResult(rv)); |
| EXPECT_EQ(1024, start); |
| EXPECT_EQ(kSize, ReadSparseData(entry, kSize, buf2.get(), kSize)); |
| EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500)); |
| EXPECT_EQ(0, memcmp(buf2->data() + 500, buf1->data(), kSize - 500)); |
| |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, PartialSparseEntry) { |
| InitCache(); |
| PartialSparseEntry(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryPartialSparseEntry) { |
| SetMemoryOnlyMode(); |
| InitCache(); |
| PartialSparseEntry(); |
| } |
| |
| // Tests that corrupt sparse children are removed automatically. |
| TEST_F(DiskCacheEntryTest, CleanupSparseEntry) { |
| InitCache(); |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| const int kSize = 4 * 1024; |
| scoped_refptr<net::IOBuffer> buf1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buf1->data(), kSize, false); |
| |
| const int k1Meg = 1024 * 1024; |
| EXPECT_EQ(kSize, WriteSparseData(entry, 8192, buf1.get(), kSize)); |
| EXPECT_EQ(kSize, WriteSparseData(entry, k1Meg + 8192, buf1.get(), kSize)); |
| EXPECT_EQ(kSize, WriteSparseData(entry, 2 * k1Meg + 8192, buf1.get(), kSize)); |
| entry->Close(); |
| EXPECT_EQ(4, cache_->GetEntryCount()); |
| |
| std::unique_ptr<TestIterator> iter = CreateIterator(); |
| int count = 0; |
| std::string child_key[2]; |
| while (iter->OpenNextEntry(&entry) == net::OK) { |
| ASSERT_TRUE(entry != NULL); |
| // Writing to an entry will alter the LRU list and invalidate the iterator. |
| if (entry->GetKey() != key && count < 2) |
| child_key[count++] = entry->GetKey(); |
| entry->Close(); |
| } |
| for (int i = 0; i < 2; i++) { |
| ASSERT_THAT(OpenEntry(child_key[i], &entry), IsOk()); |
| // Overwrite the header's magic and signature. |
| EXPECT_EQ(12, WriteData(entry, 2, 0, buf1.get(), 12, false)); |
| entry->Close(); |
| } |
| |
| EXPECT_EQ(4, cache_->GetEntryCount()); |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| |
| // Two children should be gone. One while reading and one while writing. |
| EXPECT_EQ(0, ReadSparseData(entry, 2 * k1Meg + 8192, buf1.get(), kSize)); |
| EXPECT_EQ(kSize, WriteSparseData(entry, k1Meg + 16384, buf1.get(), kSize)); |
| EXPECT_EQ(0, ReadSparseData(entry, k1Meg + 8192, buf1.get(), kSize)); |
| |
| // We never touched this one. |
| EXPECT_EQ(kSize, ReadSparseData(entry, 8192, buf1.get(), kSize)); |
| entry->Close(); |
| |
| // We re-created one of the corrupt children. |
| EXPECT_EQ(3, cache_->GetEntryCount()); |
| } |
| |
| TEST_F(DiskCacheEntryTest, CancelSparseIO) { |
| UseCurrentThread(); |
| InitCache(); |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| const int kSize = 40 * 1024; |
| scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buf->data(), kSize, false); |
| |
| // This will open and write two "real" entries. |
| net::TestCompletionCallback cb1, cb2, cb3, cb4, cb5; |
| int rv = entry->WriteSparseData( |
| 1024 * 1024 - 4096, buf.get(), kSize, cb1.callback()); |
| EXPECT_THAT(rv, IsError(net::ERR_IO_PENDING)); |
| |
| int64_t offset = 0; |
| rv = entry->GetAvailableRange(offset, kSize, &offset, cb5.callback()); |
| rv = cb5.GetResult(rv); |
| if (!cb1.have_result()) { |
| // We may or may not have finished writing to the entry. If we have not, |
| // we cannot start another operation at this time. |
| EXPECT_THAT(rv, IsError(net::ERR_CACHE_OPERATION_NOT_SUPPORTED)); |
| } |
| |
| // We cancel the pending operation, and register multiple notifications. |
| entry->CancelSparseIO(); |
| EXPECT_THAT(entry->ReadyForSparseIO(cb2.callback()), |
| IsError(net::ERR_IO_PENDING)); |
| EXPECT_THAT(entry->ReadyForSparseIO(cb3.callback()), |
| IsError(net::ERR_IO_PENDING)); |
| entry->CancelSparseIO(); // Should be a no op at this point. |
| EXPECT_THAT(entry->ReadyForSparseIO(cb4.callback()), |
| IsError(net::ERR_IO_PENDING)); |
| |
| if (!cb1.have_result()) { |
| EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, |
| entry->ReadSparseData(offset, buf.get(), kSize, |
| net::CompletionOnceCallback())); |
| EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, |
| entry->WriteSparseData(offset, buf.get(), kSize, |
| net::CompletionOnceCallback())); |
| } |
| |
| // Now see if we receive all notifications. Note that we should not be able |
| // to write everything (unless the timing of the system is really weird). |
| rv = cb1.WaitForResult(); |
| EXPECT_TRUE(rv == 4096 || rv == kSize); |
| EXPECT_THAT(cb2.WaitForResult(), IsOk()); |
| EXPECT_THAT(cb3.WaitForResult(), IsOk()); |
| EXPECT_THAT(cb4.WaitForResult(), IsOk()); |
| |
| rv = entry->GetAvailableRange(offset, kSize, &offset, cb5.callback()); |
| EXPECT_EQ(0, cb5.GetResult(rv)); |
| entry->Close(); |
| } |
| |
| // Tests that we perform sanity checks on an entry's key. Note that there are |
| // other tests that exercise sanity checks by using saved corrupt files. |
| TEST_F(DiskCacheEntryTest, KeySanityCheck) { |
| UseCurrentThread(); |
| InitCache(); |
| std::string key("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| disk_cache::EntryImpl* entry_impl = |
| static_cast<disk_cache::EntryImpl*>(entry); |
| disk_cache::EntryStore* store = entry_impl->entry()->Data(); |
| |
| // We have reserved space for a short key (one block), let's say that the key |
| // takes more than one block, and remove the NULLs after the actual key. |
| store->key_len = 800; |
| memset(store->key + key.size(), 'k', sizeof(store->key) - key.size()); |
| entry_impl->entry()->set_modified(); |
| entry->Close(); |
| |
| // We have a corrupt entry. Now reload it. We should NOT read beyond the |
| // allocated buffer here. |
| ASSERT_NE(net::OK, OpenEntry(key, &entry)); |
| DisableIntegrityCheck(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheInternalAsyncIO) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| InternalAsyncIO(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheExternalAsyncIO) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| ExternalAsyncIO(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheReleaseBuffer) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { |
| EXPECT_THAT(DoomAllEntries(), IsOk()); |
| ReleaseBuffer(i); |
| } |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheStreamAccess) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| StreamAccess(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheGetKey) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| GetKey(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheGetTimes) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { |
| EXPECT_THAT(DoomAllEntries(), IsOk()); |
| GetTimes(i); |
| } |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheGrowData) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { |
| EXPECT_THAT(DoomAllEntries(), IsOk()); |
| GrowData(i); |
| } |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheTruncateData) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { |
| EXPECT_THAT(DoomAllEntries(), IsOk()); |
| TruncateData(i); |
| } |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheZeroLengthIO) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { |
| EXPECT_THAT(DoomAllEntries(), IsOk()); |
| ZeroLengthIO(i); |
| } |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheSizeAtCreate) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| SizeAtCreate(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheReuseExternalEntry) { |
| SetSimpleCacheMode(); |
| SetMaxSize(200 * 1024); |
| InitCache(); |
| for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { |
| EXPECT_THAT(DoomAllEntries(), IsOk()); |
| ReuseEntry(20 * 1024, i); |
| } |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheReuseInternalEntry) { |
| SetSimpleCacheMode(); |
| SetMaxSize(100 * 1024); |
| InitCache(); |
| for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { |
| EXPECT_THAT(DoomAllEntries(), IsOk()); |
| ReuseEntry(10 * 1024, i); |
| } |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheGiantEntry) { |
| const int kBufSize = 32 * 1024; |
| scoped_refptr<net::IOBuffer> buffer = |
| base::MakeRefCounted<net::IOBuffer>(kBufSize); |
| CacheTestFillBuffer(buffer->data(), kBufSize, false); |
| |
| // Make sure SimpleCache can write up to 5MiB entry even with a 20MiB cache |
| // size that Android WebView uses at the time of this test's writing. |
| SetSimpleCacheMode(); |
| SetMaxSize(20 * 1024 * 1024); |
| InitCache(); |
| |
| { |
| std::string key1("the first key"); |
| disk_cache::Entry* entry1 = nullptr; |
| ASSERT_THAT(CreateEntry(key1, &entry1), IsOk()); |
| |
| const int kSize1 = 5 * 1024 * 1024; |
| EXPECT_EQ(kBufSize, WriteData(entry1, 1 /* stream */, kSize1 - kBufSize, |
| buffer.get(), kBufSize, true /* truncate */)); |
| entry1->Close(); |
| } |
| |
| // ... but not bigger than that. |
| { |
| std::string key2("the second key"); |
| disk_cache::Entry* entry2 = nullptr; |
| ASSERT_THAT(CreateEntry(key2, &entry2), IsOk()); |
| |
| const int kSize2 = 5 * 1024 * 1024 + 1; |
| EXPECT_EQ(net::ERR_FAILED, |
| WriteData(entry2, 1 /* stream */, kSize2 - kBufSize, buffer.get(), |
| kBufSize, true /* truncate */)); |
| entry2->Close(); |
| } |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheSizeChanges) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { |
| EXPECT_THAT(DoomAllEntries(), IsOk()); |
| SizeChanges(i); |
| } |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheInvalidData) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { |
| EXPECT_THAT(DoomAllEntries(), IsOk()); |
| InvalidData(i); |
| } |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheReadWriteDestroyBuffer) { |
| // Proving that the test works well with optimistic operations enabled is |
| // subtle, instead run only in APP_CACHE mode to disable optimistic |
| // operations. Stream 0 always uses optimistic operations, so the test is not |
| // run on stream 0. |
| SetCacheType(net::APP_CACHE); |
| SetSimpleCacheMode(); |
| InitCache(); |
| for (int i = 1; i < disk_cache::kSimpleEntryStreamCount; ++i) { |
| EXPECT_THAT(DoomAllEntries(), IsOk()); |
| ReadWriteDestroyBuffer(i); |
| } |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheDoomEntry) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| DoomNormalEntry(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheDoomEntryNextToOpenEntry) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| DoomEntryNextToOpenEntry(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheDoomedEntry) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| // Stream 2 is excluded because the implementation does not support writing to |
| // it on a doomed entry, if it was previously lazily omitted. |
| for (int i = 0; i < disk_cache::kSimpleEntryStreamCount - 1; ++i) { |
| EXPECT_THAT(DoomAllEntries(), IsOk()); |
| DoomedEntry(i); |
| } |
| } |
| |
| // Creates an entry with corrupted last byte in stream 0. |
| // Requires SimpleCacheMode. |
| bool DiskCacheEntryTest::SimpleCacheMakeBadChecksumEntry(const std::string& key, |
| int data_size) { |
| disk_cache::Entry* entry = NULL; |
| |
| if (CreateEntry(key, &entry) != net::OK || !entry) { |
| LOG(ERROR) << "Could not create entry"; |
| return false; |
| } |
| |
| scoped_refptr<net::IOBuffer> buffer = |
| base::MakeRefCounted<net::IOBuffer>(data_size); |
| memset(buffer->data(), 'A', data_size); |
| |
| EXPECT_EQ(data_size, WriteData(entry, 1, 0, buffer.get(), data_size, false)); |
| entry->Close(); |
| entry = NULL; |
| |
| // Corrupt the last byte of the data. |
| base::FilePath entry_file0_path = cache_path_.AppendASCII( |
| disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0)); |
| base::File entry_file0(entry_file0_path, |
| base::File::FLAG_WRITE | base::File::FLAG_OPEN); |
| if (!entry_file0.IsValid()) |
| return false; |
| |
| int64_t file_offset = |
| sizeof(disk_cache::SimpleFileHeader) + key.size() + data_size - 2; |
| EXPECT_EQ(1, entry_file0.Write(file_offset, "X", 1)); |
| return true; |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheBadChecksum) { |
| base::HistogramTester histogram_tester; |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| const char key[] = "the first key"; |
| const int kLargeSize = 50000; |
| ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, kLargeSize)); |
| |
| disk_cache::Entry* entry = NULL; |
| |
| // Open the entry. Can't spot the checksum that quickly with it so |
| // huge. |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| ScopedEntryPtr entry_closer(entry); |
| |
| EXPECT_GE(kLargeSize, entry->GetDataSize(1)); |
| scoped_refptr<net::IOBuffer> read_buffer = |
| base::MakeRefCounted<net::IOBuffer>(kLargeSize); |
| EXPECT_EQ(net::ERR_CACHE_CHECKSUM_MISMATCH, |
| ReadData(entry, 1, 0, read_buffer.get(), kLargeSize)); |
| histogram_tester.ExpectUniqueSample( |
| "SimpleCache.Http.ReadResult", |
| disk_cache::READ_RESULT_SYNC_CHECKSUM_FAILURE, 1); |
| } |
| |
| // Tests that an entry that has had an IO error occur can still be Doomed(). |
| TEST_F(DiskCacheEntryTest, SimpleCacheErrorThenDoom) { |
| base::HistogramTester histogram_tester; |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| const char key[] = "the first key"; |
| const int kLargeSize = 50000; |
| ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, kLargeSize)); |
| |
| disk_cache::Entry* entry = NULL; |
| |
| // Open the entry, forcing an IO error. |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| ScopedEntryPtr entry_closer(entry); |
| |
| EXPECT_GE(kLargeSize, entry->GetDataSize(1)); |
| scoped_refptr<net::IOBuffer> read_buffer = |
| base::MakeRefCounted<net::IOBuffer>(kLargeSize); |
| EXPECT_EQ(net::ERR_CACHE_CHECKSUM_MISMATCH, |
| ReadData(entry, 1, 0, read_buffer.get(), kLargeSize)); |
| histogram_tester.ExpectUniqueSample( |
| "SimpleCache.Http.ReadResult", |
| disk_cache::READ_RESULT_SYNC_CHECKSUM_FAILURE, 1); |
| entry->Doom(); // Should not crash. |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheCreateAfterDiskLayerDoom) { |
| // Code coverage for what happens when a queued create runs after failure |
| // was noticed at SimpleSynchronousEntry layer. |
| SetSimpleCacheMode(); |
| // Disable optimistic ops so we can block on CreateEntry and start |
| // WriteData off with an empty op queue. |
| SetCacheType(net::APP_CACHE); |
| InitCache(); |
| |
| const char key[] = "the key"; |
| const int kSize1 = 10; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize1); |
| CacheTestFillBuffer(buffer1->data(), kSize1, false); |
| |
| disk_cache::Entry* entry = nullptr; |
| ASSERT_EQ(net::OK, CreateEntry(key, &entry)); |
| ASSERT_TRUE(entry != nullptr); |
| |
| // Make an empty _1 file, to cause a stream 2 write to fail. |
| base::FilePath entry_file1_path = cache_path_.AppendASCII( |
| disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 1)); |
| base::File entry_file1(entry_file1_path, |
| base::File::FLAG_WRITE | base::File::FLAG_CREATE); |
| ASSERT_TRUE(entry_file1.IsValid()); |
| |
| entry->WriteData(2, 0, buffer1.get(), kSize1, net::CompletionOnceCallback(), |
| /* truncate= */ true); |
| entry->Close(); |
| |
| // At this point we have put WriteData & Close on the queue, and WriteData |
| // started, but we haven't given the event loop control so the failure |
| // hasn't been reported and handled here, so the entry is still active |
| // for the key. Queue up another create for same key, and run through the |
| // events. |
| disk_cache::Entry* entry2 = nullptr; |
| ASSERT_EQ(net::ERR_FAILED, CreateEntry(key, &entry2)); |
| ASSERT_TRUE(entry2 == nullptr); |
| |
| EXPECT_EQ(0, cache_->GetEntryCount()); |
| |
| // Should be able to create properly next time, though. |
| disk_cache::Entry* entry3 = nullptr; |
| ASSERT_EQ(net::OK, CreateEntry(key, &entry3)); |
| ASSERT_TRUE(entry3 != nullptr); |
| entry3->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheQueuedOpenOnDoomedEntry) { |
| // This tests the following sequence of ops: |
| // A = Create(K); |
| // Close(A); |
| // B = Open(K); |
| // Doom(K); |
| // Close(B); |
| // |
| // ... where the execution of the Open sits on the queue all the way till |
| // Doom. This now succeeds, as the doom is merely queued at time of Open, |
| // rather than completed. |
| |
| SetSimpleCacheMode(); |
| // Disable optimistic ops so we can block on CreateEntry and start |
| // WriteData off with an empty op queue. |
| SetCacheType(net::APP_CACHE); |
| InitCache(); |
| |
| const char key[] = "the key"; |
| |
| disk_cache::Entry* entry = nullptr; |
| ASSERT_EQ(net::OK, CreateEntry(key, &entry)); // event loop! |
| ASSERT_TRUE(entry != nullptr); |
| |
| entry->Close(); |
| |
| disk_cache::Entry* entry2 = nullptr; |
| // Done via cache_ -> no event loop. |
| net::TestCompletionCallback cb; |
| ASSERT_EQ(net::ERR_IO_PENDING, |
| cache_->OpenEntry(key, net::HIGHEST, &entry2, cb.callback())); |
| |
| net::TestCompletionCallback cb2; |
| cache_->DoomEntry(key, net::HIGHEST, cb2.callback()); |
| // Now event loop. |
| EXPECT_EQ(net::OK, cb.WaitForResult()); |
| ASSERT_TRUE(entry2 != nullptr); |
| entry2->Close(); |
| |
| EXPECT_EQ(net::OK, cb2.WaitForResult()); |
| EXPECT_EQ(0, cache_->GetEntryCount()); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheDoomErrorRace) { |
| // Code coverage for a doom racing with a doom induced by a failure. |
| SetSimpleCacheMode(); |
| // Disable optimistic ops so we can block on CreateEntry and start |
| // WriteData off with an empty op queue. |
| SetCacheType(net::APP_CACHE); |
| InitCache(); |
| |
| const char kKey[] = "the first key"; |
| const int kSize1 = 10; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize1); |
| CacheTestFillBuffer(buffer1->data(), kSize1, false); |
| |
| disk_cache::Entry* entry = nullptr; |
| ASSERT_EQ(net::OK, CreateEntry(kKey, &entry)); |
| ASSERT_TRUE(entry != nullptr); |
| |
| // Now an empty _1 file, to cause a stream 2 write to fail. |
| base::FilePath entry_file1_path = cache_path_.AppendASCII( |
| disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(kKey, 1)); |
| base::File entry_file1(entry_file1_path, |
| base::File::FLAG_WRITE | base::File::FLAG_CREATE); |
| ASSERT_TRUE(entry_file1.IsValid()); |
| |
| entry->WriteData(2, 0, buffer1.get(), kSize1, net::CompletionOnceCallback(), |
| /* truncate= */ true); |
| |
| net::TestCompletionCallback cb; |
| cache_->DoomEntry(kKey, net::HIGHEST, cb.callback()); |
| entry->Close(); |
| EXPECT_EQ(0, cb.WaitForResult()); |
| } |
| |
| bool TruncatePath(const base::FilePath& file_path, int64_t length) { |
| base::File file(file_path, base::File::FLAG_WRITE | base::File::FLAG_OPEN); |
| if (!file.IsValid()) |
| return false; |
| return file.SetLength(length); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheNoEOF) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| const std::string key("the first key"); |
| |
| disk_cache::Entry* entry = NULL; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| disk_cache::Entry* null = NULL; |
| EXPECT_NE(null, entry); |
| entry->Close(); |
| entry = NULL; |
| |
| // Force the entry to flush to disk, so subsequent platform file operations |
| // succed. |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| entry->Close(); |
| entry = NULL; |
| |
| // Truncate the file such that the length isn't sufficient to have an EOF |
| // record. |
| int kTruncationBytes = -static_cast<int>(sizeof(disk_cache::SimpleFileEOF)); |
| const base::FilePath entry_path = cache_path_.AppendASCII( |
| disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0)); |
| const int64_t invalid_size = disk_cache::simple_util::GetFileSizeFromDataSize( |
| key.size(), kTruncationBytes); |
| EXPECT_TRUE(TruncatePath(entry_path, invalid_size)); |
| EXPECT_THAT(OpenEntry(key, &entry), IsError(net::ERR_FAILED)); |
| DisableIntegrityCheck(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheNonOptimisticOperationsBasic) { |
| // Test sequence: |
| // Create, Write, Read, Close. |
| SetCacheType(net::APP_CACHE); // APP_CACHE doesn't use optimistic operations. |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* const null_entry = NULL; |
| |
| disk_cache::Entry* entry = NULL; |
| EXPECT_THAT(CreateEntry("my key", &entry), IsOk()); |
| ASSERT_NE(null_entry, entry); |
| ScopedEntryPtr entry_closer(entry); |
| |
| const int kBufferSize = 10; |
| scoped_refptr<net::IOBufferWithSize> write_buffer = |
| base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize); |
| CacheTestFillBuffer(write_buffer->data(), write_buffer->size(), false); |
| EXPECT_EQ( |
| write_buffer->size(), |
| WriteData(entry, 1, 0, write_buffer.get(), write_buffer->size(), false)); |
| |
| scoped_refptr<net::IOBufferWithSize> read_buffer = |
| base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize); |
| EXPECT_EQ(read_buffer->size(), |
| ReadData(entry, 1, 0, read_buffer.get(), read_buffer->size())); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheNonOptimisticOperationsDontBlock) { |
| // Test sequence: |
| // Create, Write, Close. |
| SetCacheType(net::APP_CACHE); // APP_CACHE doesn't use optimistic operations. |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* const null_entry = NULL; |
| |
| MessageLoopHelper helper; |
| CallbackTest create_callback(&helper, false); |
| |
| int expected_callback_runs = 0; |
| const int kBufferSize = 10; |
| scoped_refptr<net::IOBufferWithSize> write_buffer = |
| base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize); |
| |
| disk_cache::Entry* entry = NULL; |
| EXPECT_THAT(CreateEntry("my key", &entry), IsOk()); |
| ASSERT_NE(null_entry, entry); |
| ScopedEntryPtr entry_closer(entry); |
| |
| CacheTestFillBuffer(write_buffer->data(), write_buffer->size(), false); |
| CallbackTest write_callback(&helper, false); |
| int ret = entry->WriteData( |
| 1, |
| 0, |
| write_buffer.get(), |
| write_buffer->size(), |
| base::Bind(&CallbackTest::Run, base::Unretained(&write_callback)), |
| false); |
| ASSERT_THAT(ret, IsError(net::ERR_IO_PENDING)); |
| helper.WaitUntilCacheIoFinished(++expected_callback_runs); |
| } |
| |
| TEST_F(DiskCacheEntryTest, |
| SimpleCacheNonOptimisticOperationsBasicsWithoutWaiting) { |
| // Test sequence: |
| // Create, Write, Read, Close. |
| SetCacheType(net::APP_CACHE); // APP_CACHE doesn't use optimistic operations. |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* const null_entry = NULL; |
| MessageLoopHelper helper; |
| |
| disk_cache::Entry* entry = NULL; |
| // Note that |entry| is only set once CreateEntry() completed which is why we |
| // have to wait (i.e. use the helper CreateEntry() function). |
| EXPECT_THAT(CreateEntry("my key", &entry), IsOk()); |
| ASSERT_NE(null_entry, entry); |
| ScopedEntryPtr entry_closer(entry); |
| |
| const int kBufferSize = 10; |
| scoped_refptr<net::IOBufferWithSize> write_buffer = |
| base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize); |
| CacheTestFillBuffer(write_buffer->data(), write_buffer->size(), false); |
| CallbackTest write_callback(&helper, false); |
| int ret = entry->WriteData( |
| 1, |
| 0, |
| write_buffer.get(), |
| write_buffer->size(), |
| base::Bind(&CallbackTest::Run, base::Unretained(&write_callback)), |
| false); |
| EXPECT_THAT(ret, IsError(net::ERR_IO_PENDING)); |
| int expected_callback_runs = 1; |
| |
| scoped_refptr<net::IOBufferWithSize> read_buffer = |
| base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize); |
| CallbackTest read_callback(&helper, false); |
| ret = entry->ReadData( |
| 1, |
| 0, |
| read_buffer.get(), |
| read_buffer->size(), |
| base::Bind(&CallbackTest::Run, base::Unretained(&read_callback))); |
| EXPECT_THAT(ret, IsError(net::ERR_IO_PENDING)); |
| ++expected_callback_runs; |
| |
| helper.WaitUntilCacheIoFinished(expected_callback_runs); |
| ASSERT_EQ(read_buffer->size(), write_buffer->size()); |
| EXPECT_EQ(0, memcmp(read_buffer->data(), write_buffer->data(), |
| read_buffer->size())); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic) { |
| // Test sequence: |
| // Create, Write, Read, Write, Read, Close. |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* null = NULL; |
| const char key[] = "the first key"; |
| |
| MessageLoopHelper helper; |
| CallbackTest callback1(&helper, false); |
| CallbackTest callback2(&helper, false); |
| CallbackTest callback3(&helper, false); |
| CallbackTest callback4(&helper, false); |
| CallbackTest callback5(&helper, false); |
| |
| int expected = 0; |
| const int kSize1 = 10; |
| const int kSize2 = 20; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize1); |
| scoped_refptr<net::IOBuffer> buffer1_read = |
| base::MakeRefCounted<net::IOBuffer>(kSize1); |
| scoped_refptr<net::IOBuffer> buffer2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize2); |
| scoped_refptr<net::IOBuffer> buffer2_read = |
| base::MakeRefCounted<net::IOBuffer>(kSize2); |
| CacheTestFillBuffer(buffer1->data(), kSize1, false); |
| CacheTestFillBuffer(buffer2->data(), kSize2, false); |
| |
| disk_cache::Entry* entry = NULL; |
| // Create is optimistic, must return OK. |
| ASSERT_EQ(net::OK, |
| cache_->CreateEntry( |
| key, net::HIGHEST, &entry, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback1)))); |
| EXPECT_NE(null, entry); |
| ScopedEntryPtr entry_closer(entry); |
| |
| // This write may or may not be optimistic (it depends if the previous |
| // optimistic create already finished by the time we call the write here). |
| int ret = entry->WriteData( |
| 1, |
| 0, |
| buffer1.get(), |
| kSize1, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback2)), |
| false); |
| EXPECT_TRUE(kSize1 == ret || net::ERR_IO_PENDING == ret); |
| if (net::ERR_IO_PENDING == ret) |
| expected++; |
| |
| // This Read must not be optimistic, since we don't support that yet. |
| EXPECT_EQ(net::ERR_IO_PENDING, |
| entry->ReadData( |
| 1, |
| 0, |
| buffer1_read.get(), |
| kSize1, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback3)))); |
| expected++; |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read->data(), kSize1)); |
| |
| // At this point after waiting, the pending operations queue on the entry |
| // should be empty, so the next Write operation must run as optimistic. |
| EXPECT_EQ(kSize2, |
| entry->WriteData( |
| 1, |
| 0, |
| buffer2.get(), |
| kSize2, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback4)), |
| false)); |
| |
| // Lets do another read so we block until both the write and the read |
| // operation finishes and we can then test for HasOneRef() below. |
| EXPECT_EQ(net::ERR_IO_PENDING, |
| entry->ReadData( |
| 1, |
| 0, |
| buffer2_read.get(), |
| kSize2, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback5)))); |
| expected++; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| EXPECT_EQ(0, memcmp(buffer2->data(), buffer2_read->data(), kSize2)); |
| |
| // Check that we are not leaking. |
| EXPECT_NE(entry, null); |
| EXPECT_TRUE( |
| static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef()); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic2) { |
| // Test sequence: |
| // Create, Open, Close, Close. |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* null = NULL; |
| const char key[] = "the first key"; |
| |
| MessageLoopHelper helper; |
| CallbackTest callback1(&helper, false); |
| CallbackTest callback2(&helper, false); |
| |
| disk_cache::Entry* entry = NULL; |
| ASSERT_EQ(net::OK, |
| cache_->CreateEntry( |
| key, net::HIGHEST, &entry, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback1)))); |
| EXPECT_NE(null, entry); |
| ScopedEntryPtr entry_closer(entry); |
| |
| disk_cache::Entry* entry2 = NULL; |
| ASSERT_EQ(net::ERR_IO_PENDING, |
| cache_->OpenEntry( |
| key, net::HIGHEST, &entry2, |
| base::Bind(&CallbackTest::Run, base::Unretained(&callback2)))); |
| ASSERT_TRUE(helper.WaitUntilCacheIoFinished(1)); |
| |
| EXPECT_NE(null, entry2); |
| EXPECT_EQ(entry, entry2); |
| |
| // We have to call close twice, since we called create and open above. |
| entry->Close(); |
| |
| // Check that we are not leaking. |
| EXPECT_TRUE( |
| static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef()); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic3) { |
| // Test sequence: |
| // Create, Close, Open, Close. |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* null = NULL; |
| const char key[] = "the first key"; |
| |
| disk_cache::Entry* entry = NULL; |
| ASSERT_EQ(net::OK, cache_->CreateEntry(key, net::HIGHEST, &entry, |
| net::CompletionOnceCallback())); |
| EXPECT_NE(null, entry); |
| entry->Close(); |
| |
| net::TestCompletionCallback cb; |
| disk_cache::Entry* entry2 = NULL; |
| ASSERT_EQ(net::ERR_IO_PENDING, |
| cache_->OpenEntry(key, net::HIGHEST, &entry2, cb.callback())); |
| ASSERT_THAT(cb.GetResult(net::ERR_IO_PENDING), IsOk()); |
| ScopedEntryPtr entry_closer(entry2); |
| |
| EXPECT_NE(null, entry2); |
| EXPECT_EQ(entry, entry2); |
| |
| // Check that we are not leaking. |
| EXPECT_TRUE( |
| static_cast<disk_cache::SimpleEntryImpl*>(entry2)->HasOneRef()); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic4) { |
| // Test sequence: |
| // Create, Close, Write, Open, Open, Close, Write, Read, Close. |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* null = NULL; |
| const char key[] = "the first key"; |
| |
| net::TestCompletionCallback cb; |
| const int kSize1 = 10; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize1); |
| CacheTestFillBuffer(buffer1->data(), kSize1, false); |
| disk_cache::Entry* entry = NULL; |
| |
| ASSERT_EQ(net::OK, cache_->CreateEntry(key, net::HIGHEST, &entry, |
| net::CompletionOnceCallback())); |
| EXPECT_NE(null, entry); |
| entry->Close(); |
| |
| // Lets do a Write so we block until both the Close and the Write |
| // operation finishes. Write must fail since we are writing in a closed entry. |
| EXPECT_EQ( |
| net::ERR_IO_PENDING, |
| entry->WriteData(1, 0, buffer1.get(), kSize1, cb.callback(), false)); |
| EXPECT_THAT(cb.GetResult(net::ERR_IO_PENDING), IsError(net::ERR_FAILED)); |
| |
| // Finish running the pending tasks so that we fully complete the close |
| // operation and destroy the entry object. |
| base::RunLoop().RunUntilIdle(); |
| |
| // At this point the |entry| must have been destroyed, and called |
| // RemoveSelfFromBackend(). |
| disk_cache::Entry* entry2 = NULL; |
| ASSERT_EQ(net::ERR_IO_PENDING, |
| cache_->OpenEntry(key, net::HIGHEST, &entry2, cb.callback())); |
| ASSERT_THAT(cb.GetResult(net::ERR_IO_PENDING), IsOk()); |
| EXPECT_NE(null, entry2); |
| |
| disk_cache::Entry* entry3 = NULL; |
| ASSERT_EQ(net::ERR_IO_PENDING, |
| cache_->OpenEntry(key, net::HIGHEST, &entry3, cb.callback())); |
| ASSERT_THAT(cb.GetResult(net::ERR_IO_PENDING), IsOk()); |
| EXPECT_NE(null, entry3); |
| EXPECT_EQ(entry2, entry3); |
| entry3->Close(); |
| |
| // The previous Close doesn't actually closes the entry since we opened it |
| // twice, so the next Write operation must succeed and it must be able to |
| // perform it optimistically, since there is no operation running on this |
| // entry. |
| EXPECT_EQ(kSize1, entry2->WriteData(1, 0, buffer1.get(), kSize1, |
| net::CompletionOnceCallback(), false)); |
| |
| // Lets do another read so we block until both the write and the read |
| // operation finishes and we can then test for HasOneRef() below. |
| EXPECT_EQ(net::ERR_IO_PENDING, |
| entry2->ReadData(1, 0, buffer1.get(), kSize1, cb.callback())); |
| EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING)); |
| |
| // Check that we are not leaking. |
| EXPECT_TRUE( |
| static_cast<disk_cache::SimpleEntryImpl*>(entry2)->HasOneRef()); |
| entry2->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic5) { |
| // Test sequence: |
| // Create, Doom, Write, Read, Close. |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* null = NULL; |
| const char key[] = "the first key"; |
| |
| net::TestCompletionCallback cb; |
| const int kSize1 = 10; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize1); |
| CacheTestFillBuffer(buffer1->data(), kSize1, false); |
| disk_cache::Entry* entry = NULL; |
| |
| ASSERT_EQ(net::OK, cache_->CreateEntry(key, net::HIGHEST, &entry, |
| net::CompletionOnceCallback())); |
| EXPECT_NE(null, entry); |
| ScopedEntryPtr entry_closer(entry); |
| entry->Doom(); |
| |
| EXPECT_EQ( |
| net::ERR_IO_PENDING, |
| entry->WriteData(1, 0, buffer1.get(), kSize1, cb.callback(), false)); |
| EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING)); |
| |
| EXPECT_EQ(net::ERR_IO_PENDING, |
| entry->ReadData(1, 0, buffer1.get(), kSize1, cb.callback())); |
| EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING)); |
| |
| // Check that we are not leaking. |
| EXPECT_TRUE( |
| static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef()); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheOptimistic6) { |
| // Test sequence: |
| // Create, Write, Doom, Doom, Read, Doom, Close. |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* null = NULL; |
| const char key[] = "the first key"; |
| |
| net::TestCompletionCallback cb; |
| const int kSize1 = 10; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize1); |
| scoped_refptr<net::IOBuffer> buffer1_read = |
| base::MakeRefCounted<net::IOBuffer>(kSize1); |
| CacheTestFillBuffer(buffer1->data(), kSize1, false); |
| disk_cache::Entry* entry = NULL; |
| |
| ASSERT_EQ(net::OK, cache_->CreateEntry(key, net::HIGHEST, &entry, |
| net::CompletionOnceCallback())); |
| EXPECT_NE(null, entry); |
| ScopedEntryPtr entry_closer(entry); |
| |
| EXPECT_EQ( |
| net::ERR_IO_PENDING, |
| entry->WriteData(1, 0, buffer1.get(), kSize1, cb.callback(), false)); |
| EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING)); |
| |
| entry->Doom(); |
| entry->Doom(); |
| |
| // This Read must not be optimistic, since we don't support that yet. |
| EXPECT_EQ(net::ERR_IO_PENDING, |
| entry->ReadData(1, 0, buffer1_read.get(), kSize1, cb.callback())); |
| EXPECT_EQ(kSize1, cb.GetResult(net::ERR_IO_PENDING)); |
| EXPECT_EQ(0, memcmp(buffer1->data(), buffer1_read->data(), kSize1)); |
| |
| entry->Doom(); |
| } |
| |
| // Confirm that IO buffers are not referenced by the Simple Cache after a write |
| // completes. |
| TEST_F(DiskCacheEntryTest, SimpleCacheOptimisticWriteReleases) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| const char key[] = "the first key"; |
| disk_cache::Entry* entry = NULL; |
| |
| // First, an optimistic create. |
| ASSERT_EQ(net::OK, cache_->CreateEntry(key, net::HIGHEST, &entry, |
| net::CompletionOnceCallback())); |
| ASSERT_TRUE(entry); |
| ScopedEntryPtr entry_closer(entry); |
| |
| const int kWriteSize = 512; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kWriteSize); |
| EXPECT_TRUE(buffer1->HasOneRef()); |
| CacheTestFillBuffer(buffer1->data(), kWriteSize, false); |
| |
| // An optimistic write happens only when there is an empty queue of pending |
| // operations. To ensure the queue is empty, we issue a write and wait until |
| // it completes. |
| EXPECT_EQ(kWriteSize, |
| WriteData(entry, 1, 0, buffer1.get(), kWriteSize, false)); |
| EXPECT_TRUE(buffer1->HasOneRef()); |
| |
| // Finally, we should perform an optimistic write and confirm that all |
| // references to the IO buffer have been released. |
| EXPECT_EQ(kWriteSize, entry->WriteData(1, 0, buffer1.get(), kWriteSize, |
| net::CompletionOnceCallback(), false)); |
| EXPECT_TRUE(buffer1->HasOneRef()); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheCreateDoomRace) { |
| // Test sequence: |
| // Create, Doom, Write, Close, Check files are not on disk anymore. |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* null = NULL; |
| const char key[] = "the first key"; |
| |
| net::TestCompletionCallback cb; |
| const int kSize1 = 10; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize1); |
| CacheTestFillBuffer(buffer1->data(), kSize1, false); |
| disk_cache::Entry* entry = NULL; |
| |
| ASSERT_EQ(net::OK, cache_->CreateEntry(key, net::HIGHEST, &entry, |
| net::CompletionOnceCallback())); |
| EXPECT_NE(null, entry); |
| |
| EXPECT_THAT(cache_->DoomEntry(key, net::HIGHEST, cb.callback()), |
| IsError(net::ERR_IO_PENDING)); |
| EXPECT_THAT(cb.GetResult(net::ERR_IO_PENDING), IsOk()); |
| |
| EXPECT_EQ( |
| kSize1, |
| entry->WriteData(0, 0, buffer1.get(), kSize1, cb.callback(), false)); |
| |
| entry->Close(); |
| |
| // Finish running the pending tasks so that we fully complete the close |
| // operation and destroy the entry object. |
| base::RunLoop().RunUntilIdle(); |
| |
| for (int i = 0; i < disk_cache::kSimpleEntryNormalFileCount; ++i) { |
| base::FilePath entry_file_path = cache_path_.AppendASCII( |
| disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, i)); |
| base::File::Info info; |
| EXPECT_FALSE(base::GetFileInfo(entry_file_path, &info)); |
| } |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateRace) { |
| // This test runs as APP_CACHE to make operations more synchronous. Test |
| // sequence: |
| // Create, Doom, Create. |
| SetCacheType(net::APP_CACHE); |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* null = NULL; |
| const char key[] = "the first key"; |
| |
| net::TestCompletionCallback create_callback; |
| |
| disk_cache::Entry* entry1 = NULL; |
| ASSERT_EQ(net::OK, |
| create_callback.GetResult(cache_->CreateEntry( |
| key, net::HIGHEST, &entry1, create_callback.callback()))); |
| ScopedEntryPtr entry1_closer(entry1); |
| EXPECT_NE(null, entry1); |
| |
| net::TestCompletionCallback doom_callback; |
| EXPECT_EQ(net::ERR_IO_PENDING, |
| cache_->DoomEntry(key, net::HIGHEST, doom_callback.callback())); |
| |
| disk_cache::Entry* entry2 = NULL; |
| ASSERT_EQ(net::OK, |
| create_callback.GetResult(cache_->CreateEntry( |
| key, net::HIGHEST, &entry2, create_callback.callback()))); |
| ScopedEntryPtr entry2_closer(entry2); |
| EXPECT_THAT(doom_callback.GetResult(net::ERR_IO_PENDING), IsOk()); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateOptimistic) { |
| // Test that we optimize the doom -> create sequence when optimistic ops |
| // are on. |
| SetSimpleCacheMode(); |
| InitCache(); |
| const char kKey[] = "the key"; |
| |
| // Create entry and initiate its Doom. |
| disk_cache::Entry* entry1 = nullptr; |
| ASSERT_THAT(CreateEntry(kKey, &entry1), IsOk()); |
| ASSERT_TRUE(entry1 != nullptr); |
| |
| net::TestCompletionCallback doom_callback; |
| cache_->DoomEntry(kKey, net::HIGHEST, doom_callback.callback()); |
| |
| disk_cache::Entry* entry2 = nullptr; |
| net::TestCompletionCallback create_callback; |
| // Open entry2, with same key. With optimistic ops, this should succeed |
| // immediately, hence us using cache_->CreateEntry directly rather than using |
| // the DiskCacheTestWithCache::CreateEntry wrapper which blocks when needed. |
| ASSERT_EQ(net::OK, cache_->CreateEntry(kKey, net::HIGHEST, &entry2, |
| create_callback.callback())); |
| |
| // Do some I/O to make sure it's alive. |
| const int kSize = 2048; |
| scoped_refptr<net::IOBuffer> buf_1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| scoped_refptr<net::IOBuffer> buf_2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buf_1->data(), kSize, false); |
| |
| EXPECT_EQ(kSize, WriteData(entry2, /* stream_index = */ 1, /* offset = */ 0, |
| buf_1.get(), kSize, /* truncate = */ false)); |
| EXPECT_EQ(kSize, ReadData(entry2, /* stream_index = */ 1, /* offset = */ 0, |
| buf_2.get(), kSize)); |
| |
| doom_callback.WaitForResult(); |
| |
| entry1->Close(); |
| entry2->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateOptimisticMassDoom) { |
| // Test that shows that a certain DCHECK in mass doom code had to be removed |
| // once optimistic doom -> create was added. |
| SetSimpleCacheMode(); |
| InitCache(); |
| const char kKey[] = "the key"; |
| |
| // Create entry and initiate its Doom. |
| disk_cache::Entry* entry1 = nullptr; |
| ASSERT_THAT(CreateEntry(kKey, &entry1), IsOk()); |
| ASSERT_TRUE(entry1 != nullptr); |
| |
| net::TestCompletionCallback doom_callback; |
| cache_->DoomEntry(kKey, net::HIGHEST, doom_callback.callback()); |
| |
| disk_cache::Entry* entry2 = nullptr; |
| net::TestCompletionCallback create_callback; |
| // Open entry2, with same key. With optimistic ops, this should succeed |
| // immediately, hence us using cache_->CreateEntry directly rather than using |
| // the DiskCacheTestWithCache::CreateEntry wrapper which blocks when needed. |
| ASSERT_EQ(net::OK, cache_->CreateEntry(kKey, net::HIGHEST, &entry2, |
| create_callback.callback())); |
| |
| net::TestCompletionCallback doomall_callback; |
| |
| // This is what had code that had a no-longer valid DCHECK. |
| cache_->DoomAllEntries(doomall_callback.callback()); |
| |
| doom_callback.WaitForResult(); |
| doomall_callback.WaitForResult(); |
| |
| entry1->Close(); |
| entry2->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheDoomOpenOptimistic) { |
| // Test that we optimize the doom -> optimize sequence when optimistic ops |
| // are on. |
| SetSimpleCacheMode(); |
| InitCache(); |
| const char kKey[] = "the key"; |
| |
| // Create entry and initiate its Doom. |
| disk_cache::Entry* entry1 = nullptr; |
| ASSERT_THAT(CreateEntry(kKey, &entry1), IsOk()); |
| ASSERT_TRUE(entry1 != nullptr); |
| entry1->Close(); |
| |
| net::TestCompletionCallback doom_callback; |
| cache_->DoomEntry(kKey, net::HIGHEST, doom_callback.callback()); |
| |
| // Try to open entry. This should detect a miss immediately, since it's |
| // the only thing after a doom. |
| disk_cache::Entry* entry2 = nullptr; |
| net::TestCompletionCallback open_callback; |
| EXPECT_EQ(net::ERR_FAILED, cache_->OpenEntry(kKey, net::HIGHEST, &entry2, |
| open_callback.callback())); |
| doom_callback.WaitForResult(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheDoomDoom) { |
| // Test sequence: |
| // Create, Doom, Create, Doom (1st entry), Open. |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* null = NULL; |
| |
| const char key[] = "the first key"; |
| |
| disk_cache::Entry* entry1 = NULL; |
| ASSERT_THAT(CreateEntry(key, &entry1), IsOk()); |
| ScopedEntryPtr entry1_closer(entry1); |
| EXPECT_NE(null, entry1); |
| |
| EXPECT_THAT(DoomEntry(key), IsOk()); |
| |
| disk_cache::Entry* entry2 = NULL; |
| ASSERT_THAT(CreateEntry(key, &entry2), IsOk()); |
| ScopedEntryPtr entry2_closer(entry2); |
| EXPECT_NE(null, entry2); |
| |
| // Redundantly dooming entry1 should not delete entry2. |
| disk_cache::SimpleEntryImpl* simple_entry1 = |
| static_cast<disk_cache::SimpleEntryImpl*>(entry1); |
| net::TestCompletionCallback cb; |
| EXPECT_EQ(net::OK, |
| cb.GetResult(simple_entry1->DoomEntry(cb.callback()))); |
| |
| disk_cache::Entry* entry3 = NULL; |
| ASSERT_THAT(OpenEntry(key, &entry3), IsOk()); |
| ScopedEntryPtr entry3_closer(entry3); |
| EXPECT_NE(null, entry3); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheDoomCreateDoom) { |
| // Test sequence: |
| // Create, Doom, Create, Doom. |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| disk_cache::Entry* null = NULL; |
| |
| const char key[] = "the first key"; |
| |
| disk_cache::Entry* entry1 = NULL; |
| ASSERT_THAT(CreateEntry(key, &entry1), IsOk()); |
| ScopedEntryPtr entry1_closer(entry1); |
| EXPECT_NE(null, entry1); |
| |
| entry1->Doom(); |
| |
| disk_cache::Entry* entry2 = NULL; |
| ASSERT_THAT(CreateEntry(key, &entry2), IsOk()); |
| ScopedEntryPtr entry2_closer(entry2); |
| EXPECT_NE(null, entry2); |
| |
| entry2->Doom(); |
| |
| // This test passes if it doesn't crash. |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheDoomCloseCreateCloseOpen) { |
| // Test sequence: Create, Doom, Close, Create, Close, Open. |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| disk_cache::Entry* null = NULL; |
| |
| const char key[] = "this is a key"; |
| |
| disk_cache::Entry* entry1 = NULL; |
| ASSERT_THAT(CreateEntry(key, &entry1), IsOk()); |
| ScopedEntryPtr entry1_closer(entry1); |
| EXPECT_NE(null, entry1); |
| |
| entry1->Doom(); |
| entry1_closer.reset(); |
| entry1 = NULL; |
| |
| disk_cache::Entry* entry2 = NULL; |
| ASSERT_THAT(CreateEntry(key, &entry2), IsOk()); |
| ScopedEntryPtr entry2_closer(entry2); |
| EXPECT_NE(null, entry2); |
| |
| entry2_closer.reset(); |
| entry2 = NULL; |
| |
| disk_cache::Entry* entry3 = NULL; |
| ASSERT_THAT(OpenEntry(key, &entry3), IsOk()); |
| ScopedEntryPtr entry3_closer(entry3); |
| EXPECT_NE(null, entry3); |
| } |
| |
| // Checks that an optimistic Create would fail later on a racing Open. |
| TEST_F(DiskCacheEntryTest, SimpleCacheOptimisticCreateFailsOnOpen) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| // Create a corrupt file in place of a future entry. Optimistic create should |
| // initially succeed, but realize later that creation failed. |
| const std::string key = "the key"; |
| net::TestCompletionCallback cb; |
| disk_cache::Entry* entry = NULL; |
| disk_cache::Entry* entry2 = NULL; |
| |
| EXPECT_TRUE(disk_cache::simple_util::CreateCorruptFileForTests( |
| key, cache_path_)); |
| EXPECT_THAT(cache_->CreateEntry(key, net::HIGHEST, &entry, cb.callback()), |
| IsOk()); |
| ASSERT_TRUE(entry); |
| ScopedEntryPtr entry_closer(entry); |
| ASSERT_NE(net::OK, OpenEntry(key, &entry2)); |
| |
| // Check that we are not leaking. |
| EXPECT_TRUE( |
| static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef()); |
| |
| DisableIntegrityCheck(); |
| } |
| |
| // Tests that old entries are evicted while new entries remain in the index. |
| // This test relies on non-mandatory properties of the simple Cache Backend: |
| // LRU eviction, specific values of high-watermark and low-watermark etc. |
| // When changing the eviction algorithm, the test will have to be re-engineered. |
| TEST_F(DiskCacheEntryTest, SimpleCacheEvictOldEntries) { |
| const int kMaxSize = 200 * 1024; |
| const int kWriteSize = kMaxSize / 10; |
| const int kNumExtraEntries = 12; |
| SetSimpleCacheMode(); |
| SetMaxSize(kMaxSize); |
| InitCache(); |
| |
| std::string key1("the first key"); |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key1, &entry), IsOk()); |
| scoped_refptr<net::IOBuffer> buffer = |
| base::MakeRefCounted<net::IOBuffer>(kWriteSize); |
| CacheTestFillBuffer(buffer->data(), kWriteSize, false); |
| EXPECT_EQ(kWriteSize, |
| WriteData(entry, 1, 0, buffer.get(), kWriteSize, false)); |
| entry->Close(); |
| AddDelay(); |
| |
| std::string key2("the key prefix"); |
| for (int i = 0; i < kNumExtraEntries; i++) { |
| if (i == kNumExtraEntries - 2) { |
| // Create a distinct timestamp for the last two entries. These entries |
| // will be checked for outliving the eviction. |
| AddDelay(); |
| } |
| ASSERT_THAT(CreateEntry(key2 + base::IntToString(i), &entry), IsOk()); |
| ScopedEntryPtr entry_closer(entry); |
| EXPECT_EQ(kWriteSize, |
| WriteData(entry, 1, 0, buffer.get(), kWriteSize, false)); |
| } |
| |
| // TODO(pasko): Find a way to wait for the eviction task(s) to finish by using |
| // the internal knowledge about |SimpleBackendImpl|. |
| ASSERT_NE(net::OK, OpenEntry(key1, &entry)) |
| << "Should have evicted the old entry"; |
| for (int i = 0; i < 2; i++) { |
| int entry_no = kNumExtraEntries - i - 1; |
| // Generally there is no guarantee that at this point the backround eviction |
| // is finished. We are testing the positive case, i.e. when the eviction |
| // never reaches this entry, should be non-flaky. |
| ASSERT_EQ(net::OK, OpenEntry(key2 + base::IntToString(entry_no), &entry)) |
| << "Should not have evicted fresh entry " << entry_no; |
| entry->Close(); |
| } |
| } |
| |
| // Tests that if a read and a following in-flight truncate are both in progress |
| // simultaniously that they both can occur successfully. See |
| // http://crbug.com/239223 |
| TEST_F(DiskCacheEntryTest, SimpleCacheInFlightTruncate) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| const char key[] = "the first key"; |
| |
| // We use a very large entry size here to make sure this doesn't hit |
| // the prefetch path for any concievable setting. Hitting prefetch would |
| // make us serve the read below from memory entirely on I/O thread, missing |
| // the point of the test which coverred two concurrent disk ops, with |
| // portions of work happening on the workpool. |
| const int kBufferSize = 50000; |
| scoped_refptr<net::IOBuffer> write_buffer = |
| base::MakeRefCounted<net::IOBuffer>(kBufferSize); |
| CacheTestFillBuffer(write_buffer->data(), kBufferSize, false); |
| |
| disk_cache::Entry* entry = NULL; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| EXPECT_EQ(kBufferSize, |
| WriteData(entry, 1, 0, write_buffer.get(), kBufferSize, false)); |
| entry->Close(); |
| entry = NULL; |
| |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| ScopedEntryPtr entry_closer(entry); |
| |
| MessageLoopHelper helper; |
| int expected = 0; |
| |
| // Make a short read. |
| const int kReadBufferSize = 512; |
| scoped_refptr<net::IOBuffer> read_buffer = |
| base::MakeRefCounted<net::IOBuffer>(kReadBufferSize); |
| CallbackTest read_callback(&helper, false); |
| EXPECT_EQ(net::ERR_IO_PENDING, |
| entry->ReadData(1, |
| 0, |
| read_buffer.get(), |
| kReadBufferSize, |
| base::Bind(&CallbackTest::Run, |
| base::Unretained(&read_callback)))); |
| ++expected; |
| |
| // Truncate the entry to the length of that read. |
| scoped_refptr<net::IOBuffer> truncate_buffer = |
| base::MakeRefCounted<net::IOBuffer>(kReadBufferSize); |
| CacheTestFillBuffer(truncate_buffer->data(), kReadBufferSize, false); |
| CallbackTest truncate_callback(&helper, false); |
| EXPECT_EQ(net::ERR_IO_PENDING, |
| entry->WriteData(1, |
| 0, |
| truncate_buffer.get(), |
| kReadBufferSize, |
| base::Bind(&CallbackTest::Run, |
| base::Unretained(&truncate_callback)), |
| true)); |
| ++expected; |
| |
| // Wait for both the read and truncation to finish, and confirm that both |
| // succeeded. |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| EXPECT_EQ(kReadBufferSize, read_callback.last_result()); |
| EXPECT_EQ(kReadBufferSize, truncate_callback.last_result()); |
| EXPECT_EQ(0, memcmp(write_buffer->data(), read_buffer->data(), |
| kReadBufferSize)); |
| } |
| |
| // Tests that if a write and a read dependant on it are both in flight |
| // simultaneiously that they both can complete successfully without erroneous |
| // early returns. See http://crbug.com/239223 |
| TEST_F(DiskCacheEntryTest, SimpleCacheInFlightRead) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| const char key[] = "the first key"; |
| disk_cache::Entry* entry = NULL; |
| ASSERT_EQ(net::OK, cache_->CreateEntry(key, net::HIGHEST, &entry, |
| net::CompletionOnceCallback())); |
| ScopedEntryPtr entry_closer(entry); |
| |
| const int kBufferSize = 1024; |
| scoped_refptr<net::IOBuffer> write_buffer = |
| base::MakeRefCounted<net::IOBuffer>(kBufferSize); |
| CacheTestFillBuffer(write_buffer->data(), kBufferSize, false); |
| |
| MessageLoopHelper helper; |
| int expected = 0; |
| |
| CallbackTest write_callback(&helper, false); |
| EXPECT_EQ(net::ERR_IO_PENDING, |
| entry->WriteData(1, |
| 0, |
| write_buffer.get(), |
| kBufferSize, |
| base::Bind(&CallbackTest::Run, |
| base::Unretained(&write_callback)), |
| true)); |
| ++expected; |
| |
| scoped_refptr<net::IOBuffer> read_buffer = |
| base::MakeRefCounted<net::IOBuffer>(kBufferSize); |
| CallbackTest read_callback(&helper, false); |
| EXPECT_EQ(net::ERR_IO_PENDING, |
| entry->ReadData(1, |
| 0, |
| read_buffer.get(), |
| kBufferSize, |
| base::Bind(&CallbackTest::Run, |
| base::Unretained(&read_callback)))); |
| ++expected; |
| |
| EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); |
| EXPECT_EQ(kBufferSize, write_callback.last_result()); |
| EXPECT_EQ(kBufferSize, read_callback.last_result()); |
| EXPECT_EQ(0, memcmp(write_buffer->data(), read_buffer->data(), |
| kBufferSize)); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheOpenCreateRaceWithNoIndex) { |
| SetSimpleCacheMode(); |
| DisableSimpleCacheWaitForIndex(); |
| DisableIntegrityCheck(); |
| InitCache(); |
| |
| // Assume the index is not initialized, which is likely, since we are blocking |
| // the IO thread from executing the index finalization step. |
| disk_cache::Entry* entry1; |
| net::TestCompletionCallback cb1; |
| disk_cache::Entry* entry2; |
| net::TestCompletionCallback cb2; |
| int rv1 = cache_->OpenEntry("key", net::HIGHEST, &entry1, cb1.callback()); |
| int rv2 = cache_->CreateEntry("key", net::HIGHEST, &entry2, cb2.callback()); |
| |
| EXPECT_THAT(cb1.GetResult(rv1), IsError(net::ERR_FAILED)); |
| ASSERT_THAT(cb2.GetResult(rv2), IsOk()); |
| |
| // Try to get an alias for entry2. Open should succeed, and return the same |
| // pointer. |
| disk_cache::Entry* entry3 = nullptr; |
| ASSERT_EQ(net::OK, OpenEntry("key", &entry3)); |
| EXPECT_EQ(entry3, entry2); |
| |
| entry2->Close(); |
| entry3->Close(); |
| } |
| |
| // Checking one more scenario of overlapped reading of a bad entry. |
| // Differs from the |SimpleCacheMultipleReadersCheckCRC| only by the order of |
| // last two reads. |
| TEST_F(DiskCacheEntryTest, SimpleCacheMultipleReadersCheckCRC2) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| const char key[] = "key"; |
| int size = 50000; |
| ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, size)); |
| |
| scoped_refptr<net::IOBuffer> read_buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(size); |
| scoped_refptr<net::IOBuffer> read_buffer2 = |
| base::MakeRefCounted<net::IOBuffer>(size); |
| |
| // Advance the first reader a little. |
| disk_cache::Entry* entry = NULL; |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| ScopedEntryPtr entry_closer(entry); |
| EXPECT_EQ(1, ReadData(entry, 1, 0, read_buffer1.get(), 1)); |
| |
| // Advance the 2nd reader by the same amount. |
| disk_cache::Entry* entry2 = NULL; |
| EXPECT_THAT(OpenEntry(key, &entry2), IsOk()); |
| ScopedEntryPtr entry2_closer(entry2); |
| EXPECT_EQ(1, ReadData(entry2, 1, 0, read_buffer2.get(), 1)); |
| |
| // Continue reading 1st. |
| EXPECT_GT(0, ReadData(entry, 1, 1, read_buffer1.get(), size)); |
| |
| // This read should fail as well because we have previous read failures. |
| EXPECT_GT(0, ReadData(entry2, 1, 1, read_buffer2.get(), 1)); |
| DisableIntegrityCheck(); |
| } |
| |
| // Test if we can sequentially read each subset of the data until all the data |
| // is read, then the CRC is calculated correctly and the reads are successful. |
| TEST_F(DiskCacheEntryTest, SimpleCacheReadCombineCRC) { |
| // Test sequence: |
| // Create, Write, Read (first half of data), Read (second half of data), |
| // Close. |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* null = NULL; |
| const char key[] = "the first key"; |
| |
| const int kHalfSize = 200; |
| const int kSize = 2 * kHalfSize; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer1->data(), kSize, false); |
| disk_cache::Entry* entry = NULL; |
| |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| EXPECT_NE(null, entry); |
| |
| EXPECT_EQ(kSize, WriteData(entry, 1, 0, buffer1.get(), kSize, false)); |
| entry->Close(); |
| |
| disk_cache::Entry* entry2 = NULL; |
| ASSERT_THAT(OpenEntry(key, &entry2), IsOk()); |
| EXPECT_EQ(entry, entry2); |
| |
| // Read the first half of the data. |
| int offset = 0; |
| int buf_len = kHalfSize; |
| scoped_refptr<net::IOBuffer> buffer1_read1 = |
| base::MakeRefCounted<net::IOBuffer>(buf_len); |
| EXPECT_EQ(buf_len, ReadData(entry2, 1, offset, buffer1_read1.get(), buf_len)); |
| EXPECT_EQ(0, |
| memcmp(buffer1->data(), buffer1_read1->data(), buf_len)); |
| |
| // Read the second half of the data. |
| offset = buf_len; |
| buf_len = kHalfSize; |
| scoped_refptr<net::IOBuffer> buffer1_read2 = |
| base::MakeRefCounted<net::IOBuffer>(buf_len); |
| EXPECT_EQ(buf_len, ReadData(entry2, 1, offset, buffer1_read2.get(), buf_len)); |
| char* buffer1_data = buffer1->data() + offset; |
| EXPECT_EQ(0, memcmp(buffer1_data, buffer1_read2->data(), buf_len)); |
| |
| // Check that we are not leaking. |
| EXPECT_NE(entry, null); |
| EXPECT_TRUE( |
| static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef()); |
| entry->Close(); |
| entry = NULL; |
| } |
| |
| // Test if we can write the data not in sequence and read correctly. In |
| // this case the CRC will not be present. |
| TEST_F(DiskCacheEntryTest, SimpleCacheNonSequentialWrite) { |
| // Test sequence: |
| // Create, Write (second half of data), Write (first half of data), Read, |
| // Close. |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* null = NULL; |
| const char key[] = "the first key"; |
| |
| const int kHalfSize = 200; |
| const int kSize = 2 * kHalfSize; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| scoped_refptr<net::IOBuffer> buffer2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer1->data(), kSize, false); |
| char* buffer1_data = buffer1->data() + kHalfSize; |
| memcpy(buffer2->data(), buffer1_data, kHalfSize); |
| |
| disk_cache::Entry* entry = NULL; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| entry->Close(); |
| for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| EXPECT_NE(null, entry); |
| |
| int offset = kHalfSize; |
| int buf_len = kHalfSize; |
| |
| EXPECT_EQ(buf_len, |
| WriteData(entry, i, offset, buffer2.get(), buf_len, false)); |
| offset = 0; |
| buf_len = kHalfSize; |
| EXPECT_EQ(buf_len, |
| WriteData(entry, i, offset, buffer1.get(), buf_len, false)); |
| entry->Close(); |
| |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| |
| scoped_refptr<net::IOBuffer> buffer1_read1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| EXPECT_EQ(kSize, ReadData(entry, i, 0, buffer1_read1.get(), kSize)); |
| EXPECT_EQ(0, |
| memcmp(buffer1->data(), buffer1_read1->data(), kSize)); |
| // Check that we are not leaking. |
| ASSERT_NE(entry, null); |
| EXPECT_TRUE(static_cast<disk_cache::SimpleEntryImpl*>(entry)->HasOneRef()); |
| entry->Close(); |
| } |
| } |
| |
| // Test that changing stream1 size does not affect stream0 (stream0 and stream1 |
| // are stored in the same file in Simple Cache). |
| TEST_F(DiskCacheEntryTest, SimpleCacheStream1SizeChanges) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* entry = NULL; |
| const std::string key("the key"); |
| const int kSize = 100; |
| scoped_refptr<net::IOBuffer> buffer = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| scoped_refptr<net::IOBuffer> buffer_read = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer->data(), kSize, false); |
| |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| EXPECT_TRUE(entry); |
| |
| // Write something into stream0. |
| EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer.get(), kSize, false)); |
| EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer_read.get(), kSize)); |
| EXPECT_EQ(0, memcmp(buffer->data(), buffer_read->data(), kSize)); |
| entry->Close(); |
| |
| // Extend stream1. |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| int stream1_size = 100; |
| EXPECT_EQ(0, WriteData(entry, 1, stream1_size, buffer.get(), 0, false)); |
| EXPECT_EQ(stream1_size, entry->GetDataSize(1)); |
| entry->Close(); |
| |
| // Check that stream0 data has not been modified and that the EOF record for |
| // stream 0 contains a crc. |
| // The entry needs to be reopened before checking the crc: Open will perform |
| // the synchronization with the previous Close. This ensures the EOF records |
| // have been written to disk before we attempt to read them independently. |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| base::FilePath entry_file0_path = cache_path_.AppendASCII( |
| disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key, 0)); |
| base::File entry_file0(entry_file0_path, |
| base::File::FLAG_READ | base::File::FLAG_OPEN); |
| ASSERT_TRUE(entry_file0.IsValid()); |
| |
| int data_size[disk_cache::kSimpleEntryStreamCount] = {kSize, stream1_size, 0}; |
| int sparse_data_size = 0; |
| disk_cache::SimpleEntryStat entry_stat( |
| base::Time::Now(), base::Time::Now(), data_size, sparse_data_size); |
| int eof_offset = entry_stat.GetEOFOffsetInFile(key.size(), 0); |
| disk_cache::SimpleFileEOF eof_record; |
| ASSERT_EQ(static_cast<int>(sizeof(eof_record)), |
| entry_file0.Read(eof_offset, reinterpret_cast<char*>(&eof_record), |
| sizeof(eof_record))); |
| EXPECT_EQ(disk_cache::kSimpleFinalMagicNumber, eof_record.final_magic_number); |
| EXPECT_TRUE((eof_record.flags & disk_cache::SimpleFileEOF::FLAG_HAS_CRC32) == |
| disk_cache::SimpleFileEOF::FLAG_HAS_CRC32); |
| |
| buffer_read = base::MakeRefCounted<net::IOBuffer>(kSize); |
| EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer_read.get(), kSize)); |
| EXPECT_EQ(0, memcmp(buffer->data(), buffer_read->data(), kSize)); |
| |
| // Shrink stream1. |
| stream1_size = 50; |
| EXPECT_EQ(0, WriteData(entry, 1, stream1_size, buffer.get(), 0, true)); |
| EXPECT_EQ(stream1_size, entry->GetDataSize(1)); |
| entry->Close(); |
| |
| // Check that stream0 data has not been modified. |
| buffer_read = base::MakeRefCounted<net::IOBuffer>(kSize); |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer_read.get(), kSize)); |
| EXPECT_EQ(0, memcmp(buffer->data(), buffer_read->data(), kSize)); |
| entry->Close(); |
| entry = NULL; |
| } |
| |
| // Test that writing within the range for which the crc has already been |
| // computed will properly invalidate the computed crc. |
| TEST_F(DiskCacheEntryTest, SimpleCacheCRCRewrite) { |
| // Test sequence: |
| // Create, Write (big data), Write (small data in the middle), Close. |
| // Open, Read (all), Close. |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* null = NULL; |
| const char key[] = "the first key"; |
| |
| const int kHalfSize = 200; |
| const int kSize = 2 * kHalfSize; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| scoped_refptr<net::IOBuffer> buffer2 = |
| base::MakeRefCounted<net::IOBuffer>(kHalfSize); |
| CacheTestFillBuffer(buffer1->data(), kSize, false); |
| CacheTestFillBuffer(buffer2->data(), kHalfSize, false); |
| |
| disk_cache::Entry* entry = NULL; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| EXPECT_NE(null, entry); |
| entry->Close(); |
| |
| for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| int offset = 0; |
| int buf_len = kSize; |
| |
| EXPECT_EQ(buf_len, |
| WriteData(entry, i, offset, buffer1.get(), buf_len, false)); |
| offset = kHalfSize; |
| buf_len = kHalfSize; |
| EXPECT_EQ(buf_len, |
| WriteData(entry, i, offset, buffer2.get(), buf_len, false)); |
| entry->Close(); |
| |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| |
| scoped_refptr<net::IOBuffer> buffer1_read1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| EXPECT_EQ(kSize, ReadData(entry, i, 0, buffer1_read1.get(), kSize)); |
| EXPECT_EQ( |
| 0, memcmp(buffer1->data(), buffer1_read1->data(), kHalfSize)); |
| EXPECT_EQ(0, memcmp(buffer2->data(), |
| buffer1_read1->data() + kHalfSize, kHalfSize)); |
| |
| entry->Close(); |
| } |
| } |
| |
| bool DiskCacheEntryTest::SimpleCacheThirdStreamFileExists(const char* key) { |
| int third_stream_file_index = |
| disk_cache::simple_util::GetFileIndexFromStreamIndex(2); |
| base::FilePath third_stream_file_path = cache_path_.AppendASCII( |
| disk_cache::simple_util::GetFilenameFromKeyAndFileIndex( |
| key, third_stream_file_index)); |
| return PathExists(third_stream_file_path); |
| } |
| |
| void DiskCacheEntryTest::SyncDoomEntry(const char* key) { |
| net::TestCompletionCallback callback; |
| cache_->DoomEntry(key, net::HIGHEST, callback.callback()); |
| callback.WaitForResult(); |
| } |
| |
| void DiskCacheEntryTest::UseAfterBackendDestruction() { |
| disk_cache::Entry* entry = NULL; |
| ASSERT_THAT(CreateEntry("the first key", &entry), IsOk()); |
| cache_.reset(); |
| |
| const int kSize = 100; |
| scoped_refptr<net::IOBuffer> buffer = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer->data(), kSize, false); |
| |
| // Do some writes and reads, but don't change the result. We're OK |
| // with them failing, just not them crashing. |
| WriteData(entry, 1, 0, buffer.get(), kSize, false); |
| ReadData(entry, 1, 0, buffer.get(), kSize); |
| WriteSparseData(entry, 20000, buffer.get(), kSize); |
| |
| entry->Close(); |
| } |
| |
| // Check that a newly-created entry with no third-stream writes omits the |
| // third stream file. |
| TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream1) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| const char key[] = "key"; |
| |
| disk_cache::Entry* entry; |
| |
| // Create entry and close without writing: third stream file should be |
| // omitted, since the stream is empty. |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| entry->Close(); |
| EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key)); |
| |
| SyncDoomEntry(key); |
| EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key)); |
| } |
| |
| // Check that a newly-created entry with only a single zero-offset, zero-length |
| // write omits the third stream file. |
| TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream2) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| const int kHalfSize = 8; |
| const int kSize = kHalfSize * 2; |
| const char key[] = "key"; |
| scoped_refptr<net::IOBuffer> buffer = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer->data(), kHalfSize, false); |
| |
| disk_cache::Entry* entry; |
| |
| // Create entry, write empty buffer to third stream, and close: third stream |
| // should still be omitted, since the entry ignores writes that don't modify |
| // data or change the length. |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| EXPECT_EQ(0, WriteData(entry, 2, 0, buffer.get(), 0, true)); |
| entry->Close(); |
| EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key)); |
| |
| SyncDoomEntry(key); |
| EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key)); |
| } |
| |
| // Check that we can read back data written to the third stream. |
| TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream3) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| const int kHalfSize = 8; |
| const int kSize = kHalfSize * 2; |
| const char key[] = "key"; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| scoped_refptr<net::IOBuffer> buffer2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer1->data(), kHalfSize, false); |
| |
| disk_cache::Entry* entry; |
| |
| // Create entry, write data to third stream, and close: third stream should |
| // not be omitted, since it contains data. Re-open entry and ensure there |
| // are that many bytes in the third stream. |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| EXPECT_EQ(kHalfSize, WriteData(entry, 2, 0, buffer1.get(), kHalfSize, true)); |
| entry->Close(); |
| EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key)); |
| |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| EXPECT_EQ(kHalfSize, ReadData(entry, 2, 0, buffer2.get(), kSize)); |
| EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kHalfSize)); |
| entry->Close(); |
| EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key)); |
| |
| SyncDoomEntry(key); |
| EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key)); |
| } |
| |
| // Check that we remove the third stream file upon opening an entry and finding |
| // the third stream empty. (This is the upgrade path for entries written |
| // before the third stream was optional.) |
| TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream4) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| const int kHalfSize = 8; |
| const int kSize = kHalfSize * 2; |
| const char key[] = "key"; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| scoped_refptr<net::IOBuffer> buffer2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer1->data(), kHalfSize, false); |
| |
| disk_cache::Entry* entry; |
| |
| // Create entry, write data to third stream, truncate third stream back to |
| // empty, and close: third stream will not initially be omitted, since entry |
| // creates the file when the first significant write comes in, and only |
| // removes it on open if it is empty. Reopen, ensure that the file is |
| // deleted, and that there's no data in the third stream. |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| EXPECT_EQ(kHalfSize, WriteData(entry, 2, 0, buffer1.get(), kHalfSize, true)); |
| EXPECT_EQ(0, WriteData(entry, 2, 0, buffer1.get(), 0, true)); |
| entry->Close(); |
| EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key)); |
| |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key)); |
| EXPECT_EQ(0, ReadData(entry, 2, 0, buffer2.get(), kSize)); |
| entry->Close(); |
| EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key)); |
| |
| SyncDoomEntry(key); |
| EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key)); |
| } |
| |
| // Check that we don't accidentally create the third stream file once the entry |
| // has been doomed. |
| TEST_F(DiskCacheEntryTest, SimpleCacheOmittedThirdStream5) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| const int kHalfSize = 8; |
| const int kSize = kHalfSize * 2; |
| const char key[] = "key"; |
| scoped_refptr<net::IOBuffer> buffer = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer->data(), kHalfSize, false); |
| |
| disk_cache::Entry* entry; |
| |
| // Create entry, doom entry, write data to third stream, and close: third |
| // stream should not exist. (Note: We don't care if the write fails, just |
| // that it doesn't cause the file to be created on disk.) |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| entry->Doom(); |
| WriteData(entry, 2, 0, buffer.get(), kHalfSize, true); |
| entry->Close(); |
| EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key)); |
| } |
| |
| // There could be a race between Doom and an optimistic write. |
| TEST_F(DiskCacheEntryTest, SimpleCacheDoomOptimisticWritesRace) { |
| // Test sequence: |
| // Create, first Write, second Write, Close. |
| // Open, Close. |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* null = NULL; |
| const char key[] = "the first key"; |
| |
| const int kSize = 200; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| scoped_refptr<net::IOBuffer> buffer2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer1->data(), kSize, false); |
| CacheTestFillBuffer(buffer2->data(), kSize, false); |
| |
| // The race only happens on stream 1 and stream 2. |
| for (int i = 0; i < disk_cache::kSimpleEntryStreamCount; ++i) { |
| ASSERT_THAT(DoomAllEntries(), IsOk()); |
| disk_cache::Entry* entry = NULL; |
| |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| EXPECT_NE(null, entry); |
| entry->Close(); |
| entry = NULL; |
| |
| ASSERT_THAT(DoomAllEntries(), IsOk()); |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| EXPECT_NE(null, entry); |
| |
| int offset = 0; |
| int buf_len = kSize; |
| // This write should not be optimistic (since create is). |
| EXPECT_EQ(buf_len, |
| WriteData(entry, i, offset, buffer1.get(), buf_len, false)); |
| |
| offset = kSize; |
| // This write should be optimistic. |
| EXPECT_EQ(buf_len, |
| WriteData(entry, i, offset, buffer2.get(), buf_len, false)); |
| entry->Close(); |
| |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| EXPECT_NE(null, entry); |
| |
| entry->Close(); |
| entry = NULL; |
| } |
| } |
| |
| // Tests for a regression in crbug.com/317138 , in which deleting an already |
| // doomed entry was removing the active entry from the index. |
| TEST_F(DiskCacheEntryTest, SimpleCachePreserveActiveEntries) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| disk_cache::Entry* null = NULL; |
| |
| const char key[] = "this is a key"; |
| |
| disk_cache::Entry* entry1 = NULL; |
| ASSERT_THAT(CreateEntry(key, &entry1), IsOk()); |
| ScopedEntryPtr entry1_closer(entry1); |
| EXPECT_NE(null, entry1); |
| entry1->Doom(); |
| |
| disk_cache::Entry* entry2 = NULL; |
| ASSERT_THAT(CreateEntry(key, &entry2), IsOk()); |
| ScopedEntryPtr entry2_closer(entry2); |
| EXPECT_NE(null, entry2); |
| entry2_closer.reset(); |
| |
| // Closing then reopening entry2 insures that entry2 is serialized, and so |
| // it can be opened from files without error. |
| entry2 = NULL; |
| ASSERT_THAT(OpenEntry(key, &entry2), IsOk()); |
| EXPECT_NE(null, entry2); |
| entry2_closer.reset(entry2); |
| |
| scoped_refptr<disk_cache::SimpleEntryImpl> |
| entry1_refptr = static_cast<disk_cache::SimpleEntryImpl*>(entry1); |
| |
| // If crbug.com/317138 has regressed, this will remove |entry2| from |
| // the backend's |active_entries_| while |entry2| is still alive and its |
| // files are still on disk. |
| entry1_closer.reset(); |
| entry1 = NULL; |
| |
| // Close does not have a callback. However, we need to be sure the close is |
| // finished before we continue the test. We can take advantage of how the ref |
| // counting of a SimpleEntryImpl works to fake out a callback: When the |
| // last Close() call is made to an entry, an IO operation is sent to the |
| // synchronous entry to close the platform files. This IO operation holds a |
| // ref pointer to the entry, which expires when the operation is done. So, |
| // we take a refpointer, and watch the SimpleEntry object until it has only |
| // one ref; this indicates the IO operation is complete. |
| while (!entry1_refptr->HasOneRef()) { |
| base::PlatformThread::YieldCurrentThread(); |
| base::RunLoop().RunUntilIdle(); |
| } |
| entry1_refptr = NULL; |
| |
| // In the bug case, this new entry ends up being a duplicate object pointing |
| // at the same underlying files. |
| disk_cache::Entry* entry3 = NULL; |
| EXPECT_THAT(OpenEntry(key, &entry3), IsOk()); |
| ScopedEntryPtr entry3_closer(entry3); |
| EXPECT_NE(null, entry3); |
| |
| // The test passes if these two dooms do not crash. |
| entry2->Doom(); |
| entry3->Doom(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheBasicSparseIO) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| BasicSparseIO(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheHugeSparseIO) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| HugeSparseIO(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheGetAvailableRange) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| GetAvailableRange(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheUpdateSparseEntry) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| UpdateSparseEntry(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheDoomSparseEntry) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| DoomSparseEntry(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCachePartialSparseEntry) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| PartialSparseEntry(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheTruncateLargeSparseFile) { |
| const int kSize = 1024; |
| |
| SetSimpleCacheMode(); |
| // An entry is allowed sparse data 1/10 the size of the cache, so this size |
| // allows for one |kSize|-sized range plus overhead, but not two ranges. |
| SetMaxSize(kSize * 15); |
| InitCache(); |
| |
| const char key[] = "key"; |
| disk_cache::Entry* null = NULL; |
| disk_cache::Entry* entry; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| EXPECT_NE(null, entry); |
| |
| scoped_refptr<net::IOBuffer> buffer = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer->data(), kSize, false); |
| net::TestCompletionCallback callback; |
| int ret; |
| |
| // Verify initial conditions. |
| ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback()); |
| EXPECT_EQ(0, callback.GetResult(ret)); |
| |
| ret = entry->ReadSparseData(kSize, buffer.get(), kSize, callback.callback()); |
| EXPECT_EQ(0, callback.GetResult(ret)); |
| |
| // Write a range and make sure it reads back. |
| ret = entry->WriteSparseData(0, buffer.get(), kSize, callback.callback()); |
| EXPECT_EQ(kSize, callback.GetResult(ret)); |
| |
| ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback()); |
| EXPECT_EQ(kSize, callback.GetResult(ret)); |
| |
| // Write another range and make sure it reads back. |
| ret = entry->WriteSparseData(kSize, buffer.get(), kSize, callback.callback()); |
| EXPECT_EQ(kSize, callback.GetResult(ret)); |
| |
| ret = entry->ReadSparseData(kSize, buffer.get(), kSize, callback.callback()); |
| EXPECT_EQ(kSize, callback.GetResult(ret)); |
| |
| // Make sure the first range was removed when the second was written. |
| ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback()); |
| EXPECT_EQ(0, callback.GetResult(ret)); |
| |
| // Close and reopen the entry and make sure the first entry is still absent |
| // and the second entry is still present. |
| entry->Close(); |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| |
| ret = entry->ReadSparseData(0, buffer.get(), kSize, callback.callback()); |
| EXPECT_EQ(0, callback.GetResult(ret)); |
| |
| ret = entry->ReadSparseData(kSize, buffer.get(), kSize, callback.callback()); |
| EXPECT_EQ(kSize, callback.GetResult(ret)); |
| |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheReadWithoutKeySHA256) { |
| // This test runs as APP_CACHE to make operations more synchronous. |
| SetCacheType(net::APP_CACHE); |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* entry; |
| std::string key("a key"); |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| const std::string stream_0_data = "data for stream zero"; |
| scoped_refptr<net::IOBuffer> stream_0_iobuffer = |
| base::MakeRefCounted<net::StringIOBuffer>(stream_0_data); |
| EXPECT_EQ(static_cast<int>(stream_0_data.size()), |
| WriteData(entry, 0, 0, stream_0_iobuffer.get(), |
| stream_0_data.size(), false)); |
| const std::string stream_1_data = "FOR STREAM ONE, QUITE DIFFERENT THINGS"; |
| scoped_refptr<net::IOBuffer> stream_1_iobuffer = |
| base::MakeRefCounted<net::StringIOBuffer>(stream_1_data); |
| EXPECT_EQ(static_cast<int>(stream_1_data.size()), |
| WriteData(entry, 1, 0, stream_1_iobuffer.get(), |
| stream_1_data.size(), false)); |
| entry->Close(); |
| |
| base::RunLoop().RunUntilIdle(); |
| disk_cache::SimpleBackendImpl::FlushWorkerPoolForTesting(); |
| base::RunLoop().RunUntilIdle(); |
| |
| EXPECT_TRUE( |
| disk_cache::simple_util::RemoveKeySHA256FromEntry(key, cache_path_)); |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| ScopedEntryPtr entry_closer(entry); |
| |
| EXPECT_EQ(static_cast<int>(stream_0_data.size()), entry->GetDataSize(0)); |
| scoped_refptr<net::IOBuffer> check_stream_0_data = |
| base::MakeRefCounted<net::IOBuffer>(stream_0_data.size()); |
| EXPECT_EQ( |
| static_cast<int>(stream_0_data.size()), |
| ReadData(entry, 0, 0, check_stream_0_data.get(), stream_0_data.size())); |
| EXPECT_EQ(0, stream_0_data.compare(0, std::string::npos, |
| check_stream_0_data->data(), |
| stream_0_data.size())); |
| |
| EXPECT_EQ(static_cast<int>(stream_1_data.size()), entry->GetDataSize(1)); |
| scoped_refptr<net::IOBuffer> check_stream_1_data = |
| base::MakeRefCounted<net::IOBuffer>(stream_1_data.size()); |
| EXPECT_EQ( |
| static_cast<int>(stream_1_data.size()), |
| ReadData(entry, 1, 0, check_stream_1_data.get(), stream_1_data.size())); |
| EXPECT_EQ(0, stream_1_data.compare(0, std::string::npos, |
| check_stream_1_data->data(), |
| stream_1_data.size())); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheDoubleOpenWithoutKeySHA256) { |
| // This test runs as APP_CACHE to make operations more synchronous. |
| SetCacheType(net::APP_CACHE); |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* entry; |
| std::string key("a key"); |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| entry->Close(); |
| |
| base::RunLoop().RunUntilIdle(); |
| disk_cache::SimpleBackendImpl::FlushWorkerPoolForTesting(); |
| base::RunLoop().RunUntilIdle(); |
| |
| EXPECT_TRUE( |
| disk_cache::simple_util::RemoveKeySHA256FromEntry(key, cache_path_)); |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| entry->Close(); |
| |
| base::RunLoop().RunUntilIdle(); |
| disk_cache::SimpleBackendImpl::FlushWorkerPoolForTesting(); |
| base::RunLoop().RunUntilIdle(); |
| |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheReadCorruptKeySHA256) { |
| // This test runs as APP_CACHE to make operations more synchronous. |
| SetCacheType(net::APP_CACHE); |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* entry; |
| std::string key("a key"); |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| entry->Close(); |
| |
| base::RunLoop().RunUntilIdle(); |
| disk_cache::SimpleBackendImpl::FlushWorkerPoolForTesting(); |
| base::RunLoop().RunUntilIdle(); |
| |
| EXPECT_TRUE( |
| disk_cache::simple_util::CorruptKeySHA256FromEntry(key, cache_path_)); |
| EXPECT_NE(net::OK, OpenEntry(key, &entry)); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheReadCorruptLength) { |
| SetCacheType(net::APP_CACHE); |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* entry; |
| std::string key("a key"); |
| ASSERT_EQ(net::OK, CreateEntry(key, &entry)); |
| entry->Close(); |
| |
| base::RunLoop().RunUntilIdle(); |
| disk_cache::SimpleBackendImpl::FlushWorkerPoolForTesting(); |
| base::RunLoop().RunUntilIdle(); |
| |
| EXPECT_TRUE( |
| disk_cache::simple_util::CorruptStream0LengthFromEntry(key, cache_path_)); |
| EXPECT_NE(net::OK, OpenEntry(key, &entry)); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheCreateRecoverFromRmdir) { |
| // This test runs as APP_CACHE to make operations more synchronous. |
| // (in particular we want to see if create succeeded or not, so we don't |
| // want an optimistic one). |
| SetCacheType(net::APP_CACHE); |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| // Pretend someone deleted the cache dir. This shouldn't be too scary in |
| // the test since cache_path_ is set as: |
| // CHECK(temp_dir_.CreateUniqueTempDir()); |
| // cache_path_ = temp_dir_.GetPath(); |
| disk_cache::DeleteCache(cache_path_, |
| true /* delete the dir, what we really want*/); |
| |
| disk_cache::Entry* entry; |
| std::string key("a key"); |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheSparseErrorHandling) { |
| // If there is corruption in sparse file, we should delete all the files |
| // before returning the failure. Further additional sparse operations in |
| // failure state should fail gracefully. |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| std::string key("a key"); |
| |
| disk_cache::SimpleFileTracker::EntryFileKey num_key( |
| disk_cache::simple_util::GetEntryHashKey(key)); |
| base::FilePath path_0 = cache_path_.AppendASCII( |
| disk_cache::simple_util::GetFilenameFromEntryFileKeyAndFileIndex(num_key, |
| 0)); |
| base::FilePath path_s = cache_path_.AppendASCII( |
| disk_cache::simple_util::GetSparseFilenameFromEntryFileKey(num_key)); |
| |
| disk_cache::Entry* entry = nullptr; |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| |
| const int kSize = 1024; |
| scoped_refptr<net::IOBuffer> buffer = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer->data(), kSize, false); |
| |
| EXPECT_EQ(kSize, WriteSparseData(entry, 0, buffer.get(), kSize)); |
| entry->Close(); |
| |
| disk_cache::SimpleBackendImpl::FlushWorkerPoolForTesting(); |
| EXPECT_TRUE(base::PathExists(path_0)); |
| EXPECT_TRUE(base::PathExists(path_s)); |
| |
| // Now corrupt the _s file in a way that makes it look OK on open, but not on |
| // read. |
| base::File file_s(path_s, base::File::FLAG_OPEN | base::File::FLAG_READ | |
| base::File::FLAG_WRITE); |
| ASSERT_TRUE(file_s.IsValid()); |
| file_s.SetLength(sizeof(disk_cache::SimpleFileHeader) + |
| sizeof(disk_cache::SimpleFileSparseRangeHeader) + |
| key.size()); |
| file_s.Close(); |
| |
| // Re-open, it should still be fine. |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| |
| // Read should fail though. |
| EXPECT_EQ(net::ERR_CACHE_READ_FAILURE, |
| ReadSparseData(entry, 0, buffer.get(), kSize)); |
| |
| // At the point read returns to us, the files should already been gone. |
| EXPECT_FALSE(base::PathExists(path_0)); |
| EXPECT_FALSE(base::PathExists(path_s)); |
| |
| // Re-trying should still fail. Not DCHECK-fail. |
| EXPECT_EQ(net::ERR_FAILED, ReadSparseData(entry, 0, buffer.get(), kSize)); |
| |
| // Similarly for other ops. |
| EXPECT_EQ(net::ERR_FAILED, WriteSparseData(entry, 0, buffer.get(), kSize)); |
| net::TestCompletionCallback cb; |
| int64_t start; |
| int rv = entry->GetAvailableRange(0, 1024, &start, cb.callback()); |
| EXPECT_EQ(net::ERR_FAILED, cb.GetResult(rv)); |
| |
| entry->Close(); |
| disk_cache::FlushCacheThreadForTesting(); |
| |
| // Closing shouldn't resurrect files, either. |
| EXPECT_FALSE(base::PathExists(path_0)); |
| EXPECT_FALSE(base::PathExists(path_s)); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheCreateCollision) { |
| // These two keys collide; this test is that we properly handled creation |
| // of both. |
| const char kCollKey1[] = |
| "\xfb\x4e\x9c\x1d\x66\x71\xf7\x54\xa3\x11\xa0\x7e\x16\xa5\x68\xf6"; |
| const char kCollKey2[] = |
| "\xbc\x60\x64\x92\xbc\xa0\x5c\x15\x17\x93\x29\x2d\xe4\x21\xbd\x03"; |
| |
| const int kSize = 256; |
| scoped_refptr<net::IOBuffer> buffer1 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| scoped_refptr<net::IOBuffer> buffer2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| scoped_refptr<net::IOBuffer> read_buffer = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer1->data(), kSize, false); |
| CacheTestFillBuffer(buffer2->data(), kSize, false); |
| |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| disk_cache::Entry* entry1; |
| ASSERT_THAT(CreateEntry(kCollKey1, &entry1), IsOk()); |
| |
| disk_cache::Entry* entry2; |
| ASSERT_THAT(CreateEntry(kCollKey2, &entry2), IsOk()); |
| |
| // Make sure that entry was actually created and we didn't just succeed |
| // optimistically. (Oddly I can't seem to hit the sequence of events required |
| // for the bug that used to be here if I just set this to APP_CACHE). |
| EXPECT_EQ(kSize, WriteData(entry2, 0, 0, buffer2.get(), kSize, false)); |
| |
| // entry1 is still usable, though, and distinct (we just won't be able to |
| // re-open it). |
| EXPECT_EQ(kSize, WriteData(entry1, 0, 0, buffer1.get(), kSize, false)); |
| EXPECT_EQ(kSize, ReadData(entry1, 0, 0, read_buffer.get(), kSize)); |
| EXPECT_EQ(0, memcmp(buffer1->data(), read_buffer->data(), kSize)); |
| |
| EXPECT_EQ(kSize, ReadData(entry2, 0, 0, read_buffer.get(), kSize)); |
| EXPECT_EQ(0, memcmp(buffer2->data(), read_buffer->data(), kSize)); |
| |
| entry1->Close(); |
| entry2->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheConvertToSparseStream2LeftOver) { |
| // Testcase for what happens when we have a sparse stream and a left over |
| // empty stream 2 file. |
| const int kSize = 10; |
| scoped_refptr<net::IOBuffer> buffer = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer->data(), kSize, false); |
| |
| SetSimpleCacheMode(); |
| InitCache(); |
| disk_cache::Entry* entry; |
| std::string key("a key"); |
| ASSERT_THAT(CreateEntry(key, &entry), IsOk()); |
| // Create an empty stream 2. To do that, we first make a non-empty one, then |
| // truncate it (since otherwise the write would just get ignored). |
| EXPECT_EQ(kSize, WriteData(entry, /* stream = */ 2, /* offset = */ 0, |
| buffer.get(), kSize, false)); |
| EXPECT_EQ(0, WriteData(entry, /* stream = */ 2, /* offset = */ 0, |
| buffer.get(), 0, true)); |
| |
| EXPECT_EQ(kSize, WriteSparseData(entry, 5, buffer.get(), kSize)); |
| entry->Close(); |
| |
| // Reopen, and try to get the sparse data back. |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| scoped_refptr<net::IOBuffer> buffer2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| EXPECT_EQ(kSize, ReadSparseData(entry, 5, buffer2.get(), kSize)); |
| EXPECT_EQ(0, memcmp(buffer->data(), buffer2->data(), kSize)); |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheLazyStream2CreateFailure) { |
| // Testcase for what happens when lazy-creation of stream 2 fails. |
| const int kSize = 10; |
| scoped_refptr<net::IOBuffer> buffer = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer->data(), kSize, false); |
| |
| // Synchronous ops, for ease of disk state; |
| SetCacheType(net::APP_CACHE); |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| const char kKey[] = "a key"; |
| disk_cache::Entry* entry = nullptr; |
| ASSERT_THAT(CreateEntry(kKey, &entry), IsOk()); |
| |
| // Create _1 file for stream 2; this should inject a failure when the cache |
| // tries to create it itself. |
| base::FilePath entry_file1_path = cache_path_.AppendASCII( |
| disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(kKey, 1)); |
| base::File entry_file1(entry_file1_path, |
| base::File::FLAG_WRITE | base::File::FLAG_CREATE); |
| ASSERT_TRUE(entry_file1.IsValid()); |
| entry_file1.Close(); |
| |
| EXPECT_EQ(net::ERR_CACHE_WRITE_FAILURE, |
| WriteData(entry, /* index = */ 2, /* offset = */ 0, buffer.get(), |
| kSize, /* truncate = */ false)); |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleCacheChecksumpScrewUp) { |
| // Test for a bug that occurred during development of movement of CRC |
| // computation off I/O thread. |
| const int kSize = 10; |
| scoped_refptr<net::IOBuffer> buffer = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| CacheTestFillBuffer(buffer->data(), kSize, false); |
| |
| const int kDoubleSize = kSize * 2; |
| scoped_refptr<net::IOBuffer> big_buffer = |
| base::MakeRefCounted<net::IOBuffer>(kDoubleSize); |
| CacheTestFillBuffer(big_buffer->data(), kDoubleSize, false); |
| |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| const char kKey[] = "a key"; |
| disk_cache::Entry* entry = nullptr; |
| ASSERT_THAT(CreateEntry(kKey, &entry), IsOk()); |
| |
| // Write out big_buffer for the double range. Checksum will be set to this. |
| ASSERT_EQ(kDoubleSize, |
| WriteData(entry, 1, 0, big_buffer.get(), kDoubleSize, false)); |
| |
| // Reset remembered position to 0 by writing at an earlier non-zero offset. |
| ASSERT_EQ(1, WriteData(entry, /* stream = */ 1, /* offset = */ 1, |
| big_buffer.get(), /* len = */ 1, false)); |
| |
| // Now write out the half-range twice. An intermediate revision would |
| // incorrectly compute checksum as if payload was buffer followed by buffer |
| // rather than buffer followed by end of big_buffer. |
| ASSERT_EQ(kSize, WriteData(entry, 1, 0, buffer.get(), kSize, false)); |
| ASSERT_EQ(kSize, WriteData(entry, 1, 0, buffer.get(), kSize, false)); |
| entry->Close(); |
| |
| ASSERT_THAT(OpenEntry(kKey, &entry), IsOk()); |
| scoped_refptr<net::IOBuffer> buffer2 = |
| base::MakeRefCounted<net::IOBuffer>(kSize); |
| EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2.get(), kSize)); |
| EXPECT_EQ(0, memcmp(buffer->data(), buffer2->data(), kSize)); |
| EXPECT_EQ(kSize, ReadData(entry, 1, kSize, buffer2.get(), kSize)); |
| EXPECT_EQ( |
| 0, memcmp(big_buffer->data() + kSize, buffer2->data(), kSize)); |
| entry->Close(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, SimpleUseAfterBackendDestruction) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| UseAfterBackendDestruction(); |
| } |
| |
| TEST_F(DiskCacheEntryTest, MemoryOnlyUseAfterBackendDestruction) { |
| // https://crbug.com/741620 |
| SetMemoryOnlyMode(); |
| InitCache(); |
| UseAfterBackendDestruction(); |
| } |
| |
| class DiskCacheSimplePrefetchTest : public DiskCacheEntryTest { |
| public: |
| DiskCacheSimplePrefetchTest() |
| : field_trial_list_(std::make_unique<base::FieldTrialList>( |
| std::make_unique<base::MockEntropyProvider>())) {} |
| |
| enum { kEntrySize = 1024 }; |
| |
| void SetUp() override { |
| payload_ = base::MakeRefCounted<net::IOBuffer>(kEntrySize); |
| CacheTestFillBuffer(payload_->data(), kEntrySize, false); |
| DiskCacheEntryTest::SetUp(); |
| } |
| |
| void SetupPrefetch(int size) { |
| std::map<std::string, std::string> params; |
| params[disk_cache::kSimplePrefetchBytesParam] = base::IntToString(size); |
| scoped_feature_list_.InitAndEnableFeatureWithParameters( |
| disk_cache::kSimpleCachePrefetchExperiment, params); |
| } |
| |
| void InitCacheAndCreateEntry(const std::string& key) { |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| disk_cache::Entry* entry; |
| ASSERT_EQ(net::OK, CreateEntry(key, &entry)); |
| // Use stream 1 since that's what new prefetch stuff is about. |
| ASSERT_EQ(kEntrySize, |
| WriteData(entry, 1, 0, payload_.get(), kEntrySize, false)); |
| entry->Close(); |
| } |
| |
| void InitCacheAndCreateEntryWithNoCrc(const std::string& key) { |
| const int kHalfSize = kEntrySize / 2; |
| const int kRemSize = kEntrySize - kHalfSize; |
| |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| disk_cache::Entry* entry; |
| ASSERT_EQ(net::OK, CreateEntry(key, &entry)); |
| // Use stream 1 since that's what new prefetch stuff is about. |
| ASSERT_EQ(kEntrySize, |
| WriteData(entry, 1, 0, payload_.get(), kEntrySize, false)); |
| |
| // Overwrite later part of the buffer, since we can't keep track of |
| // the checksum in that case. Do it with identical contents, though, |
| // so that the only difference between here and InitCacheAndCreateEntry() |
| // would be whether the result has a checkum or not. |
| scoped_refptr<net::IOBuffer> second_half = |
| base::MakeRefCounted<net::IOBuffer>(kRemSize); |
| memcpy(second_half->data(), payload_->data() + kHalfSize, kRemSize); |
| ASSERT_EQ(kRemSize, WriteData(entry, 1, kHalfSize, second_half.get(), |
| kRemSize, false)); |
| entry->Close(); |
| } |
| |
| void TryRead(const std::string& key) { |
| disk_cache::Entry* entry = NULL; |
| ASSERT_THAT(OpenEntry(key, &entry), IsOk()); |
| scoped_refptr<net::IOBuffer> read_buf = |
| base::MakeRefCounted<net::IOBuffer>(kEntrySize); |
| EXPECT_EQ(kEntrySize, ReadData(entry, 1, 0, read_buf.get(), kEntrySize)); |
| EXPECT_EQ(0, |
| memcmp(read_buf->data(), payload_->data(), kEntrySize)); |
| entry->Close(); |
| } |
| |
| protected: |
| scoped_refptr<net::IOBuffer> payload_; |
| |
| // Need to have the one "global" trial list before we change things. |
| std::unique_ptr<base::FieldTrialList> field_trial_list_; |
| base::test::ScopedFeatureList scoped_feature_list_; |
| }; |
| |
| TEST_F(DiskCacheSimplePrefetchTest, NoPrefetch) { |
| base::HistogramTester histogram_tester; |
| SetupPrefetch(0); |
| |
| const char kKey[] = "a key"; |
| InitCacheAndCreateEntry(kKey); |
| TryRead(kKey); |
| |
| histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenDidPrefetch", |
| false, 1); |
| histogram_tester.ExpectUniqueSample( |
| "SimpleCache.Http.ReadStream1FromPrefetched", false, 1); |
| } |
| |
| TEST_F(DiskCacheSimplePrefetchTest, YesPrefetch) { |
| base::HistogramTester histogram_tester; |
| SetupPrefetch(2 * kEntrySize); |
| |
| const char kKey[] = "a key"; |
| InitCacheAndCreateEntry(kKey); |
| TryRead(kKey); |
| |
| histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenDidPrefetch", |
| true, 1); |
| histogram_tester.ExpectUniqueSample( |
| "SimpleCache.Http.ReadStream1FromPrefetched", true, 1); |
| } |
| |
| TEST_F(DiskCacheSimplePrefetchTest, YesPrefetchNoRead) { |
| base::HistogramTester histogram_tester; |
| SetupPrefetch(2 * kEntrySize); |
| |
| const char kKey[] = "a key"; |
| InitCacheAndCreateEntry(kKey); |
| |
| disk_cache::Entry* entry = NULL; |
| ASSERT_THAT(OpenEntry(kKey, &entry), IsOk()); |
| entry->Close(); |
| |
| histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncOpenDidPrefetch", |
| true, 1); |
| // Have to use GetHistogramSamplesSinceCreation here since it's the only |
| // API that handles the cases where the histogram hasn't even been created. |
| std::unique_ptr<base::HistogramSamples> samples( |
| histogram_tester.GetHistogramSamplesSinceCreation( |
| "SimpleCache.Http.ReadStream1FromPrefetched")); |
| EXPECT_EQ(0, samples->TotalCount()); |
| } |
| |
| // This makes sure we detect checksum error on entry that's small enough to be |
| // prefetched. This is like DiskCacheEntryTest.BadChecksum, but we make sure |
| // to configure prefetch explicitly. |
| TEST_F(DiskCacheSimplePrefetchTest, BadChecksumSmall) { |
| SetupPrefetch(1024); // bigger than stuff below. |
| SetSimpleCacheMode(); |
| InitCache(); |
| |
| const char key[] = "the first key"; |
| ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key, 10)); |
| |
| disk_cache::Entry* entry = NULL; |
| |
| // Open the entry. Since we made a small entry, we will detect the CRC |
| // problem at open. |
| EXPECT_THAT(OpenEntry(key, &entry), IsError(net::ERR_FAILED)); |
| } |
| |
| TEST_F(DiskCacheSimplePrefetchTest, ChecksumNoPrefetch) { |
| base::HistogramTester histogram_tester; |
| |
| SetupPrefetch(0); |
| const char kKey[] = "a key"; |
| InitCacheAndCreateEntry(kKey); |
| TryRead(kKey); |
| |
| // Expect 2 CRCs --- stream 0 and stream 1. |
| histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncCheckEOFHasCrc", |
| true, 2); |
| histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncCheckEOFResult", |
| disk_cache::CHECK_EOF_RESULT_SUCCESS, 2); |
| } |
| |
| TEST_F(DiskCacheSimplePrefetchTest, NoChecksumNoPrefetch) { |
| base::HistogramTester histogram_tester; |
| |
| SetupPrefetch(0); |
| const char kKey[] = "a key"; |
| InitCacheAndCreateEntryWithNoCrc(kKey); |
| TryRead(kKey); |
| |
| // Stream 0 has CRC, stream 1 doesn't. |
| histogram_tester.ExpectBucketCount("SimpleCache.Http.SyncCheckEOFHasCrc", |
| true, 1); |
| histogram_tester.ExpectBucketCount("SimpleCache.Http.SyncCheckEOFHasCrc", |
| false, 1); |
| // EOF check is recorded even if there is no CRC there. |
| histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncCheckEOFResult", |
| disk_cache::CHECK_EOF_RESULT_SUCCESS, 2); |
| } |
| |
| TEST_F(DiskCacheSimplePrefetchTest, ChecksumPrefetch) { |
| base::HistogramTester histogram_tester; |
| |
| SetupPrefetch(2 * kEntrySize); |
| const char kKey[] = "a key"; |
| InitCacheAndCreateEntry(kKey); |
| TryRead(kKey); |
| |
| // Expect 2 CRCs --- stream 0 and stream 1. |
| histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncCheckEOFHasCrc", |
| true, 2); |
| histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncCheckEOFResult", |
| disk_cache::CHECK_EOF_RESULT_SUCCESS, 2); |
| } |
| |
| TEST_F(DiskCacheSimplePrefetchTest, NoChecksumPrefetch) { |
| base::HistogramTester histogram_tester; |
| |
| SetupPrefetch(2 * kEntrySize); |
| const char kKey[] = "a key"; |
| InitCacheAndCreateEntryWithNoCrc(kKey); |
| TryRead(kKey); |
| |
| // Stream 0 has CRC, stream 1 doesn't. |
| histogram_tester.ExpectBucketCount("SimpleCache.Http.SyncCheckEOFHasCrc", |
| true, 1); |
| histogram_tester.ExpectBucketCount("SimpleCache.Http.SyncCheckEOFHasCrc", |
| false, 1); |
| // EOF check is recorded even if there is no CRC there. |
| histogram_tester.ExpectUniqueSample("SimpleCache.Http.SyncCheckEOFResult", |
| disk_cache::CHECK_EOF_RESULT_SUCCESS, 2); |
| } |
| |
| TEST_F(DiskCacheSimplePrefetchTest, PrefetchReadsSync) { |
| // Make sure we can read things synchronously after prefetch. |
| SetupPrefetch(32768); // way bigger than kEntrySize |
| const char kKey[] = "a key"; |
| InitCacheAndCreateEntry(kKey); |
| |
| disk_cache::Entry* entry = NULL; |
| ASSERT_THAT(OpenEntry(kKey, &entry), IsOk()); |
| scoped_refptr<net::IOBuffer> read_buf = |
| base::MakeRefCounted<net::IOBuffer>(kEntrySize); |
| |
| // That this is entry->ReadData(...) rather than ReadData(entry, ...) is |
| // meaningful here, as the latter is a helper in the test fixture that blocks |
| // if needed. |
| EXPECT_EQ(kEntrySize, entry->ReadData(1, 0, read_buf.get(), kEntrySize, |
| net::CompletionOnceCallback())); |
| EXPECT_EQ(0, memcmp(read_buf->data(), payload_->data(), kEntrySize)); |
| entry->Close(); |
| } |