blob: e72f8a01970ea598b7657a78530261e26f7ce71f [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This is an example demonstrating multi-resolution encoding in VP8.
* High-resolution input video is down-sampled to lower-resolutions. The
* encoder then encodes the video and outputs multiple bitstreams with
* different resolutions.
*
* This test also allows for settings temporal layers for each spatial layer.
* Different number of temporal layers per spatial stream may be used.
* Currently up to 3 temporal layers per spatial stream (encoder) are supported
* in this test.
*/
#include "./vpx_config.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#include <sys/time.h>
#include "vpx_ports/vpx_timer.h"
#include "vpx/vpx_encoder.h"
#include "vpx/vp8cx.h"
#include "vpx_ports/mem_ops.h"
#include "../tools_common.h"
#define interface (vpx_codec_vp8_cx())
#define fourcc 0x30385056
void usage_exit(void) { exit(EXIT_FAILURE); }
/*
* The input video frame is downsampled several times to generate a multi-level
* hierarchical structure. NUM_ENCODERS is defined as the number of encoding
* levels required. For example, if the size of input video is 1280x720,
* NUM_ENCODERS is 3, and down-sampling factor is 2, the encoder outputs 3
* bitstreams with resolution of 1280x720(level 0), 640x360(level 1), and
* 320x180(level 2) respectively.
*/
/* Number of encoders (spatial resolutions) used in this test. */
#define NUM_ENCODERS 3
/* Maximum number of temporal layers allowed for this test. */
#define MAX_NUM_TEMPORAL_LAYERS 3
/* This example uses the scaler function in libyuv. */
#include "third_party/libyuv/include/libyuv/basic_types.h"
#include "third_party/libyuv/include/libyuv/scale.h"
#include "third_party/libyuv/include/libyuv/cpu_id.h"
int (*read_frame_p)(FILE *f, vpx_image_t *img);
static int mulres_read_frame(FILE *f, vpx_image_t *img) {
size_t nbytes, to_read;
int res = 1;
to_read = img->w * img->h * 3 / 2;
nbytes = fread(img->planes[0], 1, to_read, f);
if (nbytes != to_read) {
res = 0;
if (nbytes > 0)
printf("Warning: Read partial frame. Check your width & height!\n");
}
return res;
}
static int mulres_read_frame_by_row(FILE *f, vpx_image_t *img) {
size_t nbytes, to_read;
int res = 1;
int plane;
for (plane = 0; plane < 3; plane++) {
unsigned char *ptr;
int w = (plane ? (1 + img->d_w) / 2 : img->d_w);
int h = (plane ? (1 + img->d_h) / 2 : img->d_h);
int r;
/* Determine the correct plane based on the image format. The for-loop
* always counts in Y,U,V order, but this may not match the order of
* the data on disk.
*/
switch (plane) {
case 1:
ptr = img->planes[img->fmt == VPX_IMG_FMT_YV12 ? VPX_PLANE_V
: VPX_PLANE_U];
break;
case 2:
ptr = img->planes[img->fmt == VPX_IMG_FMT_YV12 ? VPX_PLANE_U
: VPX_PLANE_V];
break;
default: ptr = img->planes[plane];
}
for (r = 0; r < h; r++) {
to_read = w;
nbytes = fread(ptr, 1, to_read, f);
if (nbytes != to_read) {
res = 0;
if (nbytes > 0)
printf("Warning: Read partial frame. Check your width & height!\n");
break;
}
ptr += img->stride[plane];
}
if (!res) break;
}
return res;
}
static void write_ivf_file_header(FILE *outfile, const vpx_codec_enc_cfg_t *cfg,
int frame_cnt) {
char header[32];
if (cfg->g_pass != VPX_RC_ONE_PASS && cfg->g_pass != VPX_RC_LAST_PASS) return;
header[0] = 'D';
header[1] = 'K';
header[2] = 'I';
header[3] = 'F';
mem_put_le16(header + 4, 0); /* version */
mem_put_le16(header + 6, 32); /* headersize */
mem_put_le32(header + 8, fourcc); /* headersize */
mem_put_le16(header + 12, cfg->g_w); /* width */
mem_put_le16(header + 14, cfg->g_h); /* height */
mem_put_le32(header + 16, cfg->g_timebase.den); /* rate */
mem_put_le32(header + 20, cfg->g_timebase.num); /* scale */
mem_put_le32(header + 24, frame_cnt); /* length */
mem_put_le32(header + 28, 0); /* unused */
(void)fwrite(header, 1, 32, outfile);
}
static void write_ivf_frame_header(FILE *outfile,
const vpx_codec_cx_pkt_t *pkt) {
char header[12];
vpx_codec_pts_t pts;
if (pkt->kind != VPX_CODEC_CX_FRAME_PKT) return;
pts = pkt->data.frame.pts;
mem_put_le32(header, (int)pkt->data.frame.sz);
mem_put_le32(header + 4, pts & 0xFFFFFFFF);
mem_put_le32(header + 8, pts >> 32);
(void)fwrite(header, 1, 12, outfile);
}
/* Temporal scaling parameters */
/* This sets all the temporal layer parameters given |num_temporal_layers|,
* including the target bit allocation across temporal layers. Bit allocation
* parameters will be passed in as user parameters in another version.
*/
static void set_temporal_layer_pattern(int num_temporal_layers,
vpx_codec_enc_cfg_t *cfg, int bitrate,
int *layer_flags) {
assert(num_temporal_layers <= MAX_NUM_TEMPORAL_LAYERS);
switch (num_temporal_layers) {
case 1: {
/* 1-layer */
cfg->ts_number_layers = 1;
cfg->ts_periodicity = 1;
cfg->ts_rate_decimator[0] = 1;
cfg->ts_layer_id[0] = 0;
cfg->ts_target_bitrate[0] = bitrate;
// Update L only.
layer_flags[0] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
break;
}
case 2: {
/* 2-layers, with sync point at first frame of layer 1. */
cfg->ts_number_layers = 2;
cfg->ts_periodicity = 2;
cfg->ts_rate_decimator[0] = 2;
cfg->ts_rate_decimator[1] = 1;
cfg->ts_layer_id[0] = 0;
cfg->ts_layer_id[1] = 1;
// Use 60/40 bit allocation as example.
cfg->ts_target_bitrate[0] = (int)(0.6f * bitrate);
cfg->ts_target_bitrate[1] = bitrate;
/* 0=L, 1=GF */
// ARF is used as predictor for all frames, and is only updated on
// key frame. Sync point every 8 frames.
// Layer 0: predict from L and ARF, update L and G.
layer_flags[0] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF;
// Layer 1: sync point: predict from L and ARF, and update G.
layer_flags[1] =
VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
// Layer 0, predict from L and ARF, update L.
layer_flags[2] =
VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
// Layer 1: predict from L, G and ARF, and update G.
layer_flags[3] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_UPD_ENTROPY;
// Layer 0
layer_flags[4] = layer_flags[2];
// Layer 1
layer_flags[5] = layer_flags[3];
// Layer 0
layer_flags[6] = layer_flags[4];
// Layer 1
layer_flags[7] = layer_flags[5];
break;
}
case 3:
default: {
// 3-layers structure where ARF is used as predictor for all frames,
// and is only updated on key frame.
// Sync points for layer 1 and 2 every 8 frames.
cfg->ts_number_layers = 3;
cfg->ts_periodicity = 4;
cfg->ts_rate_decimator[0] = 4;
cfg->ts_rate_decimator[1] = 2;
cfg->ts_rate_decimator[2] = 1;
cfg->ts_layer_id[0] = 0;
cfg->ts_layer_id[1] = 2;
cfg->ts_layer_id[2] = 1;
cfg->ts_layer_id[3] = 2;
// Use 45/20/35 bit allocation as example.
cfg->ts_target_bitrate[0] = (int)(0.45f * bitrate);
cfg->ts_target_bitrate[1] = (int)(0.65f * bitrate);
cfg->ts_target_bitrate[2] = bitrate;
/* 0=L, 1=GF, 2=ARF */
// Layer 0: predict from L and ARF; update L and G.
layer_flags[0] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF;
// Layer 2: sync point: predict from L and ARF; update none.
layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_UPD_ENTROPY;
// Layer 1: sync point: predict from L and ARF; update G.
layer_flags[2] =
VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
// Layer 2: predict from L, G, ARF; update none.
layer_flags[3] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY;
// Layer 0: predict from L and ARF; update L.
layer_flags[4] =
VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF;
// Layer 2: predict from L, G, ARF; update none.
layer_flags[5] = layer_flags[3];
// Layer 1: predict from L, G, ARF; update G.
layer_flags[6] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
// Layer 2: predict from L, G, ARF; update none.
layer_flags[7] = layer_flags[3];
break;
}
}
}
/* The periodicity of the pattern given the number of temporal layers. */
static int periodicity_to_num_layers[MAX_NUM_TEMPORAL_LAYERS] = { 1, 8, 8 };
int main(int argc, char **argv) {
FILE *infile, *outfile[NUM_ENCODERS];
FILE *downsampled_input[NUM_ENCODERS - 1];
char filename[50];
vpx_codec_ctx_t codec[NUM_ENCODERS];
vpx_codec_enc_cfg_t cfg[NUM_ENCODERS];
int frame_cnt = 0;
vpx_image_t raw[NUM_ENCODERS];
vpx_codec_err_t res[NUM_ENCODERS];
int i;
int width;
int height;
int length_frame;
int frame_avail;
int got_data;
int flags = 0;
int layer_id = 0;
int layer_flags[VPX_TS_MAX_PERIODICITY * NUM_ENCODERS] = { 0 };
int flag_periodicity;
/*Currently, only realtime mode is supported in multi-resolution encoding.*/
int arg_deadline = VPX_DL_REALTIME;
/* Set show_psnr to 1/0 to show/not show PSNR. Choose show_psnr=0 if you
don't need to know PSNR, which will skip PSNR calculation and save
encoding time. */
int show_psnr = 0;
int key_frame_insert = 0;
uint64_t psnr_sse_total[NUM_ENCODERS] = { 0 };
uint64_t psnr_samples_total[NUM_ENCODERS] = { 0 };
double psnr_totals[NUM_ENCODERS][4] = { { 0, 0 } };
int psnr_count[NUM_ENCODERS] = { 0 };
int64_t cx_time = 0;
/* Set the required target bitrates for each resolution level.
* If target bitrate for highest-resolution level is set to 0,
* (i.e. target_bitrate[0]=0), we skip encoding at that level.
*/
unsigned int target_bitrate[NUM_ENCODERS] = { 1000, 500, 100 };
/* Enter the frame rate of the input video */
int framerate = 30;
/* Set down-sampling factor for each resolution level.
dsf[0] controls down sampling from level 0 to level 1;
dsf[1] controls down sampling from level 1 to level 2;
dsf[2] is not used. */
vpx_rational_t dsf[NUM_ENCODERS] = { { 2, 1 }, { 2, 1 }, { 1, 1 } };
/* Set the number of temporal layers for each encoder/resolution level,
* starting from highest resoln down to lowest resoln. */
unsigned int num_temporal_layers[NUM_ENCODERS] = { 3, 3, 3 };
if (argc != (7 + 3 * NUM_ENCODERS))
die("Usage: %s <width> <height> <frame_rate> <infile> <outfile(s)> "
"<rate_encoder(s)> <temporal_layer(s)> <key_frame_insert> <output "
"psnr?> \n",
argv[0]);
printf("Using %s\n", vpx_codec_iface_name(interface));
width = (int)strtol(argv[1], NULL, 0);
height = (int)strtol(argv[2], NULL, 0);
framerate = (int)strtol(argv[3], NULL, 0);
if (width < 16 || width % 2 || height < 16 || height % 2)
die("Invalid resolution: %ldx%ld", width, height);
/* Open input video file for encoding */
if (!(infile = fopen(argv[4], "rb")))
die("Failed to open %s for reading", argv[4]);
/* Open output file for each encoder to output bitstreams */
for (i = 0; i < NUM_ENCODERS; i++) {
if (!target_bitrate[i]) {
outfile[i] = NULL;
continue;
}
if (!(outfile[i] = fopen(argv[i + 5], "wb")))
die("Failed to open %s for writing", argv[i + 4]);
}
// Bitrates per spatial layer: overwrite default rates above.
for (i = 0; i < NUM_ENCODERS; i++) {
target_bitrate[i] = (int)strtol(argv[NUM_ENCODERS + 5 + i], NULL, 0);
}
// Temporal layers per spatial layers: overwrite default settings above.
for (i = 0; i < NUM_ENCODERS; i++) {
num_temporal_layers[i] =
(int)strtol(argv[2 * NUM_ENCODERS + 5 + i], NULL, 0);
if (num_temporal_layers[i] < 1 || num_temporal_layers[i] > 3)
die("Invalid temporal layers: %d, Must be 1, 2, or 3. \n",
num_temporal_layers);
}
/* Open file to write out each spatially downsampled input stream. */
for (i = 0; i < NUM_ENCODERS - 1; i++) {
// Highest resoln is encoder 0.
if (sprintf(filename, "ds%d.yuv", NUM_ENCODERS - i) < 0) {
return EXIT_FAILURE;
}
downsampled_input[i] = fopen(filename, "wb");
}
key_frame_insert = (int)strtol(argv[3 * NUM_ENCODERS + 5], NULL, 0);
show_psnr = (int)strtol(argv[3 * NUM_ENCODERS + 6], NULL, 0);
/* Populate default encoder configuration */
for (i = 0; i < NUM_ENCODERS; i++) {
res[i] = vpx_codec_enc_config_default(interface, &cfg[i], 0);
if (res[i]) {
printf("Failed to get config: %s\n", vpx_codec_err_to_string(res[i]));
return EXIT_FAILURE;
}
}
/*
* Update the default configuration according to needs of the application.
*/
/* Highest-resolution encoder settings */
cfg[0].g_w = width;
cfg[0].g_h = height;
cfg[0].rc_dropframe_thresh = 0;
cfg[0].rc_end_usage = VPX_CBR;
cfg[0].rc_resize_allowed = 0;
cfg[0].rc_min_quantizer = 2;
cfg[0].rc_max_quantizer = 56;
cfg[0].rc_undershoot_pct = 100;
cfg[0].rc_overshoot_pct = 15;
cfg[0].rc_buf_initial_sz = 500;
cfg[0].rc_buf_optimal_sz = 600;
cfg[0].rc_buf_sz = 1000;
cfg[0].g_error_resilient = 1; /* Enable error resilient mode */
cfg[0].g_lag_in_frames = 0;
/* Disable automatic keyframe placement */
/* Note: These 3 settings are copied to all levels. But, except the lowest
* resolution level, all other levels are set to VPX_KF_DISABLED internally.
*/
cfg[0].kf_mode = VPX_KF_AUTO;
cfg[0].kf_min_dist = 3000;
cfg[0].kf_max_dist = 3000;
cfg[0].rc_target_bitrate = target_bitrate[0]; /* Set target bitrate */
cfg[0].g_timebase.num = 1; /* Set fps */
cfg[0].g_timebase.den = framerate;
/* Other-resolution encoder settings */
for (i = 1; i < NUM_ENCODERS; i++) {
memcpy(&cfg[i], &cfg[0], sizeof(vpx_codec_enc_cfg_t));
cfg[i].rc_target_bitrate = target_bitrate[i];
/* Note: Width & height of other-resolution encoders are calculated
* from the highest-resolution encoder's size and the corresponding
* down_sampling_factor.
*/
{
unsigned int iw = cfg[i - 1].g_w * dsf[i - 1].den + dsf[i - 1].num - 1;
unsigned int ih = cfg[i - 1].g_h * dsf[i - 1].den + dsf[i - 1].num - 1;
cfg[i].g_w = iw / dsf[i - 1].num;
cfg[i].g_h = ih / dsf[i - 1].num;
}
/* Make width & height to be multiplier of 2. */
// Should support odd size ???
if ((cfg[i].g_w) % 2) cfg[i].g_w++;
if ((cfg[i].g_h) % 2) cfg[i].g_h++;
}
// Set the number of threads per encode/spatial layer.
// (1, 1, 1) means no encoder threading.
cfg[0].g_threads = 1;
cfg[1].g_threads = 1;
cfg[2].g_threads = 1;
/* Allocate image for each encoder */
for (i = 0; i < NUM_ENCODERS; i++)
if (!vpx_img_alloc(&raw[i], VPX_IMG_FMT_I420, cfg[i].g_w, cfg[i].g_h, 32))
die("Failed to allocate image", cfg[i].g_w, cfg[i].g_h);
if (raw[0].stride[VPX_PLANE_Y] == (int)raw[0].d_w)
read_frame_p = mulres_read_frame;
else
read_frame_p = mulres_read_frame_by_row;
for (i = 0; i < NUM_ENCODERS; i++)
if (outfile[i]) write_ivf_file_header(outfile[i], &cfg[i], 0);
/* Temporal layers settings */
for (i = 0; i < NUM_ENCODERS; i++) {
set_temporal_layer_pattern(num_temporal_layers[i], &cfg[i],
cfg[i].rc_target_bitrate,
&layer_flags[i * VPX_TS_MAX_PERIODICITY]);
}
/* Initialize multi-encoder */
if (vpx_codec_enc_init_multi(&codec[0], interface, &cfg[0], NUM_ENCODERS,
(show_psnr ? VPX_CODEC_USE_PSNR : 0), &dsf[0]))
die_codec(&codec[0], "Failed to initialize encoder");
/* The extra encoding configuration parameters can be set as follows. */
/* Set encoding speed */
for (i = 0; i < NUM_ENCODERS; i++) {
int speed = -6;
/* Lower speed for the lowest resolution. */
if (i == NUM_ENCODERS - 1) speed = -4;
if (vpx_codec_control(&codec[i], VP8E_SET_CPUUSED, speed))
die_codec(&codec[i], "Failed to set cpu_used");
}
/* Set static threshold = 1 for all encoders */
for (i = 0; i < NUM_ENCODERS; i++) {
if (vpx_codec_control(&codec[i], VP8E_SET_STATIC_THRESHOLD, 1))
die_codec(&codec[i], "Failed to set static threshold");
}
/* Set NOISE_SENSITIVITY to do TEMPORAL_DENOISING */
/* Enable denoising for the highest-resolution encoder. */
if (vpx_codec_control(&codec[0], VP8E_SET_NOISE_SENSITIVITY, 1))
die_codec(&codec[0], "Failed to set noise_sensitivity");
if (vpx_codec_control(&codec[1], VP8E_SET_NOISE_SENSITIVITY, 1))
die_codec(&codec[1], "Failed to set noise_sensitivity");
for (i = 2; i < NUM_ENCODERS; i++) {
if (vpx_codec_control(&codec[i], VP8E_SET_NOISE_SENSITIVITY, 0))
die_codec(&codec[i], "Failed to set noise_sensitivity");
}
/* Set the number of token partitions */
for (i = 0; i < NUM_ENCODERS; i++) {
if (vpx_codec_control(&codec[i], VP8E_SET_TOKEN_PARTITIONS, 1))
die_codec(&codec[i], "Failed to set static threshold");
}
/* Set the max intra target bitrate */
for (i = 0; i < NUM_ENCODERS; i++) {
unsigned int max_intra_size_pct =
(int)(((double)cfg[0].rc_buf_optimal_sz * 0.5) * framerate / 10);
if (vpx_codec_control(&codec[i], VP8E_SET_MAX_INTRA_BITRATE_PCT,
max_intra_size_pct))
die_codec(&codec[i], "Failed to set static threshold");
// printf("%d %d \n",i,max_intra_size_pct);
}
frame_avail = 1;
got_data = 0;
while (frame_avail || got_data) {
struct vpx_usec_timer timer;
vpx_codec_iter_t iter[NUM_ENCODERS] = { NULL };
const vpx_codec_cx_pkt_t *pkt[NUM_ENCODERS];
flags = 0;
frame_avail = read_frame_p(infile, &raw[0]);
if (frame_avail) {
for (i = 1; i < NUM_ENCODERS; i++) {
/*Scale the image down a number of times by downsampling factor*/
/* FilterMode 1 or 2 give better psnr than FilterMode 0. */
I420Scale(
raw[i - 1].planes[VPX_PLANE_Y], raw[i - 1].stride[VPX_PLANE_Y],
raw[i - 1].planes[VPX_PLANE_U], raw[i - 1].stride[VPX_PLANE_U],
raw[i - 1].planes[VPX_PLANE_V], raw[i - 1].stride[VPX_PLANE_V],
raw[i - 1].d_w, raw[i - 1].d_h, raw[i].planes[VPX_PLANE_Y],
raw[i].stride[VPX_PLANE_Y], raw[i].planes[VPX_PLANE_U],
raw[i].stride[VPX_PLANE_U], raw[i].planes[VPX_PLANE_V],
raw[i].stride[VPX_PLANE_V], raw[i].d_w, raw[i].d_h, 1);
/* Write out down-sampled input. */
length_frame = cfg[i].g_w * cfg[i].g_h * 3 / 2;
if (fwrite(raw[i].planes[0], 1, length_frame,
downsampled_input[NUM_ENCODERS - i - 1]) !=
(unsigned int)length_frame) {
return EXIT_FAILURE;
}
}
}
/* Set the flags (reference and update) for all the encoders.*/
for (i = 0; i < NUM_ENCODERS; i++) {
layer_id = cfg[i].ts_layer_id[frame_cnt % cfg[i].ts_periodicity];
flags = 0;
flag_periodicity = periodicity_to_num_layers[num_temporal_layers[i] - 1];
flags = layer_flags[i * VPX_TS_MAX_PERIODICITY +
frame_cnt % flag_periodicity];
// Key frame flag for first frame.
if (frame_cnt == 0) {
flags |= VPX_EFLAG_FORCE_KF;
}
if (frame_cnt > 0 && frame_cnt == key_frame_insert) {
flags = VPX_EFLAG_FORCE_KF;
}
vpx_codec_control(&codec[i], VP8E_SET_FRAME_FLAGS, flags);
vpx_codec_control(&codec[i], VP8E_SET_TEMPORAL_LAYER_ID, layer_id);
}
/* Encode each frame at multi-levels */
/* Note the flags must be set to 0 in the encode call if they are set
for each frame with the vpx_codec_control(), as done above. */
vpx_usec_timer_start(&timer);
if (vpx_codec_encode(&codec[0], frame_avail ? &raw[0] : NULL, frame_cnt, 1,
0, arg_deadline)) {
die_codec(&codec[0], "Failed to encode frame");
}
vpx_usec_timer_mark(&timer);
cx_time += vpx_usec_timer_elapsed(&timer);
for (i = NUM_ENCODERS - 1; i >= 0; i--) {
got_data = 0;
while ((pkt[i] = vpx_codec_get_cx_data(&codec[i], &iter[i]))) {
got_data = 1;
switch (pkt[i]->kind) {
case VPX_CODEC_CX_FRAME_PKT:
write_ivf_frame_header(outfile[i], pkt[i]);
(void)fwrite(pkt[i]->data.frame.buf, 1, pkt[i]->data.frame.sz,
outfile[i]);
break;
case VPX_CODEC_PSNR_PKT:
if (show_psnr) {
int j;
psnr_sse_total[i] += pkt[i]->data.psnr.sse[0];
psnr_samples_total[i] += pkt[i]->data.psnr.samples[0];
for (j = 0; j < 4; j++) {
psnr_totals[i][j] += pkt[i]->data.psnr.psnr[j];
}
psnr_count[i]++;
}
break;
default: break;
}
fflush(stdout);
}
}
frame_cnt++;
}
printf("\n");
printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f \n",
frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000),
1000000 * (double)frame_cnt / (double)cx_time);
fclose(infile);
printf("Processed %ld frames.\n", (long int)frame_cnt - 1);
for (i = 0; i < NUM_ENCODERS; i++) {
/* Calculate PSNR and print it out */
if ((show_psnr) && (psnr_count[i] > 0)) {
int j;
double ovpsnr =
sse_to_psnr(psnr_samples_total[i], 255.0, psnr_sse_total[i]);
fprintf(stderr, "\n ENC%d PSNR (Overall/Avg/Y/U/V)", i);
fprintf(stderr, " %.3lf", ovpsnr);
for (j = 0; j < 4; j++) {
fprintf(stderr, " %.3lf", psnr_totals[i][j] / psnr_count[i]);
}
}
if (vpx_codec_destroy(&codec[i]))
die_codec(&codec[i], "Failed to destroy codec");
vpx_img_free(&raw[i]);
if (!outfile[i]) continue;
/* Try to rewrite the file header with the actual frame count */
if (!fseek(outfile[i], 0, SEEK_SET))
write_ivf_file_header(outfile[i], &cfg[i], frame_cnt - 1);
fclose(outfile[i]);
}
return EXIT_SUCCESS;
}