| //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit Expr nodes as LLVM code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGCXXABI.h" |
| #include "CGCall.h" |
| #include "CGCleanup.h" |
| #include "CGDebugInfo.h" |
| #include "CGObjCRuntime.h" |
| #include "CGOpenMPRuntime.h" |
| #include "CGRecordLayout.h" |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "ConstantEmitter.h" |
| #include "TargetInfo.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/NSAPI.h" |
| #include "clang/Frontend/CodeGenOptions.h" |
| #include "llvm/ADT/Hashing.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/Support/ConvertUTF.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Transforms/Utils/SanitizerStats.h" |
| |
| #include <string> |
| |
| using namespace clang; |
| using namespace CodeGen; |
| |
| //===--------------------------------------------------------------------===// |
| // Miscellaneous Helper Methods |
| //===--------------------------------------------------------------------===// |
| |
| llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { |
| unsigned addressSpace = |
| cast<llvm::PointerType>(value->getType())->getAddressSpace(); |
| |
| llvm::PointerType *destType = Int8PtrTy; |
| if (addressSpace) |
| destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); |
| |
| if (value->getType() == destType) return value; |
| return Builder.CreateBitCast(value, destType); |
| } |
| |
| /// CreateTempAlloca - This creates a alloca and inserts it into the entry |
| /// block. |
| Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, |
| CharUnits Align, |
| const Twine &Name, |
| llvm::Value *ArraySize) { |
| auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); |
| Alloca->setAlignment(Align.getQuantity()); |
| return Address(Alloca, Align); |
| } |
| |
| /// CreateTempAlloca - This creates a alloca and inserts it into the entry |
| /// block. The alloca is casted to default address space if necessary. |
| Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, |
| const Twine &Name, |
| llvm::Value *ArraySize, |
| Address *AllocaAddr) { |
| auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); |
| if (AllocaAddr) |
| *AllocaAddr = Alloca; |
| llvm::Value *V = Alloca.getPointer(); |
| // Alloca always returns a pointer in alloca address space, which may |
| // be different from the type defined by the language. For example, |
| // in C++ the auto variables are in the default address space. Therefore |
| // cast alloca to the default address space when necessary. |
| if (getASTAllocaAddressSpace() != LangAS::Default) { |
| auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); |
| llvm::IRBuilderBase::InsertPointGuard IPG(Builder); |
| // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, |
| // otherwise alloca is inserted at the current insertion point of the |
| // builder. |
| if (!ArraySize) |
| Builder.SetInsertPoint(AllocaInsertPt); |
| V = getTargetHooks().performAddrSpaceCast( |
| *this, V, getASTAllocaAddressSpace(), LangAS::Default, |
| Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); |
| } |
| |
| return Address(V, Align); |
| } |
| |
| /// CreateTempAlloca - This creates an alloca and inserts it into the entry |
| /// block if \p ArraySize is nullptr, otherwise inserts it at the current |
| /// insertion point of the builder. |
| llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, |
| const Twine &Name, |
| llvm::Value *ArraySize) { |
| if (ArraySize) |
| return Builder.CreateAlloca(Ty, ArraySize, Name); |
| return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), |
| ArraySize, Name, AllocaInsertPt); |
| } |
| |
| /// CreateDefaultAlignTempAlloca - This creates an alloca with the |
| /// default alignment of the corresponding LLVM type, which is *not* |
| /// guaranteed to be related in any way to the expected alignment of |
| /// an AST type that might have been lowered to Ty. |
| Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, |
| const Twine &Name) { |
| CharUnits Align = |
| CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); |
| return CreateTempAlloca(Ty, Align, Name); |
| } |
| |
| void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { |
| assert(isa<llvm::AllocaInst>(Var.getPointer())); |
| auto *Store = new llvm::StoreInst(Init, Var.getPointer()); |
| Store->setAlignment(Var.getAlignment().getQuantity()); |
| llvm::BasicBlock *Block = AllocaInsertPt->getParent(); |
| Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); |
| } |
| |
| Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { |
| CharUnits Align = getContext().getTypeAlignInChars(Ty); |
| return CreateTempAlloca(ConvertType(Ty), Align, Name); |
| } |
| |
| Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, |
| Address *Alloca) { |
| // FIXME: Should we prefer the preferred type alignment here? |
| return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); |
| } |
| |
| Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, |
| const Twine &Name, Address *Alloca) { |
| return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, |
| /*ArraySize=*/nullptr, Alloca); |
| } |
| |
| Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, |
| const Twine &Name) { |
| return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); |
| } |
| |
| Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, |
| const Twine &Name) { |
| return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), |
| Name); |
| } |
| |
| /// EvaluateExprAsBool - Perform the usual unary conversions on the specified |
| /// expression and compare the result against zero, returning an Int1Ty value. |
| llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { |
| PGO.setCurrentStmt(E); |
| if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { |
| llvm::Value *MemPtr = EmitScalarExpr(E); |
| return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); |
| } |
| |
| QualType BoolTy = getContext().BoolTy; |
| SourceLocation Loc = E->getExprLoc(); |
| if (!E->getType()->isAnyComplexType()) |
| return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); |
| |
| return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, |
| Loc); |
| } |
| |
| /// EmitIgnoredExpr - Emit code to compute the specified expression, |
| /// ignoring the result. |
| void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { |
| if (E->isRValue()) |
| return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); |
| |
| // Just emit it as an l-value and drop the result. |
| EmitLValue(E); |
| } |
| |
| /// EmitAnyExpr - Emit code to compute the specified expression which |
| /// can have any type. The result is returned as an RValue struct. |
| /// If this is an aggregate expression, AggSlot indicates where the |
| /// result should be returned. |
| RValue CodeGenFunction::EmitAnyExpr(const Expr *E, |
| AggValueSlot aggSlot, |
| bool ignoreResult) { |
| switch (getEvaluationKind(E->getType())) { |
| case TEK_Scalar: |
| return RValue::get(EmitScalarExpr(E, ignoreResult)); |
| case TEK_Complex: |
| return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); |
| case TEK_Aggregate: |
| if (!ignoreResult && aggSlot.isIgnored()) |
| aggSlot = CreateAggTemp(E->getType(), "agg-temp"); |
| EmitAggExpr(E, aggSlot); |
| return aggSlot.asRValue(); |
| } |
| llvm_unreachable("bad evaluation kind"); |
| } |
| |
| /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will |
| /// always be accessible even if no aggregate location is provided. |
| RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { |
| AggValueSlot AggSlot = AggValueSlot::ignored(); |
| |
| if (hasAggregateEvaluationKind(E->getType())) |
| AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); |
| return EmitAnyExpr(E, AggSlot); |
| } |
| |
| /// EmitAnyExprToMem - Evaluate an expression into a given memory |
| /// location. |
| void CodeGenFunction::EmitAnyExprToMem(const Expr *E, |
| Address Location, |
| Qualifiers Quals, |
| bool IsInit) { |
| // FIXME: This function should take an LValue as an argument. |
| switch (getEvaluationKind(E->getType())) { |
| case TEK_Complex: |
| EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), |
| /*isInit*/ false); |
| return; |
| |
| case TEK_Aggregate: { |
| EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, |
| AggValueSlot::IsDestructed_t(IsInit), |
| AggValueSlot::DoesNotNeedGCBarriers, |
| AggValueSlot::IsAliased_t(!IsInit), |
| AggValueSlot::MayOverlap)); |
| return; |
| } |
| |
| case TEK_Scalar: { |
| RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); |
| LValue LV = MakeAddrLValue(Location, E->getType()); |
| EmitStoreThroughLValue(RV, LV); |
| return; |
| } |
| } |
| llvm_unreachable("bad evaluation kind"); |
| } |
| |
| static void |
| pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, |
| const Expr *E, Address ReferenceTemporary) { |
| // Objective-C++ ARC: |
| // If we are binding a reference to a temporary that has ownership, we |
| // need to perform retain/release operations on the temporary. |
| // |
| // FIXME: This should be looking at E, not M. |
| if (auto Lifetime = M->getType().getObjCLifetime()) { |
| switch (Lifetime) { |
| case Qualifiers::OCL_None: |
| case Qualifiers::OCL_ExplicitNone: |
| // Carry on to normal cleanup handling. |
| break; |
| |
| case Qualifiers::OCL_Autoreleasing: |
| // Nothing to do; cleaned up by an autorelease pool. |
| return; |
| |
| case Qualifiers::OCL_Strong: |
| case Qualifiers::OCL_Weak: |
| switch (StorageDuration Duration = M->getStorageDuration()) { |
| case SD_Static: |
| // Note: we intentionally do not register a cleanup to release |
| // the object on program termination. |
| return; |
| |
| case SD_Thread: |
| // FIXME: We should probably register a cleanup in this case. |
| return; |
| |
| case SD_Automatic: |
| case SD_FullExpression: |
| CodeGenFunction::Destroyer *Destroy; |
| CleanupKind CleanupKind; |
| if (Lifetime == Qualifiers::OCL_Strong) { |
| const ValueDecl *VD = M->getExtendingDecl(); |
| bool Precise = |
| VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); |
| CleanupKind = CGF.getARCCleanupKind(); |
| Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise |
| : &CodeGenFunction::destroyARCStrongImprecise; |
| } else { |
| // __weak objects always get EH cleanups; otherwise, exceptions |
| // could cause really nasty crashes instead of mere leaks. |
| CleanupKind = NormalAndEHCleanup; |
| Destroy = &CodeGenFunction::destroyARCWeak; |
| } |
| if (Duration == SD_FullExpression) |
| CGF.pushDestroy(CleanupKind, ReferenceTemporary, |
| M->getType(), *Destroy, |
| CleanupKind & EHCleanup); |
| else |
| CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, |
| M->getType(), |
| *Destroy, CleanupKind & EHCleanup); |
| return; |
| |
| case SD_Dynamic: |
| llvm_unreachable("temporary cannot have dynamic storage duration"); |
| } |
| llvm_unreachable("unknown storage duration"); |
| } |
| } |
| |
| CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; |
| if (const RecordType *RT = |
| E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { |
| // Get the destructor for the reference temporary. |
| auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); |
| if (!ClassDecl->hasTrivialDestructor()) |
| ReferenceTemporaryDtor = ClassDecl->getDestructor(); |
| } |
| |
| if (!ReferenceTemporaryDtor) |
| return; |
| |
| // Call the destructor for the temporary. |
| switch (M->getStorageDuration()) { |
| case SD_Static: |
| case SD_Thread: { |
| llvm::Constant *CleanupFn; |
| llvm::Constant *CleanupArg; |
| if (E->getType()->isArrayType()) { |
| CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( |
| ReferenceTemporary, E->getType(), |
| CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, |
| dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); |
| CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); |
| } else { |
| CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, |
| StructorType::Complete); |
| CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); |
| } |
| CGF.CGM.getCXXABI().registerGlobalDtor( |
| CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); |
| break; |
| } |
| |
| case SD_FullExpression: |
| CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), |
| CodeGenFunction::destroyCXXObject, |
| CGF.getLangOpts().Exceptions); |
| break; |
| |
| case SD_Automatic: |
| CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, |
| ReferenceTemporary, E->getType(), |
| CodeGenFunction::destroyCXXObject, |
| CGF.getLangOpts().Exceptions); |
| break; |
| |
| case SD_Dynamic: |
| llvm_unreachable("temporary cannot have dynamic storage duration"); |
| } |
| } |
| |
| static Address createReferenceTemporary(CodeGenFunction &CGF, |
| const MaterializeTemporaryExpr *M, |
| const Expr *Inner, |
| Address *Alloca = nullptr) { |
| auto &TCG = CGF.getTargetHooks(); |
| switch (M->getStorageDuration()) { |
| case SD_FullExpression: |
| case SD_Automatic: { |
| // If we have a constant temporary array or record try to promote it into a |
| // constant global under the same rules a normal constant would've been |
| // promoted. This is easier on the optimizer and generally emits fewer |
| // instructions. |
| QualType Ty = Inner->getType(); |
| if (CGF.CGM.getCodeGenOpts().MergeAllConstants && |
| (Ty->isArrayType() || Ty->isRecordType()) && |
| CGF.CGM.isTypeConstant(Ty, true)) |
| if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { |
| if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { |
| auto AS = AddrSpace.getValue(); |
| auto *GV = new llvm::GlobalVariable( |
| CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, |
| llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, |
| llvm::GlobalValue::NotThreadLocal, |
| CGF.getContext().getTargetAddressSpace(AS)); |
| CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); |
| GV->setAlignment(alignment.getQuantity()); |
| llvm::Constant *C = GV; |
| if (AS != LangAS::Default) |
| C = TCG.performAddrSpaceCast( |
| CGF.CGM, GV, AS, LangAS::Default, |
| GV->getValueType()->getPointerTo( |
| CGF.getContext().getTargetAddressSpace(LangAS::Default))); |
| // FIXME: Should we put the new global into a COMDAT? |
| return Address(C, alignment); |
| } |
| } |
| return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); |
| } |
| case SD_Thread: |
| case SD_Static: |
| return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); |
| |
| case SD_Dynamic: |
| llvm_unreachable("temporary can't have dynamic storage duration"); |
| } |
| llvm_unreachable("unknown storage duration"); |
| } |
| |
| LValue CodeGenFunction:: |
| EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { |
| const Expr *E = M->GetTemporaryExpr(); |
| |
| // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so |
| // as that will cause the lifetime adjustment to be lost for ARC |
| auto ownership = M->getType().getObjCLifetime(); |
| if (ownership != Qualifiers::OCL_None && |
| ownership != Qualifiers::OCL_ExplicitNone) { |
| Address Object = createReferenceTemporary(*this, M, E); |
| if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { |
| Object = Address(llvm::ConstantExpr::getBitCast(Var, |
| ConvertTypeForMem(E->getType()) |
| ->getPointerTo(Object.getAddressSpace())), |
| Object.getAlignment()); |
| |
| // createReferenceTemporary will promote the temporary to a global with a |
| // constant initializer if it can. It can only do this to a value of |
| // ARC-manageable type if the value is global and therefore "immune" to |
| // ref-counting operations. Therefore we have no need to emit either a |
| // dynamic initialization or a cleanup and we can just return the address |
| // of the temporary. |
| if (Var->hasInitializer()) |
| return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); |
| |
| Var->setInitializer(CGM.EmitNullConstant(E->getType())); |
| } |
| LValue RefTempDst = MakeAddrLValue(Object, M->getType(), |
| AlignmentSource::Decl); |
| |
| switch (getEvaluationKind(E->getType())) { |
| default: llvm_unreachable("expected scalar or aggregate expression"); |
| case TEK_Scalar: |
| EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); |
| break; |
| case TEK_Aggregate: { |
| EmitAggExpr(E, AggValueSlot::forAddr(Object, |
| E->getType().getQualifiers(), |
| AggValueSlot::IsDestructed, |
| AggValueSlot::DoesNotNeedGCBarriers, |
| AggValueSlot::IsNotAliased, |
| AggValueSlot::DoesNotOverlap)); |
| break; |
| } |
| } |
| |
| pushTemporaryCleanup(*this, M, E, Object); |
| return RefTempDst; |
| } |
| |
| SmallVector<const Expr *, 2> CommaLHSs; |
| SmallVector<SubobjectAdjustment, 2> Adjustments; |
| E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); |
| |
| for (const auto &Ignored : CommaLHSs) |
| EmitIgnoredExpr(Ignored); |
| |
| if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { |
| if (opaque->getType()->isRecordType()) { |
| assert(Adjustments.empty()); |
| return EmitOpaqueValueLValue(opaque); |
| } |
| } |
| |
| // Create and initialize the reference temporary. |
| Address Alloca = Address::invalid(); |
| Address Object = createReferenceTemporary(*this, M, E, &Alloca); |
| if (auto *Var = dyn_cast<llvm::GlobalVariable>( |
| Object.getPointer()->stripPointerCasts())) { |
| Object = Address(llvm::ConstantExpr::getBitCast( |
| cast<llvm::Constant>(Object.getPointer()), |
| ConvertTypeForMem(E->getType())->getPointerTo()), |
| Object.getAlignment()); |
| // If the temporary is a global and has a constant initializer or is a |
| // constant temporary that we promoted to a global, we may have already |
| // initialized it. |
| if (!Var->hasInitializer()) { |
| Var->setInitializer(CGM.EmitNullConstant(E->getType())); |
| EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); |
| } |
| } else { |
| switch (M->getStorageDuration()) { |
| case SD_Automatic: |
| case SD_FullExpression: |
| if (auto *Size = EmitLifetimeStart( |
| CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), |
| Alloca.getPointer())) { |
| if (M->getStorageDuration() == SD_Automatic) |
| pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, |
| Alloca, Size); |
| else |
| pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, |
| Size); |
| } |
| break; |
| default: |
| break; |
| } |
| EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); |
| } |
| pushTemporaryCleanup(*this, M, E, Object); |
| |
| // Perform derived-to-base casts and/or field accesses, to get from the |
| // temporary object we created (and, potentially, for which we extended |
| // the lifetime) to the subobject we're binding the reference to. |
| for (unsigned I = Adjustments.size(); I != 0; --I) { |
| SubobjectAdjustment &Adjustment = Adjustments[I-1]; |
| switch (Adjustment.Kind) { |
| case SubobjectAdjustment::DerivedToBaseAdjustment: |
| Object = |
| GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, |
| Adjustment.DerivedToBase.BasePath->path_begin(), |
| Adjustment.DerivedToBase.BasePath->path_end(), |
| /*NullCheckValue=*/ false, E->getExprLoc()); |
| break; |
| |
| case SubobjectAdjustment::FieldAdjustment: { |
| LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); |
| LV = EmitLValueForField(LV, Adjustment.Field); |
| assert(LV.isSimple() && |
| "materialized temporary field is not a simple lvalue"); |
| Object = LV.getAddress(); |
| break; |
| } |
| |
| case SubobjectAdjustment::MemberPointerAdjustment: { |
| llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); |
| Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, |
| Adjustment.Ptr.MPT); |
| break; |
| } |
| } |
| } |
| |
| return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); |
| } |
| |
| RValue |
| CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { |
| // Emit the expression as an lvalue. |
| LValue LV = EmitLValue(E); |
| assert(LV.isSimple()); |
| llvm::Value *Value = LV.getPointer(); |
| |
| if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { |
| // C++11 [dcl.ref]p5 (as amended by core issue 453): |
| // If a glvalue to which a reference is directly bound designates neither |
| // an existing object or function of an appropriate type nor a region of |
| // storage of suitable size and alignment to contain an object of the |
| // reference's type, the behavior is undefined. |
| QualType Ty = E->getType(); |
| EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); |
| } |
| |
| return RValue::get(Value); |
| } |
| |
| |
| /// getAccessedFieldNo - Given an encoded value and a result number, return the |
| /// input field number being accessed. |
| unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, |
| const llvm::Constant *Elts) { |
| return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) |
| ->getZExtValue(); |
| } |
| |
| /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. |
| static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, |
| llvm::Value *High) { |
| llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); |
| llvm::Value *K47 = Builder.getInt64(47); |
| llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); |
| llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); |
| llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); |
| llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); |
| return Builder.CreateMul(B1, KMul); |
| } |
| |
| bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { |
| return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || |
| TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; |
| } |
| |
| bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { |
| CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); |
| return (RD && RD->hasDefinition() && RD->isDynamicClass()) && |
| (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || |
| TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || |
| TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); |
| } |
| |
| bool CodeGenFunction::sanitizePerformTypeCheck() const { |
| return SanOpts.has(SanitizerKind::Null) | |
| SanOpts.has(SanitizerKind::Alignment) | |
| SanOpts.has(SanitizerKind::ObjectSize) | |
| SanOpts.has(SanitizerKind::Vptr); |
| } |
| |
| void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, |
| llvm::Value *Ptr, QualType Ty, |
| CharUnits Alignment, |
| SanitizerSet SkippedChecks) { |
| if (!sanitizePerformTypeCheck()) |
| return; |
| |
| // Don't check pointers outside the default address space. The null check |
| // isn't correct, the object-size check isn't supported by LLVM, and we can't |
| // communicate the addresses to the runtime handler for the vptr check. |
| if (Ptr->getType()->getPointerAddressSpace()) |
| return; |
| |
| // Don't check pointers to volatile data. The behavior here is implementation- |
| // defined. |
| if (Ty.isVolatileQualified()) |
| return; |
| |
| SanitizerScope SanScope(this); |
| |
| SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; |
| llvm::BasicBlock *Done = nullptr; |
| |
| // Quickly determine whether we have a pointer to an alloca. It's possible |
| // to skip null checks, and some alignment checks, for these pointers. This |
| // can reduce compile-time significantly. |
| auto PtrToAlloca = |
| dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); |
| |
| llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); |
| llvm::Value *IsNonNull = nullptr; |
| bool IsGuaranteedNonNull = |
| SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; |
| bool AllowNullPointers = isNullPointerAllowed(TCK); |
| if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && |
| !IsGuaranteedNonNull) { |
| // The glvalue must not be an empty glvalue. |
| IsNonNull = Builder.CreateIsNotNull(Ptr); |
| |
| // The IR builder can constant-fold the null check if the pointer points to |
| // a constant. |
| IsGuaranteedNonNull = IsNonNull == True; |
| |
| // Skip the null check if the pointer is known to be non-null. |
| if (!IsGuaranteedNonNull) { |
| if (AllowNullPointers) { |
| // When performing pointer casts, it's OK if the value is null. |
| // Skip the remaining checks in that case. |
| Done = createBasicBlock("null"); |
| llvm::BasicBlock *Rest = createBasicBlock("not.null"); |
| Builder.CreateCondBr(IsNonNull, Rest, Done); |
| EmitBlock(Rest); |
| } else { |
| Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); |
| } |
| } |
| } |
| |
| if (SanOpts.has(SanitizerKind::ObjectSize) && |
| !SkippedChecks.has(SanitizerKind::ObjectSize) && |
| !Ty->isIncompleteType()) { |
| uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); |
| |
| // The glvalue must refer to a large enough storage region. |
| // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation |
| // to check this. |
| // FIXME: Get object address space |
| llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; |
| llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); |
| llvm::Value *Min = Builder.getFalse(); |
| llvm::Value *NullIsUnknown = Builder.getFalse(); |
| llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); |
| llvm::Value *LargeEnough = Builder.CreateICmpUGE( |
| Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), |
| llvm::ConstantInt::get(IntPtrTy, Size)); |
| Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); |
| } |
| |
| uint64_t AlignVal = 0; |
| llvm::Value *PtrAsInt = nullptr; |
| |
| if (SanOpts.has(SanitizerKind::Alignment) && |
| !SkippedChecks.has(SanitizerKind::Alignment)) { |
| AlignVal = Alignment.getQuantity(); |
| if (!Ty->isIncompleteType() && !AlignVal) |
| AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); |
| |
| // The glvalue must be suitably aligned. |
| if (AlignVal > 1 && |
| (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { |
| PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); |
| llvm::Value *Align = Builder.CreateAnd( |
| PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); |
| llvm::Value *Aligned = |
| Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); |
| if (Aligned != True) |
| Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); |
| } |
| } |
| |
| if (Checks.size() > 0) { |
| // Make sure we're not losing information. Alignment needs to be a power of |
| // 2 |
| assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); |
| llvm::Constant *StaticData[] = { |
| EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), |
| llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), |
| llvm::ConstantInt::get(Int8Ty, TCK)}; |
| EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, |
| PtrAsInt ? PtrAsInt : Ptr); |
| } |
| |
| // If possible, check that the vptr indicates that there is a subobject of |
| // type Ty at offset zero within this object. |
| // |
| // C++11 [basic.life]p5,6: |
| // [For storage which does not refer to an object within its lifetime] |
| // The program has undefined behavior if: |
| // -- the [pointer or glvalue] is used to access a non-static data member |
| // or call a non-static member function |
| if (SanOpts.has(SanitizerKind::Vptr) && |
| !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { |
| // Ensure that the pointer is non-null before loading it. If there is no |
| // compile-time guarantee, reuse the run-time null check or emit a new one. |
| if (!IsGuaranteedNonNull) { |
| if (!IsNonNull) |
| IsNonNull = Builder.CreateIsNotNull(Ptr); |
| if (!Done) |
| Done = createBasicBlock("vptr.null"); |
| llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); |
| Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); |
| EmitBlock(VptrNotNull); |
| } |
| |
| // Compute a hash of the mangled name of the type. |
| // |
| // FIXME: This is not guaranteed to be deterministic! Move to a |
| // fingerprinting mechanism once LLVM provides one. For the time |
| // being the implementation happens to be deterministic. |
| SmallString<64> MangledName; |
| llvm::raw_svector_ostream Out(MangledName); |
| CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), |
| Out); |
| |
| // Blacklist based on the mangled type. |
| if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( |
| SanitizerKind::Vptr, Out.str())) { |
| llvm::hash_code TypeHash = hash_value(Out.str()); |
| |
| // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). |
| llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); |
| llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); |
| Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); |
| llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); |
| llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); |
| |
| llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); |
| Hash = Builder.CreateTrunc(Hash, IntPtrTy); |
| |
| // Look the hash up in our cache. |
| const int CacheSize = 128; |
| llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); |
| llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, |
| "__ubsan_vptr_type_cache"); |
| llvm::Value *Slot = Builder.CreateAnd(Hash, |
| llvm::ConstantInt::get(IntPtrTy, |
| CacheSize-1)); |
| llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; |
| llvm::Value *CacheVal = |
| Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), |
| getPointerAlign()); |
| |
| // If the hash isn't in the cache, call a runtime handler to perform the |
| // hard work of checking whether the vptr is for an object of the right |
| // type. This will either fill in the cache and return, or produce a |
| // diagnostic. |
| llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); |
| llvm::Constant *StaticData[] = { |
| EmitCheckSourceLocation(Loc), |
| EmitCheckTypeDescriptor(Ty), |
| CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), |
| llvm::ConstantInt::get(Int8Ty, TCK) |
| }; |
| llvm::Value *DynamicData[] = { Ptr, Hash }; |
| EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), |
| SanitizerHandler::DynamicTypeCacheMiss, StaticData, |
| DynamicData); |
| } |
| } |
| |
| if (Done) { |
| Builder.CreateBr(Done); |
| EmitBlock(Done); |
| } |
| } |
| |
| /// Determine whether this expression refers to a flexible array member in a |
| /// struct. We disable array bounds checks for such members. |
| static bool isFlexibleArrayMemberExpr(const Expr *E) { |
| // For compatibility with existing code, we treat arrays of length 0 or |
| // 1 as flexible array members. |
| const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); |
| if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { |
| if (CAT->getSize().ugt(1)) |
| return false; |
| } else if (!isa<IncompleteArrayType>(AT)) |
| return false; |
| |
| E = E->IgnoreParens(); |
| |
| // A flexible array member must be the last member in the class. |
| if (const auto *ME = dyn_cast<MemberExpr>(E)) { |
| // FIXME: If the base type of the member expr is not FD->getParent(), |
| // this should not be treated as a flexible array member access. |
| if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { |
| RecordDecl::field_iterator FI( |
| DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); |
| return ++FI == FD->getParent()->field_end(); |
| } |
| } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { |
| return IRE->getDecl()->getNextIvar() == nullptr; |
| } |
| |
| return false; |
| } |
| |
| llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, |
| QualType EltTy) { |
| ASTContext &C = getContext(); |
| uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); |
| if (!EltSize) |
| return nullptr; |
| |
| auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); |
| if (!ArrayDeclRef) |
| return nullptr; |
| |
| auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); |
| if (!ParamDecl) |
| return nullptr; |
| |
| auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); |
| if (!POSAttr) |
| return nullptr; |
| |
| // Don't load the size if it's a lower bound. |
| int POSType = POSAttr->getType(); |
| if (POSType != 0 && POSType != 1) |
| return nullptr; |
| |
| // Find the implicit size parameter. |
| auto PassedSizeIt = SizeArguments.find(ParamDecl); |
| if (PassedSizeIt == SizeArguments.end()) |
| return nullptr; |
| |
| const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; |
| assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); |
| Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; |
| llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, |
| C.getSizeType(), E->getExprLoc()); |
| llvm::Value *SizeOfElement = |
| llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); |
| return Builder.CreateUDiv(SizeInBytes, SizeOfElement); |
| } |
| |
| /// If Base is known to point to the start of an array, return the length of |
| /// that array. Return 0 if the length cannot be determined. |
| static llvm::Value *getArrayIndexingBound( |
| CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { |
| // For the vector indexing extension, the bound is the number of elements. |
| if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { |
| IndexedType = Base->getType(); |
| return CGF.Builder.getInt32(VT->getNumElements()); |
| } |
| |
| Base = Base->IgnoreParens(); |
| |
| if (const auto *CE = dyn_cast<CastExpr>(Base)) { |
| if (CE->getCastKind() == CK_ArrayToPointerDecay && |
| !isFlexibleArrayMemberExpr(CE->getSubExpr())) { |
| IndexedType = CE->getSubExpr()->getType(); |
| const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); |
| if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) |
| return CGF.Builder.getInt(CAT->getSize()); |
| else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) |
| return CGF.getVLASize(VAT).NumElts; |
| // Ignore pass_object_size here. It's not applicable on decayed pointers. |
| } |
| } |
| |
| QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; |
| if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { |
| IndexedType = Base->getType(); |
| return POS; |
| } |
| |
| return nullptr; |
| } |
| |
| void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, |
| llvm::Value *Index, QualType IndexType, |
| bool Accessed) { |
| assert(SanOpts.has(SanitizerKind::ArrayBounds) && |
| "should not be called unless adding bounds checks"); |
| SanitizerScope SanScope(this); |
| |
| QualType IndexedType; |
| llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); |
| if (!Bound) |
| return; |
| |
| bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); |
| llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); |
| llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); |
| |
| llvm::Constant *StaticData[] = { |
| EmitCheckSourceLocation(E->getExprLoc()), |
| EmitCheckTypeDescriptor(IndexedType), |
| EmitCheckTypeDescriptor(IndexType) |
| }; |
| llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) |
| : Builder.CreateICmpULE(IndexVal, BoundVal); |
| EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), |
| SanitizerHandler::OutOfBounds, StaticData, Index); |
| } |
| |
| |
| CodeGenFunction::ComplexPairTy CodeGenFunction:: |
| EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, |
| bool isInc, bool isPre) { |
| ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); |
| |
| llvm::Value *NextVal; |
| if (isa<llvm::IntegerType>(InVal.first->getType())) { |
| uint64_t AmountVal = isInc ? 1 : -1; |
| NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); |
| |
| // Add the inc/dec to the real part. |
| NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); |
| } else { |
| QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); |
| llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); |
| if (!isInc) |
| FVal.changeSign(); |
| NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); |
| |
| // Add the inc/dec to the real part. |
| NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); |
| } |
| |
| ComplexPairTy IncVal(NextVal, InVal.second); |
| |
| // Store the updated result through the lvalue. |
| EmitStoreOfComplex(IncVal, LV, /*init*/ false); |
| |
| // If this is a postinc, return the value read from memory, otherwise use the |
| // updated value. |
| return isPre ? IncVal : InVal; |
| } |
| |
| void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, |
| CodeGenFunction *CGF) { |
| // Bind VLAs in the cast type. |
| if (CGF && E->getType()->isVariablyModifiedType()) |
| CGF->EmitVariablyModifiedType(E->getType()); |
| |
| if (CGDebugInfo *DI = getModuleDebugInfo()) |
| DI->EmitExplicitCastType(E->getType()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LValue Expression Emission |
| //===----------------------------------------------------------------------===// |
| |
| /// EmitPointerWithAlignment - Given an expression of pointer type, try to |
| /// derive a more accurate bound on the alignment of the pointer. |
| Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, |
| LValueBaseInfo *BaseInfo, |
| TBAAAccessInfo *TBAAInfo) { |
| // We allow this with ObjC object pointers because of fragile ABIs. |
| assert(E->getType()->isPointerType() || |
| E->getType()->isObjCObjectPointerType()); |
| E = E->IgnoreParens(); |
| |
| // Casts: |
| if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { |
| if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) |
| CGM.EmitExplicitCastExprType(ECE, this); |
| |
| switch (CE->getCastKind()) { |
| // Non-converting casts (but not C's implicit conversion from void*). |
| case CK_BitCast: |
| case CK_NoOp: |
| case CK_AddressSpaceConversion: |
| if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { |
| if (PtrTy->getPointeeType()->isVoidType()) |
| break; |
| |
| LValueBaseInfo InnerBaseInfo; |
| TBAAAccessInfo InnerTBAAInfo; |
| Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), |
| &InnerBaseInfo, |
| &InnerTBAAInfo); |
| if (BaseInfo) *BaseInfo = InnerBaseInfo; |
| if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; |
| |
| if (isa<ExplicitCastExpr>(CE)) { |
| LValueBaseInfo TargetTypeBaseInfo; |
| TBAAAccessInfo TargetTypeTBAAInfo; |
| CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), |
| &TargetTypeBaseInfo, |
| &TargetTypeTBAAInfo); |
| if (TBAAInfo) |
| *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, |
| TargetTypeTBAAInfo); |
| // If the source l-value is opaque, honor the alignment of the |
| // casted-to type. |
| if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { |
| if (BaseInfo) |
| BaseInfo->mergeForCast(TargetTypeBaseInfo); |
| Addr = Address(Addr.getPointer(), Align); |
| } |
| } |
| |
| if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && |
| CE->getCastKind() == CK_BitCast) { |
| if (auto PT = E->getType()->getAs<PointerType>()) |
| EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), |
| /*MayBeNull=*/true, |
| CodeGenFunction::CFITCK_UnrelatedCast, |
| CE->getLocStart()); |
| } |
| return CE->getCastKind() != CK_AddressSpaceConversion |
| ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) |
| : Builder.CreateAddrSpaceCast(Addr, |
| ConvertType(E->getType())); |
| } |
| break; |
| |
| // Array-to-pointer decay. |
| case CK_ArrayToPointerDecay: |
| return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); |
| |
| // Derived-to-base conversions. |
| case CK_UncheckedDerivedToBase: |
| case CK_DerivedToBase: { |
| // TODO: Support accesses to members of base classes in TBAA. For now, we |
| // conservatively pretend that the complete object is of the base class |
| // type. |
| if (TBAAInfo) |
| *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); |
| Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); |
| auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); |
| return GetAddressOfBaseClass(Addr, Derived, |
| CE->path_begin(), CE->path_end(), |
| ShouldNullCheckClassCastValue(CE), |
| CE->getExprLoc()); |
| } |
| |
| // TODO: Is there any reason to treat base-to-derived conversions |
| // specially? |
| default: |
| break; |
| } |
| } |
| |
| // Unary &. |
| if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { |
| if (UO->getOpcode() == UO_AddrOf) { |
| LValue LV = EmitLValue(UO->getSubExpr()); |
| if (BaseInfo) *BaseInfo = LV.getBaseInfo(); |
| if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); |
| return LV.getAddress(); |
| } |
| } |
| |
| // TODO: conditional operators, comma. |
| |
| // Otherwise, use the alignment of the type. |
| CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, |
| TBAAInfo); |
| return Address(EmitScalarExpr(E), Align); |
| } |
| |
| RValue CodeGenFunction::GetUndefRValue(QualType Ty) { |
| if (Ty->isVoidType()) |
| return RValue::get(nullptr); |
| |
| switch (getEvaluationKind(Ty)) { |
| case TEK_Complex: { |
| llvm::Type *EltTy = |
| ConvertType(Ty->castAs<ComplexType>()->getElementType()); |
| llvm::Value *U = llvm::UndefValue::get(EltTy); |
| return RValue::getComplex(std::make_pair(U, U)); |
| } |
| |
| // If this is a use of an undefined aggregate type, the aggregate must have an |
| // identifiable address. Just because the contents of the value are undefined |
| // doesn't mean that the address can't be taken and compared. |
| case TEK_Aggregate: { |
| Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); |
| return RValue::getAggregate(DestPtr); |
| } |
| |
| case TEK_Scalar: |
| return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); |
| } |
| llvm_unreachable("bad evaluation kind"); |
| } |
| |
| RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, |
| const char *Name) { |
| ErrorUnsupported(E, Name); |
| return GetUndefRValue(E->getType()); |
| } |
| |
| LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, |
| const char *Name) { |
| ErrorUnsupported(E, Name); |
| llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); |
| return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), |
| E->getType()); |
| } |
| |
| bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { |
| const Expr *Base = Obj; |
| while (!isa<CXXThisExpr>(Base)) { |
| // The result of a dynamic_cast can be null. |
| if (isa<CXXDynamicCastExpr>(Base)) |
| return false; |
| |
| if (const auto *CE = dyn_cast<CastExpr>(Base)) { |
| Base = CE->getSubExpr(); |
| } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { |
| Base = PE->getSubExpr(); |
| } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { |
| if (UO->getOpcode() == UO_Extension) |
| Base = UO->getSubExpr(); |
| else |
| return false; |
| } else { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { |
| LValue LV; |
| if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) |
| LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); |
| else |
| LV = EmitLValue(E); |
| if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { |
| SanitizerSet SkippedChecks; |
| if (const auto *ME = dyn_cast<MemberExpr>(E)) { |
| bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); |
| if (IsBaseCXXThis) |
| SkippedChecks.set(SanitizerKind::Alignment, true); |
| if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) |
| SkippedChecks.set(SanitizerKind::Null, true); |
| } |
| EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), |
| E->getType(), LV.getAlignment(), SkippedChecks); |
| } |
| return LV; |
| } |
| |
| /// EmitLValue - Emit code to compute a designator that specifies the location |
| /// of the expression. |
| /// |
| /// This can return one of two things: a simple address or a bitfield reference. |
| /// In either case, the LLVM Value* in the LValue structure is guaranteed to be |
| /// an LLVM pointer type. |
| /// |
| /// If this returns a bitfield reference, nothing about the pointee type of the |
| /// LLVM value is known: For example, it may not be a pointer to an integer. |
| /// |
| /// If this returns a normal address, and if the lvalue's C type is fixed size, |
| /// this method guarantees that the returned pointer type will point to an LLVM |
| /// type of the same size of the lvalue's type. If the lvalue has a variable |
| /// length type, this is not possible. |
| /// |
| LValue CodeGenFunction::EmitLValue(const Expr *E) { |
| ApplyDebugLocation DL(*this, E); |
| switch (E->getStmtClass()) { |
| default: return EmitUnsupportedLValue(E, "l-value expression"); |
| |
| case Expr::ObjCPropertyRefExprClass: |
| llvm_unreachable("cannot emit a property reference directly"); |
| |
| case Expr::ObjCSelectorExprClass: |
| return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); |
| case Expr::ObjCIsaExprClass: |
| return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); |
| case Expr::BinaryOperatorClass: |
| return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); |
| case Expr::CompoundAssignOperatorClass: { |
| QualType Ty = E->getType(); |
| if (const AtomicType *AT = Ty->getAs<AtomicType>()) |
| Ty = AT->getValueType(); |
| if (!Ty->isAnyComplexType()) |
| return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); |
| return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); |
| } |
| case Expr::CallExprClass: |
| case Expr::CXXMemberCallExprClass: |
| case Expr::CXXOperatorCallExprClass: |
| case Expr::UserDefinedLiteralClass: |
| return EmitCallExprLValue(cast<CallExpr>(E)); |
| case Expr::VAArgExprClass: |
| return EmitVAArgExprLValue(cast<VAArgExpr>(E)); |
| case Expr::DeclRefExprClass: |
| return EmitDeclRefLValue(cast<DeclRefExpr>(E)); |
| case Expr::ParenExprClass: |
| return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); |
| case Expr::GenericSelectionExprClass: |
| return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); |
| case Expr::PredefinedExprClass: |
| return EmitPredefinedLValue(cast<PredefinedExpr>(E)); |
| case Expr::StringLiteralClass: |
| return EmitStringLiteralLValue(cast<StringLiteral>(E)); |
| case Expr::ObjCEncodeExprClass: |
| return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); |
| case Expr::PseudoObjectExprClass: |
| return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); |
| case Expr::InitListExprClass: |
| return EmitInitListLValue(cast<InitListExpr>(E)); |
| case Expr::CXXTemporaryObjectExprClass: |
| case Expr::CXXConstructExprClass: |
| return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); |
| case Expr::CXXBindTemporaryExprClass: |
| return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); |
| case Expr::CXXUuidofExprClass: |
| return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); |
| case Expr::LambdaExprClass: |
| return EmitLambdaLValue(cast<LambdaExpr>(E)); |
| |
| case Expr::ExprWithCleanupsClass: { |
| const auto *cleanups = cast<ExprWithCleanups>(E); |
| enterFullExpression(cleanups); |
| RunCleanupsScope Scope(*this); |
| LValue LV = EmitLValue(cleanups->getSubExpr()); |
| if (LV.isSimple()) { |
| // Defend against branches out of gnu statement expressions surrounded by |
| // cleanups. |
| llvm::Value *V = LV.getPointer(); |
| Scope.ForceCleanup({&V}); |
| return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), |
| getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); |
| } |
| // FIXME: Is it possible to create an ExprWithCleanups that produces a |
| // bitfield lvalue or some other non-simple lvalue? |
| return LV; |
| } |
| |
| case Expr::CXXDefaultArgExprClass: |
| return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); |
| case Expr::CXXDefaultInitExprClass: { |
| CXXDefaultInitExprScope Scope(*this); |
| return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); |
| } |
| case Expr::CXXTypeidExprClass: |
| return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); |
| |
| case Expr::ObjCMessageExprClass: |
| return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); |
| case Expr::ObjCIvarRefExprClass: |
| return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); |
| case Expr::StmtExprClass: |
| return EmitStmtExprLValue(cast<StmtExpr>(E)); |
| case Expr::UnaryOperatorClass: |
| return EmitUnaryOpLValue(cast<UnaryOperator>(E)); |
| case Expr::ArraySubscriptExprClass: |
| return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); |
| case Expr::OMPArraySectionExprClass: |
| return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); |
| case Expr::ExtVectorElementExprClass: |
| return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); |
| case Expr::MemberExprClass: |
| return EmitMemberExpr(cast<MemberExpr>(E)); |
| case Expr::CompoundLiteralExprClass: |
| return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); |
| case Expr::ConditionalOperatorClass: |
| return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); |
| case Expr::BinaryConditionalOperatorClass: |
| return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); |
| case Expr::ChooseExprClass: |
| return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); |
| case Expr::OpaqueValueExprClass: |
| return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); |
| case Expr::SubstNonTypeTemplateParmExprClass: |
| return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); |
| case Expr::ImplicitCastExprClass: |
| case Expr::CStyleCastExprClass: |
| case Expr::CXXFunctionalCastExprClass: |
| case Expr::CXXStaticCastExprClass: |
| case Expr::CXXDynamicCastExprClass: |
| case Expr::CXXReinterpretCastExprClass: |
| case Expr::CXXConstCastExprClass: |
| case Expr::ObjCBridgedCastExprClass: |
| return EmitCastLValue(cast<CastExpr>(E)); |
| |
| case Expr::MaterializeTemporaryExprClass: |
| return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); |
| |
| case Expr::CoawaitExprClass: |
| return EmitCoawaitLValue(cast<CoawaitExpr>(E)); |
| case Expr::CoyieldExprClass: |
| return EmitCoyieldLValue(cast<CoyieldExpr>(E)); |
| } |
| } |
| |
| /// Given an object of the given canonical type, can we safely copy a |
| /// value out of it based on its initializer? |
| static bool isConstantEmittableObjectType(QualType type) { |
| assert(type.isCanonical()); |
| assert(!type->isReferenceType()); |
| |
| // Must be const-qualified but non-volatile. |
| Qualifiers qs = type.getLocalQualifiers(); |
| if (!qs.hasConst() || qs.hasVolatile()) return false; |
| |
| // Otherwise, all object types satisfy this except C++ classes with |
| // mutable subobjects or non-trivial copy/destroy behavior. |
| if (const auto *RT = dyn_cast<RecordType>(type)) |
| if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) |
| if (RD->hasMutableFields() || !RD->isTrivial()) |
| return false; |
| |
| return true; |
| } |
| |
| /// Can we constant-emit a load of a reference to a variable of the |
| /// given type? This is different from predicates like |
| /// Decl::isUsableInConstantExpressions because we do want it to apply |
| /// in situations that don't necessarily satisfy the language's rules |
| /// for this (e.g. C++'s ODR-use rules). For example, we want to able |
| /// to do this with const float variables even if those variables |
| /// aren't marked 'constexpr'. |
| enum ConstantEmissionKind { |
| CEK_None, |
| CEK_AsReferenceOnly, |
| CEK_AsValueOrReference, |
| CEK_AsValueOnly |
| }; |
| static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { |
| type = type.getCanonicalType(); |
| if (const auto *ref = dyn_cast<ReferenceType>(type)) { |
| if (isConstantEmittableObjectType(ref->getPointeeType())) |
| return CEK_AsValueOrReference; |
| return CEK_AsReferenceOnly; |
| } |
| if (isConstantEmittableObjectType(type)) |
| return CEK_AsValueOnly; |
| return CEK_None; |
| } |
| |
| /// Try to emit a reference to the given value without producing it as |
| /// an l-value. This is actually more than an optimization: we can't |
| /// produce an l-value for variables that we never actually captured |
| /// in a block or lambda, which means const int variables or constexpr |
| /// literals or similar. |
| CodeGenFunction::ConstantEmission |
| CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { |
| ValueDecl *value = refExpr->getDecl(); |
| |
| // The value needs to be an enum constant or a constant variable. |
| ConstantEmissionKind CEK; |
| if (isa<ParmVarDecl>(value)) { |
| CEK = CEK_None; |
| } else if (auto *var = dyn_cast<VarDecl>(value)) { |
| CEK = checkVarTypeForConstantEmission(var->getType()); |
| } else if (isa<EnumConstantDecl>(value)) { |
| CEK = CEK_AsValueOnly; |
| } else { |
| CEK = CEK_None; |
| } |
| if (CEK == CEK_None) return ConstantEmission(); |
| |
| Expr::EvalResult result; |
| bool resultIsReference; |
| QualType resultType; |
| |
| // It's best to evaluate all the way as an r-value if that's permitted. |
| if (CEK != CEK_AsReferenceOnly && |
| refExpr->EvaluateAsRValue(result, getContext())) { |
| resultIsReference = false; |
| resultType = refExpr->getType(); |
| |
| // Otherwise, try to evaluate as an l-value. |
| } else if (CEK != CEK_AsValueOnly && |
| refExpr->EvaluateAsLValue(result, getContext())) { |
| resultIsReference = true; |
| resultType = value->getType(); |
| |
| // Failure. |
| } else { |
| return ConstantEmission(); |
| } |
| |
| // In any case, if the initializer has side-effects, abandon ship. |
| if (result.HasSideEffects) |
| return ConstantEmission(); |
| |
| // Emit as a constant. |
| auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), |
| result.Val, resultType); |
| |
| // Make sure we emit a debug reference to the global variable. |
| // This should probably fire even for |
| if (isa<VarDecl>(value)) { |
| if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) |
| EmitDeclRefExprDbgValue(refExpr, result.Val); |
| } else { |
| assert(isa<EnumConstantDecl>(value)); |
| EmitDeclRefExprDbgValue(refExpr, result.Val); |
| } |
| |
| // If we emitted a reference constant, we need to dereference that. |
| if (resultIsReference) |
| return ConstantEmission::forReference(C); |
| |
| return ConstantEmission::forValue(C); |
| } |
| |
| static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, |
| const MemberExpr *ME) { |
| if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { |
| // Try to emit static variable member expressions as DREs. |
| return DeclRefExpr::Create( |
| CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, |
| /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), |
| ME->getType(), ME->getValueKind()); |
| } |
| return nullptr; |
| } |
| |
| CodeGenFunction::ConstantEmission |
| CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { |
| if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) |
| return tryEmitAsConstant(DRE); |
| return ConstantEmission(); |
| } |
| |
| llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, |
| SourceLocation Loc) { |
| return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), |
| lvalue.getType(), Loc, lvalue.getBaseInfo(), |
| lvalue.getTBAAInfo(), lvalue.isNontemporal()); |
| } |
| |
| static bool hasBooleanRepresentation(QualType Ty) { |
| if (Ty->isBooleanType()) |
| return true; |
| |
| if (const EnumType *ET = Ty->getAs<EnumType>()) |
| return ET->getDecl()->getIntegerType()->isBooleanType(); |
| |
| if (const AtomicType *AT = Ty->getAs<AtomicType>()) |
| return hasBooleanRepresentation(AT->getValueType()); |
| |
| return false; |
| } |
| |
| static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, |
| llvm::APInt &Min, llvm::APInt &End, |
| bool StrictEnums, bool IsBool) { |
| const EnumType *ET = Ty->getAs<EnumType>(); |
| bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && |
| ET && !ET->getDecl()->isFixed(); |
| if (!IsBool && !IsRegularCPlusPlusEnum) |
| return false; |
| |
| if (IsBool) { |
| Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); |
| End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); |
| } else { |
| const EnumDecl *ED = ET->getDecl(); |
| llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); |
| unsigned Bitwidth = LTy->getScalarSizeInBits(); |
| unsigned NumNegativeBits = ED->getNumNegativeBits(); |
| unsigned NumPositiveBits = ED->getNumPositiveBits(); |
| |
| if (NumNegativeBits) { |
| unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); |
| assert(NumBits <= Bitwidth); |
| End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); |
| Min = -End; |
| } else { |
| assert(NumPositiveBits <= Bitwidth); |
| End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; |
| Min = llvm::APInt(Bitwidth, 0); |
| } |
| } |
| return true; |
| } |
| |
| llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { |
| llvm::APInt Min, End; |
| if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, |
| hasBooleanRepresentation(Ty))) |
| return nullptr; |
| |
| llvm::MDBuilder MDHelper(getLLVMContext()); |
| return MDHelper.createRange(Min, End); |
| } |
| |
| bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, |
| SourceLocation Loc) { |
| bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); |
| bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); |
| if (!HasBoolCheck && !HasEnumCheck) |
| return false; |
| |
| bool IsBool = hasBooleanRepresentation(Ty) || |
| NSAPI(CGM.getContext()).isObjCBOOLType(Ty); |
| bool NeedsBoolCheck = HasBoolCheck && IsBool; |
| bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); |
| if (!NeedsBoolCheck && !NeedsEnumCheck) |
| return false; |
| |
| // Single-bit booleans don't need to be checked. Special-case this to avoid |
| // a bit width mismatch when handling bitfield values. This is handled by |
| // EmitFromMemory for the non-bitfield case. |
| if (IsBool && |
| cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) |
| return false; |
| |
| llvm::APInt Min, End; |
| if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) |
| return true; |
| |
| auto &Ctx = getLLVMContext(); |
| SanitizerScope SanScope(this); |
| llvm::Value *Check; |
| --End; |
| if (!Min) { |
| Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); |
| } else { |
| llvm::Value *Upper = |
| Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); |
| llvm::Value *Lower = |
| Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); |
| Check = Builder.CreateAnd(Upper, Lower); |
| } |
| llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), |
| EmitCheckTypeDescriptor(Ty)}; |
| SanitizerMask Kind = |
| NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; |
| EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, |
| StaticArgs, EmitCheckValue(Value)); |
| return true; |
| } |
| |
| llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, |
| QualType Ty, |
| SourceLocation Loc, |
| LValueBaseInfo BaseInfo, |
| TBAAAccessInfo TBAAInfo, |
| bool isNontemporal) { |
| if (!CGM.getCodeGenOpts().PreserveVec3Type) { |
| // For better performance, handle vector loads differently. |
| if (Ty->isVectorType()) { |
| const llvm::Type *EltTy = Addr.getElementType(); |
| |
| const auto *VTy = cast<llvm::VectorType>(EltTy); |
| |
| // Handle vectors of size 3 like size 4 for better performance. |
| if (VTy->getNumElements() == 3) { |
| |
| // Bitcast to vec4 type. |
| llvm::VectorType *vec4Ty = |
| llvm::VectorType::get(VTy->getElementType(), 4); |
| Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); |
| // Now load value. |
| llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); |
| |
| // Shuffle vector to get vec3. |
| V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), |
| {0, 1, 2}, "extractVec"); |
| return EmitFromMemory(V, Ty); |
| } |
| } |
| } |
| |
| // Atomic operations have to be done on integral types. |
| LValue AtomicLValue = |
| LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); |
| if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { |
| return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); |
| } |
| |
| llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); |
| if (isNontemporal) { |
| llvm::MDNode *Node = llvm::MDNode::get( |
| Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); |
| Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); |
| } |
| |
| CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); |
| |
| if (EmitScalarRangeCheck(Load, Ty, Loc)) { |
| // In order to prevent the optimizer from throwing away the check, don't |
| // attach range metadata to the load. |
| } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) |
| if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) |
| Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); |
| |
| return EmitFromMemory(Load, Ty); |
| } |
| |
| llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { |
| // Bool has a different representation in memory than in registers. |
| if (hasBooleanRepresentation(Ty)) { |
| // This should really always be an i1, but sometimes it's already |
| // an i8, and it's awkward to track those cases down. |
| if (Value->getType()->isIntegerTy(1)) |
| return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); |
| assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && |
| "wrong value rep of bool"); |
| } |
| |
| return Value; |
| } |
| |
| llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { |
| // Bool has a different representation in memory than in registers. |
| if (hasBooleanRepresentation(Ty)) { |
| assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && |
| "wrong value rep of bool"); |
| return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); |
| } |
| |
| return Value; |
| } |
| |
| void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, |
| bool Volatile, QualType Ty, |
| LValueBaseInfo BaseInfo, |
| TBAAAccessInfo TBAAInfo, |
| bool isInit, bool isNontemporal) { |
| if (!CGM.getCodeGenOpts().PreserveVec3Type) { |
| // Handle vectors differently to get better performance. |
| if (Ty->isVectorType()) { |
| llvm::Type *SrcTy = Value->getType(); |
| auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); |
| // Handle vec3 special. |
| if (VecTy && VecTy->getNumElements() == 3) { |
| // Our source is a vec3, do a shuffle vector to make it a vec4. |
| llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), |
| Builder.getInt32(2), |
| llvm::UndefValue::get(Builder.getInt32Ty())}; |
| llvm::Value *MaskV = llvm::ConstantVector::get(Mask); |
| Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), |
| MaskV, "extractVec"); |
| SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); |
| } |
| if (Addr.getElementType() != SrcTy) { |
| Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); |
| } |
| } |
| } |
| |
| Value = EmitToMemory(Value, Ty); |
| |
| LValue AtomicLValue = |
| LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); |
| if (Ty->isAtomicType() || |
| (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { |
| EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); |
| return; |
| } |
| |
| llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); |
| if (isNontemporal) { |
| llvm::MDNode *Node = |
| llvm::MDNode::get(Store->getContext(), |
| llvm::ConstantAsMetadata::get(Builder.getInt32(1))); |
| Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); |
| } |
| |
| CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); |
| } |
| |
| void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, |
| bool isInit) { |
| EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), |
| lvalue.getType(), lvalue.getBaseInfo(), |
| lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); |
| } |
| |
| /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this |
| /// method emits the address of the lvalue, then loads the result as an rvalue, |
| /// returning the rvalue. |
| RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { |
| if (LV.isObjCWeak()) { |
| // load of a __weak object. |
| Address AddrWeakObj = LV.getAddress(); |
| return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, |
| AddrWeakObj)); |
| } |
| if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { |
| // In MRC mode, we do a load+autorelease. |
| if (!getLangOpts().ObjCAutoRefCount) { |
| return RValue::get(EmitARCLoadWeak(LV.getAddress())); |
| } |
| |
| // In ARC mode, we load retained and then consume the value. |
| llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); |
| Object = EmitObjCConsumeObject(LV.getType(), Object); |
| return RValue::get(Object); |
| } |
| |
| if (LV.isSimple()) { |
| assert(!LV.getType()->isFunctionType()); |
| |
| // Everything needs a load. |
| return RValue::get(EmitLoadOfScalar(LV, Loc)); |
| } |
| |
| if (LV.isVectorElt()) { |
| llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), |
| LV.isVolatileQualified()); |
| return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), |
| "vecext")); |
| } |
| |
| // If this is a reference to a subset of the elements of a vector, either |
| // shuffle the input or extract/insert them as appropriate. |
| if (LV.isExtVectorElt()) |
| return EmitLoadOfExtVectorElementLValue(LV); |
| |
| // Global Register variables always invoke intrinsics |
| if (LV.isGlobalReg()) |
| return EmitLoadOfGlobalRegLValue(LV); |
| |
| assert(LV.isBitField() && "Unknown LValue type!"); |
| return EmitLoadOfBitfieldLValue(LV, Loc); |
| } |
| |
| RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, |
| SourceLocation Loc) { |
| const CGBitFieldInfo &Info = LV.getBitFieldInfo(); |
| |
| // Get the output type. |
| llvm::Type *ResLTy = ConvertType(LV.getType()); |
| |
| Address Ptr = LV.getBitFieldAddress(); |
| llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); |
| |
| if (Info.IsSigned) { |
| assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); |
| unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; |
| if (HighBits) |
| Val = Builder.CreateShl(Val, HighBits, "bf.shl"); |
| if (Info.Offset + HighBits) |
| Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); |
| } else { |
| if (Info.Offset) |
| Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); |
| if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) |
| Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, |
| Info.Size), |
| "bf.clear"); |
| } |
| Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); |
| EmitScalarRangeCheck(Val, LV.getType(), Loc); |
| return RValue::get(Val); |
| } |
| |
| // If this is a reference to a subset of the elements of a vector, create an |
| // appropriate shufflevector. |
| RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { |
| llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), |
| LV.isVolatileQualified()); |
| |
| const llvm::Constant *Elts = LV.getExtVectorElts(); |
| |
| // If the result of the expression is a non-vector type, we must be extracting |
| // a single element. Just codegen as an extractelement. |
| const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); |
| if (!ExprVT) { |
| unsigned InIdx = getAccessedFieldNo(0, Elts); |
| llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); |
| return RValue::get(Builder.CreateExtractElement(Vec, Elt)); |
| } |
| |
| // Always use shuffle vector to try to retain the original program structure |
| unsigned NumResultElts = ExprVT->getNumElements(); |
| |
| SmallVector<llvm::Constant*, 4> Mask; |
| for (unsigned i = 0; i != NumResultElts; ++i) |
| Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); |
| |
| llvm::Value *MaskV = llvm::ConstantVector::get(Mask); |
| Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), |
| MaskV); |
| return RValue::get(Vec); |
| } |
| |
| /// Generates lvalue for partial ext_vector access. |
| Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { |
| Address VectorAddress = LV.getExtVectorAddress(); |
| const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); |
| QualType EQT = ExprVT->getElementType(); |
| llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); |
| |
| Address CastToPointerElement = |
| Builder.CreateElementBitCast(VectorAddress, VectorElementTy, |
| "conv.ptr.element"); |
| |
| const llvm::Constant *Elts = LV.getExtVectorElts(); |
| unsigned ix = getAccessedFieldNo(0, Elts); |
| |
| Address VectorBasePtrPlusIx = |
| Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, |
| getContext().getTypeSizeInChars(EQT), |
| "vector.elt"); |
| |
| return VectorBasePtrPlusIx; |
| } |
| |
| /// Load of global gamed gegisters are always calls to intrinsics. |
| RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { |
| assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && |
| "Bad type for register variable"); |
| llvm::MDNode *RegName = cast<llvm::MDNode>( |
| cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); |
| |
| // We accept integer and pointer types only |
| llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); |
| llvm::Type *Ty = OrigTy; |
| if (OrigTy->isPointerTy()) |
| Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); |
| llvm::Type *Types[] = { Ty }; |
| |
| llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); |
| llvm::Value *Call = Builder.CreateCall( |
| F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); |
| if (OrigTy->isPointerTy()) |
| Call = Builder.CreateIntToPtr(Call, OrigTy); |
| return RValue::get(Call); |
| } |
| |
| |
| /// EmitStoreThroughLValue - Store the specified rvalue into the specified |
| /// lvalue, where both are guaranteed to the have the same type, and that type |
| /// is 'Ty'. |
| void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, |
| bool isInit) { |
| if (!Dst.isSimple()) { |
| if (Dst.isVectorElt()) { |
| // Read/modify/write the vector, inserting the new element. |
| llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), |
| Dst.isVolatileQualified()); |
| Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), |
| Dst.getVectorIdx(), "vecins"); |
| Builder.CreateStore(Vec, Dst.getVectorAddress(), |
| Dst.isVolatileQualified()); |
| return; |
| } |
| |
| // If this is an update of extended vector elements, insert them as |
| // appropriate. |
| if (Dst.isExtVectorElt()) |
| return EmitStoreThroughExtVectorComponentLValue(Src, Dst); |
| |
| if (Dst.isGlobalReg()) |
| return EmitStoreThroughGlobalRegLValue(Src, Dst); |
| |
| assert(Dst.isBitField() && "Unknown LValue type"); |
| return EmitStoreThroughBitfieldLValue(Src, Dst); |
| } |
| |
| // There's special magic for assigning into an ARC-qualified l-value. |
| if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { |
| switch (Lifetime) { |
| case Qualifiers::OCL_None: |
| llvm_unreachable("present but none"); |
| |
| case Qualifiers::OCL_ExplicitNone: |
| // nothing special |
| break; |
| |
| case Qualifiers::OCL_Strong: |
| if (isInit) { |
| Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); |
| break; |
| } |
| EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); |
| return; |
| |
| case Qualifiers::OCL_Weak: |
| if (isInit) |
| // Initialize and then skip the primitive store. |
| EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); |
| else |
| EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); |
| return; |
| |
| case Qualifiers::OCL_Autoreleasing: |
| Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), |
| Src.getScalarVal())); |
| // fall into the normal path |
| break; |
| } |
| } |
| |
| if (Dst.isObjCWeak() && !Dst.isNonGC()) { |
| // load of a __weak object. |
| Address LvalueDst = Dst.getAddress(); |
| llvm::Value *src = Src.getScalarVal(); |
| CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); |
| return; |
| } |
| |
| if (Dst.isObjCStrong() && !Dst.isNonGC()) { |
| // load of a __strong object. |
| Address LvalueDst = Dst.getAddress(); |
| llvm::Value *src = Src.getScalarVal(); |
| if (Dst.isObjCIvar()) { |
| assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); |
| llvm::Type *ResultType = IntPtrTy; |
| Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); |
| llvm::Value *RHS = dst.getPointer(); |
| RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); |
| llvm::Value *LHS = |
| Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, |
| "sub.ptr.lhs.cast"); |
| llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); |
| CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, |
| BytesBetween); |
| } else if (Dst.isGlobalObjCRef()) { |
| CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, |
| Dst.isThreadLocalRef()); |
| } |
| else |
| CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); |
| return; |
| } |
| |
| assert(Src.isScalar() && "Can't emit an agg store with this method"); |
| EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); |
| } |
| |
| void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, |
| llvm::Value **Result) { |
| const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); |
| llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); |
| Address Ptr = Dst.getBitFieldAddress(); |
| |
| // Get the source value, truncated to the width of the bit-field. |
| llvm::Value *SrcVal = Src.getScalarVal(); |
| |
| // Cast the source to the storage type and shift it into place. |
| SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), |
| /*IsSigned=*/false); |
| llvm::Value *MaskedVal = SrcVal; |
| |
| // See if there are other bits in the bitfield's storage we'll need to load |
| // and mask together with source before storing. |
| if (Info.StorageSize != Info.Size) { |
| assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); |
| llvm::Value *Val = |
| Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); |
| |
| // Mask the source value as needed. |
| if (!hasBooleanRepresentation(Dst.getType())) |
| SrcVal = Builder.CreateAnd(SrcVal, |
| llvm::APInt::getLowBitsSet(Info.StorageSize, |
| Info.Size), |
| "bf.value"); |
| MaskedVal = SrcVal; |
| if (Info.Offset) |
| SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); |
| |
| // Mask out the original value. |
| Val = Builder.CreateAnd(Val, |
| ~llvm::APInt::getBitsSet(Info.StorageSize, |
| Info.Offset, |
| Info.Offset + Info.Size), |
| "bf.clear"); |
| |
| // Or together the unchanged values and the source value. |
| SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); |
| } else { |
| assert(Info.Offset == 0); |
| } |
| |
| // Write the new value back out. |
| Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); |
| |
| // Return the new value of the bit-field, if requested. |
| if (Result) { |
| llvm::Value *ResultVal = MaskedVal; |
| |
| // Sign extend the value if needed. |
| if (Info.IsSigned) { |
| assert(Info.Size <= Info.StorageSize); |
| unsigned HighBits = Info.StorageSize - Info.Size; |
| if (HighBits) { |
| ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); |
| ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); |
| } |
| } |
| |
| ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, |
| "bf.result.cast"); |
| *Result = EmitFromMemory(ResultVal, Dst.getType()); |
| } |
| } |
| |
| void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, |
| LValue Dst) { |
| // This access turns into a read/modify/write of the vector. Load the input |
| // value now. |
| llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), |
| Dst.isVolatileQualified()); |
| const llvm::Constant *Elts = Dst.getExtVectorElts(); |
| |
| llvm::Value *SrcVal = Src.getScalarVal(); |
| |
| if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { |
| unsigned NumSrcElts = VTy->getNumElements(); |
| unsigned NumDstElts = Vec->getType()->getVectorNumElements(); |
| if (NumDstElts == NumSrcElts) { |
| // Use shuffle vector is the src and destination are the same number of |
| // elements and restore the vector mask since it is on the side it will be |
| // stored. |
| SmallVector<llvm::Constant*, 4> Mask(NumDstElts); |
| for (unsigned i = 0; i != NumSrcElts; ++i) |
| Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); |
| |
| llvm::Value *MaskV = llvm::ConstantVector::get(Mask); |
| Vec = Builder.CreateShuffleVector(SrcVal, |
| llvm::UndefValue::get(Vec->getType()), |
| MaskV); |
| } else if (NumDstElts > NumSrcElts) { |
| // Extended the source vector to the same length and then shuffle it |
| // into the destination. |
| // FIXME: since we're shuffling with undef, can we just use the indices |
| // into that? This could be simpler. |
| SmallVector<llvm::Constant*, 4> ExtMask; |
| for (unsigned i = 0; i != NumSrcElts; ++i) |
| ExtMask.push_back(Builder.getInt32(i)); |
| ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); |
| llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); |
| llvm::Value *ExtSrcVal = |
| Builder.CreateShuffleVector(SrcVal, |
| llvm::UndefValue::get(SrcVal->getType()), |
| ExtMaskV); |
| // build identity |
| SmallVector<llvm::Constant*, 4> Mask; |
| for (unsigned i = 0; i != NumDstElts; ++i) |
| Mask.push_back(Builder.getInt32(i)); |
| |
| // When the vector size is odd and .odd or .hi is used, the last element |
| // of the Elts constant array will be one past the size of the vector. |
| // Ignore the last element here, if it is greater than the mask size. |
| if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) |
| NumSrcElts--; |
| |
| // modify when what gets shuffled in |
| for (unsigned i = 0; i != NumSrcElts; ++i) |
| Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); |
| llvm::Value *MaskV = llvm::ConstantVector::get(Mask); |
| Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); |
| } else { |
| // We should never shorten the vector |
| llvm_unreachable("unexpected shorten vector length"); |
| } |
| } else { |
| // If the Src is a scalar (not a vector) it must be updating one element. |
| unsigned InIdx = getAccessedFieldNo(0, Elts); |
| llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); |
| Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); |
| } |
| |
| Builder.CreateStore(Vec, Dst.getExtVectorAddress(), |
| Dst.isVolatileQualified()); |
| } |
| |
| /// Store of global named registers are always calls to intrinsics. |
| void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { |
| assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && |
| "Bad type for register variable"); |
| llvm::MDNode *RegName = cast<llvm::MDNode>( |
| cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); |
| assert(RegName && "Register LValue is not metadata"); |
| |
| // We accept integer and pointer types only |
| llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); |
| llvm::Type *Ty = OrigTy; |
| if (OrigTy->isPointerTy()) |
| Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); |
| llvm::Type *Types[] = { Ty }; |
| |
| llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); |
| llvm::Value *Value = Src.getScalarVal(); |
| if (OrigTy->isPointerTy()) |
| Value = Builder.CreatePtrToInt(Value, Ty); |
| Builder.CreateCall( |
| F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); |
| } |
| |
| // setObjCGCLValueClass - sets class of the lvalue for the purpose of |
| // generating write-barries API. It is currently a global, ivar, |
| // or neither. |
| static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, |
| LValue &LV, |
| bool IsMemberAccess=false) { |
| if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) |
| return; |
| |
| if (isa<ObjCIvarRefExpr>(E)) { |
| QualType ExpTy = E->getType(); |
| if (IsMemberAccess && ExpTy->isPointerType()) { |
| // If ivar is a structure pointer, assigning to field of |
| // this struct follows gcc's behavior and makes it a non-ivar |
| // writer-barrier conservatively. |
| ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); |
| if (ExpTy->isRecordType()) { |
| LV.setObjCIvar(false); |
| return; |
| } |
| } |
| LV.setObjCIvar(true); |
| auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); |
| LV.setBaseIvarExp(Exp->getBase()); |
| LV.setObjCArray(E->getType()->isArrayType()); |
| return; |
| } |
| |
| if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { |
| if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { |
| if (VD->hasGlobalStorage()) { |
| LV.setGlobalObjCRef(true); |
| LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); |
| } |
| } |
| LV.setObjCArray(E->getType()->isArrayType()); |
| return; |
| } |
| |
| if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { |
| setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); |
| return; |
| } |
| |
| if (const auto *Exp = dyn_cast<ParenExpr>(E)) { |
| setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); |
| if (LV.isObjCIvar()) { |
| // If cast is to a structure pointer, follow gcc's behavior and make it |
| // a non-ivar write-barrier. |
| QualType ExpTy = E->getType(); |
| if (ExpTy->isPointerType()) |
| ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); |
| if (ExpTy->isRecordType()) |
| LV.setObjCIvar(false); |
| } |
| return; |
| } |
| |
| if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { |
| setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); |
| return; |
| } |
| |
| if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { |
| setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); |
| return; |
| } |
| |
| if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { |
| setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); |
| return; |
| } |
| |
| if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { |
| setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); |
| return; |
| } |
| |
| if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { |
| setObjCGCLValueClass(Ctx, Exp->getBase(), LV); |
| if (LV.isObjCIvar() && !LV.isObjCArray()) |
| // Using array syntax to assigning to what an ivar points to is not |
| // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; |
| LV.setObjCIvar(false); |
| else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) |
| // Using array syntax to assigning to what global points to is not |
| // same as assigning to the global itself. {id *G;} G[i] = 0; |
| LV.setGlobalObjCRef(false); |
| return; |
| } |
| |
| if (const auto *Exp = dyn_cast<MemberExpr>(E)) { |
| setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); |
| // We don't know if member is an 'ivar', but this flag is looked at |
| // only in the context of LV.isObjCIvar(). |
| LV.setObjCArray(E->getType()->isArrayType()); |
| return; |
| } |
| } |
| |
| static llvm::Value * |
| EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, |
| llvm::Value *V, llvm::Type *IRType, |
| StringRef Name = StringRef()) { |
| unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); |
| return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); |
| } |
| |
| static LValue EmitThreadPrivateVarDeclLValue( |
| CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, |
| llvm::Type *RealVarTy, SourceLocation Loc) { |
| Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); |
| Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); |
| return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); |
| } |
| |
| static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF, |
| const VarDecl *VD, QualType T) { |
| for (const auto *D : VD->redecls()) { |
| if (!VD->hasAttrs()) |
| continue; |
| if (const auto *Attr = D->getAttr<OMPDeclareTargetDeclAttr>()) |
| if (Attr->getMapType() == OMPDeclareTargetDeclAttr::MT_Link) { |
| QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); |
| Address Addr = |
| CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); |
| return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); |
| } |
| } |
| return Address::invalid(); |
| } |
| |
| Address |
| CodeGenFunction::EmitLoadOfReference(LValue RefLVal, |
| LValueBaseInfo *PointeeBaseInfo, |
| TBAAAccessInfo *PointeeTBAAInfo) { |
| llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(), |
| RefLVal.isVolatile()); |
| CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); |
| |
| CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), |
| PointeeBaseInfo, PointeeTBAAInfo, |
| /* forPointeeType= */ true); |
| return Address(Load, Align); |
| } |
| |
| LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { |
| LValueBaseInfo PointeeBaseInfo; |
| TBAAAccessInfo PointeeTBAAInfo; |
| Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, |
| &PointeeTBAAInfo); |
| return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), |
| PointeeBaseInfo, PointeeTBAAInfo); |
| } |
| |
| Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, |
| const PointerType *PtrTy, |
| LValueBaseInfo *BaseInfo, |
| TBAAAccessInfo *TBAAInfo) { |
| llvm::Value *Addr = Builder.CreateLoad(Ptr); |
| return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), |
| BaseInfo, TBAAInfo, |
| /*forPointeeType=*/true)); |
| } |
| |
| LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, |
| const PointerType *PtrTy) { |
| LValueBaseInfo BaseInfo; |
| TBAAAccessInfo TBAAInfo; |
| Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); |
| return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); |
| } |
| |
| static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, |
| const Expr *E, const VarDecl *VD) { |
| QualType T = E->getType(); |
| |
| // If it's thread_local, emit a call to its wrapper function instead. |
| if (VD->getTLSKind() == VarDecl::TLS_Dynamic && |
| CGF.CGM.getCXXABI().usesThreadWrapperFunction()) |
| return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); |
| // Check if the variable is marked as declare target with link clause in |
| // device codegen. |
| if (CGF.getLangOpts().OpenMPIsDevice) { |
| Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T); |
| if (Addr.isValid()) |
| return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); |
| } |
| |
| llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); |
| llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); |
| V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); |
| CharUnits Alignment = CGF.getContext().getDeclAlign(VD); |
| Address Addr(V, Alignment); |
| // Emit reference to the private copy of the variable if it is an OpenMP |
| // threadprivate variable. |
| if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && |
| VD->hasAttr<OMPThreadPrivateDeclAttr>()) { |
| return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, |
| E->getExprLoc()); |
| } |
| LValue LV = VD->getType()->isReferenceType() ? |
| CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), |
| AlignmentSource::Decl) : |
| CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); |
| setObjCGCLValueClass(CGF.getContext(), E, LV); |
| return LV; |
| } |
| |
| static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, |
| const FunctionDecl *FD) { |
| if (FD->hasAttr<WeakRefAttr>()) { |
| ConstantAddress aliasee = CGM.GetWeakRefReference(FD); |
| return aliasee.getPointer(); |
| } |
| |
| llvm::Constant *V = CGM.GetAddrOfFunction(FD); |
| if (!FD->hasPrototype()) { |
| if (const FunctionProtoType *Proto = |
| FD->getType()->getAs<FunctionProtoType>()) { |
| // Ugly case: for a K&R-style definition, the type of the definition |
| // isn't the same as the type of a use. Correct for this with a |
| // bitcast. |
| QualType NoProtoType = |
| CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); |
| NoProtoType = CGM.getContext().getPointerType(NoProtoType); |
| V = llvm::ConstantExpr::getBitCast(V, |
| CGM.getTypes().ConvertType(NoProtoType)); |
| } |
| } |
| return V; |
| } |
| |
| static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, |
| const Expr *E, const FunctionDecl *FD) { |
| llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); |
| CharUnits Alignment = CGF.getContext().getDeclAlign(FD); |
| return CGF.MakeAddrLValue(V, E->getType(), Alignment, |
| AlignmentSource::Decl); |
| } |
| |
| static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, |
| llvm::Value *ThisValue) { |
| QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); |
| LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); |
| return CGF.EmitLValueForField(LV, FD); |
| } |
| |
| /// Named Registers are named metadata pointing to the register name |
| /// which will be read from/written to as an argument to the intrinsic |
| /// @llvm.read/write_register. |
| /// So far, only the name is being passed down, but other options such as |
| /// register type, allocation type or even optimization options could be |
| /// passed down via the metadata node. |
| static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { |
| SmallString<64> Name("llvm.named.register."); |
| AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); |
| assert(Asm->getLabel().size() < 64-Name.size() && |
| "Register name too big"); |
| Name.append(Asm->getLabel()); |
| llvm::NamedMDNode *M = |
| CGM.getModule().getOrInsertNamedMetadata(Name); |
| if (M->getNumOperands() == 0) { |
| llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), |
| Asm->getLabel()); |
| llvm::Metadata *Ops[] = {Str}; |
| M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); |
| } |
| |
| CharUnits Alignment = CGM.getContext().getDeclAlign(VD); |
| |
| llvm::Value *Ptr = |
| llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); |
| return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); |
| } |
| |
| LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { |
| const NamedDecl *ND = E->getDecl(); |
| QualType T = E->getType(); |
| |
| if (const auto *VD = dyn_cast<VarDecl>(ND)) { |
| // Global Named registers access via intrinsics only |
| if (VD->getStorageClass() == SC_Register && |
| VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) |
| return EmitGlobalNamedRegister(VD, CGM); |
| |
| // A DeclRefExpr for a reference initialized by a constant expression can |
| // appear without being odr-used. Directly emit the constant initializer. |
| const Expr *Init = VD->getAnyInitializer(VD); |
| const auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl); |
| if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && |
| VD->isUsableInConstantExpressions(getContext()) && |
| VD->checkInitIsICE() && |
| // Do not emit if it is private OpenMP variable. |
| !(E->refersToEnclosingVariableOrCapture() && |
| ((CapturedStmtInfo && |
| (LocalDeclMap.count(VD->getCanonicalDecl()) || |
| CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) || |
| LambdaCaptureFields.lookup(VD->getCanonicalDecl()) || |
| (BD && BD->capturesVariable(VD))))) { |
| llvm::Constant *Val = |
| ConstantEmitter(*this).emitAbstract(E->getLocation(), |
| *VD->evaluateValue(), |
| VD->getType()); |
| assert(Val && "failed to emit reference constant expression"); |
| // FIXME: Eventually we will want to emit vector element references. |
| |
| // Should we be using the alignment of the constant pointer we emitted? |
| CharUnits Alignment = getNaturalTypeAlignment(E->getType(), |
| /* BaseInfo= */ nullptr, |
| /* TBAAInfo= */ nullptr, |
| /* forPointeeType= */ true); |
| return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); |
| } |
| |
| // Check for captured variables. |
| if (E->refersToEnclosingVariableOrCapture()) { |
| VD = VD->getCanonicalDecl(); |
| if (auto *FD = LambdaCaptureFields.lookup(VD)) |
| return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); |
| else if (CapturedStmtInfo) { |
| auto I = LocalDeclMap.find(VD); |
| if (I != LocalDeclMap.end()) { |
| if (VD->getType()->isReferenceType()) |
| return EmitLoadOfReferenceLValue(I->second, VD->getType(), |
| AlignmentSource::Decl); |
| return MakeAddrLValue(I->second, T); |
| } |
| LValue CapLVal = |
| EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), |
| CapturedStmtInfo->getContextValue()); |
| return MakeAddrLValue( |
| Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), |
| CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), |
| CapLVal.getTBAAInfo()); |
| } |
| |
| assert(isa<BlockDecl>(CurCodeDecl)); |
| Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); |
| return MakeAddrLValue(addr, T, AlignmentSource::Decl); |
| } |
| } |
| |
| // FIXME: We should be able to assert this for FunctionDecls as well! |
| // FIXME: We should be able to assert this for all DeclRefExprs, not just |
| // those with a valid source location. |
| assert((ND->isUsed(false) || !isa<VarDecl>(ND) || |
| !E->getLocation().isValid()) && |
| "Should not use decl without marking it used!"); |
| |
| if (ND->hasAttr<WeakRefAttr>()) { |
| const auto *VD = cast<ValueDecl>(ND); |
| ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); |
| return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); |
| } |
| |
| if (const auto *VD = dyn_cast<VarDecl>(ND)) { |
| // Check if this is a global variable. |
| if (VD->hasLinkage() || VD->isStaticDataMember()) |
| return EmitGlobalVarDeclLValue(*this, E, VD); |
| |
| Address addr = Address::invalid(); |
| |
| // The variable should generally be present in the local decl map. |
| auto iter = LocalDeclMap.find(VD); |
| if (iter != LocalDeclMap.end()) { |
| addr = iter->second; |
| |
| // Otherwise, it might be static local we haven't emitted yet for |
| // some reason; most likely, because it's in an outer function. |
| } else if (VD->isStaticLocal()) { |
| addr = Address(CGM.getOrCreateStaticVarDecl( |
| *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), |
| getContext().getDeclAlign(VD)); |
| |
| // No other cases for now. |
| } else { |
| llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); |
| } |
| |
| |
| // Check for OpenMP threadprivate variables. |
| if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && |
| VD->hasAttr<OMPThreadPrivateDeclAttr>()) { |
| return EmitThreadPrivateVarDeclLValue( |
| *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), |
| E->getExprLoc()); |
| } |
| |
| // Drill into block byref variables. |
| bool isBlockByref = VD->hasAttr<BlocksAttr>(); |
| if (isBlockByref) { |
| addr = emitBlockByrefAddress(addr, VD); |
| } |
| |
| // Drill into reference types. |
| LValue LV = VD->getType()->isReferenceType() ? |
| EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : |
| MakeAddrLValue(addr, T, AlignmentSource::Decl); |
| |
| bool isLocalStorage = VD->hasLocalStorage(); |
| |
| bool NonGCable = isLocalStorage && |
| !VD->getType()->isReferenceType() && |
| !isBlockByref; |
| if (NonGCable) { |
| LV.getQuals().removeObjCGCAttr(); |
| LV.setNonGC(true); |
| } |
| |
| bool isImpreciseLifetime = |
| (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); |
| if (isImpreciseLifetime) |
| LV.setARCPreciseLifetime(ARCImpreciseLifetime); |
| setObjCGCLValueClass(getContext(), E, LV); |
| return LV; |
| } |
| |
| if (const auto *FD = dyn_cast<FunctionDecl>(ND)) |
| return EmitFunctionDeclLValue(*this, E, FD); |
| |
| // FIXME: While we're emitting a binding from an enclosing scope, all other |
| // DeclRefExprs we see should be implicitly treated as if they also refer to |
| // an enclosing scope. |
| if (const auto *BD = dyn_cast<BindingDecl>(ND)) |
| return EmitLValue(BD->getBinding()); |
| |
| llvm_unreachable("Unhandled DeclRefExpr"); |
| } |
| |
| LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { |
| // __extension__ doesn't affect lvalue-ness. |
| if (E->getOpcode() == UO_Extension) |
| return EmitLValue(E->getSubExpr()); |
| |
| QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); |
| switch (E->getOpcode()) { |
| default: llvm_unreachable("Unknown unary operator lvalue!"); |
| case UO_Deref: { |
| QualType T = E->getSubExpr()->getType()->getPointeeType(); |
| assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); |
| |
| LValueBaseInfo BaseInfo; |
| TBAAAccessInfo TBAAInfo; |
| Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, |
| &TBAAInfo); |
| LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); |
| LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); |
| |
| // We should not generate __weak write barrier on indirect reference |
| // of a pointer to object; as in void foo (__weak id *param); *param = 0; |
| // But, we continue to generate __strong write barrier on indirect write |
| // into a pointer to object. |
| if (getLangOpts().ObjC1 && |
| getLangOpts().getGC() != LangOptions::NonGC && |
| LV.isObjCWeak()) |
| LV.setNonGC(!E->isOBJCGCCandidate(getContext())); |
| return LV; |
| } |
| case UO_Real: |
| case UO_Imag: { |
| LValue LV = EmitLValue(E->getSubExpr()); |
| assert(LV.isSimple() && "real/imag on non-ordinary l-value"); |
| |
| // __real is valid on scalars. This is a faster way of testing that. |
| // __imag can only produce an rvalue on scalars. |
| if (E->getOpcode() == UO_Real && |
| !LV.getAddress().getElementType()->isStructTy()) { |
| assert(E->getSubExpr()->getType()->isArithmeticType()); |
| return LV; |
| } |
| |
| QualType T = ExprTy->castAs<ComplexType>()->getElementType(); |
| |
| Address Component = |
| (E->getOpcode() == UO_Real |
| ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) |
| : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); |
| LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), |
| CGM.getTBAAInfoForSubobject(LV, T)); |
| ElemLV.getQuals().addQualifiers(LV.getQuals()); |
| return ElemLV; |
| } |
| case UO_PreInc: |
| case UO_PreDec: { |
| LValue LV = EmitLValue(E->getSubExpr()); |
| bool isInc = E->getOpcode() == UO_PreInc; |
| |
| if (E->getType()->isAnyComplexType()) |
| EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); |
| else |
| EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); |
| return LV; |
| } |
| } |
| } |
| |
| LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { |
| return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), |
| E->getType(), AlignmentSource::Decl); |
| } |
| |
| LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { |
| return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), |
| E->getType(), AlignmentSource::Decl); |
| } |
| |
| LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { |
| auto SL = E->getFunctionName(); |
| assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); |
| StringRef FnName = CurFn->getName(); |
| if (FnName.startswith("\01")) |
| FnName = FnName.substr(1); |
| StringRef NameItems[] = { |
| PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; |
| std::string GVName = llvm::join(NameItems, NameItems + 2, "."); |
| if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { |
| std::string Name = SL->getString(); |
| if (!Name.empty()) { |
| unsigned Discriminator = |
| CGM.getCXXABI().getMangleContext().getBlockId(BD, true); |
| if (Discriminator) |
| Name += "_" + Twine(Discriminator + 1).str(); |
| auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); |
| return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); |
| } else { |
| auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); |
| return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); |
| } |
| } |
| auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); |
| return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); |
| } |
| |
| /// Emit a type description suitable for use by a runtime sanitizer library. The |
| /// format of a type descriptor is |
| /// |
| /// \code |
| /// { i16 TypeKind, i16 TypeInfo } |
| /// \endcode |
| /// |
| /// followed by an array of i8 containing the type name. TypeKind is 0 for an |
| /// integer, 1 for a floating point value, and -1 for anything else. |
| llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { |
| // Only emit each type's descriptor once. |
| if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) |
| return C; |
| |
| uint16_t TypeKind = -1; |
| uint16_t TypeInfo = 0; |
| |
| if (T->isIntegerType()) { |
| TypeKind = 0; |
| TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | |
| (T->isSignedIntegerType() ? 1 : 0); |
| } else if (T->isFloatingType()) { |
| TypeKind = 1; |
| TypeInfo = getContext().getTypeSize(T); |
| } |
| |
| // Format the type name as if for a diagnostic, including quotes and |
| // optionally an 'aka'. |
| SmallString<32> Buffer; |
| CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, |
| (intptr_t)T.getAsOpaquePtr(), |
| StringRef(), StringRef(), None, Buffer, |
| None); |
| |
| llvm::Constant *Components[] = { |
| Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), |
| llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) |
| }; |
| llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); |
| |
| auto *GV = new llvm::GlobalVariable( |
| CGM.getModule(), Descriptor->getType(), |
| /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); |
| GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); |
| |
| // Remember the descriptor for this type. |
| CGM.setTypeDescriptorInMap(T, GV); |
| |
| return GV; |
| } |
| |
| llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { |
| llvm::Type *TargetTy = IntPtrTy; |
| |
| if (V->getType() == TargetTy) |
| return V; |
| |
| // Floating-point types which fit into intptr_t are bitcast to integers |
| // and then passed directly (after zero-extension, if necessary). |
| if (V->getType()->isFloatingPointTy()) { |
| unsigned Bits = V->getType()->getPrimitiveSizeInBits(); |
| if (Bits <= TargetTy->getIntegerBitWidth()) |
| V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), |
| Bits)); |
| } |
| |
| // Integers which fit in intptr_t are zero-extended and passed directly. |
| if (V->getType()->isIntegerTy() && |
| V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) |
| return Builder.CreateZExt(V, TargetTy); |
| |
| // Pointers are passed directly, everything else is passed by address. |
| if (!V->getType()->isPointerTy()) { |
| Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); |
| Builder.CreateStore(V, Ptr); |
| V = Ptr.getPointer(); |
| } |
| return Builder.CreatePtrToInt(V, TargetTy); |
| } |
| |
| /// Emit a representation of a SourceLocation for passing to a handler |
| /// in a sanitizer runtime library. The format for this data is: |
| /// \code |
| /// struct SourceLocation { |
| /// const char *Filename; |
| /// int32_t Line, Column; |
| /// }; |
| /// \endcode |
| /// For an invalid SourceLocation, the Filename pointer is null. |
| llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { |
| llvm::Constant *Filename; |
| int Line, Column; |
| |
| PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); |
| if (PLoc.isValid()) { |
| StringRef FilenameString = PLoc.getFilename(); |
| |
| int PathComponentsToStrip = |
| CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; |
| if (PathComponentsToStrip < 0) { |
| assert(PathComponentsToStrip != INT_MIN); |
| int PathComponentsToKeep = -PathComponentsToStrip; |
| auto I = llvm::sys::path::rbegin(FilenameString); |
| auto E = llvm::sys::path::rend(FilenameString); |
| while (I != E && --PathComponentsToKeep) |
| ++I; |
| |
| FilenameString = FilenameString.substr(I - E); |
| } else if (PathComponentsToStrip > 0) { |
| auto I = llvm::sys::path::begin(FilenameString); |
| auto E = llvm::sys::path::end(FilenameString); |
| while (I != E && PathComponentsToStrip--) |
| ++I; |
| |
| if (I != E) |
| FilenameString = |
| FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); |
| else |
| FilenameString = llvm::sys::path::filename(FilenameString); |
| } |
| |
| auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); |
| CGM.getSanitizerMetadata()->disableSanitizerForGlobal( |
| cast<llvm::GlobalVariable>(FilenameGV.getPointer())); |
| Filename = FilenameGV.getPointer(); |
| Line = PLoc.getLine(); |
| Column = PLoc.getColumn(); |
| } else { |
| Filename = llvm::Constant::getNullValue(Int8PtrTy); |
| Line = Column = 0; |
| } |
| |
| llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), |
| Builder.getInt32(Column)}; |
| |
| return llvm::ConstantStruct::getAnon(Data); |
| } |
| |
| namespace { |
| /// Specify under what conditions this check can be recovered |
| enum class CheckRecoverableKind { |
| /// Always terminate program execution if this check fails. |
| Unrecoverable, |
| /// Check supports recovering, runtime has both fatal (noreturn) and |
| /// non-fatal handlers for this check. |
| Recoverable, |
| /// Runtime conditionally aborts, always need to support recovery. |
| AlwaysRecoverable |
| }; |
| } |
| |
| static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { |
| assert(llvm::countPopulation(Kind) == 1); |
| switch (Kind) { |
| case SanitizerKind::Vptr: |
| return CheckRecoverableKind::AlwaysRecoverable; |
| case SanitizerKind::Return: |
| case SanitizerKind::Unreachable: |
| return CheckRecoverableKind::Unrecoverable; |
| default: |
| return CheckRecoverableKind::Recoverable; |
| } |
| } |
| |
| namespace { |
| struct SanitizerHandlerInfo { |
| char const *const Name; |
| unsigned Version; |
| }; |
| } |
| |
| const SanitizerHandlerInfo SanitizerHandlers[] = { |
| #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, |
| LIST_SANITIZER_CHECKS |
| #undef SANITIZER_CHECK |
| }; |
| |
| static void emitCheckHandlerCall(CodeGenFunction &CGF, |
| llvm::FunctionType *FnType, |
| ArrayRef<llvm::Value *> FnArgs, |
| SanitizerHandler CheckHandler, |
| CheckRecoverableKind RecoverKind, bool IsFatal, |
| llvm::BasicBlock *ContBB) { |
| assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); |
| bool NeedsAbortSuffix = |
| IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; |
| bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; |
| const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; |
| const StringRef CheckName = CheckInfo.Name; |
| std::string FnName = "__ubsan_handle_" + CheckName.str(); |
| if (CheckInfo.Version && !MinimalRuntime) |
| FnName += "_v" + llvm::utostr(CheckInfo.Version); |
| if (MinimalRuntime) |
| FnName += "_minimal"; |
| if (NeedsAbortSuffix) |
| FnName += "_abort"; |
| bool MayReturn = |
| !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; |
| |
| llvm::AttrBuilder B; |
| if (!MayReturn) { |
| B.addAttribute(llvm::Attribute::NoReturn) |
| .addAttribute(llvm::Attribute::NoUnwind); |
| } |
| B.addAttribute(llvm::Attribute::UWTable); |
| |
| llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( |
| FnType, FnName, |
| llvm::AttributeList::get(CGF.getLLVMContext(), |
| llvm::AttributeList::FunctionIndex, B), |
| /*Local=*/true); |
| llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); |
| if (!MayReturn) { |
| HandlerCall->setDoesNotReturn(); |
| CGF.Builder.CreateUnreachable(); |
| } else { |
| CGF.Builder.CreateBr(ContBB); |
| } |
| } |
| |
| void CodeGenFunction::EmitCheck( |
| ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, |
| SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, |
| ArrayRef<llvm::Value *> DynamicArgs) { |
| assert(IsSanitizerScope); |
| assert(Checked.size() > 0); |
| assert(CheckHandler >= 0 && |
| size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); |
| const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; |
| |
| llvm::Value *FatalCond = nullptr; |
| llvm::Value *RecoverableCond = nullptr; |
| llvm::Value *TrapCond = nullptr; |
| for (int i = 0, n = Checked.size(); i < n; ++i) { |
| llvm::Value *Check = Checked[i].first; |
| // -fsanitize-trap= overrides -fsanitize-recover=. |
| llvm::Value *&Cond = |
| CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) |
| ? TrapCond |
| : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) |
| ? RecoverableCond |
| : FatalCond; |
| Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; |
| } |
| |
| if (TrapCond) |
| EmitTrapCheck(TrapCond); |
| if (!FatalCond && !RecoverableCond) |
| return; |
| |
| llvm::Value *JointCond; |
| if (FatalCond && RecoverableCond) |
| JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); |
| else |
| JointCond = FatalCond ? FatalCond : RecoverableCond; |
| assert(JointCond); |
| |
| CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); |
| assert(SanOpts.has(Checked[0].second)); |
| #ifndef NDEBUG |
| for (int i = 1, n = Checked.size(); i < n; ++i) { |
| assert(RecoverKind == getRecoverableKind(Checked[i].second) && |
| "All recoverable kinds in a single check must be same!"); |
| assert(SanOpts.has(Checked[i].second)); |
| } |
| #endif |
| |
| llvm::BasicBlock *Cont = createBasicBlock("cont"); |
| llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); |
| llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); |
| // Give hint that we very much don't expect to execute the handler |
| // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp |
| llvm::MDBuilder MDHelper(getLLVMContext()); |
| llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); |
| Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); |
| EmitBlock(Handlers); |
| |
| // Handler functions take an i8* pointing to the (handler-specific) static |
| // information block, followed by a sequence of intptr_t arguments |
| // representing operand values. |
| SmallVector<llvm::Value *, 4> Args; |
| SmallVector<llvm::Type *, 4> ArgTypes; |
| if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { |
| Args.reserve(DynamicArgs.size() + 1); |
| ArgTypes.reserve(DynamicArgs.size() + 1); |
| |
| // Emit handler arguments and create handler function type. |
| if (!StaticArgs.empty()) { |
| llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); |
| auto *InfoPtr = |
| new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, |
| llvm::GlobalVariable::PrivateLinkage, Info); |
| InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); |
| Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); |
| ArgTypes.push_back(Int8PtrTy); |
| } |
| |
| for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { |
| Args.push_back(EmitCheckValue(DynamicArgs[i])); |
| ArgTypes.push_back(IntPtrTy); |
| } |
| } |
| |
| llvm::FunctionType *FnType = |
| llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); |
| |
| if (!FatalCond || !RecoverableCond) { |
| // Simple case: we need to generate a single handler call, either |
| // fatal, or non-fatal. |
| emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, |
| (FatalCond != nullptr), Cont); |
| } else { |
| // Emit two handler calls: first one for set of unrecoverable checks, |
| // another one for recoverable. |
| llvm::BasicBlock *NonFatalHandlerBB = |
| createBasicBlock("non_fatal." + CheckName); |
| llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); |
| Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); |
| EmitBlock(FatalHandlerBB); |
| emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, |
| NonFatalHandlerBB); |
| EmitBlock(NonFatalHandlerBB); |
| emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, |
| Cont); |
| } |
| |
| EmitBlock(Cont); |
| } |
| |
| void CodeGenFunction::EmitCfiSlowPathCheck( |
| SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, |
| llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { |
| llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); |
| |
| llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); |
| llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); |
| |
| llvm::MDBuilder MDHelper(getLLVMContext()); |
| llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); |
| BI->setMetadata(llvm::LLVMContext::MD_prof, Node); |
| |
| EmitBlock(CheckBB); |
| |
| bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); |
| |
| llvm::CallInst *CheckCall; |
| llvm::Constant *SlowPathFn; |
| if (WithDiag) { |
| llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); |
| auto *InfoPtr = |
| new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, |
| llvm::GlobalVariable::PrivateLinkage, Info); |
| InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); |
| |
| SlowPathFn = CGM.getModule().getOrInsertFunction( |
| "__cfi_slowpath_diag", |
| llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, |
| false)); |
| CheckCall = Builder.CreateCall( |
| SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); |
| } else { |
| SlowPathFn = CGM.getModule().getOrInsertFunction( |
| "__cfi_slowpath", |
| llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); |
| CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); |
| } |
| |
| CGM.setDSOLocal(cast<llvm::GlobalValue>(SlowPathFn->stripPointerCasts())); |
| CheckCall->setDoesNotThrow(); |
| |
| EmitBlock(Cont); |
| } |
| |
| // Emit a stub for __cfi_check function so that the linker knows about this |
| // symbol in LTO mode. |
| void CodeGenFunction::EmitCfiCheckStub() { |
| llvm::Module *M = &CGM.getModule(); |
| auto &Ctx = M->getContext(); |
| llvm::Function *F = llvm::Function::Create( |
| llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), |
| llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); |
| CGM.setDSOLocal(F); |
| llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); |
| // FIXME: consider emitting an intrinsic call like |
| // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) |
| // which can be lowered in CrossDSOCFI pass to the actual contents of |
| // __cfi_check. This would allow inlining of __cfi_check calls. |
| llvm::CallInst::Create( |
| llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); |
| llvm::ReturnInst::Create(Ctx, nullptr, BB); |
| } |
| |
| // This function is basically a switch over the CFI failure kind, which is |
| // extracted from CFICheckFailData (1st function argument). Each case is either |
| // llvm.trap or a call to one of the two runtime handlers, based on |
| // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid |
| // failure kind) traps, but this should really never happen. CFICheckFailData |
| // can be nullptr if the calling module has -fsanitize-trap behavior for this |
| // check kind; in this case __cfi_check_fail traps as well. |
| void CodeGenFunction::EmitCfiCheckFail() { |
| SanitizerScope SanScope(this); |
| FunctionArgList Args; |
| ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, |
| ImplicitParamDecl::Other); |
| ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, |
| ImplicitParamDecl::Other); |
| Args.push_back(&ArgData); |
| Args.push_back(&ArgAddr); |
| |
| const CGFunctionInfo &FI = |
| CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); |
| |
| llvm::Function *F = llvm::Function::Create( |
| llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), |
| llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); |
| F->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| |
| StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, |
| SourceLocation()); |
| |
| // This function should not be affected by blacklist. This function does |
| // not have a source location, but "src:*" would still apply. Revert any |
| // changes to SanOpts made in StartFunction. |
| SanOpts = CGM.getLangOpts().Sanitize; |
| |
| llvm::Value *Data = |
| EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, |
| CGM.getContext().VoidPtrTy, ArgData.getLocation()); |
| llvm::Value *Addr = |
| EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, |
| CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); |
| |
| // Data == nullptr means the calling module has trap behaviour for this check. |
| llvm::Value *DataIsNotNullPtr = |
| Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); |
| EmitTrapCheck(DataIsNotNullPtr); |
| |
| llvm::StructType *SourceLocationTy = |
| llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); |
| llvm::StructType *CfiCheckFailDataTy = |
| llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); |
| |
| llvm::Value *V = Builder.CreateConstGEP2_32( |
| CfiCheckFailDataTy, |
| Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, |
| 0); |
| Address CheckKindAddr(V, getIntAlign()); |
| llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); |
| |
| llvm::Value *AllVtables = llvm::MetadataAsValue::get( |
| CGM.getLLVMContext(), |
| llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); |
| llvm::Value *ValidVtable = Builder.CreateZExt( |
| Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), |
| {Addr, AllVtables}), |
| IntPtrTy); |
| |
| const std::pair<int, SanitizerMask> CheckKinds[] = { |
| {CFITCK_VCall, SanitizerKind::CFIVCall}, |
| {CFITCK_NVCall, SanitizerKind::CFINVCall}, |
| {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, |
| {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, |
| {CFITCK_ICall, SanitizerKind::CFIICall}}; |
| |
| SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; |
| for (auto CheckKindMaskPair : CheckKinds) { |
| int Kind = CheckKindMaskPair.first; |
| SanitizerMask Mask = CheckKindMaskPair.second; |
| llvm::Value *Cond = |
| Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); |
| if (CGM.getLangOpts().Sanitize.has(Mask)) |
| EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, |
| {Data, Addr, ValidVtable}); |
| else |
| EmitTrapCheck(Cond); |
| } |
| |
| FinishFunction(); |
| // The only reference to this function will be created during LTO link. |
| // Make sure it survives until then. |
| CGM.addUsedGlobal(F); |
| } |
| |
| void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { |
| if (SanOpts.has(SanitizerKind::Unreachable)) { |
| SanitizerScope SanScope(this); |
| EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), |
| SanitizerKind::Unreachable), |
| SanitizerHandler::BuiltinUnreachable, |
| EmitCheckSourceLocation(Loc), None); |
| } |
| Builder.CreateUnreachable(); |
| } |
| |
| void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { |
| llvm::BasicBlock *Cont = createBasicBlock("cont"); |
| |
| // If we're optimizing, collapse all calls to trap down to just one per |
| // function to save on code size. |
| if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { |
| TrapBB = createBasicBlock("trap"); |
| Builder.CreateCondBr(Checked, Cont, TrapBB); |
| EmitBlock(TrapBB); |
| llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); |
| TrapCall->setDoesNotReturn(); |
| TrapCall->setDoesNotThrow(); |
| Builder.CreateUnreachable(); |
| } else { |
| Builder.CreateCondBr(Checked, Cont, TrapBB); |
| } |
| |
| EmitBlock(Cont); |
| } |
| |
| llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { |
| llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); |
| |
| if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { |
| auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", |
| CGM.getCodeGenOpts().TrapFuncName); |
| TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); |
| } |
| |
| return TrapCall; |
| } |
| |
| Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, |
| LValueBaseInfo *BaseInfo, |
| TBAAAccessInfo *TBAAInfo) { |
| assert(E->getType()->isArrayType() && |
| "Array to pointer decay must have array source type!"); |
| |
| // Expressions of array type can't be bitfields or vector elements. |
| LValue LV = EmitLValue(E); |
| Address Addr = LV.getAddress(); |
| |
| // If the array type was an incomplete type, we need to make sure |
| // the decay ends up being the right type. |
| llvm::Type *NewTy = ConvertType(E->getType()); |
| Addr = Builder.CreateElementBitCast(Addr, NewTy); |
| |
| // Note that VLA pointers are always decayed, so we don't need to do |
| // anything here. |
| if (!E->getType()->isVariableArrayType()) { |
| assert(isa<llvm::ArrayType>(Addr.getElementType()) && |
| "Expected pointer to array"); |
| Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); |
| } |
| |
| // The result of this decay conversion points to an array element within the |
| // base lvalue. However, since TBAA currently does not support representing |
| // accesses to elements of member arrays, we conservatively represent accesses |
| // to the pointee object as if it had no any base lvalue specified. |
| // TODO: Support TBAA for member arrays. |
| QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); |
| if (BaseInfo) *BaseInfo = LV.getBaseInfo(); |
| if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); |
| |
| return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); |
| } |
| |
| /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an |
| /// array to pointer, return the array subexpression. |
| static const Expr *isSimpleArrayDecayOperand(const Expr *E) { |
| // If this isn't just an array->pointer decay, bail out. |
| const auto *CE = dyn_cast<CastExpr>(E); |
| if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) |
| return nullptr; |
| |
| // If this is a decay from variable width array, bail out. |
| const Expr *SubExpr = CE->getSubExpr(); |
| if (SubExpr->getType()->isVariableArrayType()) |
| return nullptr; |
| |
| return SubExpr; |
| } |
| |
| static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, |
| llvm::Value *ptr, |
| ArrayRef<llvm::Value*> indices, |
| bool inbounds, |
| bool signedIndices, |
| SourceLocation loc, |
| const llvm::Twine &name = "arrayidx") { |
| if (inbounds) { |
| return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, |
| CodeGenFunction::NotSubtraction, loc, |
| name); |
| } else { |
| return CGF.Builder.CreateGEP(ptr, indices, name); |
| } |
| } |
| |
| static CharUnits getArrayElementAlign(CharUnits arrayAlign, |
| llvm::Value *idx, |
| CharUnits eltSize) { |
| // If we have a constant index, we can use the exact offset of the |
| // element we're accessing. |
| if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { |
| CharUnits offset = constantIdx->getZExtValue() * eltSize; |
| return arrayAlign.alignmentAtOffset(offset); |
| |
| // Otherwise, use the worst-case alignment for any element. |
| } else { |
| return arrayAlign.alignmentOfArrayElement(eltSize); |
| } |
| } |
| |
| static QualType getFixedSizeElementType(const ASTContext &ctx, |
| const VariableArrayType *vla) { |
| QualType eltType; |
| do { |
| eltType = vla->getElementType(); |
| } while ((vla = ctx.getAsVariableArrayType(eltType))); |
| return eltType; |
| } |
| |
| static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, |
| ArrayRef<llvm::Value *> indices, |
| QualType eltType, bool inbounds, |
| bool signedIndices, SourceLocation loc, |
| const llvm::Twine &name = "arrayidx") { |
| // All the indices except that last must be zero. |
| #ifndef NDEBUG |
| for (auto idx : indices.drop_back()) |
| assert(isa<llvm::ConstantInt>(idx) && |
| cast<llvm::ConstantInt>(idx)->isZero()); |
| #endif |
| |
| // Determine the element size of the statically-sized base. This is |
| // the thing that the indices are expressed in terms of. |
| if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { |
| eltType = getFixedSizeElementType(CGF.getContext(), vla); |
| } |
| |
| // We can use that to compute the best alignment of the element. |
| CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); |
| CharUnits eltAlign = |
| getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); |
| |
| llvm::Value *eltPtr = emitArraySubscriptGEP( |
| CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); |
| return Address(eltPtr, eltAlign); |
| } |
| |
| LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, |
| bool Accessed) { |
| // The index must always be an integer, which is not an aggregate. Emit it |
| // in lexical order (this complexity is, sadly, required by C++17). |
| llvm::Value *IdxPre = |
| (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; |
| bool SignedIndices = false; |
| auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { |
| auto *Idx = IdxPre; |
| if (E->getLHS() != E->getIdx()) { |
| assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); |
| Idx = EmitScalarExpr(E->getIdx()); |
| } |
| |
| QualType IdxTy = E->getIdx()->getType(); |
| bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); |
| SignedIndices |= IdxSigned; |
| |
| if (SanOpts.has(SanitizerKind::ArrayBounds)) |
| EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); |
| |
| // Extend or truncate the index type to 32 or 64-bits. |
| if (Promote && Idx->getType() != IntPtrTy) |
| Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); |
| |
| return Idx; |
| }; |
| IdxPre = nullptr; |
| |
| // If the base is a vector type, then we are forming a vector element lvalue |
| // with this subscript. |
| if (E->getBase()->getType()->isVectorType() && |
| !isa<ExtVectorElementExpr>(E->getBase())) { |
| // Emit the vector as an lvalue to get its address. |
| LValue LHS = EmitLValue(E->getBase()); |
| auto *Idx = EmitIdxAfterBase(/*Promote*/false); |
| assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); |
| return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(), |
| LHS.getBaseInfo(), TBAAAccessInfo()); |
| } |
| |
| // All the other cases basically behave like simple offsetting. |
| |
| // Handle the extvector case we ignored above. |
| if (isa<ExtVectorElementExpr>(E->getBase())) { |
| LValue LV = EmitLValue(E->getBase()); |
| auto *Idx = EmitIdxAfterBase(/*Promote*/true); |
| Address Addr = EmitExtVectorElementLValue(LV); |
| |
| QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); |
| Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, |
| SignedIndices, E->getExprLoc()); |
| return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), |
| CGM.getTBAAInfoForSubobject(LV, EltType)); |
| } |
| |
| LValueBaseInfo EltBaseInfo; |
| TBAAAccessInfo EltTBAAInfo; |
| Address Addr = Address::invalid(); |
| if (const VariableArrayType *vla = |
| getContext().getAsVariableArrayType(E->getType())) { |
| // The base must be a pointer, which is not an aggregate. Emit |
| // it. It needs to be emitted first in case it's what captures |
| // the VLA bounds. |
| Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); |
| auto *Idx = EmitIdxAfterBase(/*Promote*/true); |
| |
| // The element count here is the total number of non-VLA elements. |
| llvm::Value *numElements = getVLASize(vla).NumElts; |
| |
| // Effectively, the multiply by the VLA size is part of the GEP. |
| // GEP indexes are signed, and scaling an index isn't permitted to |
| // signed-overflow, so we use the same semantics for our explicit |
| // multiply. We suppress this if overflow is not undefined behavior. |
| if (getLangOpts().isSignedOverflowDefined()) { |
| Idx = Builder.CreateMul(Idx, numElements); |
| } else { |
| Idx = Builder.CreateNSWMul(Idx, numElements); |
| } |
| |
| Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), |
| !getLangOpts().isSignedOverflowDefined(), |
| SignedIndices, E->getExprLoc()); |
| |
| } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ |
| // Indexing over an interface, as in "NSString *P; P[4];" |
| |
| // Emit the base pointer. |
| Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); |
| auto *Idx = EmitIdxAfterBase(/*Promote*/true); |
| |
| CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); |
| llvm::Value *InterfaceSizeVal = |
| llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); |
| |
| llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); |
| |
| // We don't necessarily build correct LLVM struct types for ObjC |
| // interfaces, so we can't rely on GEP to do this scaling |
| // correctly, so we need to cast to i8*. FIXME: is this actually |
| // true? A lot of other things in the fragile ABI would break... |
| llvm::Type *OrigBaseTy = Addr.getType(); |
| Addr = Builder.CreateElementBitCast(Addr, Int8Ty); |
| |
| // Do the GEP. |
| CharUnits EltAlign = |
| getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); |
| llvm::Value *EltPtr = |
| emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, |
| SignedIndices, E->getExprLoc()); |
| Addr = Address(EltPtr, EltAlign); |
| |
| // Cast back. |
| Addr = Builder.CreateBitCast(Addr, OrigBaseTy); |
| } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { |
| // If this is A[i] where A is an array, the frontend will have decayed the |
| // base to be a ArrayToPointerDecay implicit cast. While correct, it is |
| // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a |
| // "gep x, i" here. Emit one "gep A, 0, i". |
| assert(Array->getType()->isArrayType() && |
| "Array to pointer decay must have array source type!"); |
| LValue ArrayLV; |
| // For simple multidimensional array indexing, set the 'accessed' flag for |
| // better bounds-checking of the base expression. |
| if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) |
| ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); |
| else |
| ArrayLV = EmitLValue(Array); |
| auto *Idx = EmitIdxAfterBase(/*Promote*/true); |
| |
| // Propagate the alignment from the array itself to the result. |
| Addr = emitArraySubscriptGEP( |
| *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, |
| E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, |
| E->getExprLoc()); |
| EltBaseInfo = ArrayLV.getBaseInfo(); |
| EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); |
| } else { |
| // The base must be a pointer; emit it with an estimate of its alignment. |
| Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); |
| auto *Idx = EmitIdxAfterBase(/*Promote*/true); |
| Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), |
| !getLangOpts().isSignedOverflowDefined(), |
| SignedIndices, E->getExprLoc()); |
| } |
| |
| LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); |
| |
| if (getLangOpts().ObjC1 && |
| getLangOpts().getGC() != LangOptions::NonGC) { |
| LV.setNonGC(!E->isOBJCGCCandidate(getContext())); |
| setObjCGCLValueClass(getContext(), E, LV); |
| } |
| return LV; |
| } |
| |
| static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, |
| LValueBaseInfo &BaseInfo, |
| TBAAAccessInfo &TBAAInfo, |
| QualType BaseTy, QualType ElTy, |
| bool IsLowerBound) { |
| LValue BaseLVal; |
| if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { |
| BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); |
| if (BaseTy->isArrayType()) { |
| Address Addr = BaseLVal.getAddress(); |
| BaseInfo = BaseLVal.getBaseInfo(); |
| |
| // If the array type was an incomplete type, we need to make sure |
| // the decay ends up being the right type. |
| llvm::Type *NewTy = CGF.ConvertType(BaseTy); |
| Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); |
| |
| // Note that VLA pointers are always decayed, so we don't need to do |
| // anything here. |
| if (!BaseTy->isVariableArrayType()) { |
| assert(isa<llvm::ArrayType>(Addr.getElementType()) && |
| "Expected pointer to array"); |
| Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), |
| "arraydecay"); |
| } |
| |
| return CGF.Builder.CreateElementBitCast(Addr, |
| CGF.ConvertTypeForMem(ElTy)); |
| } |
| LValueBaseInfo TypeBaseInfo; |
| TBAAAccessInfo TypeTBAAInfo; |
| CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, |
| &TypeTBAAInfo); |
| BaseInfo.mergeForCast(TypeBaseInfo); |
| TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); |
| return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); |
| } |
| return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); |
| } |
| |
| LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, |
| bool IsLowerBound) { |
| QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); |
| QualType ResultExprTy; |
| if (auto *AT = getContext().getAsArrayType(BaseTy)) |
| ResultExprTy = AT->getElementType(); |
| else |
| ResultExprTy = BaseTy->getPointeeType(); |
| llvm::Value *Idx = nullptr; |
| if (IsLowerBound || E->getColonLoc().isInvalid()) { |
| // Requesting lower bound or upper bound, but without provided length and |
| // without ':' symbol for the default length -> length = 1. |
| // Idx = LowerBound ?: 0; |
| if (auto *LowerBound = E->getLowerBound()) { |
| Idx = Builder.CreateIntCast( |
| EmitScalarExpr(LowerBound), IntPtrTy, |
| LowerBound->getType()->hasSignedIntegerRepresentation()); |
| } else |
| Idx = llvm::ConstantInt::getNullValue(IntPtrTy); |
| } else { |
| // Try to emit length or lower bound as constant. If this is possible, 1 |
| // is subtracted from constant length or lower bound. Otherwise, emit LLVM |
| // IR (LB + Len) - 1. |
| auto &C = CGM.getContext(); |
| auto *Length = E->getLength(); |
| llvm::APSInt ConstLength; |
| if (Length) { |
| // Idx = LowerBound + Length - 1; |
| if (Length->isIntegerConstantExpr(ConstLength, C)) { |
| ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); |
| Length = nullptr; |
| } |
| auto *LowerBound = E->getLowerBound(); |
| llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); |
| if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { |
| ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); |
| LowerBound = nullptr; |
| } |
| if (!Length) |
| --ConstLength; |
| else if (!LowerBound) |
| --ConstLowerBound; |
| |
| if (Length || LowerBound) { |
| auto *LowerBoundVal = |
| LowerBound |
| ? Builder.CreateIntCast( |
| EmitScalarExpr(LowerBound), IntPtrTy, |
| LowerBound->getType()->hasSignedIntegerRepresentation()) |
| : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); |
| auto *LengthVal = |
| Length |
| ? Builder.CreateIntCast( |
| EmitScalarExpr(Length), IntPtrTy, |
| Length->getType()->hasSignedIntegerRepresentation()) |
| : llvm::ConstantInt::get(IntPtrTy, ConstLength); |
| Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", |
| /*HasNUW=*/false, |
| !getLangOpts().isSignedOverflowDefined()); |
| if (Length && LowerBound) { |
| Idx = Builder.CreateSub( |
| Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", |
| /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); |
| } |
| } else |
| Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); |
| } else { |
| // Idx = ArraySize - 1; |
| QualType ArrayTy = BaseTy->isPointerType() |
| ? E->getBase()->IgnoreParenImpCasts()->getType() |
| : BaseTy; |
| if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { |
| Length = VAT->getSizeExpr(); |
| if (Length->isIntegerConstantExpr(ConstLength, C)) |
| Length = nullptr; |
| } else { |
| auto *CAT = C.getAsConstantArrayType(ArrayTy); |
| ConstLength = CAT->getSize(); |
| } |
| if (Length) { |
| auto *LengthVal = Builder.CreateIntCast( |
| EmitScalarExpr(Length), IntPtrTy, |
| Length->getType()->hasSignedIntegerRepresentation()); |
| Idx = Builder.CreateSub( |
| LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", |
| /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); |
| } else { |
| ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); |
| --ConstLength; |
| Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); |
| } |
| } |
| } |
| assert(Idx); |
| |
| Address EltPtr = Address::invalid(); |
| LValueBaseInfo BaseInfo; |
| TBAAAccessInfo TBAAInfo; |
| if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { |
| // The base must be a pointer, which is not an aggregate. Emit |
| // it. It needs to be emitted first in case it's what captures |
| // the VLA bounds. |
| Address Base = |
| emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, |
| BaseTy, VLA->getElementType(), IsLowerBound); |
| // The element count here is the total number of non-VLA elements. |
| llvm::Value *NumElements = getVLASize(VLA).NumElts; |
| |
| // Effectively, the multiply by the VLA size is part of the GEP. |
| // GEP indexes are signed, and scaling an index isn't permitted to |
| // signed-overflow, so we use the same semantics for our explicit |
| // multiply. We suppress this if overflow is not undefined behavior. |
| if (getLangOpts().isSignedOverflowDefined()) |
| Idx = Builder.CreateMul(Idx, NumElements); |
| else |
| Idx = Builder.CreateNSWMul(Idx, NumElements); |
| EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), |
| !getLangOpts().isSignedOverflowDefined(), |
| /*SignedIndices=*/false, E->getExprLoc()); |
| } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { |
| // If this is A[i] where A is an array, the frontend will have decayed the |
| // base to be a ArrayToPointerDecay implicit cast. While correct, it is |
| // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a |
| // "gep x, i" here. Emit one "gep A, 0, i". |
| assert(Array->getType()->isArrayType() && |
| "Array to pointer decay must have array source type!"); |
| LValue ArrayLV; |
| // For simple multidimensional array indexing, set the 'accessed' flag for |
| // better bounds-checking of the base expression. |
| if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) |
| ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); |
| else |
| ArrayLV = EmitLValue(Array); |
| |
| // Propagate the alignment from the array itself to the result. |
| EltPtr = emitArraySubscriptGEP( |
| *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, |
| ResultExprTy, !getLangOpts().isSignedOverflowDefined(), |
| /*SignedIndices=*/false, E->getExprLoc()); |
| BaseInfo = ArrayLV.getBaseInfo(); |
| TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); |
| } else { |
| Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, |
| TBAAInfo, BaseTy, ResultExprTy, |
| IsLowerBound); |
| EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, |
| !getLangOpts().isSignedOverflowDefined(), |
| /*SignedIndices=*/false, E->getExprLoc()); |
| } |
| |
| return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); |
| } |
| |
| LValue CodeGenFunction:: |
| EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { |
| // Emit the base vector as an l-value. |
| LValue Base; |
| |
| // ExtVectorElementExpr's base can either be a vector or pointer to vector. |
| if (E->isArrow()) { |
| // If it is a pointer to a vector, emit the address and form an lvalue with |
| // it. |
| LValueBaseInfo BaseInfo; |
| TBAAAccessInfo TBAAInfo; |
| Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); |
| const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); |
| Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); |
| Base.getQuals().removeObjCGCAttr(); |
| } else if (E->getBase()->isGLValue()) { |
| // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), |
| // emit the base as an lvalue. |
| assert(E->getBase()->getType()->isVectorType()); |
| Base = EmitLValue(E->getBase()); |
| } else { |
| // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. |
| assert(E->getBase()->getType()->isVectorType() && |
| "Result must be a vector"); |
| llvm::Value *Vec = EmitScalarExpr(E->getBase()); |
| |
| // Store the vector to memory (because LValue wants an address). |
| Address VecMem = CreateMemTemp(E->getBase()->getType()); |
| Builder.CreateStore(Vec, VecMem); |
| Base = MakeAddrLValue(VecMem, E->getBase()->getType(), |
| AlignmentSource::Decl); |
| } |
| |
| QualType type = |
| E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); |
| |
| // Encode the element access list into a vector of unsigned indices. |
| SmallVector<uint32_t, 4> Indices; |
| E->getEncodedElementAccess(Indices); |
| |
| if (Base.isSimple()) { |
| llvm::Constant *CV = |
| llvm::ConstantDataVector::get(getLLVMContext(), Indices); |
| return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, |
| Base.getBaseInfo(), TBAAAccessInfo()); |
| } |
| assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); |
| |
| llvm::Constant *BaseElts = Base.getExtVectorElts(); |
| SmallVector<llvm::Constant *, 4> CElts; |
| |
| for (unsigned i = 0, e = Indices.size(); i != e; ++i) |
| CElts.push_back(BaseElts->getAggregateElement(Indices[i])); |
| llvm::Constant *CV = llvm::ConstantVector::get(CElts); |
| return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, |
| Base.getBaseInfo(), TBAAAccessInfo()); |
| } |
| |
| LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { |
| if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { |
| EmitIgnoredExpr(E->getBase()); |
| return EmitDeclRefLValue(DRE); |
| } |
| |
| Expr *BaseExpr = E->getBase(); |
| // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. |
| LValue BaseLV; |
| if (E->isArrow()) { |
| LValueBaseInfo BaseInfo; |
| TBAAAccessInfo TBAAInfo; |
| Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); |
| QualType PtrTy = BaseExpr->getType()->getPointeeType(); |
| SanitizerSet SkippedChecks; |
| bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); |
| if (IsBaseCXXThis) |
| SkippedChecks.set(SanitizerKind::Alignment, true); |
| if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) |
| SkippedChecks.set(SanitizerKind::Null, true); |
| EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, |
| /*Alignment=*/CharUnits::Zero(), SkippedChecks); |
| BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); |
| } else |
| BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); |
| |
| NamedDecl *ND = E->getMemberDecl(); |
| if (auto *Field = dyn_cast<FieldDecl>(ND)) { |
| LValue LV = EmitLValueForField(BaseLV, Field); |
| setObjCGCLValueClass(getContext(), E, LV); |
| return LV; |
| } |
| |
| if (const auto *FD = dyn_cast<FunctionDecl>(ND)) |
| return EmitFunctionDeclLValue(*this, E, FD); |
| |
| llvm_unreachable("Unhandled member declaration!"); |
| } |
| |
| /// Given that we are currently emitting a lambda, emit an l-value for |
| /// one of its members. |
| LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { |
| assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); |
| assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); |
| QualType LambdaTagType = |
| getContext().getTagDeclType(Field->getParent()); |
| LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); |
| return EmitLValueForField(LambdaLV, Field); |
| } |
| |
| /// Drill down to the storage of a field without walking into |
| /// reference types. |
| /// |
| /// The resulting address doesn't necessarily have the right type. |
| static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, |
| const FieldDecl *field) { |
| const RecordDecl *rec = field->getParent(); |
| |
| unsigned idx = |
| CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); |
| |
| CharUnits offset; |
| // Adjust the alignment down to the given offset. |
| // As a special case, if the LLVM field index is 0, we know that this |
| // is zero. |
| assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) |
| .getFieldOffset(field->getFieldIndex()) == 0) && |
| "LLVM field at index zero had non-zero offset?"); |
| if (idx != 0) { |
| auto &recLayout = CGF.getContext().getASTRecordLayout(rec); |
| auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); |
| offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); |
| } |
| |
| return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); |
| } |
| |
| static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { |
| const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); |
| if (!RD) |
| return false; |
| |
| if (RD->isDynamicClass()) |
| return true; |
| |
| for (const auto &Base : RD->bases()) |
| if (hasAnyVptr(Base.getType(), Context)) |
| return true; |
| |
| for (const FieldDecl *Field : RD->fields()) |
| if (hasAnyVptr(Field->getType(), Context)) |
| return true; |
| |
| return false; |
| } |
| |
| LValue CodeGenFunction::EmitLValueForField(LValue base, |
| const FieldDecl *field) { |
| LValueBaseInfo BaseInfo = base.getBaseInfo(); |
| |
| if (field->isBitField()) { |
| const CGRecordLayout &RL = |
| CGM.getTypes().getCGRecordLayout(field->getParent()); |
| const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); |
| Address Addr = base.getAddress(); |
| unsigned Idx = RL.getLLVMFieldNo(field); |
| if (Idx != 0) |
| // For structs, we GEP to the field that the record layout suggests. |
| Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, |
| field->getName()); |
| // Get the access type. |
| llvm::Type *FieldIntTy = |
| llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); |
| if (Addr.getElementType() != FieldIntTy) |
| Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); |
| |
| QualType fieldType = |
| field->getType().withCVRQualifiers(base.getVRQualifiers()); |
| // TODO: Support TBAA for bit fields. |
| LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); |
| return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, |
| TBAAAccessInfo()); |
| } |
| |
| // Fields of may-alias structures are may-alias themselves. |
| // FIXME: this should get propagated down through anonymous structs |
| // and unions. |
| QualType FieldType = field->getType(); |
| const RecordDecl *rec = field->getParent(); |
| AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); |
| LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); |
| TBAAAccessInfo FieldTBAAInfo; |
| if (base.getTBAAInfo().isMayAlias() || |
| rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { |
| FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); |
| } else if (rec->isUnion()) { |
| // TODO: Support TBAA for unions. |
| FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); |
| } else { |
| // If no base type been assigned for the base access, then try to generate |
| // one for this base lvalue. |
| FieldTBAAInfo = base.getTBAAInfo(); |
| if (!FieldTBAAInfo.BaseType) { |
| FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); |
| assert(!FieldTBAAInfo.Offset && |
| "Nonzero offset for an access with no base type!"); |
| } |
| |
| // Adjust offset to be relative to the base type. |
| const ASTRecordLayout &Layout = |
| getContext().getASTRecordLayout(field->getParent()); |
| unsigned CharWidth = getContext().getCharWidth(); |
| if (FieldTBAAInfo.BaseType) |
| FieldTBAAInfo.Offset += |
| Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; |
| |
| // Update the final access type and size. |
| FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); |
| FieldTBAAInfo.Size = |
| getContext().getTypeSizeInChars(FieldType).getQuantity(); |
| } |
| |
| Address addr = base.getAddress(); |
| if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { |
| if (CGM.getCodeGenOpts().StrictVTablePointers && |
| ClassDef->isDynamicClass()) { |
| // Getting to any field of dynamic object requires stripping dynamic |
| // information provided by invariant.group. This is because accessing |
| // fields may leak the real address of dynamic object, which could result |
| // in miscompilation when leaked pointer would be compared. |
| auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); |
| addr = Address(stripped, addr.getAlignment()); |
| } |
| } |
| |
| unsigned RecordCVR = base.getVRQualifiers(); |
| if (rec->isUnion()) { |
| // For unions, there is no pointer adjustment. |
| assert(!FieldType->isReferenceType() && "union has reference member"); |
| if (CGM.getCodeGenOpts().StrictVTablePointers && |
| hasAnyVptr(FieldType, getContext())) |
| // Because unions can easily skip invariant.barriers, we need to add |
| // a barrier every time CXXRecord field with vptr is referenced. |
| addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), |
| addr.getAlignment()); |
| } else { |
| // For structs, we GEP to the field that the record layout suggests. |
| addr = emitAddrOfFieldStorage(*this, addr, field); |
| |
| // If this is a reference field, load the reference right now. |
| if (FieldType->isReferenceType()) { |
| LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo, |
| FieldTBAAInfo); |
| if (RecordCVR & Qualifiers::Volatile) |
| RefLVal.getQuals().setVolatile(true); |
| addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); |
| |
| // Qualifiers on the struct don't apply to the referencee. |
| RecordCVR = 0; |
| FieldType = FieldType->getPointeeType(); |
| } |
| } |
| |
| // Make sure that the address is pointing to the right type. This is critical |
| // for both unions and structs. A union needs a bitcast, a struct element |
| // will need a bitcast if the LLVM type laid out doesn't match the desired |
| // type. |
| addr = Builder.CreateElementBitCast( |
| addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); |
| |
| if (field->hasAttr<AnnotateAttr>()) |
| addr = EmitFieldAnnotations(field, addr); |
| |
| LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); |
| LV.getQuals().addCVRQualifiers(RecordCVR); |
| |
| // __weak attribute on a field is ignored. |
| if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) |
| LV.getQuals().removeObjCGCAttr(); |
| |
| return LV; |
| } |
| |
| LValue |
| CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, |
| const FieldDecl *Field) { |
| QualType FieldType = Field->getType(); |
| |
| if (!FieldType->isReferenceType()) |
| return EmitLValueForField(Base, Field); |
| |
| Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); |
| |
| // Make sure that the address is pointing to the right type. |
| llvm::Type *llvmType = ConvertTypeForMem(FieldType); |
| V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); |
| |
| // TODO: Generate TBAA information that describes this access as a structure |
| // member access and not just an access to an object of the field's type. This |
| // should be similar to what we do in EmitLValueForField(). |
| LValueBaseInfo BaseInfo = Base.getBaseInfo(); |
| AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); |
| LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); |
| return MakeAddrLValue(V, FieldType, FieldBaseInfo, |
| CGM.getTBAAInfoForSubobject(Base, FieldType)); |
| } |
| |
| LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ |
| if (E->isFileScope()) { |
| ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); |
| return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); |
| } |
| if (E->getType()->isVariablyModifiedType()) |
| // make sure to emit the VLA size. |
| EmitVariablyModifiedType(E->getType()); |
| |
| Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); |
| const Expr *InitExpr = E->getInitializer(); |
| LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); |
| |
| EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), |
| /*Init*/ true); |
| |
| return Result; |
| } |
| |
| LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { |
| if (!E->isGLValue()) |
| // Initializing an aggregate temporary in C++11: T{...}. |
| return EmitAggExprToLValue(E); |
| |
| // An lvalue initializer list must be initializing a reference. |
| assert(E->isTransparent() && "non-transparent glvalue init list"); |
| return EmitLValue(E->getInit(0)); |
| } |
| |
| /// Emit the operand of a glvalue conditional operator. This is either a glvalue |
| /// or a (possibly-parenthesized) throw-expression. If this is a throw, no |
| /// LValue is returned and the current block has been terminated. |
| static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, |
| const Expr *Operand) { |
| if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { |
| CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); |
| return None; |
| } |
| |
| return CGF.EmitLValue(Operand); |
| } |
| |
| LValue CodeGenFunction:: |
| EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { |
| if (!expr->isGLValue()) { |
| // ?: here should be an aggregate. |
| assert(hasAggregateEvaluationKind(expr->getType()) && |
| "Unexpected conditional operator!"); |
| return EmitAggExprToLValue(expr); |
| } |
| |
| OpaqueValueMapping binding(*this, expr); |
| |
| const Expr *condExpr = expr->getCond(); |
| bool CondExprBool; |
| if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { |
| const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); |
| if (!CondExprBool) std::swap(live, dead); |
| |
| if (!ContainsLabel(dead)) { |
| // If the true case is live, we need to track its region. |
| if (CondExprBool) |
| incrementProfileCounter(expr); |
| return EmitLValue(live); |
| } |
| } |
| |
| llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); |
| llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); |
| llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); |
| |
| ConditionalEvaluation eval(*this); |
| EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); |
| |
| // Any temporaries created here are conditional. |
| EmitBlock(lhsBlock); |
| incrementProfileCounter(expr); |
| eval.begin(*this); |
| Optional<LValue> lhs = |
| EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); |
| eval.end(*this); |
| |
| if (lhs && !lhs->isSimple()) |
| return EmitUnsupportedLValue(expr, "conditional operator"); |
| |
| lhsBlock = Builder.GetInsertBlock(); |
| if (lhs) |
| Builder.CreateBr(contBlock); |
| |
| // Any temporaries created here are conditional. |
| EmitBlock(rhsBlock); |
| eval.begin(*this); |
| Optional<LValue> rhs = |
| EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); |
| eval.end(*this); |
| if (rhs && !rhs->isSimple()) |
| return EmitUnsupportedLValue(expr, "conditional operator"); |
| rhsBlock = Builder.GetInsertBlock(); |
| |
| EmitBlock(contBlock); |
| |
| if (lhs && rhs) { |
| llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), |
| 2, "cond-lvalue"); |
| phi->addIncoming(lhs->getPointer(), lhsBlock); |
| phi->addIncoming(rhs->getPointer(), rhsBlock); |
| Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); |
| AlignmentSource alignSource = |
| std::max(lhs->getBaseInfo().getAlignmentSource(), |
| rhs->getBaseInfo().getAlignmentSource()); |
| TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( |
| lhs->getTBAAInfo(), rhs->getTBAAInfo()); |
| return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), |
| TBAAInfo); |
| } else { |
| assert((lhs || rhs) && |
| "both operands of glvalue conditional are throw-expressions?"); |
| return lhs ? *lhs : *rhs; |
| } |
| } |
| |
| /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference |
| /// type. If the cast is to a reference, we can have the usual lvalue result, |
| /// otherwise if a cast is needed by the code generator in an lvalue context, |
| /// then it must mean that we need the address of an aggregate in order to |
| /// access one of its members. This can happen for all the reasons that casts |
| /// are permitted with aggregate result, including noop aggregate casts, and |
| /// cast from scalar to union. |
| LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { |
| switch (E->getCastKind()) { |
| case CK_ToVoid: |
| case CK_BitCast: |
| case CK_ArrayToPointerDecay: |
| case CK_FunctionToPointerDecay: |
| case CK_NullToMemberPointer: |
| case CK_NullToPointer: |
| case CK_IntegralToPointer: |
| case CK_PointerToIntegral: |
| case CK_PointerToBoolean: |
| case CK_VectorSplat: |
| case CK_IntegralCast: |
| case CK_BooleanToSignedIntegral: |
| case CK_IntegralToBoolean: |
| case CK_IntegralToFloating: |
| case CK_FloatingToIntegral: |
| case CK_FloatingToBoolean: |
| case CK_FloatingCast: |
| case CK_FloatingRealToComplex: |
| case CK_FloatingComplexToReal: |
| case CK_FloatingComplexToBoolean: |
| case CK_FloatingComplexCast: |
| case CK_FloatingComplexToIntegralComplex: |
| case CK_IntegralRealToComplex: |
| case CK_IntegralComplexToReal: |
| case CK_IntegralComplexToBoolean: |
| case CK_IntegralComplexCast: |
| case CK_IntegralComplexToFloatingComplex: |
| case CK_DerivedToBaseMemberPointer: |
| case CK_BaseToDerivedMemberPointer: |
| case CK_MemberPointerToBoolean: |
| case CK_ReinterpretMemberPointer: |
| case CK_AnyPointerToBlockPointerCast: |
| case CK_ARCProduceObject: |
| case CK_ARCConsumeObject: |
| case CK_ARCReclaimReturnedObject: |
| case CK_ARCExtendBlockObject: |
| case CK_CopyAndAutoreleaseBlockObject: |
| case CK_AddressSpaceConversion: |
| case CK_IntToOCLSampler: |
| return EmitUnsupportedLValue(E, "unexpected cast lvalue"); |
| |
| case CK_Dependent: |
| llvm_unreachable("dependent cast kind in IR gen!"); |
| |
| case CK_BuiltinFnToFnPtr: |
| llvm_unreachable("builtin functions are handled elsewhere"); |
| |
| // These are never l-values; just use the aggregate emission code. |
| case CK_NonAtomicToAtomic: |
| case CK_AtomicToNonAtomic: |
| return EmitAggExprToLValue(E); |
| |
| case CK_Dynamic: { |
| LValue LV = EmitLValue(E->getSubExpr()); |
| Address V = LV.getAddress(); |
| const auto *DCE = cast<CXXDynamicCastExpr>(E); |
| return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); |
| } |
| |
| case CK_ConstructorConversion: |
| case CK_UserDefinedConversion: |
| case CK_CPointerToObjCPointerCast: |
| case CK_BlockPointerToObjCPointerCast: |
| case CK_NoOp: |
| case CK_LValueToRValue: |
| return EmitLValue(E->getSubExpr()); |
| |
| case CK_UncheckedDerivedToBase: |
| case CK_DerivedToBase: { |
| const RecordType *DerivedClassTy = |
| E->getSubExpr()->getType()->getAs<RecordType>(); |
| auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); |
| |
| LValue LV = EmitLValue(E->getSubExpr()); |
| Address This = LV.getAddress(); |
| |
| // Perform the derived-to-base conversion |
| Address Base = GetAddressOfBaseClass( |
| This, DerivedClassDecl, E->path_begin(), E->path_end(), |
| /*NullCheckValue=*/false, E->getExprLoc()); |
| |
| // TODO: Support accesses to members of base classes in TBAA. For now, we |
| // conservatively pretend that the complete object is of the base class |
| // type. |
| return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), |
| CGM.getTBAAInfoForSubobject(LV, E->getType())); |
| } |
| case CK_ToUnion: |
| return EmitAggExprToLValue(E); |
| case CK_BaseToDerived: { |
| const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); |
| auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); |
| |
| LValue LV = EmitLValue(E->getSubExpr()); |
| |
| // Perform the base-to-derived conversion |
| Address Derived = |
| GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, |
| E->path_begin(), E->path_end(), |
| /*NullCheckValue=*/false); |
| |
| // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is |
| // performed and the object is not of the derived type. |
| if (sanitizePerformTypeCheck()) |
| EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), |
| Derived.getPointer(), E->getType()); |
| |
| if (SanOpts.has(SanitizerKind::CFIDerivedCast)) |
| EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), |
| /*MayBeNull=*/false, |
| CFITCK_DerivedCast, E->getLocStart()); |
| |
| return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), |
| CGM.getTBAAInfoForSubobject(LV, E->getType())); |
| } |
| case CK_LValueBitCast: { |
| // This must be a reinterpret_cast (or c-style equivalent). |
| const auto *CE = cast<ExplicitCastExpr>(E); |
| |
| CGM.EmitExplicitCastExprType(CE, this); |
| LValue LV = EmitLValue(E->getSubExpr()); |
| Address V = Builder.CreateBitCast(LV.getAddress(), |
| ConvertType(CE->getTypeAsWritten())); |
| |
| if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) |
| EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), |
| /*MayBeNull=*/false, |
| CFITCK_UnrelatedCast, E->getLocStart()); |
| |
| return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), |
| CGM.getTBAAInfoForSubobject(LV, E->getType())); |
| } |
| case CK_ObjCObjectLValueCast: { |
| LValue LV = EmitLValue(E->getSubExpr()); |
| Address V = Builder.CreateElementBitCast(LV.getAddress(), |
| ConvertType(E->getType())); |
| return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), |
| CGM.getTBAAInfoForSubobject(LV, E->getType())); |
| } |
| case CK_ZeroToOCLQueue: |
| llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); |
| case CK_ZeroToOCLEvent: |
| llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); |
| } |
| |
| llvm_unreachable("Unhandled lvalue cast kind?"); |
| } |
| |
| LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { |
| assert(OpaqueValueMappingData::shouldBindAsLValue(e)); |
| return getOrCreateOpaqueLValueMapping(e); |
| } |
| |
| LValue |
| CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { |
| assert(OpaqueValueMapping::shouldBindAsLValue(e)); |
| |
| llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator |
| it = OpaqueLValues.find(e); |
| |
| if (it != OpaqueLValues.end()) |
| return it->second; |
| |
| assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); |
| return EmitLValue(e->getSourceExpr()); |
| } |
| |
| RValue |
| CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { |
| assert(!OpaqueValueMapping::shouldBindAsLValue(e)); |
| |
| llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator |
| it = OpaqueRValues.find(e); |
| |
| if (it != OpaqueRValues.end()) |
| return it->second; |
| |
| assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); |
| return EmitAnyExpr(e->getSourceExpr()); |
| } |
| |
| RValue CodeGenFunction::EmitRValueForField(LValue LV, |
| const FieldDecl *FD, |
| SourceLocation Loc) { |
| QualType FT = FD->getType(); |
| LValue FieldLV = EmitLValueForField(LV, FD); |
| switch (getEvaluationKind(FT)) { |
| case TEK_Complex: |
| return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); |
| case TEK_Aggregate: |
| return FieldLV.asAggregateRValue(); |
| case TEK_Scalar: |
| // This routine is used to load fields one-by-one to perform a copy, so |
| // don't load reference fields. |
| if (FD->getType()->isReferenceType()) |
| return RValue::get(FieldLV.getPointer()); |
| return EmitLoadOfLValue(FieldLV, Loc); |
| } |
| llvm_unreachable("bad evaluation kind"); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Expression Emission |
| //===--------------------------------------------------------------------===// |
| |
| RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, |
| ReturnValueSlot ReturnValue) { |
| // Builtins never have block type. |
| if (E->getCallee()->getType()->isBlockPointerType()) |
| return EmitBlockCallExpr(E, ReturnValue); |
| |
| if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) |
| return EmitCXXMemberCallExpr(CE, ReturnValue); |
| |
| if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) |
| return EmitCUDAKernelCallExpr(CE, ReturnValue); |
| |
| if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) |
| if (const CXXMethodDecl *MD = |
| dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) |
| return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); |
| |
| CGCallee callee = EmitCallee(E->getCallee()); |
| |
| if (callee.isBuiltin()) { |
| return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), |
| E, ReturnValue); |
| } |
| |
| if (callee.isPseudoDestructor()) { |
| return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); |
| } |
| |
| return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); |
| } |
| |
| /// Emit a CallExpr without considering whether it might be a subclass. |
| RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, |
| ReturnValueSlot ReturnValue) { |
| CGCallee Callee = EmitCallee(E->getCallee()); |
| return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); |
| } |
| |
| static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { |
| if (auto builtinID = FD->getBuiltinID()) { |
| return CGCallee::forBuiltin(builtinID, FD); |
| } |
| |
| llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); |
| return CGCallee::forDirect(calleePtr, FD); |
| } |
| |
| CGCallee CodeGenFunction::EmitCallee(const Expr *E) { |
| E = E->IgnoreParens(); |
| |
| // Look through function-to-pointer decay. |
| if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { |
| if (ICE->getCastKind() == CK_FunctionToPointerDecay || |
| ICE->getCastKind() == CK_BuiltinFnToFnPtr) { |
| return EmitCallee(ICE->getSubExpr()); |
| } |
| |
| // Resolve direct calls. |
| } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { |
| if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { |
| return EmitDirectCallee(*this, FD); |
| } |
| } else if (auto ME = dyn_cast<MemberExpr>(E)) { |
| if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { |
| EmitIgnoredExpr(ME->getBase()); |
| return EmitDirectCallee(*this, FD); |
| } |
| |
| // Look through template substitutions. |
| } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { |
| return EmitCallee(NTTP->getReplacement()); |
| |
| // Treat pseudo-destructor calls differently. |
| } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { |
| return CGCallee::forPseudoDestructor(PDE); |
| } |
| |
| // Otherwise, we have an indirect reference. |
| llvm::Value *calleePtr; |
| QualType functionType; |
| if (auto ptrType = E->getType()->getAs<PointerType>()) { |
| calleePtr = EmitScalarExpr(E); |
| functionType = ptrType->getPointeeType(); |
| } else { |
| functionType = E->getType(); |
| calleePtr = EmitLValue(E).getPointer(); |
| } |
| assert(functionType->isFunctionType()); |
| CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), |
| E->getReferencedDeclOfCallee()); |
| CGCallee callee(calleeInfo, calleePtr); |
| return callee; |
| } |
| |
| LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { |
| // Comma expressions just emit their LHS then their RHS as an l-value. |
| if (E->getOpcode() == BO_Comma) { |
| EmitIgnoredExpr(E->getLHS()); |
| EnsureInsertPoint(); |
| return EmitLValue(E->getRHS()); |
| } |
| |
| if (E->getOpcode() == BO_PtrMemD || |
| E->getOpcode() == BO_PtrMemI) |
| return EmitPointerToDataMemberBinaryExpr(E); |
| |
| assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); |
| |
| // Note that in all of these cases, __block variables need the RHS |
| // evaluated first just in case the variable gets moved by the RHS. |
| |
| switch (getEvaluationKind(E->getType())) { |
| case TEK_Scalar: { |
| switch (E->getLHS()->getType().getObjCLifetime()) { |
| case Qualifiers::OCL_Strong: |
| return EmitARCStoreStrong(E, /*ignored*/ false).first; |
| |
| case Qualifiers::OCL_Autoreleasing: |
| return EmitARCStoreAutoreleasing(E).first; |
| |
| // No reason to do any of these differently. |
| case Qualifiers::OCL_None: |
| case Qualifiers::OCL_ExplicitNone: |
| case Qualifiers::OCL_Weak: |
| break; |
| } |
| |
| RValue RV = EmitAnyExpr(E->getRHS()); |
| LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); |
| if (RV.isScalar()) |
| EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); |
| EmitStoreThroughLValue(RV, LV); |
| return LV; |
| } |
| |
| case TEK_Complex: |
| return EmitComplexAssignmentLValue(E); |
| |
| case TEK_Aggregate: |
| return EmitAggExprToLValue(E); |
| } |
| llvm_unreachable("bad evaluation kind"); |
| } |
| |
| LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { |
| RValue RV = EmitCallExpr(E); |
| |
| if (!RV.isScalar()) |
| return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), |
| AlignmentSource::Decl); |
| |
| assert(E->getCallReturnType(getContext())->isReferenceType() && |
| "Can't have a scalar return unless the return type is a " |
| "reference type!"); |
| |
| return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); |
| } |
| |
| LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { |
| // FIXME: This shouldn't require another copy. |
| return EmitAggExprToLValue(E); |
| } |
| |
| LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { |
| assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() |
| && "binding l-value to type which needs a temporary"); |
| AggValueSlot Slot = CreateAggTemp(E->getType()); |
| EmitCXXConstructExpr(E, Slot); |
| return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); |
| } |
| |
| LValue |
| CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { |
| return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); |
| } |
| |
| Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { |
| return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), |
| ConvertType(E->getType())); |
| } |
| |
| LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { |
| return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), |
| AlignmentSource::Decl); |
| } |
| |
| LValue |
| CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { |
| AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); |
| Slot.setExternallyDestructed(); |
| EmitAggExpr(E->getSubExpr(), Slot); |
| EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); |
| return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); |
| } |
| |
| LValue |
| CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { |
| AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); |
| EmitLambdaExpr(E, Slot); |
| return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); |
| } |
| |
| LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { |
| RValue RV = EmitObjCMessageExpr(E); |
| |
| if (!RV.isScalar()) |
| return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), |
| AlignmentSource::Decl); |
| |
| assert(E->getMethodDecl()->getReturnType()->isReferenceType() && |
| "Can't have a scalar return unless the return type is a " |
| "reference type!"); |
| |
| return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); |
| } |
| |
| LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { |
| Address V = |
| CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); |
| return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); |
| } |
| |
| llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, |
| const ObjCIvarDecl *Ivar) { |
| return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); |
| } |
| |
| LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, |
| llvm::Value *BaseValue, |
| const ObjCIvarDecl *Ivar, |
| unsigned CVRQualifiers) { |
| return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, |
| Ivar, CVRQualifiers); |
| } |
| |
| LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { |
| // FIXME: A lot of the code below could be shared with EmitMemberExpr. |
| llvm::Value *BaseValue = nullptr; |
| const Expr *BaseExpr = E->getBase(); |
| Qualifiers BaseQuals; |
| QualType ObjectTy; |
| if (E->isArrow()) { |
| BaseValue = EmitScalarExpr(BaseExpr); |
| ObjectTy = BaseExpr->getType()->getPointeeType(); |
| BaseQuals = ObjectTy.getQualifiers(); |
| } else { |
| LValue BaseLV = EmitLValue(BaseExpr); |
| BaseValue = BaseLV.getPointer(); |
| ObjectTy = BaseExpr->getType(); |
| BaseQuals = ObjectTy.getQualifiers(); |
| } |
| |
| LValue LV = |
| EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), |
| BaseQuals.getCVRQualifiers()); |
| setObjCGCLValueClass(getContext(), E, LV); |
| return LV; |
| } |
| |
| LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { |
| // Can only get l-value for message expression returning aggregate type |
| RValue RV = EmitAnyExprToTemp(E); |
| return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), |
| AlignmentSource::Decl); |
| } |
| |
| RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, |
| const CallExpr *E, ReturnValueSlot ReturnValue, |
| llvm::Value *Chain) { |
| // Get the actual function type. The callee type will always be a pointer to |
| // function type or a block pointer type. |
| assert(CalleeType->isFunctionPointerType() && |
| "Call must have function pointer type!"); |
| |
| const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); |
| |
| if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) |
| // We can only guarantee that a function is called from the correct |
| // context/function based on the appropriate target attributes, |
| // so only check in the case where we have both always_inline and target |
| // since otherwise we could be making a conditional call after a check for |
| // the proper cpu features (and it won't cause code generation issues due to |
| // function based code generation). |
| if (TargetDecl->hasAttr<AlwaysInlineAttr>() && |
| TargetDecl->hasAttr<TargetAttr>()) |
| checkTargetFeatures(E, FD); |
| |
| CalleeType = getContext().getCanonicalType(CalleeType); |
| |
| auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); |
| |
| CGCallee Callee = OrigCallee; |
| |
| if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && |
| (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { |
| if (llvm::Constant *PrefixSig = |
| CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { |
| SanitizerScope SanScope(this); |
| // Remove any (C++17) exception specifications, to allow calling e.g. a |
| // noexcept function through a non-noexcept pointer. |
| auto ProtoTy = |
| getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); |
| llvm::Constant *FTRTTIConst = |
| CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); |
| llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; |
| llvm::StructType *PrefixStructTy = llvm::StructType::get( |
| CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); |
| |
| llvm::Value *CalleePtr = Callee.getFunctionPointer(); |
| |
| llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( |
| CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); |
| llvm::Value *CalleeSigPtr = |
| Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); |
| llvm::Value *CalleeSig = |
| Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); |
| llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); |
| |
| llvm::BasicBlock *Cont = createBasicBlock("cont"); |
| llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); |
| Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); |
| |
| EmitBlock(TypeCheck); |
| llvm::Value *CalleeRTTIPtr = |
| Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); |
| llvm::Value *CalleeRTTIEncoded = |
| Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); |
| llvm::Value *CalleeRTTI = |
| DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); |
| llvm::Value *CalleeRTTIMatch = |
| Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); |
| llvm::Constant *StaticData[] = { |
| EmitCheckSourceLocation(E->getLocStart()), |
| EmitCheckTypeDescriptor(CalleeType) |
| }; |
| EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), |
| SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); |
| |
| Builder.CreateBr(Cont); |
| EmitBlock(Cont); |
| } |
| } |
| |
| const auto *FnType = cast<FunctionType>(PointeeType); |
| |
| // If we are checking indirect calls and this call is indirect, check that the |
| // function pointer is a member of the bit set for the function type. |
| if (SanOpts.has(SanitizerKind::CFIICall) && |
| (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { |
| SanitizerScope SanScope(this); |
| EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); |
| |
| llvm::Metadata *MD; |
| if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) |
| MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); |
| else |
| MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); |
| |
| llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); |
| |
| llvm::Value *CalleePtr = Callee.getFunctionPointer(); |
| llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); |
| llvm::Value *TypeTest = Builder.CreateCall( |
| CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); |
| |
| auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); |
| llvm::Constant *StaticData[] = { |
| llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), |
| EmitCheckSourceLocation(E->getLocStart()), |
| EmitCheckTypeDescriptor(QualType(FnType, 0)), |
| }; |
| if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { |
| EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, |
| CastedCallee, StaticData); |
| } else { |
| EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), |
| SanitizerHandler::CFICheckFail, StaticData, |
| {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); |
| } |
| } |
| |
| CallArgList Args; |
| if (Chain) |
| Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), |
| CGM.getContext().VoidPtrTy); |
| |
| // C++17 requires that we evaluate arguments to a call using assignment syntax |
| // right-to-left, and that we evaluate arguments to certain other operators |
| // left-to-right. Note that we allow this to override the order dictated by |
| // the calling convention on the MS ABI, which means that parameter |
| // destruction order is not necessarily reverse construction order. |
| // FIXME: Revisit this based on C++ committee response to unimplementability. |
| EvaluationOrder Order = EvaluationOrder::Default; |
| if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { |
| if (OCE->isAssignmentOp()) |
| Order = EvaluationOrder::ForceRightToLeft; |
| else { |
| switch (OCE->getOperator()) { |
| case OO_LessLess: |
| case OO_GreaterGreater: |
| case OO_AmpAmp: |
| case OO_PipePipe: |
| case OO_Comma: |
| case OO_ArrowStar: |
| Order = EvaluationOrder::ForceLeftToRight; |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), |
| E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); |
| |
| const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( |
| Args, FnType, /*isChainCall=*/Chain); |
| |
| // C99 6.5.2.2p6: |
| // If the expression that denotes the called function has a type |
| // that does not include a prototype, [the default argument |
| // promotions are performed]. If the number of arguments does not |
| // equal the number of parameters, the behavior is undefined. If |
| // the function is defined with a type that includes a prototype, |
| // and either the prototype ends with an ellipsis (, ...) or the |
| // types of the arguments after promotion are not compatible with |
| // the types of the parameters, the behavior is undefined. If the |
| // function is defined with a type that does not include a |
| // prototype, and the types of the arguments after promotion are |
| // not compatible with those of the parameters after promotion, |
| // the behavior is undefined [except in some trivial cases]. |
| // That is, in the general case, we should assume that a call |
| // through an unprototyped function type works like a *non-variadic* |
| // call. The way we make this work is to cast to the exact type |
| // of the promoted arguments. |
| // |
| // Chain calls use this same code path to add the invisible chain parameter |
| // to the function type. |
| if (isa<FunctionNoProtoType>(FnType) || Chain) { |
| llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); |
| CalleeTy = CalleeTy->getPointerTo(); |
| |
| llvm::Value *CalleePtr = Callee.getFunctionPointer(); |
| CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); |
| Callee.setFunctionPointer(CalleePtr); |
| } |
| |
| return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc()); |
| } |
| |
| LValue CodeGenFunction:: |
| EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { |
| Address BaseAddr = Address::invalid(); |
| if (E->getOpcode() == BO_PtrMemI) { |
| BaseAddr = EmitPointerWithAlignment(E->getLHS()); |
| } else { |
| BaseAddr = EmitLValue(E->getLHS()).getAddress(); |
| } |
| |
| llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); |
| |
| const MemberPointerType *MPT |
| = E->getRHS()->getType()->getAs<MemberPointerType>(); |
| |
| LValueBaseInfo BaseInfo; |
| TBAAAccessInfo TBAAInfo; |
| Address MemberAddr = |
| EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, |
| &TBAAInfo); |
| |
| return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); |
| } |
| |
| /// Given the address of a temporary variable, produce an r-value of |
| /// its type. |
| RValue CodeGenFunction::convertTempToRValue(Address addr, |
| QualType type, |
| SourceLocation loc) { |
| LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); |
| switch (getEvaluationKind(type)) { |
| case TEK_Complex: |
| return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); |
| case TEK_Aggregate: |
| return lvalue.asAggregateRValue(); |
| case TEK_Scalar: |
| return RValue::get(EmitLoadOfScalar(lvalue, loc)); |
| } |
| llvm_unreachable("bad evaluation kind"); |
| } |
| |
| void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { |
| assert(Val->getType()->isFPOrFPVectorTy()); |
| if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) |
| return; |
| |
| llvm::MDBuilder MDHelper(getLLVMContext()); |
| llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); |
| |
| cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); |
| } |
| |
| namespace { |
| struct LValueOrRValue { |
| LValue LV; |
| RValue RV; |
| }; |
| } |
| |
| static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, |
| const PseudoObjectExpr *E, |
| bool forLValue, |
| AggValueSlot slot) { |
| SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; |
| |
| // Find the result expression, if any. |
| const Expr *resultExpr = E->getResultExpr(); |
| LValueOrRValue result; |
| |
| for (PseudoObjectExpr::const_semantics_iterator |
| i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { |
| const Expr *semantic = *i; |
| |
| // If this semantic expression is an opaque value, bind it |
| // to the result of its source expression. |
| if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { |
| // Skip unique OVEs. |
| if (ov->isUnique()) { |
| assert(ov != resultExpr && |
| "A unique OVE cannot be used as the result expression"); |
| continue; |
| } |
| |
| // If this is the result expression, we may need to evaluate |
| // directly into the slot. |
| typedef CodeGenFunction::OpaqueValueMappingData OVMA; |
| OVMA opaqueData; |
| if (ov == resultExpr && ov->isRValue() && !forLValue && |
| CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { |
| CGF.EmitAggExpr(ov->getSourceExpr(), slot); |
| LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), |
| AlignmentSource::Decl); |
| opaqueData = OVMA::bind(CGF, ov, LV); |
| result.RV = slot.asRValue(); |
| |
| // Otherwise, emit as normal. |
| } else { |
| opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); |
| |
| // If this is the result, also evaluate the result now. |
| if (ov == resultExpr) { |
| if (forLValue) |
| result.LV = CGF.EmitLValue(ov); |
| else |
| result.RV = CGF.EmitAnyExpr(ov, slot); |
| } |
| } |
| |
| opaques.push_back(opaqueData); |
| |
| // Otherwise, if the expression is the result, evaluate it |
| // and remember the result. |
| } else if (semantic == resultExpr) { |
| if (forLValue) |
| result.LV = CGF.EmitLValue(semantic); |
| else |
| result.RV = CGF.EmitAnyExpr(semantic, slot); |
| |
| // Otherwise, evaluate the expression in an ignored context. |
| } else { |
| CGF.EmitIgnoredExpr(semantic); |
| } |
| } |
| |
| // Unbind all the opaques now. |
| for (unsigned i = 0, e = opaques.size(); i != e; ++i) |
| opaques[i].unbind(CGF); |
| |
| return result; |
| } |
| |
| RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, |
| AggValueSlot slot) { |
| return emitPseudoObjectExpr(*this, E, false, slot).RV; |
| } |
| |
| LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { |
| return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; |
| } |