| //===-- APFloat.cpp - Implement APFloat class -----------------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements a class to represent arbitrary precision floating | 
 | // point values and provide a variety of arithmetic operations on them. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/ADT/APFloat.h" | 
 | #include "llvm/ADT/APSInt.h" | 
 | #include "llvm/ADT/ArrayRef.h" | 
 | #include "llvm/ADT/FoldingSet.h" | 
 | #include "llvm/ADT/Hashing.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | #include "llvm/ADT/StringRef.h" | 
 | #include "llvm/Config/llvm-config.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <cstring> | 
 | #include <limits.h> | 
 |  | 
 | #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL)                             \ | 
 |   do {                                                                         \ | 
 |     if (usesLayout<IEEEFloat>(getSemantics()))                                 \ | 
 |       return U.IEEE.METHOD_CALL;                                               \ | 
 |     if (usesLayout<DoubleAPFloat>(getSemantics()))                             \ | 
 |       return U.Double.METHOD_CALL;                                             \ | 
 |     llvm_unreachable("Unexpected semantics");                                  \ | 
 |   } while (false) | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | /// A macro used to combine two fcCategory enums into one key which can be used | 
 | /// in a switch statement to classify how the interaction of two APFloat's | 
 | /// categories affects an operation. | 
 | /// | 
 | /// TODO: If clang source code is ever allowed to use constexpr in its own | 
 | /// codebase, change this into a static inline function. | 
 | #define PackCategoriesIntoKey(_lhs, _rhs) ((_lhs) * 4 + (_rhs)) | 
 |  | 
 | /* Assumed in hexadecimal significand parsing, and conversion to | 
 |    hexadecimal strings.  */ | 
 | static_assert(APFloatBase::integerPartWidth % 4 == 0, "Part width must be divisible by 4!"); | 
 |  | 
 | namespace llvm { | 
 |   /* Represents floating point arithmetic semantics.  */ | 
 |   struct fltSemantics { | 
 |     /* The largest E such that 2^E is representable; this matches the | 
 |        definition of IEEE 754.  */ | 
 |     APFloatBase::ExponentType maxExponent; | 
 |  | 
 |     /* The smallest E such that 2^E is a normalized number; this | 
 |        matches the definition of IEEE 754.  */ | 
 |     APFloatBase::ExponentType minExponent; | 
 |  | 
 |     /* Number of bits in the significand.  This includes the integer | 
 |        bit.  */ | 
 |     unsigned int precision; | 
 |  | 
 |     /* Number of bits actually used in the semantics. */ | 
 |     unsigned int sizeInBits; | 
 |   }; | 
 |  | 
 |   static const fltSemantics semIEEEhalf = {15, -14, 11, 16}; | 
 |   static const fltSemantics semIEEEsingle = {127, -126, 24, 32}; | 
 |   static const fltSemantics semIEEEdouble = {1023, -1022, 53, 64}; | 
 |   static const fltSemantics semIEEEquad = {16383, -16382, 113, 128}; | 
 |   static const fltSemantics semX87DoubleExtended = {16383, -16382, 64, 80}; | 
 |   static const fltSemantics semBogus = {0, 0, 0, 0}; | 
 |  | 
 |   /* The IBM double-double semantics. Such a number consists of a pair of IEEE | 
 |      64-bit doubles (Hi, Lo), where |Hi| > |Lo|, and if normal, | 
 |      (double)(Hi + Lo) == Hi. The numeric value it's modeling is Hi + Lo. | 
 |      Therefore it has two 53-bit mantissa parts that aren't necessarily adjacent | 
 |      to each other, and two 11-bit exponents. | 
 |  | 
 |      Note: we need to make the value different from semBogus as otherwise | 
 |      an unsafe optimization may collapse both values to a single address, | 
 |      and we heavily rely on them having distinct addresses.             */ | 
 |   static const fltSemantics semPPCDoubleDouble = {-1, 0, 0, 0}; | 
 |  | 
 |   /* These are legacy semantics for the fallback, inaccrurate implementation of | 
 |      IBM double-double, if the accurate semPPCDoubleDouble doesn't handle the | 
 |      operation. It's equivalent to having an IEEE number with consecutive 106 | 
 |      bits of mantissa and 11 bits of exponent. | 
 |  | 
 |      It's not equivalent to IBM double-double. For example, a legit IBM | 
 |      double-double, 1 + epsilon: | 
 |  | 
 |        1 + epsilon = 1 + (1 >> 1076) | 
 |  | 
 |      is not representable by a consecutive 106 bits of mantissa. | 
 |  | 
 |      Currently, these semantics are used in the following way: | 
 |  | 
 |        semPPCDoubleDouble -> (IEEEdouble, IEEEdouble) -> | 
 |        (64-bit APInt, 64-bit APInt) -> (128-bit APInt) -> | 
 |        semPPCDoubleDoubleLegacy -> IEEE operations | 
 |  | 
 |      We use bitcastToAPInt() to get the bit representation (in APInt) of the | 
 |      underlying IEEEdouble, then use the APInt constructor to construct the | 
 |      legacy IEEE float. | 
 |  | 
 |      TODO: Implement all operations in semPPCDoubleDouble, and delete these | 
 |      semantics.  */ | 
 |   static const fltSemantics semPPCDoubleDoubleLegacy = {1023, -1022 + 53, | 
 |                                                         53 + 53, 128}; | 
 |  | 
 |   const fltSemantics &APFloatBase::IEEEhalf() { | 
 |     return semIEEEhalf; | 
 |   } | 
 |   const fltSemantics &APFloatBase::IEEEsingle() { | 
 |     return semIEEEsingle; | 
 |   } | 
 |   const fltSemantics &APFloatBase::IEEEdouble() { | 
 |     return semIEEEdouble; | 
 |   } | 
 |   const fltSemantics &APFloatBase::IEEEquad() { | 
 |     return semIEEEquad; | 
 |   } | 
 |   const fltSemantics &APFloatBase::x87DoubleExtended() { | 
 |     return semX87DoubleExtended; | 
 |   } | 
 |   const fltSemantics &APFloatBase::Bogus() { | 
 |     return semBogus; | 
 |   } | 
 |   const fltSemantics &APFloatBase::PPCDoubleDouble() { | 
 |     return semPPCDoubleDouble; | 
 |   } | 
 |  | 
 |   /* A tight upper bound on number of parts required to hold the value | 
 |      pow(5, power) is | 
 |  | 
 |        power * 815 / (351 * integerPartWidth) + 1 | 
 |  | 
 |      However, whilst the result may require only this many parts, | 
 |      because we are multiplying two values to get it, the | 
 |      multiplication may require an extra part with the excess part | 
 |      being zero (consider the trivial case of 1 * 1, tcFullMultiply | 
 |      requires two parts to hold the single-part result).  So we add an | 
 |      extra one to guarantee enough space whilst multiplying.  */ | 
 |   const unsigned int maxExponent = 16383; | 
 |   const unsigned int maxPrecision = 113; | 
 |   const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1; | 
 |   const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815) / (351 * APFloatBase::integerPartWidth)); | 
 |  | 
 |   unsigned int APFloatBase::semanticsPrecision(const fltSemantics &semantics) { | 
 |     return semantics.precision; | 
 |   } | 
 |   APFloatBase::ExponentType | 
 |   APFloatBase::semanticsMaxExponent(const fltSemantics &semantics) { | 
 |     return semantics.maxExponent; | 
 |   } | 
 |   APFloatBase::ExponentType | 
 |   APFloatBase::semanticsMinExponent(const fltSemantics &semantics) { | 
 |     return semantics.minExponent; | 
 |   } | 
 |   unsigned int APFloatBase::semanticsSizeInBits(const fltSemantics &semantics) { | 
 |     return semantics.sizeInBits; | 
 |   } | 
 |  | 
 |   unsigned APFloatBase::getSizeInBits(const fltSemantics &Sem) { | 
 |     return Sem.sizeInBits; | 
 | } | 
 |  | 
 | /* A bunch of private, handy routines.  */ | 
 |  | 
 | static inline unsigned int | 
 | partCountForBits(unsigned int bits) | 
 | { | 
 |   return ((bits) + APFloatBase::integerPartWidth - 1) / APFloatBase::integerPartWidth; | 
 | } | 
 |  | 
 | /* Returns 0U-9U.  Return values >= 10U are not digits.  */ | 
 | static inline unsigned int | 
 | decDigitValue(unsigned int c) | 
 | { | 
 |   return c - '0'; | 
 | } | 
 |  | 
 | /* Return the value of a decimal exponent of the form | 
 |    [+-]ddddddd. | 
 |  | 
 |    If the exponent overflows, returns a large exponent with the | 
 |    appropriate sign.  */ | 
 | static int | 
 | readExponent(StringRef::iterator begin, StringRef::iterator end) | 
 | { | 
 |   bool isNegative; | 
 |   unsigned int absExponent; | 
 |   const unsigned int overlargeExponent = 24000;  /* FIXME.  */ | 
 |   StringRef::iterator p = begin; | 
 |  | 
 |   assert(p != end && "Exponent has no digits"); | 
 |  | 
 |   isNegative = (*p == '-'); | 
 |   if (*p == '-' || *p == '+') { | 
 |     p++; | 
 |     assert(p != end && "Exponent has no digits"); | 
 |   } | 
 |  | 
 |   absExponent = decDigitValue(*p++); | 
 |   assert(absExponent < 10U && "Invalid character in exponent"); | 
 |  | 
 |   for (; p != end; ++p) { | 
 |     unsigned int value; | 
 |  | 
 |     value = decDigitValue(*p); | 
 |     assert(value < 10U && "Invalid character in exponent"); | 
 |  | 
 |     value += absExponent * 10; | 
 |     if (absExponent >= overlargeExponent) { | 
 |       absExponent = overlargeExponent; | 
 |       p = end;  /* outwit assert below */ | 
 |       break; | 
 |     } | 
 |     absExponent = value; | 
 |   } | 
 |  | 
 |   assert(p == end && "Invalid exponent in exponent"); | 
 |  | 
 |   if (isNegative) | 
 |     return -(int) absExponent; | 
 |   else | 
 |     return (int) absExponent; | 
 | } | 
 |  | 
 | /* This is ugly and needs cleaning up, but I don't immediately see | 
 |    how whilst remaining safe.  */ | 
 | static int | 
 | totalExponent(StringRef::iterator p, StringRef::iterator end, | 
 |               int exponentAdjustment) | 
 | { | 
 |   int unsignedExponent; | 
 |   bool negative, overflow; | 
 |   int exponent = 0; | 
 |  | 
 |   assert(p != end && "Exponent has no digits"); | 
 |  | 
 |   negative = *p == '-'; | 
 |   if (*p == '-' || *p == '+') { | 
 |     p++; | 
 |     assert(p != end && "Exponent has no digits"); | 
 |   } | 
 |  | 
 |   unsignedExponent = 0; | 
 |   overflow = false; | 
 |   for (; p != end; ++p) { | 
 |     unsigned int value; | 
 |  | 
 |     value = decDigitValue(*p); | 
 |     assert(value < 10U && "Invalid character in exponent"); | 
 |  | 
 |     unsignedExponent = unsignedExponent * 10 + value; | 
 |     if (unsignedExponent > 32767) { | 
 |       overflow = true; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   if (exponentAdjustment > 32767 || exponentAdjustment < -32768) | 
 |     overflow = true; | 
 |  | 
 |   if (!overflow) { | 
 |     exponent = unsignedExponent; | 
 |     if (negative) | 
 |       exponent = -exponent; | 
 |     exponent += exponentAdjustment; | 
 |     if (exponent > 32767 || exponent < -32768) | 
 |       overflow = true; | 
 |   } | 
 |  | 
 |   if (overflow) | 
 |     exponent = negative ? -32768: 32767; | 
 |  | 
 |   return exponent; | 
 | } | 
 |  | 
 | static StringRef::iterator | 
 | skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end, | 
 |                            StringRef::iterator *dot) | 
 | { | 
 |   StringRef::iterator p = begin; | 
 |   *dot = end; | 
 |   while (p != end && *p == '0') | 
 |     p++; | 
 |  | 
 |   if (p != end && *p == '.') { | 
 |     *dot = p++; | 
 |  | 
 |     assert(end - begin != 1 && "Significand has no digits"); | 
 |  | 
 |     while (p != end && *p == '0') | 
 |       p++; | 
 |   } | 
 |  | 
 |   return p; | 
 | } | 
 |  | 
 | /* Given a normal decimal floating point number of the form | 
 |  | 
 |      dddd.dddd[eE][+-]ddd | 
 |  | 
 |    where the decimal point and exponent are optional, fill out the | 
 |    structure D.  Exponent is appropriate if the significand is | 
 |    treated as an integer, and normalizedExponent if the significand | 
 |    is taken to have the decimal point after a single leading | 
 |    non-zero digit. | 
 |  | 
 |    If the value is zero, V->firstSigDigit points to a non-digit, and | 
 |    the return exponent is zero. | 
 | */ | 
 | struct decimalInfo { | 
 |   const char *firstSigDigit; | 
 |   const char *lastSigDigit; | 
 |   int exponent; | 
 |   int normalizedExponent; | 
 | }; | 
 |  | 
 | static void | 
 | interpretDecimal(StringRef::iterator begin, StringRef::iterator end, | 
 |                  decimalInfo *D) | 
 | { | 
 |   StringRef::iterator dot = end; | 
 |   StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot); | 
 |  | 
 |   D->firstSigDigit = p; | 
 |   D->exponent = 0; | 
 |   D->normalizedExponent = 0; | 
 |  | 
 |   for (; p != end; ++p) { | 
 |     if (*p == '.') { | 
 |       assert(dot == end && "String contains multiple dots"); | 
 |       dot = p++; | 
 |       if (p == end) | 
 |         break; | 
 |     } | 
 |     if (decDigitValue(*p) >= 10U) | 
 |       break; | 
 |   } | 
 |  | 
 |   if (p != end) { | 
 |     assert((*p == 'e' || *p == 'E') && "Invalid character in significand"); | 
 |     assert(p != begin && "Significand has no digits"); | 
 |     assert((dot == end || p - begin != 1) && "Significand has no digits"); | 
 |  | 
 |     /* p points to the first non-digit in the string */ | 
 |     D->exponent = readExponent(p + 1, end); | 
 |  | 
 |     /* Implied decimal point?  */ | 
 |     if (dot == end) | 
 |       dot = p; | 
 |   } | 
 |  | 
 |   /* If number is all zeroes accept any exponent.  */ | 
 |   if (p != D->firstSigDigit) { | 
 |     /* Drop insignificant trailing zeroes.  */ | 
 |     if (p != begin) { | 
 |       do | 
 |         do | 
 |           p--; | 
 |         while (p != begin && *p == '0'); | 
 |       while (p != begin && *p == '.'); | 
 |     } | 
 |  | 
 |     /* Adjust the exponents for any decimal point.  */ | 
 |     D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p)); | 
 |     D->normalizedExponent = (D->exponent + | 
 |               static_cast<APFloat::ExponentType>((p - D->firstSigDigit) | 
 |                                       - (dot > D->firstSigDigit && dot < p))); | 
 |   } | 
 |  | 
 |   D->lastSigDigit = p; | 
 | } | 
 |  | 
 | /* Return the trailing fraction of a hexadecimal number. | 
 |    DIGITVALUE is the first hex digit of the fraction, P points to | 
 |    the next digit.  */ | 
 | static lostFraction | 
 | trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end, | 
 |                             unsigned int digitValue) | 
 | { | 
 |   unsigned int hexDigit; | 
 |  | 
 |   /* If the first trailing digit isn't 0 or 8 we can work out the | 
 |      fraction immediately.  */ | 
 |   if (digitValue > 8) | 
 |     return lfMoreThanHalf; | 
 |   else if (digitValue < 8 && digitValue > 0) | 
 |     return lfLessThanHalf; | 
 |  | 
 |   // Otherwise we need to find the first non-zero digit. | 
 |   while (p != end && (*p == '0' || *p == '.')) | 
 |     p++; | 
 |  | 
 |   assert(p != end && "Invalid trailing hexadecimal fraction!"); | 
 |  | 
 |   hexDigit = hexDigitValue(*p); | 
 |  | 
 |   /* If we ran off the end it is exactly zero or one-half, otherwise | 
 |      a little more.  */ | 
 |   if (hexDigit == -1U) | 
 |     return digitValue == 0 ? lfExactlyZero: lfExactlyHalf; | 
 |   else | 
 |     return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf; | 
 | } | 
 |  | 
 | /* Return the fraction lost were a bignum truncated losing the least | 
 |    significant BITS bits.  */ | 
 | static lostFraction | 
 | lostFractionThroughTruncation(const APFloatBase::integerPart *parts, | 
 |                               unsigned int partCount, | 
 |                               unsigned int bits) | 
 | { | 
 |   unsigned int lsb; | 
 |  | 
 |   lsb = APInt::tcLSB(parts, partCount); | 
 |  | 
 |   /* Note this is guaranteed true if bits == 0, or LSB == -1U.  */ | 
 |   if (bits <= lsb) | 
 |     return lfExactlyZero; | 
 |   if (bits == lsb + 1) | 
 |     return lfExactlyHalf; | 
 |   if (bits <= partCount * APFloatBase::integerPartWidth && | 
 |       APInt::tcExtractBit(parts, bits - 1)) | 
 |     return lfMoreThanHalf; | 
 |  | 
 |   return lfLessThanHalf; | 
 | } | 
 |  | 
 | /* Shift DST right BITS bits noting lost fraction.  */ | 
 | static lostFraction | 
 | shiftRight(APFloatBase::integerPart *dst, unsigned int parts, unsigned int bits) | 
 | { | 
 |   lostFraction lost_fraction; | 
 |  | 
 |   lost_fraction = lostFractionThroughTruncation(dst, parts, bits); | 
 |  | 
 |   APInt::tcShiftRight(dst, parts, bits); | 
 |  | 
 |   return lost_fraction; | 
 | } | 
 |  | 
 | /* Combine the effect of two lost fractions.  */ | 
 | static lostFraction | 
 | combineLostFractions(lostFraction moreSignificant, | 
 |                      lostFraction lessSignificant) | 
 | { | 
 |   if (lessSignificant != lfExactlyZero) { | 
 |     if (moreSignificant == lfExactlyZero) | 
 |       moreSignificant = lfLessThanHalf; | 
 |     else if (moreSignificant == lfExactlyHalf) | 
 |       moreSignificant = lfMoreThanHalf; | 
 |   } | 
 |  | 
 |   return moreSignificant; | 
 | } | 
 |  | 
 | /* The error from the true value, in half-ulps, on multiplying two | 
 |    floating point numbers, which differ from the value they | 
 |    approximate by at most HUE1 and HUE2 half-ulps, is strictly less | 
 |    than the returned value. | 
 |  | 
 |    See "How to Read Floating Point Numbers Accurately" by William D | 
 |    Clinger.  */ | 
 | static unsigned int | 
 | HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2) | 
 | { | 
 |   assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8)); | 
 |  | 
 |   if (HUerr1 + HUerr2 == 0) | 
 |     return inexactMultiply * 2;  /* <= inexactMultiply half-ulps.  */ | 
 |   else | 
 |     return inexactMultiply + 2 * (HUerr1 + HUerr2); | 
 | } | 
 |  | 
 | /* The number of ulps from the boundary (zero, or half if ISNEAREST) | 
 |    when the least significant BITS are truncated.  BITS cannot be | 
 |    zero.  */ | 
 | static APFloatBase::integerPart | 
 | ulpsFromBoundary(const APFloatBase::integerPart *parts, unsigned int bits, | 
 |                  bool isNearest) { | 
 |   unsigned int count, partBits; | 
 |   APFloatBase::integerPart part, boundary; | 
 |  | 
 |   assert(bits != 0); | 
 |  | 
 |   bits--; | 
 |   count = bits / APFloatBase::integerPartWidth; | 
 |   partBits = bits % APFloatBase::integerPartWidth + 1; | 
 |  | 
 |   part = parts[count] & (~(APFloatBase::integerPart) 0 >> (APFloatBase::integerPartWidth - partBits)); | 
 |  | 
 |   if (isNearest) | 
 |     boundary = (APFloatBase::integerPart) 1 << (partBits - 1); | 
 |   else | 
 |     boundary = 0; | 
 |  | 
 |   if (count == 0) { | 
 |     if (part - boundary <= boundary - part) | 
 |       return part - boundary; | 
 |     else | 
 |       return boundary - part; | 
 |   } | 
 |  | 
 |   if (part == boundary) { | 
 |     while (--count) | 
 |       if (parts[count]) | 
 |         return ~(APFloatBase::integerPart) 0; /* A lot.  */ | 
 |  | 
 |     return parts[0]; | 
 |   } else if (part == boundary - 1) { | 
 |     while (--count) | 
 |       if (~parts[count]) | 
 |         return ~(APFloatBase::integerPart) 0; /* A lot.  */ | 
 |  | 
 |     return -parts[0]; | 
 |   } | 
 |  | 
 |   return ~(APFloatBase::integerPart) 0; /* A lot.  */ | 
 | } | 
 |  | 
 | /* Place pow(5, power) in DST, and return the number of parts used. | 
 |    DST must be at least one part larger than size of the answer.  */ | 
 | static unsigned int | 
 | powerOf5(APFloatBase::integerPart *dst, unsigned int power) { | 
 |   static const APFloatBase::integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125, 15625, 78125 }; | 
 |   APFloatBase::integerPart pow5s[maxPowerOfFiveParts * 2 + 5]; | 
 |   pow5s[0] = 78125 * 5; | 
 |  | 
 |   unsigned int partsCount[16] = { 1 }; | 
 |   APFloatBase::integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5; | 
 |   unsigned int result; | 
 |   assert(power <= maxExponent); | 
 |  | 
 |   p1 = dst; | 
 |   p2 = scratch; | 
 |  | 
 |   *p1 = firstEightPowers[power & 7]; | 
 |   power >>= 3; | 
 |  | 
 |   result = 1; | 
 |   pow5 = pow5s; | 
 |  | 
 |   for (unsigned int n = 0; power; power >>= 1, n++) { | 
 |     unsigned int pc; | 
 |  | 
 |     pc = partsCount[n]; | 
 |  | 
 |     /* Calculate pow(5,pow(2,n+3)) if we haven't yet.  */ | 
 |     if (pc == 0) { | 
 |       pc = partsCount[n - 1]; | 
 |       APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc); | 
 |       pc *= 2; | 
 |       if (pow5[pc - 1] == 0) | 
 |         pc--; | 
 |       partsCount[n] = pc; | 
 |     } | 
 |  | 
 |     if (power & 1) { | 
 |       APFloatBase::integerPart *tmp; | 
 |  | 
 |       APInt::tcFullMultiply(p2, p1, pow5, result, pc); | 
 |       result += pc; | 
 |       if (p2[result - 1] == 0) | 
 |         result--; | 
 |  | 
 |       /* Now result is in p1 with partsCount parts and p2 is scratch | 
 |          space.  */ | 
 |       tmp = p1; | 
 |       p1 = p2; | 
 |       p2 = tmp; | 
 |     } | 
 |  | 
 |     pow5 += pc; | 
 |   } | 
 |  | 
 |   if (p1 != dst) | 
 |     APInt::tcAssign(dst, p1, result); | 
 |  | 
 |   return result; | 
 | } | 
 |  | 
 | /* Zero at the end to avoid modular arithmetic when adding one; used | 
 |    when rounding up during hexadecimal output.  */ | 
 | static const char hexDigitsLower[] = "0123456789abcdef0"; | 
 | static const char hexDigitsUpper[] = "0123456789ABCDEF0"; | 
 | static const char infinityL[] = "infinity"; | 
 | static const char infinityU[] = "INFINITY"; | 
 | static const char NaNL[] = "nan"; | 
 | static const char NaNU[] = "NAN"; | 
 |  | 
 | /* Write out an integerPart in hexadecimal, starting with the most | 
 |    significant nibble.  Write out exactly COUNT hexdigits, return | 
 |    COUNT.  */ | 
 | static unsigned int | 
 | partAsHex (char *dst, APFloatBase::integerPart part, unsigned int count, | 
 |            const char *hexDigitChars) | 
 | { | 
 |   unsigned int result = count; | 
 |  | 
 |   assert(count != 0 && count <= APFloatBase::integerPartWidth / 4); | 
 |  | 
 |   part >>= (APFloatBase::integerPartWidth - 4 * count); | 
 |   while (count--) { | 
 |     dst[count] = hexDigitChars[part & 0xf]; | 
 |     part >>= 4; | 
 |   } | 
 |  | 
 |   return result; | 
 | } | 
 |  | 
 | /* Write out an unsigned decimal integer.  */ | 
 | static char * | 
 | writeUnsignedDecimal (char *dst, unsigned int n) | 
 | { | 
 |   char buff[40], *p; | 
 |  | 
 |   p = buff; | 
 |   do | 
 |     *p++ = '0' + n % 10; | 
 |   while (n /= 10); | 
 |  | 
 |   do | 
 |     *dst++ = *--p; | 
 |   while (p != buff); | 
 |  | 
 |   return dst; | 
 | } | 
 |  | 
 | /* Write out a signed decimal integer.  */ | 
 | static char * | 
 | writeSignedDecimal (char *dst, int value) | 
 | { | 
 |   if (value < 0) { | 
 |     *dst++ = '-'; | 
 |     dst = writeUnsignedDecimal(dst, -(unsigned) value); | 
 |   } else | 
 |     dst = writeUnsignedDecimal(dst, value); | 
 |  | 
 |   return dst; | 
 | } | 
 |  | 
 | namespace detail { | 
 | /* Constructors.  */ | 
 | void IEEEFloat::initialize(const fltSemantics *ourSemantics) { | 
 |   unsigned int count; | 
 |  | 
 |   semantics = ourSemantics; | 
 |   count = partCount(); | 
 |   if (count > 1) | 
 |     significand.parts = new integerPart[count]; | 
 | } | 
 |  | 
 | void IEEEFloat::freeSignificand() { | 
 |   if (needsCleanup()) | 
 |     delete [] significand.parts; | 
 | } | 
 |  | 
 | void IEEEFloat::assign(const IEEEFloat &rhs) { | 
 |   assert(semantics == rhs.semantics); | 
 |  | 
 |   sign = rhs.sign; | 
 |   category = rhs.category; | 
 |   exponent = rhs.exponent; | 
 |   if (isFiniteNonZero() || category == fcNaN) | 
 |     copySignificand(rhs); | 
 | } | 
 |  | 
 | void IEEEFloat::copySignificand(const IEEEFloat &rhs) { | 
 |   assert(isFiniteNonZero() || category == fcNaN); | 
 |   assert(rhs.partCount() >= partCount()); | 
 |  | 
 |   APInt::tcAssign(significandParts(), rhs.significandParts(), | 
 |                   partCount()); | 
 | } | 
 |  | 
 | /* Make this number a NaN, with an arbitrary but deterministic value | 
 |    for the significand.  If double or longer, this is a signalling NaN, | 
 |    which may not be ideal.  If float, this is QNaN(0).  */ | 
 | void IEEEFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill) { | 
 |   category = fcNaN; | 
 |   sign = Negative; | 
 |  | 
 |   integerPart *significand = significandParts(); | 
 |   unsigned numParts = partCount(); | 
 |  | 
 |   // Set the significand bits to the fill. | 
 |   if (!fill || fill->getNumWords() < numParts) | 
 |     APInt::tcSet(significand, 0, numParts); | 
 |   if (fill) { | 
 |     APInt::tcAssign(significand, fill->getRawData(), | 
 |                     std::min(fill->getNumWords(), numParts)); | 
 |  | 
 |     // Zero out the excess bits of the significand. | 
 |     unsigned bitsToPreserve = semantics->precision - 1; | 
 |     unsigned part = bitsToPreserve / 64; | 
 |     bitsToPreserve %= 64; | 
 |     significand[part] &= ((1ULL << bitsToPreserve) - 1); | 
 |     for (part++; part != numParts; ++part) | 
 |       significand[part] = 0; | 
 |   } | 
 |  | 
 |   unsigned QNaNBit = semantics->precision - 2; | 
 |  | 
 |   if (SNaN) { | 
 |     // We always have to clear the QNaN bit to make it an SNaN. | 
 |     APInt::tcClearBit(significand, QNaNBit); | 
 |  | 
 |     // If there are no bits set in the payload, we have to set | 
 |     // *something* to make it a NaN instead of an infinity; | 
 |     // conventionally, this is the next bit down from the QNaN bit. | 
 |     if (APInt::tcIsZero(significand, numParts)) | 
 |       APInt::tcSetBit(significand, QNaNBit - 1); | 
 |   } else { | 
 |     // We always have to set the QNaN bit to make it a QNaN. | 
 |     APInt::tcSetBit(significand, QNaNBit); | 
 |   } | 
 |  | 
 |   // For x87 extended precision, we want to make a NaN, not a | 
 |   // pseudo-NaN.  Maybe we should expose the ability to make | 
 |   // pseudo-NaNs? | 
 |   if (semantics == &semX87DoubleExtended) | 
 |     APInt::tcSetBit(significand, QNaNBit + 1); | 
 | } | 
 |  | 
 | IEEEFloat &IEEEFloat::operator=(const IEEEFloat &rhs) { | 
 |   if (this != &rhs) { | 
 |     if (semantics != rhs.semantics) { | 
 |       freeSignificand(); | 
 |       initialize(rhs.semantics); | 
 |     } | 
 |     assign(rhs); | 
 |   } | 
 |  | 
 |   return *this; | 
 | } | 
 |  | 
 | IEEEFloat &IEEEFloat::operator=(IEEEFloat &&rhs) { | 
 |   freeSignificand(); | 
 |  | 
 |   semantics = rhs.semantics; | 
 |   significand = rhs.significand; | 
 |   exponent = rhs.exponent; | 
 |   category = rhs.category; | 
 |   sign = rhs.sign; | 
 |  | 
 |   rhs.semantics = &semBogus; | 
 |   return *this; | 
 | } | 
 |  | 
 | bool IEEEFloat::isDenormal() const { | 
 |   return isFiniteNonZero() && (exponent == semantics->minExponent) && | 
 |          (APInt::tcExtractBit(significandParts(), | 
 |                               semantics->precision - 1) == 0); | 
 | } | 
 |  | 
 | bool IEEEFloat::isSmallest() const { | 
 |   // The smallest number by magnitude in our format will be the smallest | 
 |   // denormal, i.e. the floating point number with exponent being minimum | 
 |   // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0). | 
 |   return isFiniteNonZero() && exponent == semantics->minExponent && | 
 |     significandMSB() == 0; | 
 | } | 
 |  | 
 | bool IEEEFloat::isSignificandAllOnes() const { | 
 |   // Test if the significand excluding the integral bit is all ones. This allows | 
 |   // us to test for binade boundaries. | 
 |   const integerPart *Parts = significandParts(); | 
 |   const unsigned PartCount = partCount(); | 
 |   for (unsigned i = 0; i < PartCount - 1; i++) | 
 |     if (~Parts[i]) | 
 |       return false; | 
 |  | 
 |   // Set the unused high bits to all ones when we compare. | 
 |   const unsigned NumHighBits = | 
 |     PartCount*integerPartWidth - semantics->precision + 1; | 
 |   assert(NumHighBits <= integerPartWidth && "Can not have more high bits to " | 
 |          "fill than integerPartWidth"); | 
 |   const integerPart HighBitFill = | 
 |     ~integerPart(0) << (integerPartWidth - NumHighBits); | 
 |   if (~(Parts[PartCount - 1] | HighBitFill)) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool IEEEFloat::isSignificandAllZeros() const { | 
 |   // Test if the significand excluding the integral bit is all zeros. This | 
 |   // allows us to test for binade boundaries. | 
 |   const integerPart *Parts = significandParts(); | 
 |   const unsigned PartCount = partCount(); | 
 |  | 
 |   for (unsigned i = 0; i < PartCount - 1; i++) | 
 |     if (Parts[i]) | 
 |       return false; | 
 |  | 
 |   const unsigned NumHighBits = | 
 |     PartCount*integerPartWidth - semantics->precision + 1; | 
 |   assert(NumHighBits <= integerPartWidth && "Can not have more high bits to " | 
 |          "clear than integerPartWidth"); | 
 |   const integerPart HighBitMask = ~integerPart(0) >> NumHighBits; | 
 |  | 
 |   if (Parts[PartCount - 1] & HighBitMask) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool IEEEFloat::isLargest() const { | 
 |   // The largest number by magnitude in our format will be the floating point | 
 |   // number with maximum exponent and with significand that is all ones. | 
 |   return isFiniteNonZero() && exponent == semantics->maxExponent | 
 |     && isSignificandAllOnes(); | 
 | } | 
 |  | 
 | bool IEEEFloat::isInteger() const { | 
 |   // This could be made more efficient; I'm going for obviously correct. | 
 |   if (!isFinite()) return false; | 
 |   IEEEFloat truncated = *this; | 
 |   truncated.roundToIntegral(rmTowardZero); | 
 |   return compare(truncated) == cmpEqual; | 
 | } | 
 |  | 
 | bool IEEEFloat::bitwiseIsEqual(const IEEEFloat &rhs) const { | 
 |   if (this == &rhs) | 
 |     return true; | 
 |   if (semantics != rhs.semantics || | 
 |       category != rhs.category || | 
 |       sign != rhs.sign) | 
 |     return false; | 
 |   if (category==fcZero || category==fcInfinity) | 
 |     return true; | 
 |  | 
 |   if (isFiniteNonZero() && exponent != rhs.exponent) | 
 |     return false; | 
 |  | 
 |   return std::equal(significandParts(), significandParts() + partCount(), | 
 |                     rhs.significandParts()); | 
 | } | 
 |  | 
 | IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, integerPart value) { | 
 |   initialize(&ourSemantics); | 
 |   sign = 0; | 
 |   category = fcNormal; | 
 |   zeroSignificand(); | 
 |   exponent = ourSemantics.precision - 1; | 
 |   significandParts()[0] = value; | 
 |   normalize(rmNearestTiesToEven, lfExactlyZero); | 
 | } | 
 |  | 
 | IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics) { | 
 |   initialize(&ourSemantics); | 
 |   category = fcZero; | 
 |   sign = false; | 
 | } | 
 |  | 
 | // Delegate to the previous constructor, because later copy constructor may | 
 | // actually inspects category, which can't be garbage. | 
 | IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, uninitializedTag tag) | 
 |     : IEEEFloat(ourSemantics) {} | 
 |  | 
 | IEEEFloat::IEEEFloat(const IEEEFloat &rhs) { | 
 |   initialize(rhs.semantics); | 
 |   assign(rhs); | 
 | } | 
 |  | 
 | IEEEFloat::IEEEFloat(IEEEFloat &&rhs) : semantics(&semBogus) { | 
 |   *this = std::move(rhs); | 
 | } | 
 |  | 
 | IEEEFloat::~IEEEFloat() { freeSignificand(); } | 
 |  | 
 | unsigned int IEEEFloat::partCount() const { | 
 |   return partCountForBits(semantics->precision + 1); | 
 | } | 
 |  | 
 | const IEEEFloat::integerPart *IEEEFloat::significandParts() const { | 
 |   return const_cast<IEEEFloat *>(this)->significandParts(); | 
 | } | 
 |  | 
 | IEEEFloat::integerPart *IEEEFloat::significandParts() { | 
 |   if (partCount() > 1) | 
 |     return significand.parts; | 
 |   else | 
 |     return &significand.part; | 
 | } | 
 |  | 
 | void IEEEFloat::zeroSignificand() { | 
 |   APInt::tcSet(significandParts(), 0, partCount()); | 
 | } | 
 |  | 
 | /* Increment an fcNormal floating point number's significand.  */ | 
 | void IEEEFloat::incrementSignificand() { | 
 |   integerPart carry; | 
 |  | 
 |   carry = APInt::tcIncrement(significandParts(), partCount()); | 
 |  | 
 |   /* Our callers should never cause us to overflow.  */ | 
 |   assert(carry == 0); | 
 |   (void)carry; | 
 | } | 
 |  | 
 | /* Add the significand of the RHS.  Returns the carry flag.  */ | 
 | IEEEFloat::integerPart IEEEFloat::addSignificand(const IEEEFloat &rhs) { | 
 |   integerPart *parts; | 
 |  | 
 |   parts = significandParts(); | 
 |  | 
 |   assert(semantics == rhs.semantics); | 
 |   assert(exponent == rhs.exponent); | 
 |  | 
 |   return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount()); | 
 | } | 
 |  | 
 | /* Subtract the significand of the RHS with a borrow flag.  Returns | 
 |    the borrow flag.  */ | 
 | IEEEFloat::integerPart IEEEFloat::subtractSignificand(const IEEEFloat &rhs, | 
 |                                                       integerPart borrow) { | 
 |   integerPart *parts; | 
 |  | 
 |   parts = significandParts(); | 
 |  | 
 |   assert(semantics == rhs.semantics); | 
 |   assert(exponent == rhs.exponent); | 
 |  | 
 |   return APInt::tcSubtract(parts, rhs.significandParts(), borrow, | 
 |                            partCount()); | 
 | } | 
 |  | 
 | /* Multiply the significand of the RHS.  If ADDEND is non-NULL, add it | 
 |    on to the full-precision result of the multiplication.  Returns the | 
 |    lost fraction.  */ | 
 | lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs, | 
 |                                             const IEEEFloat *addend) { | 
 |   unsigned int omsb;        // One, not zero, based MSB. | 
 |   unsigned int partsCount, newPartsCount, precision; | 
 |   integerPart *lhsSignificand; | 
 |   integerPart scratch[4]; | 
 |   integerPart *fullSignificand; | 
 |   lostFraction lost_fraction; | 
 |   bool ignored; | 
 |  | 
 |   assert(semantics == rhs.semantics); | 
 |  | 
 |   precision = semantics->precision; | 
 |  | 
 |   // Allocate space for twice as many bits as the original significand, plus one | 
 |   // extra bit for the addition to overflow into. | 
 |   newPartsCount = partCountForBits(precision * 2 + 1); | 
 |  | 
 |   if (newPartsCount > 4) | 
 |     fullSignificand = new integerPart[newPartsCount]; | 
 |   else | 
 |     fullSignificand = scratch; | 
 |  | 
 |   lhsSignificand = significandParts(); | 
 |   partsCount = partCount(); | 
 |  | 
 |   APInt::tcFullMultiply(fullSignificand, lhsSignificand, | 
 |                         rhs.significandParts(), partsCount, partsCount); | 
 |  | 
 |   lost_fraction = lfExactlyZero; | 
 |   omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; | 
 |   exponent += rhs.exponent; | 
 |  | 
 |   // Assume the operands involved in the multiplication are single-precision | 
 |   // FP, and the two multiplicants are: | 
 |   //   *this = a23 . a22 ... a0 * 2^e1 | 
 |   //     rhs = b23 . b22 ... b0 * 2^e2 | 
 |   // the result of multiplication is: | 
 |   //   *this = c48 c47 c46 . c45 ... c0 * 2^(e1+e2) | 
 |   // Note that there are three significant bits at the left-hand side of the | 
 |   // radix point: two for the multiplication, and an overflow bit for the | 
 |   // addition (that will always be zero at this point). Move the radix point | 
 |   // toward left by two bits, and adjust exponent accordingly. | 
 |   exponent += 2; | 
 |  | 
 |   if (addend && addend->isNonZero()) { | 
 |     // The intermediate result of the multiplication has "2 * precision" | 
 |     // signicant bit; adjust the addend to be consistent with mul result. | 
 |     // | 
 |     Significand savedSignificand = significand; | 
 |     const fltSemantics *savedSemantics = semantics; | 
 |     fltSemantics extendedSemantics; | 
 |     opStatus status; | 
 |     unsigned int extendedPrecision; | 
 |  | 
 |     // Normalize our MSB to one below the top bit to allow for overflow. | 
 |     extendedPrecision = 2 * precision + 1; | 
 |     if (omsb != extendedPrecision - 1) { | 
 |       assert(extendedPrecision > omsb); | 
 |       APInt::tcShiftLeft(fullSignificand, newPartsCount, | 
 |                          (extendedPrecision - 1) - omsb); | 
 |       exponent -= (extendedPrecision - 1) - omsb; | 
 |     } | 
 |  | 
 |     /* Create new semantics.  */ | 
 |     extendedSemantics = *semantics; | 
 |     extendedSemantics.precision = extendedPrecision; | 
 |  | 
 |     if (newPartsCount == 1) | 
 |       significand.part = fullSignificand[0]; | 
 |     else | 
 |       significand.parts = fullSignificand; | 
 |     semantics = &extendedSemantics; | 
 |  | 
 |     IEEEFloat extendedAddend(*addend); | 
 |     status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored); | 
 |     assert(status == opOK); | 
 |     (void)status; | 
 |  | 
 |     // Shift the significand of the addend right by one bit. This guarantees | 
 |     // that the high bit of the significand is zero (same as fullSignificand), | 
 |     // so the addition will overflow (if it does overflow at all) into the top bit. | 
 |     lost_fraction = extendedAddend.shiftSignificandRight(1); | 
 |     assert(lost_fraction == lfExactlyZero && | 
 |            "Lost precision while shifting addend for fused-multiply-add."); | 
 |  | 
 |     lost_fraction = addOrSubtractSignificand(extendedAddend, false); | 
 |  | 
 |     /* Restore our state.  */ | 
 |     if (newPartsCount == 1) | 
 |       fullSignificand[0] = significand.part; | 
 |     significand = savedSignificand; | 
 |     semantics = savedSemantics; | 
 |  | 
 |     omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; | 
 |   } | 
 |  | 
 |   // Convert the result having "2 * precision" significant-bits back to the one | 
 |   // having "precision" significant-bits. First, move the radix point from | 
 |   // poision "2*precision - 1" to "precision - 1". The exponent need to be | 
 |   // adjusted by "2*precision - 1" - "precision - 1" = "precision". | 
 |   exponent -= precision + 1; | 
 |  | 
 |   // In case MSB resides at the left-hand side of radix point, shift the | 
 |   // mantissa right by some amount to make sure the MSB reside right before | 
 |   // the radix point (i.e. "MSB . rest-significant-bits"). | 
 |   // | 
 |   // Note that the result is not normalized when "omsb < precision". So, the | 
 |   // caller needs to call IEEEFloat::normalize() if normalized value is | 
 |   // expected. | 
 |   if (omsb > precision) { | 
 |     unsigned int bits, significantParts; | 
 |     lostFraction lf; | 
 |  | 
 |     bits = omsb - precision; | 
 |     significantParts = partCountForBits(omsb); | 
 |     lf = shiftRight(fullSignificand, significantParts, bits); | 
 |     lost_fraction = combineLostFractions(lf, lost_fraction); | 
 |     exponent += bits; | 
 |   } | 
 |  | 
 |   APInt::tcAssign(lhsSignificand, fullSignificand, partsCount); | 
 |  | 
 |   if (newPartsCount > 4) | 
 |     delete [] fullSignificand; | 
 |  | 
 |   return lost_fraction; | 
 | } | 
 |  | 
 | /* Multiply the significands of LHS and RHS to DST.  */ | 
 | lostFraction IEEEFloat::divideSignificand(const IEEEFloat &rhs) { | 
 |   unsigned int bit, i, partsCount; | 
 |   const integerPart *rhsSignificand; | 
 |   integerPart *lhsSignificand, *dividend, *divisor; | 
 |   integerPart scratch[4]; | 
 |   lostFraction lost_fraction; | 
 |  | 
 |   assert(semantics == rhs.semantics); | 
 |  | 
 |   lhsSignificand = significandParts(); | 
 |   rhsSignificand = rhs.significandParts(); | 
 |   partsCount = partCount(); | 
 |  | 
 |   if (partsCount > 2) | 
 |     dividend = new integerPart[partsCount * 2]; | 
 |   else | 
 |     dividend = scratch; | 
 |  | 
 |   divisor = dividend + partsCount; | 
 |  | 
 |   /* Copy the dividend and divisor as they will be modified in-place.  */ | 
 |   for (i = 0; i < partsCount; i++) { | 
 |     dividend[i] = lhsSignificand[i]; | 
 |     divisor[i] = rhsSignificand[i]; | 
 |     lhsSignificand[i] = 0; | 
 |   } | 
 |  | 
 |   exponent -= rhs.exponent; | 
 |  | 
 |   unsigned int precision = semantics->precision; | 
 |  | 
 |   /* Normalize the divisor.  */ | 
 |   bit = precision - APInt::tcMSB(divisor, partsCount) - 1; | 
 |   if (bit) { | 
 |     exponent += bit; | 
 |     APInt::tcShiftLeft(divisor, partsCount, bit); | 
 |   } | 
 |  | 
 |   /* Normalize the dividend.  */ | 
 |   bit = precision - APInt::tcMSB(dividend, partsCount) - 1; | 
 |   if (bit) { | 
 |     exponent -= bit; | 
 |     APInt::tcShiftLeft(dividend, partsCount, bit); | 
 |   } | 
 |  | 
 |   /* Ensure the dividend >= divisor initially for the loop below. | 
 |      Incidentally, this means that the division loop below is | 
 |      guaranteed to set the integer bit to one.  */ | 
 |   if (APInt::tcCompare(dividend, divisor, partsCount) < 0) { | 
 |     exponent--; | 
 |     APInt::tcShiftLeft(dividend, partsCount, 1); | 
 |     assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0); | 
 |   } | 
 |  | 
 |   /* Long division.  */ | 
 |   for (bit = precision; bit; bit -= 1) { | 
 |     if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) { | 
 |       APInt::tcSubtract(dividend, divisor, 0, partsCount); | 
 |       APInt::tcSetBit(lhsSignificand, bit - 1); | 
 |     } | 
 |  | 
 |     APInt::tcShiftLeft(dividend, partsCount, 1); | 
 |   } | 
 |  | 
 |   /* Figure out the lost fraction.  */ | 
 |   int cmp = APInt::tcCompare(dividend, divisor, partsCount); | 
 |  | 
 |   if (cmp > 0) | 
 |     lost_fraction = lfMoreThanHalf; | 
 |   else if (cmp == 0) | 
 |     lost_fraction = lfExactlyHalf; | 
 |   else if (APInt::tcIsZero(dividend, partsCount)) | 
 |     lost_fraction = lfExactlyZero; | 
 |   else | 
 |     lost_fraction = lfLessThanHalf; | 
 |  | 
 |   if (partsCount > 2) | 
 |     delete [] dividend; | 
 |  | 
 |   return lost_fraction; | 
 | } | 
 |  | 
 | unsigned int IEEEFloat::significandMSB() const { | 
 |   return APInt::tcMSB(significandParts(), partCount()); | 
 | } | 
 |  | 
 | unsigned int IEEEFloat::significandLSB() const { | 
 |   return APInt::tcLSB(significandParts(), partCount()); | 
 | } | 
 |  | 
 | /* Note that a zero result is NOT normalized to fcZero.  */ | 
 | lostFraction IEEEFloat::shiftSignificandRight(unsigned int bits) { | 
 |   /* Our exponent should not overflow.  */ | 
 |   assert((ExponentType) (exponent + bits) >= exponent); | 
 |  | 
 |   exponent += bits; | 
 |  | 
 |   return shiftRight(significandParts(), partCount(), bits); | 
 | } | 
 |  | 
 | /* Shift the significand left BITS bits, subtract BITS from its exponent.  */ | 
 | void IEEEFloat::shiftSignificandLeft(unsigned int bits) { | 
 |   assert(bits < semantics->precision); | 
 |  | 
 |   if (bits) { | 
 |     unsigned int partsCount = partCount(); | 
 |  | 
 |     APInt::tcShiftLeft(significandParts(), partsCount, bits); | 
 |     exponent -= bits; | 
 |  | 
 |     assert(!APInt::tcIsZero(significandParts(), partsCount)); | 
 |   } | 
 | } | 
 |  | 
 | IEEEFloat::cmpResult | 
 | IEEEFloat::compareAbsoluteValue(const IEEEFloat &rhs) const { | 
 |   int compare; | 
 |  | 
 |   assert(semantics == rhs.semantics); | 
 |   assert(isFiniteNonZero()); | 
 |   assert(rhs.isFiniteNonZero()); | 
 |  | 
 |   compare = exponent - rhs.exponent; | 
 |  | 
 |   /* If exponents are equal, do an unsigned bignum comparison of the | 
 |      significands.  */ | 
 |   if (compare == 0) | 
 |     compare = APInt::tcCompare(significandParts(), rhs.significandParts(), | 
 |                                partCount()); | 
 |  | 
 |   if (compare > 0) | 
 |     return cmpGreaterThan; | 
 |   else if (compare < 0) | 
 |     return cmpLessThan; | 
 |   else | 
 |     return cmpEqual; | 
 | } | 
 |  | 
 | /* Handle overflow.  Sign is preserved.  We either become infinity or | 
 |    the largest finite number.  */ | 
 | IEEEFloat::opStatus IEEEFloat::handleOverflow(roundingMode rounding_mode) { | 
 |   /* Infinity?  */ | 
 |   if (rounding_mode == rmNearestTiesToEven || | 
 |       rounding_mode == rmNearestTiesToAway || | 
 |       (rounding_mode == rmTowardPositive && !sign) || | 
 |       (rounding_mode == rmTowardNegative && sign)) { | 
 |     category = fcInfinity; | 
 |     return (opStatus) (opOverflow | opInexact); | 
 |   } | 
 |  | 
 |   /* Otherwise we become the largest finite number.  */ | 
 |   category = fcNormal; | 
 |   exponent = semantics->maxExponent; | 
 |   APInt::tcSetLeastSignificantBits(significandParts(), partCount(), | 
 |                                    semantics->precision); | 
 |  | 
 |   return opInexact; | 
 | } | 
 |  | 
 | /* Returns TRUE if, when truncating the current number, with BIT the | 
 |    new LSB, with the given lost fraction and rounding mode, the result | 
 |    would need to be rounded away from zero (i.e., by increasing the | 
 |    signficand).  This routine must work for fcZero of both signs, and | 
 |    fcNormal numbers.  */ | 
 | bool IEEEFloat::roundAwayFromZero(roundingMode rounding_mode, | 
 |                                   lostFraction lost_fraction, | 
 |                                   unsigned int bit) const { | 
 |   /* NaNs and infinities should not have lost fractions.  */ | 
 |   assert(isFiniteNonZero() || category == fcZero); | 
 |  | 
 |   /* Current callers never pass this so we don't handle it.  */ | 
 |   assert(lost_fraction != lfExactlyZero); | 
 |  | 
 |   switch (rounding_mode) { | 
 |   case rmNearestTiesToAway: | 
 |     return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf; | 
 |  | 
 |   case rmNearestTiesToEven: | 
 |     if (lost_fraction == lfMoreThanHalf) | 
 |       return true; | 
 |  | 
 |     /* Our zeroes don't have a significand to test.  */ | 
 |     if (lost_fraction == lfExactlyHalf && category != fcZero) | 
 |       return APInt::tcExtractBit(significandParts(), bit); | 
 |  | 
 |     return false; | 
 |  | 
 |   case rmTowardZero: | 
 |     return false; | 
 |  | 
 |   case rmTowardPositive: | 
 |     return !sign; | 
 |  | 
 |   case rmTowardNegative: | 
 |     return sign; | 
 |   } | 
 |   llvm_unreachable("Invalid rounding mode found"); | 
 | } | 
 |  | 
 | IEEEFloat::opStatus IEEEFloat::normalize(roundingMode rounding_mode, | 
 |                                          lostFraction lost_fraction) { | 
 |   unsigned int omsb;                /* One, not zero, based MSB.  */ | 
 |   int exponentChange; | 
 |  | 
 |   if (!isFiniteNonZero()) | 
 |     return opOK; | 
 |  | 
 |   /* Before rounding normalize the exponent of fcNormal numbers.  */ | 
 |   omsb = significandMSB() + 1; | 
 |  | 
 |   if (omsb) { | 
 |     /* OMSB is numbered from 1.  We want to place it in the integer | 
 |        bit numbered PRECISION if possible, with a compensating change in | 
 |        the exponent.  */ | 
 |     exponentChange = omsb - semantics->precision; | 
 |  | 
 |     /* If the resulting exponent is too high, overflow according to | 
 |        the rounding mode.  */ | 
 |     if (exponent + exponentChange > semantics->maxExponent) | 
 |       return handleOverflow(rounding_mode); | 
 |  | 
 |     /* Subnormal numbers have exponent minExponent, and their MSB | 
 |        is forced based on that.  */ | 
 |     if (exponent + exponentChange < semantics->minExponent) | 
 |       exponentChange = semantics->minExponent - exponent; | 
 |  | 
 |     /* Shifting left is easy as we don't lose precision.  */ | 
 |     if (exponentChange < 0) { | 
 |       assert(lost_fraction == lfExactlyZero); | 
 |  | 
 |       shiftSignificandLeft(-exponentChange); | 
 |  | 
 |       return opOK; | 
 |     } | 
 |  | 
 |     if (exponentChange > 0) { | 
 |       lostFraction lf; | 
 |  | 
 |       /* Shift right and capture any new lost fraction.  */ | 
 |       lf = shiftSignificandRight(exponentChange); | 
 |  | 
 |       lost_fraction = combineLostFractions(lf, lost_fraction); | 
 |  | 
 |       /* Keep OMSB up-to-date.  */ | 
 |       if (omsb > (unsigned) exponentChange) | 
 |         omsb -= exponentChange; | 
 |       else | 
 |         omsb = 0; | 
 |     } | 
 |   } | 
 |  | 
 |   /* Now round the number according to rounding_mode given the lost | 
 |      fraction.  */ | 
 |  | 
 |   /* As specified in IEEE 754, since we do not trap we do not report | 
 |      underflow for exact results.  */ | 
 |   if (lost_fraction == lfExactlyZero) { | 
 |     /* Canonicalize zeroes.  */ | 
 |     if (omsb == 0) | 
 |       category = fcZero; | 
 |  | 
 |     return opOK; | 
 |   } | 
 |  | 
 |   /* Increment the significand if we're rounding away from zero.  */ | 
 |   if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) { | 
 |     if (omsb == 0) | 
 |       exponent = semantics->minExponent; | 
 |  | 
 |     incrementSignificand(); | 
 |     omsb = significandMSB() + 1; | 
 |  | 
 |     /* Did the significand increment overflow?  */ | 
 |     if (omsb == (unsigned) semantics->precision + 1) { | 
 |       /* Renormalize by incrementing the exponent and shifting our | 
 |          significand right one.  However if we already have the | 
 |          maximum exponent we overflow to infinity.  */ | 
 |       if (exponent == semantics->maxExponent) { | 
 |         category = fcInfinity; | 
 |  | 
 |         return (opStatus) (opOverflow | opInexact); | 
 |       } | 
 |  | 
 |       shiftSignificandRight(1); | 
 |  | 
 |       return opInexact; | 
 |     } | 
 |   } | 
 |  | 
 |   /* The normal case - we were and are not denormal, and any | 
 |      significand increment above didn't overflow.  */ | 
 |   if (omsb == semantics->precision) | 
 |     return opInexact; | 
 |  | 
 |   /* We have a non-zero denormal.  */ | 
 |   assert(omsb < semantics->precision); | 
 |  | 
 |   /* Canonicalize zeroes.  */ | 
 |   if (omsb == 0) | 
 |     category = fcZero; | 
 |  | 
 |   /* The fcZero case is a denormal that underflowed to zero.  */ | 
 |   return (opStatus) (opUnderflow | opInexact); | 
 | } | 
 |  | 
 | IEEEFloat::opStatus IEEEFloat::addOrSubtractSpecials(const IEEEFloat &rhs, | 
 |                                                      bool subtract) { | 
 |   switch (PackCategoriesIntoKey(category, rhs.category)) { | 
 |   default: | 
 |     llvm_unreachable(nullptr); | 
 |  | 
 |   case PackCategoriesIntoKey(fcNaN, fcZero): | 
 |   case PackCategoriesIntoKey(fcNaN, fcNormal): | 
 |   case PackCategoriesIntoKey(fcNaN, fcInfinity): | 
 |   case PackCategoriesIntoKey(fcNaN, fcNaN): | 
 |   case PackCategoriesIntoKey(fcNormal, fcZero): | 
 |   case PackCategoriesIntoKey(fcInfinity, fcNormal): | 
 |   case PackCategoriesIntoKey(fcInfinity, fcZero): | 
 |     return opOK; | 
 |  | 
 |   case PackCategoriesIntoKey(fcZero, fcNaN): | 
 |   case PackCategoriesIntoKey(fcNormal, fcNaN): | 
 |   case PackCategoriesIntoKey(fcInfinity, fcNaN): | 
 |     // We need to be sure to flip the sign here for subtraction because we | 
 |     // don't have a separate negate operation so -NaN becomes 0 - NaN here. | 
 |     sign = rhs.sign ^ subtract; | 
 |     category = fcNaN; | 
 |     copySignificand(rhs); | 
 |     return opOK; | 
 |  | 
 |   case PackCategoriesIntoKey(fcNormal, fcInfinity): | 
 |   case PackCategoriesIntoKey(fcZero, fcInfinity): | 
 |     category = fcInfinity; | 
 |     sign = rhs.sign ^ subtract; | 
 |     return opOK; | 
 |  | 
 |   case PackCategoriesIntoKey(fcZero, fcNormal): | 
 |     assign(rhs); | 
 |     sign = rhs.sign ^ subtract; | 
 |     return opOK; | 
 |  | 
 |   case PackCategoriesIntoKey(fcZero, fcZero): | 
 |     /* Sign depends on rounding mode; handled by caller.  */ | 
 |     return opOK; | 
 |  | 
 |   case PackCategoriesIntoKey(fcInfinity, fcInfinity): | 
 |     /* Differently signed infinities can only be validly | 
 |        subtracted.  */ | 
 |     if (((sign ^ rhs.sign)!=0) != subtract) { | 
 |       makeNaN(); | 
 |       return opInvalidOp; | 
 |     } | 
 |  | 
 |     return opOK; | 
 |  | 
 |   case PackCategoriesIntoKey(fcNormal, fcNormal): | 
 |     return opDivByZero; | 
 |   } | 
 | } | 
 |  | 
 | /* Add or subtract two normal numbers.  */ | 
 | lostFraction IEEEFloat::addOrSubtractSignificand(const IEEEFloat &rhs, | 
 |                                                  bool subtract) { | 
 |   integerPart carry; | 
 |   lostFraction lost_fraction; | 
 |   int bits; | 
 |  | 
 |   /* Determine if the operation on the absolute values is effectively | 
 |      an addition or subtraction.  */ | 
 |   subtract ^= static_cast<bool>(sign ^ rhs.sign); | 
 |  | 
 |   /* Are we bigger exponent-wise than the RHS?  */ | 
 |   bits = exponent - rhs.exponent; | 
 |  | 
 |   /* Subtraction is more subtle than one might naively expect.  */ | 
 |   if (subtract) { | 
 |     IEEEFloat temp_rhs(rhs); | 
 |     bool reverse; | 
 |  | 
 |     if (bits == 0) { | 
 |       reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan; | 
 |       lost_fraction = lfExactlyZero; | 
 |     } else if (bits > 0) { | 
 |       lost_fraction = temp_rhs.shiftSignificandRight(bits - 1); | 
 |       shiftSignificandLeft(1); | 
 |       reverse = false; | 
 |     } else { | 
 |       lost_fraction = shiftSignificandRight(-bits - 1); | 
 |       temp_rhs.shiftSignificandLeft(1); | 
 |       reverse = true; | 
 |     } | 
 |  | 
 |     if (reverse) { | 
 |       carry = temp_rhs.subtractSignificand | 
 |         (*this, lost_fraction != lfExactlyZero); | 
 |       copySignificand(temp_rhs); | 
 |       sign = !sign; | 
 |     } else { | 
 |       carry = subtractSignificand | 
 |         (temp_rhs, lost_fraction != lfExactlyZero); | 
 |     } | 
 |  | 
 |     /* Invert the lost fraction - it was on the RHS and | 
 |        subtracted.  */ | 
 |     if (lost_fraction == lfLessThanHalf) | 
 |       lost_fraction = lfMoreThanHalf; | 
 |     else if (lost_fraction == lfMoreThanHalf) | 
 |       lost_fraction = lfLessThanHalf; | 
 |  | 
 |     /* The code above is intended to ensure that no borrow is | 
 |        necessary.  */ | 
 |     assert(!carry); | 
 |     (void)carry; | 
 |   } else { | 
 |     if (bits > 0) { | 
 |       IEEEFloat temp_rhs(rhs); | 
 |  | 
 |       lost_fraction = temp_rhs.shiftSignificandRight(bits); | 
 |       carry = addSignificand(temp_rhs); | 
 |     } else { | 
 |       lost_fraction = shiftSignificandRight(-bits); | 
 |       carry = addSignificand(rhs); | 
 |     } | 
 |  | 
 |     /* We have a guard bit; generating a carry cannot happen.  */ | 
 |     assert(!carry); | 
 |     (void)carry; | 
 |   } | 
 |  | 
 |   return lost_fraction; | 
 | } | 
 |  | 
 | IEEEFloat::opStatus IEEEFloat::multiplySpecials(const IEEEFloat &rhs) { | 
 |   switch (PackCategoriesIntoKey(category, rhs.category)) { | 
 |   default: | 
 |     llvm_unreachable(nullptr); | 
 |  | 
 |   case PackCategoriesIntoKey(fcNaN, fcZero): | 
 |   case PackCategoriesIntoKey(fcNaN, fcNormal): | 
 |   case PackCategoriesIntoKey(fcNaN, fcInfinity): | 
 |   case PackCategoriesIntoKey(fcNaN, fcNaN): | 
 |     sign = false; | 
 |     return opOK; | 
 |  | 
 |   case PackCategoriesIntoKey(fcZero, fcNaN): | 
 |   case PackCategoriesIntoKey(fcNormal, fcNaN): | 
 |   case PackCategoriesIntoKey(fcInfinity, fcNaN): | 
 |     sign = false; | 
 |     category = fcNaN; | 
 |     copySignificand(rhs); | 
 |     return opOK; | 
 |  | 
 |   case PackCategoriesIntoKey(fcNormal, fcInfinity): | 
 |   case PackCategoriesIntoKey(fcInfinity, fcNormal): | 
 |   case PackCategoriesIntoKey(fcInfinity, fcInfinity): | 
 |     category = fcInfinity; | 
 |     return opOK; | 
 |  | 
 |   case PackCategoriesIntoKey(fcZero, fcNormal): | 
 |   case PackCategoriesIntoKey(fcNormal, fcZero): | 
 |   case PackCategoriesIntoKey(fcZero, fcZero): | 
 |     category = fcZero; | 
 |     return opOK; | 
 |  | 
 |   case PackCategoriesIntoKey(fcZero, fcInfinity): | 
 |   case PackCategoriesIntoKey(fcInfinity, fcZero): | 
 |     makeNaN(); | 
 |     return opInvalidOp; | 
 |  | 
 |   case PackCategoriesIntoKey(fcNormal, fcNormal): | 
 |     return opOK; | 
 |   } | 
 | } | 
 |  | 
 | IEEEFloat::opStatus IEEEFloat::divideSpecials(const IEEEFloat &rhs) { | 
 |   switch (PackCategoriesIntoKey(category, rhs.category)) { | 
 |   default: | 
 |     llvm_unreachable(nullptr); | 
 |  | 
 |   case PackCategoriesIntoKey(fcZero, fcNaN): | 
 |   case PackCategoriesIntoKey(fcNormal, fcNaN): | 
 |   case PackCategoriesIntoKey(fcInfinity, fcNaN): | 
 |     category = fcNaN; | 
 |     copySignificand(rhs); | 
 |     LLVM_FALLTHROUGH; | 
 |   case PackCategoriesIntoKey(fcNaN, fcZero): | 
 |   case PackCategoriesIntoKey(fcNaN, fcNormal): | 
 |   case PackCategoriesIntoKey(fcNaN, fcInfinity): | 
 |   case PackCategoriesIntoKey(fcNaN, fcNaN): | 
 |     sign = false; | 
 |     LLVM_FALLTHROUGH; | 
 |   case PackCategoriesIntoKey(fcInfinity, fcZero): | 
 |   case PackCategoriesIntoKey(fcInfinity, fcNormal): | 
 |   case PackCategoriesIntoKey(fcZero, fcInfinity): | 
 |   case PackCategoriesIntoKey(fcZero, fcNormal): | 
 |     return opOK; | 
 |  | 
 |   case PackCategoriesIntoKey(fcNormal, fcInfinity): | 
 |     category = fcZero; | 
 |     return opOK; | 
 |  | 
 |   case PackCategoriesIntoKey(fcNormal, fcZero): | 
 |     category = fcInfinity; | 
 |     return opDivByZero; | 
 |  | 
 |   case PackCategoriesIntoKey(fcInfinity, fcInfinity): | 
 |   case PackCategoriesIntoKey(fcZero, fcZero): | 
 |     makeNaN(); | 
 |     return opInvalidOp; | 
 |  | 
 |   case PackCategoriesIntoKey(fcNormal, fcNormal): | 
 |     return opOK; | 
 |   } | 
 | } | 
 |  | 
 | IEEEFloat::opStatus IEEEFloat::modSpecials(const IEEEFloat &rhs) { | 
 |   switch (PackCategoriesIntoKey(category, rhs.category)) { | 
 |   default: | 
 |     llvm_unreachable(nullptr); | 
 |  | 
 |   case PackCategoriesIntoKey(fcNaN, fcZero): | 
 |   case PackCategoriesIntoKey(fcNaN, fcNormal): | 
 |   case PackCategoriesIntoKey(fcNaN, fcInfinity): | 
 |   case PackCategoriesIntoKey(fcNaN, fcNaN): | 
 |   case PackCategoriesIntoKey(fcZero, fcInfinity): | 
 |   case PackCategoriesIntoKey(fcZero, fcNormal): | 
 |   case PackCategoriesIntoKey(fcNormal, fcInfinity): | 
 |     return opOK; | 
 |  | 
 |   case PackCategoriesIntoKey(fcZero, fcNaN): | 
 |   case PackCategoriesIntoKey(fcNormal, fcNaN): | 
 |   case PackCategoriesIntoKey(fcInfinity, fcNaN): | 
 |     sign = false; | 
 |     category = fcNaN; | 
 |     copySignificand(rhs); | 
 |     return opOK; | 
 |  | 
 |   case PackCategoriesIntoKey(fcNormal, fcZero): | 
 |   case PackCategoriesIntoKey(fcInfinity, fcZero): | 
 |   case PackCategoriesIntoKey(fcInfinity, fcNormal): | 
 |   case PackCategoriesIntoKey(fcInfinity, fcInfinity): | 
 |   case PackCategoriesIntoKey(fcZero, fcZero): | 
 |     makeNaN(); | 
 |     return opInvalidOp; | 
 |  | 
 |   case PackCategoriesIntoKey(fcNormal, fcNormal): | 
 |     return opOK; | 
 |   } | 
 | } | 
 |  | 
 | /* Change sign.  */ | 
 | void IEEEFloat::changeSign() { | 
 |   /* Look mummy, this one's easy.  */ | 
 |   sign = !sign; | 
 | } | 
 |  | 
 | /* Normalized addition or subtraction.  */ | 
 | IEEEFloat::opStatus IEEEFloat::addOrSubtract(const IEEEFloat &rhs, | 
 |                                              roundingMode rounding_mode, | 
 |                                              bool subtract) { | 
 |   opStatus fs; | 
 |  | 
 |   fs = addOrSubtractSpecials(rhs, subtract); | 
 |  | 
 |   /* This return code means it was not a simple case.  */ | 
 |   if (fs == opDivByZero) { | 
 |     lostFraction lost_fraction; | 
 |  | 
 |     lost_fraction = addOrSubtractSignificand(rhs, subtract); | 
 |     fs = normalize(rounding_mode, lost_fraction); | 
 |  | 
 |     /* Can only be zero if we lost no fraction.  */ | 
 |     assert(category != fcZero || lost_fraction == lfExactlyZero); | 
 |   } | 
 |  | 
 |   /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a | 
 |      positive zero unless rounding to minus infinity, except that | 
 |      adding two like-signed zeroes gives that zero.  */ | 
 |   if (category == fcZero) { | 
 |     if (rhs.category != fcZero || (sign == rhs.sign) == subtract) | 
 |       sign = (rounding_mode == rmTowardNegative); | 
 |   } | 
 |  | 
 |   return fs; | 
 | } | 
 |  | 
 | /* Normalized addition.  */ | 
 | IEEEFloat::opStatus IEEEFloat::add(const IEEEFloat &rhs, | 
 |                                    roundingMode rounding_mode) { | 
 |   return addOrSubtract(rhs, rounding_mode, false); | 
 | } | 
 |  | 
 | /* Normalized subtraction.  */ | 
 | IEEEFloat::opStatus IEEEFloat::subtract(const IEEEFloat &rhs, | 
 |                                         roundingMode rounding_mode) { | 
 |   return addOrSubtract(rhs, rounding_mode, true); | 
 | } | 
 |  | 
 | /* Normalized multiply.  */ | 
 | IEEEFloat::opStatus IEEEFloat::multiply(const IEEEFloat &rhs, | 
 |                                         roundingMode rounding_mode) { | 
 |   opStatus fs; | 
 |  | 
 |   sign ^= rhs.sign; | 
 |   fs = multiplySpecials(rhs); | 
 |  | 
 |   if (isFiniteNonZero()) { | 
 |     lostFraction lost_fraction = multiplySignificand(rhs, nullptr); | 
 |     fs = normalize(rounding_mode, lost_fraction); | 
 |     if (lost_fraction != lfExactlyZero) | 
 |       fs = (opStatus) (fs | opInexact); | 
 |   } | 
 |  | 
 |   return fs; | 
 | } | 
 |  | 
 | /* Normalized divide.  */ | 
 | IEEEFloat::opStatus IEEEFloat::divide(const IEEEFloat &rhs, | 
 |                                       roundingMode rounding_mode) { | 
 |   opStatus fs; | 
 |  | 
 |   sign ^= rhs.sign; | 
 |   fs = divideSpecials(rhs); | 
 |  | 
 |   if (isFiniteNonZero()) { | 
 |     lostFraction lost_fraction = divideSignificand(rhs); | 
 |     fs = normalize(rounding_mode, lost_fraction); | 
 |     if (lost_fraction != lfExactlyZero) | 
 |       fs = (opStatus) (fs | opInexact); | 
 |   } | 
 |  | 
 |   return fs; | 
 | } | 
 |  | 
 | /* Normalized remainder.  This is not currently correct in all cases.  */ | 
 | IEEEFloat::opStatus IEEEFloat::remainder(const IEEEFloat &rhs) { | 
 |   opStatus fs; | 
 |   IEEEFloat V = *this; | 
 |   unsigned int origSign = sign; | 
 |  | 
 |   fs = V.divide(rhs, rmNearestTiesToEven); | 
 |   if (fs == opDivByZero) | 
 |     return fs; | 
 |  | 
 |   int parts = partCount(); | 
 |   integerPart *x = new integerPart[parts]; | 
 |   bool ignored; | 
 |   fs = V.convertToInteger(makeMutableArrayRef(x, parts), | 
 |                           parts * integerPartWidth, true, rmNearestTiesToEven, | 
 |                           &ignored); | 
 |   if (fs == opInvalidOp) { | 
 |     delete[] x; | 
 |     return fs; | 
 |   } | 
 |  | 
 |   fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true, | 
 |                                         rmNearestTiesToEven); | 
 |   assert(fs==opOK);   // should always work | 
 |  | 
 |   fs = V.multiply(rhs, rmNearestTiesToEven); | 
 |   assert(fs==opOK || fs==opInexact);   // should not overflow or underflow | 
 |  | 
 |   fs = subtract(V, rmNearestTiesToEven); | 
 |   assert(fs==opOK || fs==opInexact);   // likewise | 
 |  | 
 |   if (isZero()) | 
 |     sign = origSign;    // IEEE754 requires this | 
 |   delete[] x; | 
 |   return fs; | 
 | } | 
 |  | 
 | /* Normalized llvm frem (C fmod). */ | 
 | IEEEFloat::opStatus IEEEFloat::mod(const IEEEFloat &rhs) { | 
 |   opStatus fs; | 
 |   fs = modSpecials(rhs); | 
 |   unsigned int origSign = sign; | 
 |  | 
 |   while (isFiniteNonZero() && rhs.isFiniteNonZero() && | 
 |          compareAbsoluteValue(rhs) != cmpLessThan) { | 
 |     IEEEFloat V = scalbn(rhs, ilogb(*this) - ilogb(rhs), rmNearestTiesToEven); | 
 |     if (compareAbsoluteValue(V) == cmpLessThan) | 
 |       V = scalbn(V, -1, rmNearestTiesToEven); | 
 |     V.sign = sign; | 
 |  | 
 |     fs = subtract(V, rmNearestTiesToEven); | 
 |     assert(fs==opOK); | 
 |   } | 
 |   if (isZero()) | 
 |     sign = origSign; // fmod requires this | 
 |   return fs; | 
 | } | 
 |  | 
 | /* Normalized fused-multiply-add.  */ | 
 | IEEEFloat::opStatus IEEEFloat::fusedMultiplyAdd(const IEEEFloat &multiplicand, | 
 |                                                 const IEEEFloat &addend, | 
 |                                                 roundingMode rounding_mode) { | 
 |   opStatus fs; | 
 |  | 
 |   /* Post-multiplication sign, before addition.  */ | 
 |   sign ^= multiplicand.sign; | 
 |  | 
 |   /* If and only if all arguments are normal do we need to do an | 
 |      extended-precision calculation.  */ | 
 |   if (isFiniteNonZero() && | 
 |       multiplicand.isFiniteNonZero() && | 
 |       addend.isFinite()) { | 
 |     lostFraction lost_fraction; | 
 |  | 
 |     lost_fraction = multiplySignificand(multiplicand, &addend); | 
 |     fs = normalize(rounding_mode, lost_fraction); | 
 |     if (lost_fraction != lfExactlyZero) | 
 |       fs = (opStatus) (fs | opInexact); | 
 |  | 
 |     /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a | 
 |        positive zero unless rounding to minus infinity, except that | 
 |        adding two like-signed zeroes gives that zero.  */ | 
 |     if (category == fcZero && !(fs & opUnderflow) && sign != addend.sign) | 
 |       sign = (rounding_mode == rmTowardNegative); | 
 |   } else { | 
 |     fs = multiplySpecials(multiplicand); | 
 |  | 
 |     /* FS can only be opOK or opInvalidOp.  There is no more work | 
 |        to do in the latter case.  The IEEE-754R standard says it is | 
 |        implementation-defined in this case whether, if ADDEND is a | 
 |        quiet NaN, we raise invalid op; this implementation does so. | 
 |  | 
 |        If we need to do the addition we can do so with normal | 
 |        precision.  */ | 
 |     if (fs == opOK) | 
 |       fs = addOrSubtract(addend, rounding_mode, false); | 
 |   } | 
 |  | 
 |   return fs; | 
 | } | 
 |  | 
 | /* Rounding-mode corrrect round to integral value.  */ | 
 | IEEEFloat::opStatus IEEEFloat::roundToIntegral(roundingMode rounding_mode) { | 
 |   opStatus fs; | 
 |  | 
 |   // If the exponent is large enough, we know that this value is already | 
 |   // integral, and the arithmetic below would potentially cause it to saturate | 
 |   // to +/-Inf.  Bail out early instead. | 
 |   if (isFiniteNonZero() && exponent+1 >= (int)semanticsPrecision(*semantics)) | 
 |     return opOK; | 
 |  | 
 |   // The algorithm here is quite simple: we add 2^(p-1), where p is the | 
 |   // precision of our format, and then subtract it back off again.  The choice | 
 |   // of rounding modes for the addition/subtraction determines the rounding mode | 
 |   // for our integral rounding as well. | 
 |   // NOTE: When the input value is negative, we do subtraction followed by | 
 |   // addition instead. | 
 |   APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1); | 
 |   IntegerConstant <<= semanticsPrecision(*semantics)-1; | 
 |   IEEEFloat MagicConstant(*semantics); | 
 |   fs = MagicConstant.convertFromAPInt(IntegerConstant, false, | 
 |                                       rmNearestTiesToEven); | 
 |   MagicConstant.sign = sign; | 
 |  | 
 |   if (fs != opOK) | 
 |     return fs; | 
 |  | 
 |   // Preserve the input sign so that we can handle 0.0/-0.0 cases correctly. | 
 |   bool inputSign = isNegative(); | 
 |  | 
 |   fs = add(MagicConstant, rounding_mode); | 
 |   if (fs != opOK && fs != opInexact) | 
 |     return fs; | 
 |  | 
 |   fs = subtract(MagicConstant, rounding_mode); | 
 |  | 
 |   // Restore the input sign. | 
 |   if (inputSign != isNegative()) | 
 |     changeSign(); | 
 |  | 
 |   return fs; | 
 | } | 
 |  | 
 |  | 
 | /* Comparison requires normalized numbers.  */ | 
 | IEEEFloat::cmpResult IEEEFloat::compare(const IEEEFloat &rhs) const { | 
 |   cmpResult result; | 
 |  | 
 |   assert(semantics == rhs.semantics); | 
 |  | 
 |   switch (PackCategoriesIntoKey(category, rhs.category)) { | 
 |   default: | 
 |     llvm_unreachable(nullptr); | 
 |  | 
 |   case PackCategoriesIntoKey(fcNaN, fcZero): | 
 |   case PackCategoriesIntoKey(fcNaN, fcNormal): | 
 |   case PackCategoriesIntoKey(fcNaN, fcInfinity): | 
 |   case PackCategoriesIntoKey(fcNaN, fcNaN): | 
 |   case PackCategoriesIntoKey(fcZero, fcNaN): | 
 |   case PackCategoriesIntoKey(fcNormal, fcNaN): | 
 |   case PackCategoriesIntoKey(fcInfinity, fcNaN): | 
 |     return cmpUnordered; | 
 |  | 
 |   case PackCategoriesIntoKey(fcInfinity, fcNormal): | 
 |   case PackCategoriesIntoKey(fcInfinity, fcZero): | 
 |   case PackCategoriesIntoKey(fcNormal, fcZero): | 
 |     if (sign) | 
 |       return cmpLessThan; | 
 |     else | 
 |       return cmpGreaterThan; | 
 |  | 
 |   case PackCategoriesIntoKey(fcNormal, fcInfinity): | 
 |   case PackCategoriesIntoKey(fcZero, fcInfinity): | 
 |   case PackCategoriesIntoKey(fcZero, fcNormal): | 
 |     if (rhs.sign) | 
 |       return cmpGreaterThan; | 
 |     else | 
 |       return cmpLessThan; | 
 |  | 
 |   case PackCategoriesIntoKey(fcInfinity, fcInfinity): | 
 |     if (sign == rhs.sign) | 
 |       return cmpEqual; | 
 |     else if (sign) | 
 |       return cmpLessThan; | 
 |     else | 
 |       return cmpGreaterThan; | 
 |  | 
 |   case PackCategoriesIntoKey(fcZero, fcZero): | 
 |     return cmpEqual; | 
 |  | 
 |   case PackCategoriesIntoKey(fcNormal, fcNormal): | 
 |     break; | 
 |   } | 
 |  | 
 |   /* Two normal numbers.  Do they have the same sign?  */ | 
 |   if (sign != rhs.sign) { | 
 |     if (sign) | 
 |       result = cmpLessThan; | 
 |     else | 
 |       result = cmpGreaterThan; | 
 |   } else { | 
 |     /* Compare absolute values; invert result if negative.  */ | 
 |     result = compareAbsoluteValue(rhs); | 
 |  | 
 |     if (sign) { | 
 |       if (result == cmpLessThan) | 
 |         result = cmpGreaterThan; | 
 |       else if (result == cmpGreaterThan) | 
 |         result = cmpLessThan; | 
 |     } | 
 |   } | 
 |  | 
 |   return result; | 
 | } | 
 |  | 
 | /// IEEEFloat::convert - convert a value of one floating point type to another. | 
 | /// The return value corresponds to the IEEE754 exceptions.  *losesInfo | 
 | /// records whether the transformation lost information, i.e. whether | 
 | /// converting the result back to the original type will produce the | 
 | /// original value (this is almost the same as return value==fsOK, but there | 
 | /// are edge cases where this is not so). | 
 |  | 
 | IEEEFloat::opStatus IEEEFloat::convert(const fltSemantics &toSemantics, | 
 |                                        roundingMode rounding_mode, | 
 |                                        bool *losesInfo) { | 
 |   lostFraction lostFraction; | 
 |   unsigned int newPartCount, oldPartCount; | 
 |   opStatus fs; | 
 |   int shift; | 
 |   const fltSemantics &fromSemantics = *semantics; | 
 |  | 
 |   lostFraction = lfExactlyZero; | 
 |   newPartCount = partCountForBits(toSemantics.precision + 1); | 
 |   oldPartCount = partCount(); | 
 |   shift = toSemantics.precision - fromSemantics.precision; | 
 |  | 
 |   bool X86SpecialNan = false; | 
 |   if (&fromSemantics == &semX87DoubleExtended && | 
 |       &toSemantics != &semX87DoubleExtended && category == fcNaN && | 
 |       (!(*significandParts() & 0x8000000000000000ULL) || | 
 |        !(*significandParts() & 0x4000000000000000ULL))) { | 
 |     // x86 has some unusual NaNs which cannot be represented in any other | 
 |     // format; note them here. | 
 |     X86SpecialNan = true; | 
 |   } | 
 |  | 
 |   // If this is a truncation of a denormal number, and the target semantics | 
 |   // has larger exponent range than the source semantics (this can happen | 
 |   // when truncating from PowerPC double-double to double format), the | 
 |   // right shift could lose result mantissa bits.  Adjust exponent instead | 
 |   // of performing excessive shift. | 
 |   if (shift < 0 && isFiniteNonZero()) { | 
 |     int exponentChange = significandMSB() + 1 - fromSemantics.precision; | 
 |     if (exponent + exponentChange < toSemantics.minExponent) | 
 |       exponentChange = toSemantics.minExponent - exponent; | 
 |     if (exponentChange < shift) | 
 |       exponentChange = shift; | 
 |     if (exponentChange < 0) { | 
 |       shift -= exponentChange; | 
 |       exponent += exponentChange; | 
 |     } | 
 |   } | 
 |  | 
 |   // If this is a truncation, perform the shift before we narrow the storage. | 
 |   if (shift < 0 && (isFiniteNonZero() || category==fcNaN)) | 
 |     lostFraction = shiftRight(significandParts(), oldPartCount, -shift); | 
 |  | 
 |   // Fix the storage so it can hold to new value. | 
 |   if (newPartCount > oldPartCount) { | 
 |     // The new type requires more storage; make it available. | 
 |     integerPart *newParts; | 
 |     newParts = new integerPart[newPartCount]; | 
 |     APInt::tcSet(newParts, 0, newPartCount); | 
 |     if (isFiniteNonZero() || category==fcNaN) | 
 |       APInt::tcAssign(newParts, significandParts(), oldPartCount); | 
 |     freeSignificand(); | 
 |     significand.parts = newParts; | 
 |   } else if (newPartCount == 1 && oldPartCount != 1) { | 
 |     // Switch to built-in storage for a single part. | 
 |     integerPart newPart = 0; | 
 |     if (isFiniteNonZero() || category==fcNaN) | 
 |       newPart = significandParts()[0]; | 
 |     freeSignificand(); | 
 |     significand.part = newPart; | 
 |   } | 
 |  | 
 |   // Now that we have the right storage, switch the semantics. | 
 |   semantics = &toSemantics; | 
 |  | 
 |   // If this is an extension, perform the shift now that the storage is | 
 |   // available. | 
 |   if (shift > 0 && (isFiniteNonZero() || category==fcNaN)) | 
 |     APInt::tcShiftLeft(significandParts(), newPartCount, shift); | 
 |  | 
 |   if (isFiniteNonZero()) { | 
 |     fs = normalize(rounding_mode, lostFraction); | 
 |     *losesInfo = (fs != opOK); | 
 |   } else if (category == fcNaN) { | 
 |     *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan; | 
 |  | 
 |     // For x87 extended precision, we want to make a NaN, not a special NaN if | 
 |     // the input wasn't special either. | 
 |     if (!X86SpecialNan && semantics == &semX87DoubleExtended) | 
 |       APInt::tcSetBit(significandParts(), semantics->precision - 1); | 
 |  | 
 |     // gcc forces the Quiet bit on, which means (float)(double)(float_sNan) | 
 |     // does not give you back the same bits.  This is dubious, and we | 
 |     // don't currently do it.  You're really supposed to get | 
 |     // an invalid operation signal at runtime, but nobody does that. | 
 |     fs = opOK; | 
 |   } else { | 
 |     *losesInfo = false; | 
 |     fs = opOK; | 
 |   } | 
 |  | 
 |   return fs; | 
 | } | 
 |  | 
 | /* Convert a floating point number to an integer according to the | 
 |    rounding mode.  If the rounded integer value is out of range this | 
 |    returns an invalid operation exception and the contents of the | 
 |    destination parts are unspecified.  If the rounded value is in | 
 |    range but the floating point number is not the exact integer, the C | 
 |    standard doesn't require an inexact exception to be raised.  IEEE | 
 |    854 does require it so we do that. | 
 |  | 
 |    Note that for conversions to integer type the C standard requires | 
 |    round-to-zero to always be used.  */ | 
 | IEEEFloat::opStatus IEEEFloat::convertToSignExtendedInteger( | 
 |     MutableArrayRef<integerPart> parts, unsigned int width, bool isSigned, | 
 |     roundingMode rounding_mode, bool *isExact) const { | 
 |   lostFraction lost_fraction; | 
 |   const integerPart *src; | 
 |   unsigned int dstPartsCount, truncatedBits; | 
 |  | 
 |   *isExact = false; | 
 |  | 
 |   /* Handle the three special cases first.  */ | 
 |   if (category == fcInfinity || category == fcNaN) | 
 |     return opInvalidOp; | 
 |  | 
 |   dstPartsCount = partCountForBits(width); | 
 |   assert(dstPartsCount <= parts.size() && "Integer too big"); | 
 |  | 
 |   if (category == fcZero) { | 
 |     APInt::tcSet(parts.data(), 0, dstPartsCount); | 
 |     // Negative zero can't be represented as an int. | 
 |     *isExact = !sign; | 
 |     return opOK; | 
 |   } | 
 |  | 
 |   src = significandParts(); | 
 |  | 
 |   /* Step 1: place our absolute value, with any fraction truncated, in | 
 |      the destination.  */ | 
 |   if (exponent < 0) { | 
 |     /* Our absolute value is less than one; truncate everything.  */ | 
 |     APInt::tcSet(parts.data(), 0, dstPartsCount); | 
 |     /* For exponent -1 the integer bit represents .5, look at that. | 
 |        For smaller exponents leftmost truncated bit is 0. */ | 
 |     truncatedBits = semantics->precision -1U - exponent; | 
 |   } else { | 
 |     /* We want the most significant (exponent + 1) bits; the rest are | 
 |        truncated.  */ | 
 |     unsigned int bits = exponent + 1U; | 
 |  | 
 |     /* Hopelessly large in magnitude?  */ | 
 |     if (bits > width) | 
 |       return opInvalidOp; | 
 |  | 
 |     if (bits < semantics->precision) { | 
 |       /* We truncate (semantics->precision - bits) bits.  */ | 
 |       truncatedBits = semantics->precision - bits; | 
 |       APInt::tcExtract(parts.data(), dstPartsCount, src, bits, truncatedBits); | 
 |     } else { | 
 |       /* We want at least as many bits as are available.  */ | 
 |       APInt::tcExtract(parts.data(), dstPartsCount, src, semantics->precision, | 
 |                        0); | 
 |       APInt::tcShiftLeft(parts.data(), dstPartsCount, | 
 |                          bits - semantics->precision); | 
 |       truncatedBits = 0; | 
 |     } | 
 |   } | 
 |  | 
 |   /* Step 2: work out any lost fraction, and increment the absolute | 
 |      value if we would round away from zero.  */ | 
 |   if (truncatedBits) { | 
 |     lost_fraction = lostFractionThroughTruncation(src, partCount(), | 
 |                                                   truncatedBits); | 
 |     if (lost_fraction != lfExactlyZero && | 
 |         roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) { | 
 |       if (APInt::tcIncrement(parts.data(), dstPartsCount)) | 
 |         return opInvalidOp;     /* Overflow.  */ | 
 |     } | 
 |   } else { | 
 |     lost_fraction = lfExactlyZero; | 
 |   } | 
 |  | 
 |   /* Step 3: check if we fit in the destination.  */ | 
 |   unsigned int omsb = APInt::tcMSB(parts.data(), dstPartsCount) + 1; | 
 |  | 
 |   if (sign) { | 
 |     if (!isSigned) { | 
 |       /* Negative numbers cannot be represented as unsigned.  */ | 
 |       if (omsb != 0) | 
 |         return opInvalidOp; | 
 |     } else { | 
 |       /* It takes omsb bits to represent the unsigned integer value. | 
 |          We lose a bit for the sign, but care is needed as the | 
 |          maximally negative integer is a special case.  */ | 
 |       if (omsb == width && | 
 |           APInt::tcLSB(parts.data(), dstPartsCount) + 1 != omsb) | 
 |         return opInvalidOp; | 
 |  | 
 |       /* This case can happen because of rounding.  */ | 
 |       if (omsb > width) | 
 |         return opInvalidOp; | 
 |     } | 
 |  | 
 |     APInt::tcNegate (parts.data(), dstPartsCount); | 
 |   } else { | 
 |     if (omsb >= width + !isSigned) | 
 |       return opInvalidOp; | 
 |   } | 
 |  | 
 |   if (lost_fraction == lfExactlyZero) { | 
 |     *isExact = true; | 
 |     return opOK; | 
 |   } else | 
 |     return opInexact; | 
 | } | 
 |  | 
 | /* Same as convertToSignExtendedInteger, except we provide | 
 |    deterministic values in case of an invalid operation exception, | 
 |    namely zero for NaNs and the minimal or maximal value respectively | 
 |    for underflow or overflow. | 
 |    The *isExact output tells whether the result is exact, in the sense | 
 |    that converting it back to the original floating point type produces | 
 |    the original value.  This is almost equivalent to result==opOK, | 
 |    except for negative zeroes. | 
 | */ | 
 | IEEEFloat::opStatus | 
 | IEEEFloat::convertToInteger(MutableArrayRef<integerPart> parts, | 
 |                             unsigned int width, bool isSigned, | 
 |                             roundingMode rounding_mode, bool *isExact) const { | 
 |   opStatus fs; | 
 |  | 
 |   fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode, | 
 |                                     isExact); | 
 |  | 
 |   if (fs == opInvalidOp) { | 
 |     unsigned int bits, dstPartsCount; | 
 |  | 
 |     dstPartsCount = partCountForBits(width); | 
 |     assert(dstPartsCount <= parts.size() && "Integer too big"); | 
 |  | 
 |     if (category == fcNaN) | 
 |       bits = 0; | 
 |     else if (sign) | 
 |       bits = isSigned; | 
 |     else | 
 |       bits = width - isSigned; | 
 |  | 
 |     APInt::tcSetLeastSignificantBits(parts.data(), dstPartsCount, bits); | 
 |     if (sign && isSigned) | 
 |       APInt::tcShiftLeft(parts.data(), dstPartsCount, width - 1); | 
 |   } | 
 |  | 
 |   return fs; | 
 | } | 
 |  | 
 | /* Convert an unsigned integer SRC to a floating point number, | 
 |    rounding according to ROUNDING_MODE.  The sign of the floating | 
 |    point number is not modified.  */ | 
 | IEEEFloat::opStatus IEEEFloat::convertFromUnsignedParts( | 
 |     const integerPart *src, unsigned int srcCount, roundingMode rounding_mode) { | 
 |   unsigned int omsb, precision, dstCount; | 
 |   integerPart *dst; | 
 |   lostFraction lost_fraction; | 
 |  | 
 |   category = fcNormal; | 
 |   omsb = APInt::tcMSB(src, srcCount) + 1; | 
 |   dst = significandParts(); | 
 |   dstCount = partCount(); | 
 |   precision = semantics->precision; | 
 |  | 
 |   /* We want the most significant PRECISION bits of SRC.  There may not | 
 |      be that many; extract what we can.  */ | 
 |   if (precision <= omsb) { | 
 |     exponent = omsb - 1; | 
 |     lost_fraction = lostFractionThroughTruncation(src, srcCount, | 
 |                                                   omsb - precision); | 
 |     APInt::tcExtract(dst, dstCount, src, precision, omsb - precision); | 
 |   } else { | 
 |     exponent = precision - 1; | 
 |     lost_fraction = lfExactlyZero; | 
 |     APInt::tcExtract(dst, dstCount, src, omsb, 0); | 
 |   } | 
 |  | 
 |   return normalize(rounding_mode, lost_fraction); | 
 | } | 
 |  | 
 | IEEEFloat::opStatus IEEEFloat::convertFromAPInt(const APInt &Val, bool isSigned, | 
 |                                                 roundingMode rounding_mode) { | 
 |   unsigned int partCount = Val.getNumWords(); | 
 |   APInt api = Val; | 
 |  | 
 |   sign = false; | 
 |   if (isSigned && api.isNegative()) { | 
 |     sign = true; | 
 |     api = -api; | 
 |   } | 
 |  | 
 |   return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); | 
 | } | 
 |  | 
 | /* Convert a two's complement integer SRC to a floating point number, | 
 |    rounding according to ROUNDING_MODE.  ISSIGNED is true if the | 
 |    integer is signed, in which case it must be sign-extended.  */ | 
 | IEEEFloat::opStatus | 
 | IEEEFloat::convertFromSignExtendedInteger(const integerPart *src, | 
 |                                           unsigned int srcCount, bool isSigned, | 
 |                                           roundingMode rounding_mode) { | 
 |   opStatus status; | 
 |  | 
 |   if (isSigned && | 
 |       APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) { | 
 |     integerPart *copy; | 
 |  | 
 |     /* If we're signed and negative negate a copy.  */ | 
 |     sign = true; | 
 |     copy = new integerPart[srcCount]; | 
 |     APInt::tcAssign(copy, src, srcCount); | 
 |     APInt::tcNegate(copy, srcCount); | 
 |     status = convertFromUnsignedParts(copy, srcCount, rounding_mode); | 
 |     delete [] copy; | 
 |   } else { | 
 |     sign = false; | 
 |     status = convertFromUnsignedParts(src, srcCount, rounding_mode); | 
 |   } | 
 |  | 
 |   return status; | 
 | } | 
 |  | 
 | /* FIXME: should this just take a const APInt reference?  */ | 
 | IEEEFloat::opStatus | 
 | IEEEFloat::convertFromZeroExtendedInteger(const integerPart *parts, | 
 |                                           unsigned int width, bool isSigned, | 
 |                                           roundingMode rounding_mode) { | 
 |   unsigned int partCount = partCountForBits(width); | 
 |   APInt api = APInt(width, makeArrayRef(parts, partCount)); | 
 |  | 
 |   sign = false; | 
 |   if (isSigned && APInt::tcExtractBit(parts, width - 1)) { | 
 |     sign = true; | 
 |     api = -api; | 
 |   } | 
 |  | 
 |   return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); | 
 | } | 
 |  | 
 | IEEEFloat::opStatus | 
 | IEEEFloat::convertFromHexadecimalString(StringRef s, | 
 |                                         roundingMode rounding_mode) { | 
 |   lostFraction lost_fraction = lfExactlyZero; | 
 |  | 
 |   category = fcNormal; | 
 |   zeroSignificand(); | 
 |   exponent = 0; | 
 |  | 
 |   integerPart *significand = significandParts(); | 
 |   unsigned partsCount = partCount(); | 
 |   unsigned bitPos = partsCount * integerPartWidth; | 
 |   bool computedTrailingFraction = false; | 
 |  | 
 |   // Skip leading zeroes and any (hexa)decimal point. | 
 |   StringRef::iterator begin = s.begin(); | 
 |   StringRef::iterator end = s.end(); | 
 |   StringRef::iterator dot; | 
 |   StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot); | 
 |   StringRef::iterator firstSignificantDigit = p; | 
 |  | 
 |   while (p != end) { | 
 |     integerPart hex_value; | 
 |  | 
 |     if (*p == '.') { | 
 |       assert(dot == end && "String contains multiple dots"); | 
 |       dot = p++; | 
 |       continue; | 
 |     } | 
 |  | 
 |     hex_value = hexDigitValue(*p); | 
 |     if (hex_value == -1U) | 
 |       break; | 
 |  | 
 |     p++; | 
 |  | 
 |     // Store the number while we have space. | 
 |     if (bitPos) { | 
 |       bitPos -= 4; | 
 |       hex_value <<= bitPos % integerPartWidth; | 
 |       significand[bitPos / integerPartWidth] |= hex_value; | 
 |     } else if (!computedTrailingFraction) { | 
 |       lost_fraction = trailingHexadecimalFraction(p, end, hex_value); | 
 |       computedTrailingFraction = true; | 
 |     } | 
 |   } | 
 |  | 
 |   /* Hex floats require an exponent but not a hexadecimal point.  */ | 
 |   assert(p != end && "Hex strings require an exponent"); | 
 |   assert((*p == 'p' || *p == 'P') && "Invalid character in significand"); | 
 |   assert(p != begin && "Significand has no digits"); | 
 |   assert((dot == end || p - begin != 1) && "Significand has no digits"); | 
 |  | 
 |   /* Ignore the exponent if we are zero.  */ | 
 |   if (p != firstSignificantDigit) { | 
 |     int expAdjustment; | 
 |  | 
 |     /* Implicit hexadecimal point?  */ | 
 |     if (dot == end) | 
 |       dot = p; | 
 |  | 
 |     /* Calculate the exponent adjustment implicit in the number of | 
 |        significant digits.  */ | 
 |     expAdjustment = static_cast<int>(dot - firstSignificantDigit); | 
 |     if (expAdjustment < 0) | 
 |       expAdjustment++; | 
 |     expAdjustment = expAdjustment * 4 - 1; | 
 |  | 
 |     /* Adjust for writing the significand starting at the most | 
 |        significant nibble.  */ | 
 |     expAdjustment += semantics->precision; | 
 |     expAdjustment -= partsCount * integerPartWidth; | 
 |  | 
 |     /* Adjust for the given exponent.  */ | 
 |     exponent = totalExponent(p + 1, end, expAdjustment); | 
 |   } | 
 |  | 
 |   return normalize(rounding_mode, lost_fraction); | 
 | } | 
 |  | 
 | IEEEFloat::opStatus | 
 | IEEEFloat::roundSignificandWithExponent(const integerPart *decSigParts, | 
 |                                         unsigned sigPartCount, int exp, | 
 |                                         roundingMode rounding_mode) { | 
 |   unsigned int parts, pow5PartCount; | 
 |   fltSemantics calcSemantics = { 32767, -32767, 0, 0 }; | 
 |   integerPart pow5Parts[maxPowerOfFiveParts]; | 
 |   bool isNearest; | 
 |  | 
 |   isNearest = (rounding_mode == rmNearestTiesToEven || | 
 |                rounding_mode == rmNearestTiesToAway); | 
 |  | 
 |   parts = partCountForBits(semantics->precision + 11); | 
 |  | 
 |   /* Calculate pow(5, abs(exp)).  */ | 
 |   pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp); | 
 |  | 
 |   for (;; parts *= 2) { | 
 |     opStatus sigStatus, powStatus; | 
 |     unsigned int excessPrecision, truncatedBits; | 
 |  | 
 |     calcSemantics.precision = parts * integerPartWidth - 1; | 
 |     excessPrecision = calcSemantics.precision - semantics->precision; | 
 |     truncatedBits = excessPrecision; | 
 |  | 
 |     IEEEFloat decSig(calcSemantics, uninitialized); | 
 |     decSig.makeZero(sign); | 
 |     IEEEFloat pow5(calcSemantics); | 
 |  | 
 |     sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount, | 
 |                                                 rmNearestTiesToEven); | 
 |     powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount, | 
 |                                               rmNearestTiesToEven); | 
 |     /* Add exp, as 10^n = 5^n * 2^n.  */ | 
 |     decSig.exponent += exp; | 
 |  | 
 |     lostFraction calcLostFraction; | 
 |     integerPart HUerr, HUdistance; | 
 |     unsigned int powHUerr; | 
 |  | 
 |     if (exp >= 0) { | 
 |       /* multiplySignificand leaves the precision-th bit set to 1.  */ | 
 |       calcLostFraction = decSig.multiplySignificand(pow5, nullptr); | 
 |       powHUerr = powStatus != opOK; | 
 |     } else { | 
 |       calcLostFraction = decSig.divideSignificand(pow5); | 
 |       /* Denormal numbers have less precision.  */ | 
 |       if (decSig.exponent < semantics->minExponent) { | 
 |         excessPrecision += (semantics->minExponent - decSig.exponent); | 
 |         truncatedBits = excessPrecision; | 
 |         if (excessPrecision > calcSemantics.precision) | 
 |           excessPrecision = calcSemantics.precision; | 
 |       } | 
 |       /* Extra half-ulp lost in reciprocal of exponent.  */ | 
 |       powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2; | 
 |     } | 
 |  | 
 |     /* Both multiplySignificand and divideSignificand return the | 
 |        result with the integer bit set.  */ | 
 |     assert(APInt::tcExtractBit | 
 |            (decSig.significandParts(), calcSemantics.precision - 1) == 1); | 
 |  | 
 |     HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK, | 
 |                        powHUerr); | 
 |     HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(), | 
 |                                       excessPrecision, isNearest); | 
 |  | 
 |     /* Are we guaranteed to round correctly if we truncate?  */ | 
 |     if (HUdistance >= HUerr) { | 
 |       APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(), | 
 |                        calcSemantics.precision - excessPrecision, | 
 |                        excessPrecision); | 
 |       /* Take the exponent of decSig.  If we tcExtract-ed less bits | 
 |          above we must adjust our exponent to compensate for the | 
 |          implicit right shift.  */ | 
 |       exponent = (decSig.exponent + semantics->precision | 
 |                   - (calcSemantics.precision - excessPrecision)); | 
 |       calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(), | 
 |                                                        decSig.partCount(), | 
 |                                                        truncatedBits); | 
 |       return normalize(rounding_mode, calcLostFraction); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | IEEEFloat::opStatus | 
 | IEEEFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode) { | 
 |   decimalInfo D; | 
 |   opStatus fs; | 
 |  | 
 |   /* Scan the text.  */ | 
 |   StringRef::iterator p = str.begin(); | 
 |   interpretDecimal(p, str.end(), &D); | 
 |  | 
 |   /* Handle the quick cases.  First the case of no significant digits, | 
 |      i.e. zero, and then exponents that are obviously too large or too | 
 |      small.  Writing L for log 10 / log 2, a number d.ddddd*10^exp | 
 |      definitely overflows if | 
 |  | 
 |            (exp - 1) * L >= maxExponent | 
 |  | 
 |      and definitely underflows to zero where | 
 |  | 
 |            (exp + 1) * L <= minExponent - precision | 
 |  | 
 |      With integer arithmetic the tightest bounds for L are | 
 |  | 
 |            93/28 < L < 196/59            [ numerator <= 256 ] | 
 |            42039/12655 < L < 28738/8651  [ numerator <= 65536 ] | 
 |   */ | 
 |  | 
 |   // Test if we have a zero number allowing for strings with no null terminators | 
 |   // and zero decimals with non-zero exponents. | 
 |   // | 
 |   // We computed firstSigDigit by ignoring all zeros and dots. Thus if | 
 |   // D->firstSigDigit equals str.end(), every digit must be a zero and there can | 
 |   // be at most one dot. On the other hand, if we have a zero with a non-zero | 
 |   // exponent, then we know that D.firstSigDigit will be non-numeric. | 
 |   if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) { | 
 |     category = fcZero; | 
 |     fs = opOK; | 
 |  | 
 |   /* Check whether the normalized exponent is high enough to overflow | 
 |      max during the log-rebasing in the max-exponent check below. */ | 
 |   } else if (D.normalizedExponent - 1 > INT_MAX / 42039) { | 
 |     fs = handleOverflow(rounding_mode); | 
 |  | 
 |   /* If it wasn't, then it also wasn't high enough to overflow max | 
 |      during the log-rebasing in the min-exponent check.  Check that it | 
 |      won't overflow min in either check, then perform the min-exponent | 
 |      check. */ | 
 |   } else if (D.normalizedExponent - 1 < INT_MIN / 42039 || | 
 |              (D.normalizedExponent + 1) * 28738 <= | 
 |                8651 * (semantics->minExponent - (int) semantics->precision)) { | 
 |     /* Underflow to zero and round.  */ | 
 |     category = fcNormal; | 
 |     zeroSignificand(); | 
 |     fs = normalize(rounding_mode, lfLessThanHalf); | 
 |  | 
 |   /* We can finally safely perform the max-exponent check. */ | 
 |   } else if ((D.normalizedExponent - 1) * 42039 | 
 |              >= 12655 * semantics->maxExponent) { | 
 |     /* Overflow and round.  */ | 
 |     fs = handleOverflow(rounding_mode); | 
 |   } else { | 
 |     integerPart *decSignificand; | 
 |     unsigned int partCount; | 
 |  | 
 |     /* A tight upper bound on number of bits required to hold an | 
 |        N-digit decimal integer is N * 196 / 59.  Allocate enough space | 
 |        to hold the full significand, and an extra part required by | 
 |        tcMultiplyPart.  */ | 
 |     partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1; | 
 |     partCount = partCountForBits(1 + 196 * partCount / 59); | 
 |     decSignificand = new integerPart[partCount + 1]; | 
 |     partCount = 0; | 
 |  | 
 |     /* Convert to binary efficiently - we do almost all multiplication | 
 |        in an integerPart.  When this would overflow do we do a single | 
 |        bignum multiplication, and then revert again to multiplication | 
 |        in an integerPart.  */ | 
 |     do { | 
 |       integerPart decValue, val, multiplier; | 
 |  | 
 |       val = 0; | 
 |       multiplier = 1; | 
 |  | 
 |       do { | 
 |         if (*p == '.') { | 
 |           p++; | 
 |           if (p == str.end()) { | 
 |             break; | 
 |           } | 
 |         } | 
 |         decValue = decDigitValue(*p++); | 
 |         assert(decValue < 10U && "Invalid character in significand"); | 
 |         multiplier *= 10; | 
 |         val = val * 10 + decValue; | 
 |         /* The maximum number that can be multiplied by ten with any | 
 |            digit added without overflowing an integerPart.  */ | 
 |       } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10); | 
 |  | 
 |       /* Multiply out the current part.  */ | 
 |       APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val, | 
 |                             partCount, partCount + 1, false); | 
 |  | 
 |       /* If we used another part (likely but not guaranteed), increase | 
 |          the count.  */ | 
 |       if (decSignificand[partCount]) | 
 |         partCount++; | 
 |     } while (p <= D.lastSigDigit); | 
 |  | 
 |     category = fcNormal; | 
 |     fs = roundSignificandWithExponent(decSignificand, partCount, | 
 |                                       D.exponent, rounding_mode); | 
 |  | 
 |     delete [] decSignificand; | 
 |   } | 
 |  | 
 |   return fs; | 
 | } | 
 |  | 
 | bool IEEEFloat::convertFromStringSpecials(StringRef str) { | 
 |   if (str.equals("inf") || str.equals("INFINITY") || str.equals("+Inf")) { | 
 |     makeInf(false); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (str.equals("-inf") || str.equals("-INFINITY") || str.equals("-Inf")) { | 
 |     makeInf(true); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (str.equals("nan") || str.equals("NaN")) { | 
 |     makeNaN(false, false); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (str.equals("-nan") || str.equals("-NaN")) { | 
 |     makeNaN(false, true); | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | IEEEFloat::opStatus IEEEFloat::convertFromString(StringRef str, | 
 |                                                  roundingMode rounding_mode) { | 
 |   assert(!str.empty() && "Invalid string length"); | 
 |  | 
 |   // Handle special cases. | 
 |   if (convertFromStringSpecials(str)) | 
 |     return opOK; | 
 |  | 
 |   /* Handle a leading minus sign.  */ | 
 |   StringRef::iterator p = str.begin(); | 
 |   size_t slen = str.size(); | 
 |   sign = *p == '-' ? 1 : 0; | 
 |   if (*p == '-' || *p == '+') { | 
 |     p++; | 
 |     slen--; | 
 |     assert(slen && "String has no digits"); | 
 |   } | 
 |  | 
 |   if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) { | 
 |     assert(slen - 2 && "Invalid string"); | 
 |     return convertFromHexadecimalString(StringRef(p + 2, slen - 2), | 
 |                                         rounding_mode); | 
 |   } | 
 |  | 
 |   return convertFromDecimalString(StringRef(p, slen), rounding_mode); | 
 | } | 
 |  | 
 | /* Write out a hexadecimal representation of the floating point value | 
 |    to DST, which must be of sufficient size, in the C99 form | 
 |    [-]0xh.hhhhp[+-]d.  Return the number of characters written, | 
 |    excluding the terminating NUL. | 
 |  | 
 |    If UPPERCASE, the output is in upper case, otherwise in lower case. | 
 |  | 
 |    HEXDIGITS digits appear altogether, rounding the value if | 
 |    necessary.  If HEXDIGITS is 0, the minimal precision to display the | 
 |    number precisely is used instead.  If nothing would appear after | 
 |    the decimal point it is suppressed. | 
 |  | 
 |    The decimal exponent is always printed and has at least one digit. | 
 |    Zero values display an exponent of zero.  Infinities and NaNs | 
 |    appear as "infinity" or "nan" respectively. | 
 |  | 
 |    The above rules are as specified by C99.  There is ambiguity about | 
 |    what the leading hexadecimal digit should be.  This implementation | 
 |    uses whatever is necessary so that the exponent is displayed as | 
 |    stored.  This implies the exponent will fall within the IEEE format | 
 |    range, and the leading hexadecimal digit will be 0 (for denormals), | 
 |    1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with | 
 |    any other digits zero). | 
 | */ | 
 | unsigned int IEEEFloat::convertToHexString(char *dst, unsigned int hexDigits, | 
 |                                            bool upperCase, | 
 |                                            roundingMode rounding_mode) const { | 
 |   char *p; | 
 |  | 
 |   p = dst; | 
 |   if (sign) | 
 |     *dst++ = '-'; | 
 |  | 
 |   switch (category) { | 
 |   case fcInfinity: | 
 |     memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1); | 
 |     dst += sizeof infinityL - 1; | 
 |     break; | 
 |  | 
 |   case fcNaN: | 
 |     memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1); | 
 |     dst += sizeof NaNU - 1; | 
 |     break; | 
 |  | 
 |   case fcZero: | 
 |     *dst++ = '0'; | 
 |     *dst++ = upperCase ? 'X': 'x'; | 
 |     *dst++ = '0'; | 
 |     if (hexDigits > 1) { | 
 |       *dst++ = '.'; | 
 |       memset (dst, '0', hexDigits - 1); | 
 |       dst += hexDigits - 1; | 
 |     } | 
 |     *dst++ = upperCase ? 'P': 'p'; | 
 |     *dst++ = '0'; | 
 |     break; | 
 |  | 
 |   case fcNormal: | 
 |     dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode); | 
 |     break; | 
 |   } | 
 |  | 
 |   *dst = 0; | 
 |  | 
 |   return static_cast<unsigned int>(dst - p); | 
 | } | 
 |  | 
 | /* Does the hard work of outputting the correctly rounded hexadecimal | 
 |    form of a normal floating point number with the specified number of | 
 |    hexadecimal digits.  If HEXDIGITS is zero the minimum number of | 
 |    digits necessary to print the value precisely is output.  */ | 
 | char *IEEEFloat::convertNormalToHexString(char *dst, unsigned int hexDigits, | 
 |                                           bool upperCase, | 
 |                                           roundingMode rounding_mode) const { | 
 |   unsigned int count, valueBits, shift, partsCount, outputDigits; | 
 |   const char *hexDigitChars; | 
 |   const integerPart *significand; | 
 |   char *p; | 
 |   bool roundUp; | 
 |  | 
 |   *dst++ = '0'; | 
 |   *dst++ = upperCase ? 'X': 'x'; | 
 |  | 
 |   roundUp = false; | 
 |   hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower; | 
 |  | 
 |   significand = significandParts(); | 
 |   partsCount = partCount(); | 
 |  | 
 |   /* +3 because the first digit only uses the single integer bit, so | 
 |      we have 3 virtual zero most-significant-bits.  */ | 
 |   valueBits = semantics->precision + 3; | 
 |   shift = integerPartWidth - valueBits % integerPartWidth; | 
 |  | 
 |   /* The natural number of digits required ignoring trailing | 
 |      insignificant zeroes.  */ | 
 |   outputDigits = (valueBits - significandLSB () + 3) / 4; | 
 |  | 
 |   /* hexDigits of zero means use the required number for the | 
 |      precision.  Otherwise, see if we are truncating.  If we are, | 
 |      find out if we need to round away from zero.  */ | 
 |   if (hexDigits) { | 
 |     if (hexDigits < outputDigits) { | 
 |       /* We are dropping non-zero bits, so need to check how to round. | 
 |          "bits" is the number of dropped bits.  */ | 
 |       unsigned int bits; | 
 |       lostFraction fraction; | 
 |  | 
 |       bits = valueBits - hexDigits * 4; | 
 |       fraction = lostFractionThroughTruncation (significand, partsCount, bits); | 
 |       roundUp = roundAwayFromZero(rounding_mode, fraction, bits); | 
 |     } | 
 |     outputDigits = hexDigits; | 
 |   } | 
 |  | 
 |   /* Write the digits consecutively, and start writing in the location | 
 |      of the hexadecimal point.  We move the most significant digit | 
 |      left and add the hexadecimal point later.  */ | 
 |   p = ++dst; | 
 |  | 
 |   count = (valueBits + integerPartWidth - 1) / integerPartWidth; | 
 |  | 
 |   while (outputDigits && count) { | 
 |     integerPart part; | 
 |  | 
 |     /* Put the most significant integerPartWidth bits in "part".  */ | 
 |     if (--count == partsCount) | 
 |       part = 0;  /* An imaginary higher zero part.  */ | 
 |     else | 
 |       part = significand[count] << shift; | 
 |  | 
 |     if (count && shift) | 
 |       part |= significand[count - 1] >> (integerPartWidth - shift); | 
 |  | 
 |     /* Convert as much of "part" to hexdigits as we can.  */ | 
 |     unsigned int curDigits = integerPartWidth / 4; | 
 |  | 
 |     if (curDigits > outputDigits) | 
 |       curDigits = outputDigits; | 
 |     dst += partAsHex (dst, part, curDigits, hexDigitChars); | 
 |     outputDigits -= curDigits; | 
 |   } | 
 |  | 
 |   if (roundUp) { | 
 |     char *q = dst; | 
 |  | 
 |     /* Note that hexDigitChars has a trailing '0'.  */ | 
 |     do { | 
 |       q--; | 
 |       *q = hexDigitChars[hexDigitValue (*q) + 1]; | 
 |     } while (*q == '0'); | 
 |     assert(q >= p); | 
 |   } else { | 
 |     /* Add trailing zeroes.  */ | 
 |     memset (dst, '0', outputDigits); | 
 |     dst += outputDigits; | 
 |   } | 
 |  | 
 |   /* Move the most significant digit to before the point, and if there | 
 |      is something after the decimal point add it.  This must come | 
 |      after rounding above.  */ | 
 |   p[-1] = p[0]; | 
 |   if (dst -1 == p) | 
 |     dst--; | 
 |   else | 
 |     p[0] = '.'; | 
 |  | 
 |   /* Finally output the exponent.  */ | 
 |   *dst++ = upperCase ? 'P': 'p'; | 
 |  | 
 |   return writeSignedDecimal (dst, exponent); | 
 | } | 
 |  | 
 | hash_code hash_value(const IEEEFloat &Arg) { | 
 |   if (!Arg.isFiniteNonZero()) | 
 |     return hash_combine((uint8_t)Arg.category, | 
 |                         // NaN has no sign, fix it at zero. | 
 |                         Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign, | 
 |                         Arg.semantics->precision); | 
 |  | 
 |   // Normal floats need their exponent and significand hashed. | 
 |   return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign, | 
 |                       Arg.semantics->precision, Arg.exponent, | 
 |                       hash_combine_range( | 
 |                         Arg.significandParts(), | 
 |                         Arg.significandParts() + Arg.partCount())); | 
 | } | 
 |  | 
 | // Conversion from APFloat to/from host float/double.  It may eventually be | 
 | // possible to eliminate these and have everybody deal with APFloats, but that | 
 | // will take a while.  This approach will not easily extend to long double. | 
 | // Current implementation requires integerPartWidth==64, which is correct at | 
 | // the moment but could be made more general. | 
 |  | 
 | // Denormals have exponent minExponent in APFloat, but minExponent-1 in | 
 | // the actual IEEE respresentations.  We compensate for that here. | 
 |  | 
 | APInt IEEEFloat::convertF80LongDoubleAPFloatToAPInt() const { | 
 |   assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended); | 
 |   assert(partCount()==2); | 
 |  | 
 |   uint64_t myexponent, mysignificand; | 
 |  | 
 |   if (isFiniteNonZero()) { | 
 |     myexponent = exponent+16383; //bias | 
 |     mysignificand = significandParts()[0]; | 
 |     if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL)) | 
 |       myexponent = 0;   // denormal | 
 |   } else if (category==fcZero) { | 
 |     myexponent = 0; | 
 |     mysignificand = 0; | 
 |   } else if (category==fcInfinity) { | 
 |     myexponent = 0x7fff; | 
 |     mysignificand = 0x8000000000000000ULL; | 
 |   } else { | 
 |     assert(category == fcNaN && "Unknown category"); | 
 |     myexponent = 0x7fff; | 
 |     mysignificand = significandParts()[0]; | 
 |   } | 
 |  | 
 |   uint64_t words[2]; | 
 |   words[0] = mysignificand; | 
 |   words[1] =  ((uint64_t)(sign & 1) << 15) | | 
 |               (myexponent & 0x7fffLL); | 
 |   return APInt(80, words); | 
 | } | 
 |  | 
 | APInt IEEEFloat::convertPPCDoubleDoubleAPFloatToAPInt() const { | 
 |   assert(semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy); | 
 |   assert(partCount()==2); | 
 |  | 
 |   uint64_t words[2]; | 
 |   opStatus fs; | 
 |   bool losesInfo; | 
 |  | 
 |   // Convert number to double.  To avoid spurious underflows, we re- | 
 |   // normalize against the "double" minExponent first, and only *then* | 
 |   // truncate the mantissa.  The result of that second conversion | 
 |   // may be inexact, but should never underflow. | 
 |   // Declare fltSemantics before APFloat that uses it (and | 
 |   // saves pointer to it) to ensure correct destruction order. | 
 |   fltSemantics extendedSemantics = *semantics; | 
 |   extendedSemantics.minExponent = semIEEEdouble.minExponent; | 
 |   IEEEFloat extended(*this); | 
 |   fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); | 
 |   assert(fs == opOK && !losesInfo); | 
 |   (void)fs; | 
 |  | 
 |   IEEEFloat u(extended); | 
 |   fs = u.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo); | 
 |   assert(fs == opOK || fs == opInexact); | 
 |   (void)fs; | 
 |   words[0] = *u.convertDoubleAPFloatToAPInt().getRawData(); | 
 |  | 
 |   // If conversion was exact or resulted in a special case, we're done; | 
 |   // just set the second double to zero.  Otherwise, re-convert back to | 
 |   // the extended format and compute the difference.  This now should | 
 |   // convert exactly to double. | 
 |   if (u.isFiniteNonZero() && losesInfo) { | 
 |     fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); | 
 |     assert(fs == opOK && !losesInfo); | 
 |     (void)fs; | 
 |  | 
 |     IEEEFloat v(extended); | 
 |     v.subtract(u, rmNearestTiesToEven); | 
 |     fs = v.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo); | 
 |     assert(fs == opOK && !losesInfo); | 
 |     (void)fs; | 
 |     words[1] = *v.convertDoubleAPFloatToAPInt().getRawData(); | 
 |   } else { | 
 |     words[1] = 0; | 
 |   } | 
 |  | 
 |   return APInt(128, words); | 
 | } | 
 |  | 
 | APInt IEEEFloat::convertQuadrupleAPFloatToAPInt() const { | 
 |   assert(semantics == (const llvm::fltSemantics*)&semIEEEquad); | 
 |   assert(partCount()==2); | 
 |  | 
 |   uint64_t myexponent, mysignificand, mysignificand2; | 
 |  | 
 |   if (isFiniteNonZero()) { | 
 |     myexponent = exponent+16383; //bias | 
 |     mysignificand = significandParts()[0]; | 
 |     mysignificand2 = significandParts()[1]; | 
 |     if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL)) | 
 |       myexponent = 0;   // denormal | 
 |   } else if (category==fcZero) { | 
 |     myexponent = 0; | 
 |     mysignificand = mysignificand2 = 0; | 
 |   } else if (category==fcInfinity) { | 
 |     myexponent = 0x7fff; | 
 |     mysignificand = mysignificand2 = 0; | 
 |   } else { | 
 |     assert(category == fcNaN && "Unknown category!"); | 
 |     myexponent = 0x7fff; | 
 |     mysignificand = significandParts()[0]; | 
 |     mysignificand2 = significandParts()[1]; | 
 |   } | 
 |  | 
 |   uint64_t words[2]; | 
 |   words[0] = mysignificand; | 
 |   words[1] = ((uint64_t)(sign & 1) << 63) | | 
 |              ((myexponent & 0x7fff) << 48) | | 
 |              (mysignificand2 & 0xffffffffffffLL); | 
 |  | 
 |   return APInt(128, words); | 
 | } | 
 |  | 
 | APInt IEEEFloat::convertDoubleAPFloatToAPInt() const { | 
 |   assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble); | 
 |   assert(partCount()==1); | 
 |  | 
 |   uint64_t myexponent, mysignificand; | 
 |  | 
 |   if (isFiniteNonZero()) { | 
 |     myexponent = exponent+1023; //bias | 
 |     mysignificand = *significandParts(); | 
 |     if (myexponent==1 && !(mysignificand & 0x10000000000000LL)) | 
 |       myexponent = 0;   // denormal | 
 |   } else if (category==fcZero) { | 
 |     myexponent = 0; | 
 |     mysignificand = 0; | 
 |   } else if (category==fcInfinity) { | 
 |     myexponent = 0x7ff; | 
 |     mysignificand = 0; | 
 |   } else { | 
 |     assert(category == fcNaN && "Unknown category!"); | 
 |     myexponent = 0x7ff; | 
 |     mysignificand = *significandParts(); | 
 |   } | 
 |  | 
 |   return APInt(64, ((((uint64_t)(sign & 1) << 63) | | 
 |                      ((myexponent & 0x7ff) <<  52) | | 
 |                      (mysignificand & 0xfffffffffffffLL)))); | 
 | } | 
 |  | 
 | APInt IEEEFloat::convertFloatAPFloatToAPInt() const { | 
 |   assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle); | 
 |   assert(partCount()==1); | 
 |  | 
 |   uint32_t myexponent, mysignificand; | 
 |  | 
 |   if (isFiniteNonZero()) { | 
 |     myexponent = exponent+127; //bias | 
 |     mysignificand = (uint32_t)*significandParts(); | 
 |     if (myexponent == 1 && !(mysignificand & 0x800000)) | 
 |       myexponent = 0;   // denormal | 
 |   } else if (category==fcZero) { | 
 |     myexponent = 0; | 
 |     mysignificand = 0; | 
 |   } else if (category==fcInfinity) { | 
 |     myexponent = 0xff; | 
 |     mysignificand = 0; | 
 |   } else { | 
 |     assert(category == fcNaN && "Unknown category!"); | 
 |     myexponent = 0xff; | 
 |     mysignificand = (uint32_t)*significandParts(); | 
 |   } | 
 |  | 
 |   return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) | | 
 |                     (mysignificand & 0x7fffff))); | 
 | } | 
 |  | 
 | APInt IEEEFloat::convertHalfAPFloatToAPInt() const { | 
 |   assert(semantics == (const llvm::fltSemantics*)&semIEEEhalf); | 
 |   assert(partCount()==1); | 
 |  | 
 |   uint32_t myexponent, mysignificand; | 
 |  | 
 |   if (isFiniteNonZero()) { | 
 |     myexponent = exponent+15; //bias | 
 |     mysignificand = (uint32_t)*significandParts(); | 
 |     if (myexponent == 1 && !(mysignificand & 0x400)) | 
 |       myexponent = 0;   // denormal | 
 |   } else if (category==fcZero) { | 
 |     myexponent = 0; | 
 |     mysignificand = 0; | 
 |   } else if (category==fcInfinity) { | 
 |     myexponent = 0x1f; | 
 |     mysignificand = 0; | 
 |   } else { | 
 |     assert(category == fcNaN && "Unknown category!"); | 
 |     myexponent = 0x1f; | 
 |     mysignificand = (uint32_t)*significandParts(); | 
 |   } | 
 |  | 
 |   return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) | | 
 |                     (mysignificand & 0x3ff))); | 
 | } | 
 |  | 
 | // This function creates an APInt that is just a bit map of the floating | 
 | // point constant as it would appear in memory.  It is not a conversion, | 
 | // and treating the result as a normal integer is unlikely to be useful. | 
 |  | 
 | APInt IEEEFloat::bitcastToAPInt() const { | 
 |   if (semantics == (const llvm::fltSemantics*)&semIEEEhalf) | 
 |     return convertHalfAPFloatToAPInt(); | 
 |  | 
 |   if (semantics == (const llvm::fltSemantics*)&semIEEEsingle) | 
 |     return convertFloatAPFloatToAPInt(); | 
 |  | 
 |   if (semantics == (const llvm::fltSemantics*)&semIEEEdouble) | 
 |     return convertDoubleAPFloatToAPInt(); | 
 |  | 
 |   if (semantics == (const llvm::fltSemantics*)&semIEEEquad) | 
 |     return convertQuadrupleAPFloatToAPInt(); | 
 |  | 
 |   if (semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy) | 
 |     return convertPPCDoubleDoubleAPFloatToAPInt(); | 
 |  | 
 |   assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended && | 
 |          "unknown format!"); | 
 |   return convertF80LongDoubleAPFloatToAPInt(); | 
 | } | 
 |  | 
 | float IEEEFloat::convertToFloat() const { | 
 |   assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle && | 
 |          "Float semantics are not IEEEsingle"); | 
 |   APInt api = bitcastToAPInt(); | 
 |   return api.bitsToFloat(); | 
 | } | 
 |  | 
 | double IEEEFloat::convertToDouble() const { | 
 |   assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble && | 
 |          "Float semantics are not IEEEdouble"); | 
 |   APInt api = bitcastToAPInt(); | 
 |   return api.bitsToDouble(); | 
 | } | 
 |  | 
 | /// Integer bit is explicit in this format.  Intel hardware (387 and later) | 
 | /// does not support these bit patterns: | 
 | ///  exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity") | 
 | ///  exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN") | 
 | ///  exponent!=0 nor all 1's, integer bit 0 ("unnormal") | 
 | ///  exponent = 0, integer bit 1 ("pseudodenormal") | 
 | /// At the moment, the first three are treated as NaNs, the last one as Normal. | 
 | void IEEEFloat::initFromF80LongDoubleAPInt(const APInt &api) { | 
 |   assert(api.getBitWidth()==80); | 
 |   uint64_t i1 = api.getRawData()[0]; | 
 |   uint64_t i2 = api.getRawData()[1]; | 
 |   uint64_t myexponent = (i2 & 0x7fff); | 
 |   uint64_t mysignificand = i1; | 
 |   uint8_t myintegerbit = mysignificand >> 63; | 
 |  | 
 |   initialize(&semX87DoubleExtended); | 
 |   assert(partCount()==2); | 
 |  | 
 |   sign = static_cast<unsigned int>(i2>>15); | 
 |   if (myexponent == 0 && mysignificand == 0) { | 
 |     // exponent, significand meaningless | 
 |     category = fcZero; | 
 |   } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) { | 
 |     // exponent, significand meaningless | 
 |     category = fcInfinity; | 
 |   } else if ((myexponent == 0x7fff && mysignificand != 0x8000000000000000ULL) || | 
 |              (myexponent != 0x7fff && myexponent != 0 && myintegerbit == 0)) { | 
 |     // exponent meaningless | 
 |     category = fcNaN; | 
 |     significandParts()[0] = mysignificand; | 
 |     significandParts()[1] = 0; | 
 |   } else { | 
 |     category = fcNormal; | 
 |     exponent = myexponent - 16383; | 
 |     significandParts()[0] = mysignificand; | 
 |     significandParts()[1] = 0; | 
 |     if (myexponent==0)          // denormal | 
 |       exponent = -16382; | 
 |   } | 
 | } | 
 |  | 
 | void IEEEFloat::initFromPPCDoubleDoubleAPInt(const APInt &api) { | 
 |   assert(api.getBitWidth()==128); | 
 |   uint64_t i1 = api.getRawData()[0]; | 
 |   uint64_t i2 = api.getRawData()[1]; | 
 |   opStatus fs; | 
 |   bool losesInfo; | 
 |  | 
 |   // Get the first double and convert to our format. | 
 |   initFromDoubleAPInt(APInt(64, i1)); | 
 |   fs = convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo); | 
 |   assert(fs == opOK && !losesInfo); | 
 |   (void)fs; | 
 |  | 
 |   // Unless we have a special case, add in second double. | 
 |   if (isFiniteNonZero()) { | 
 |     IEEEFloat v(semIEEEdouble, APInt(64, i2)); | 
 |     fs = v.convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo); | 
 |     assert(fs == opOK && !losesInfo); | 
 |     (void)fs; | 
 |  | 
 |     add(v, rmNearestTiesToEven); | 
 |   } | 
 | } | 
 |  | 
 | void IEEEFloat::initFromQuadrupleAPInt(const APInt &api) { | 
 |   assert(api.getBitWidth()==128); | 
 |   uint64_t i1 = api.getRawData()[0]; | 
 |   uint64_t i2 = api.getRawData()[1]; | 
 |   uint64_t myexponent = (i2 >> 48) & 0x7fff; | 
 |   uint64_t mysignificand  = i1; | 
 |   uint64_t mysignificand2 = i2 & 0xffffffffffffLL; | 
 |  | 
 |   initialize(&semIEEEquad); | 
 |   assert(partCount()==2); | 
 |  | 
 |   sign = static_cast<unsigned int>(i2>>63); | 
 |   if (myexponent==0 && | 
 |       (mysignificand==0 && mysignificand2==0)) { | 
 |     // exponent, significand meaningless | 
 |     category = fcZero; | 
 |   } else if (myexponent==0x7fff && | 
 |              (mysignificand==0 && mysignificand2==0)) { | 
 |     // exponent, significand meaningless | 
 |     category = fcInfinity; | 
 |   } else if (myexponent==0x7fff && | 
 |              (mysignificand!=0 || mysignificand2 !=0)) { | 
 |     // exponent meaningless | 
 |     category = fcNaN; | 
 |     significandParts()[0] = mysignificand; | 
 |     significandParts()[1] = mysignificand2; | 
 |   } else { | 
 |     category = fcNormal; | 
 |     exponent = myexponent - 16383; | 
 |     significandParts()[0] = mysignificand; | 
 |     significandParts()[1] = mysignificand2; | 
 |     if (myexponent==0)          // denormal | 
 |       exponent = -16382; | 
 |     else | 
 |       significandParts()[1] |= 0x1000000000000LL;  // integer bit | 
 |   } | 
 | } | 
 |  | 
 | void IEEEFloat::initFromDoubleAPInt(const APInt &api) { | 
 |   assert(api.getBitWidth()==64); | 
 |   uint64_t i = *api.getRawData(); | 
 |   uint64_t myexponent = (i >> 52) & 0x7ff; | 
 |   uint64_t mysignificand = i & 0xfffffffffffffLL; | 
 |  | 
 |   initialize(&semIEEEdouble); | 
 |   assert(partCount()==1); | 
 |  | 
 |   sign = static_cast<unsigned int>(i>>63); | 
 |   if (myexponent==0 && mysignificand==0) { | 
 |     // exponent, significand meaningless | 
 |     category = fcZero; | 
 |   } else if (myexponent==0x7ff && mysignificand==0) { | 
 |     // exponent, significand meaningless | 
 |     category = fcInfinity; | 
 |   } else if (myexponent==0x7ff && mysignificand!=0) { | 
 |     // exponent meaningless | 
 |     category = fcNaN; | 
 |     *significandParts() = mysignificand; | 
 |   } else { | 
 |     category = fcNormal; | 
 |     exponent = myexponent - 1023; | 
 |     *significandParts() = mysignificand; | 
 |     if (myexponent==0)          // denormal | 
 |       exponent = -1022; | 
 |     else | 
 |       *significandParts() |= 0x10000000000000LL;  // integer bit | 
 |   } | 
 | } | 
 |  | 
 | void IEEEFloat::initFromFloatAPInt(const APInt &api) { | 
 |   assert(api.getBitWidth()==32); | 
 |   uint32_t i = (uint32_t)*api.getRawData(); | 
 |   uint32_t myexponent = (i >> 23) & 0xff; | 
 |   uint32_t mysignificand = i & 0x7fffff; | 
 |  | 
 |   initialize(&semIEEEsingle); | 
 |   assert(partCount()==1); | 
 |  | 
 |   sign = i >> 31; | 
 |   if (myexponent==0 && mysignificand==0) { | 
 |     // exponent, significand meaningless | 
 |     category = fcZero; | 
 |   } else if (myexponent==0xff && mysignificand==0) { | 
 |     // exponent, significand meaningless | 
 |     category = fcInfinity; | 
 |   } else if (myexponent==0xff && mysignificand!=0) { | 
 |     // sign, exponent, significand meaningless | 
 |     category = fcNaN; | 
 |     *significandParts() = mysignificand; | 
 |   } else { | 
 |     category = fcNormal; | 
 |     exponent = myexponent - 127;  //bias | 
 |     *significandParts() = mysignificand; | 
 |     if (myexponent==0)    // denormal | 
 |       exponent = -126; | 
 |     else | 
 |       *significandParts() |= 0x800000; // integer bit | 
 |   } | 
 | } | 
 |  | 
 | void IEEEFloat::initFromHalfAPInt(const APInt &api) { | 
 |   assert(api.getBitWidth()==16); | 
 |   uint32_t i = (uint32_t)*api.getRawData(); | 
 |   uint32_t myexponent = (i >> 10) & 0x1f; | 
 |   uint32_t mysignificand = i & 0x3ff; | 
 |  | 
 |   initialize(&semIEEEhalf); | 
 |   assert(partCount()==1); | 
 |  | 
 |   sign = i >> 15; | 
 |   if (myexponent==0 && mysignificand==0) { | 
 |     // exponent, significand meaningless | 
 |     category = fcZero; | 
 |   } else if (myexponent==0x1f && mysignificand==0) { | 
 |     // exponent, significand meaningless | 
 |     category = fcInfinity; | 
 |   } else if (myexponent==0x1f && mysignificand!=0) { | 
 |     // sign, exponent, significand meaningless | 
 |     category = fcNaN; | 
 |     *significandParts() = mysignificand; | 
 |   } else { | 
 |     category = fcNormal; | 
 |     exponent = myexponent - 15;  //bias | 
 |     *significandParts() = mysignificand; | 
 |     if (myexponent==0)    // denormal | 
 |       exponent = -14; | 
 |     else | 
 |       *significandParts() |= 0x400; // integer bit | 
 |   } | 
 | } | 
 |  | 
 | /// Treat api as containing the bits of a floating point number.  Currently | 
 | /// we infer the floating point type from the size of the APInt.  The | 
 | /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful | 
 | /// when the size is anything else). | 
 | void IEEEFloat::initFromAPInt(const fltSemantics *Sem, const APInt &api) { | 
 |   if (Sem == &semIEEEhalf) | 
 |     return initFromHalfAPInt(api); | 
 |   if (Sem == &semIEEEsingle) | 
 |     return initFromFloatAPInt(api); | 
 |   if (Sem == &semIEEEdouble) | 
 |     return initFromDoubleAPInt(api); | 
 |   if (Sem == &semX87DoubleExtended) | 
 |     return initFromF80LongDoubleAPInt(api); | 
 |   if (Sem == &semIEEEquad) | 
 |     return initFromQuadrupleAPInt(api); | 
 |   if (Sem == &semPPCDoubleDoubleLegacy) | 
 |     return initFromPPCDoubleDoubleAPInt(api); | 
 |  | 
 |   llvm_unreachable(nullptr); | 
 | } | 
 |  | 
 | /// Make this number the largest magnitude normal number in the given | 
 | /// semantics. | 
 | void IEEEFloat::makeLargest(bool Negative) { | 
 |   // We want (in interchange format): | 
 |   //   sign = {Negative} | 
 |   //   exponent = 1..10 | 
 |   //   significand = 1..1 | 
 |   category = fcNormal; | 
 |   sign = Negative; | 
 |   exponent = semantics->maxExponent; | 
 |  | 
 |   // Use memset to set all but the highest integerPart to all ones. | 
 |   integerPart *significand = significandParts(); | 
 |   unsigned PartCount = partCount(); | 
 |   memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1)); | 
 |  | 
 |   // Set the high integerPart especially setting all unused top bits for | 
 |   // internal consistency. | 
 |   const unsigned NumUnusedHighBits = | 
 |     PartCount*integerPartWidth - semantics->precision; | 
 |   significand[PartCount - 1] = (NumUnusedHighBits < integerPartWidth) | 
 |                                    ? (~integerPart(0) >> NumUnusedHighBits) | 
 |                                    : 0; | 
 | } | 
 |  | 
 | /// Make this number the smallest magnitude denormal number in the given | 
 | /// semantics. | 
 | void IEEEFloat::makeSmallest(bool Negative) { | 
 |   // We want (in interchange format): | 
 |   //   sign = {Negative} | 
 |   //   exponent = 0..0 | 
 |   //   significand = 0..01 | 
 |   category = fcNormal; | 
 |   sign = Negative; | 
 |   exponent = semantics->minExponent; | 
 |   APInt::tcSet(significandParts(), 1, partCount()); | 
 | } | 
 |  | 
 | void IEEEFloat::makeSmallestNormalized(bool Negative) { | 
 |   // We want (in interchange format): | 
 |   //   sign = {Negative} | 
 |   //   exponent = 0..0 | 
 |   //   significand = 10..0 | 
 |  | 
 |   category = fcNormal; | 
 |   zeroSignificand(); | 
 |   sign = Negative; | 
 |   exponent = semantics->minExponent; | 
 |   significandParts()[partCountForBits(semantics->precision) - 1] |= | 
 |       (((integerPart)1) << ((semantics->precision - 1) % integerPartWidth)); | 
 | } | 
 |  | 
 | IEEEFloat::IEEEFloat(const fltSemantics &Sem, const APInt &API) { | 
 |   initFromAPInt(&Sem, API); | 
 | } | 
 |  | 
 | IEEEFloat::IEEEFloat(float f) { | 
 |   initFromAPInt(&semIEEEsingle, APInt::floatToBits(f)); | 
 | } | 
 |  | 
 | IEEEFloat::IEEEFloat(double d) { | 
 |   initFromAPInt(&semIEEEdouble, APInt::doubleToBits(d)); | 
 | } | 
 |  | 
 | namespace { | 
 |   void append(SmallVectorImpl<char> &Buffer, StringRef Str) { | 
 |     Buffer.append(Str.begin(), Str.end()); | 
 |   } | 
 |  | 
 |   /// Removes data from the given significand until it is no more | 
 |   /// precise than is required for the desired precision. | 
 |   void AdjustToPrecision(APInt &significand, | 
 |                          int &exp, unsigned FormatPrecision) { | 
 |     unsigned bits = significand.getActiveBits(); | 
 |  | 
 |     // 196/59 is a very slight overestimate of lg_2(10). | 
 |     unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59; | 
 |  | 
 |     if (bits <= bitsRequired) return; | 
 |  | 
 |     unsigned tensRemovable = (bits - bitsRequired) * 59 / 196; | 
 |     if (!tensRemovable) return; | 
 |  | 
 |     exp += tensRemovable; | 
 |  | 
 |     APInt divisor(significand.getBitWidth(), 1); | 
 |     APInt powten(significand.getBitWidth(), 10); | 
 |     while (true) { | 
 |       if (tensRemovable & 1) | 
 |         divisor *= powten; | 
 |       tensRemovable >>= 1; | 
 |       if (!tensRemovable) break; | 
 |       powten *= powten; | 
 |     } | 
 |  | 
 |     significand = significand.udiv(divisor); | 
 |  | 
 |     // Truncate the significand down to its active bit count. | 
 |     significand = significand.trunc(significand.getActiveBits()); | 
 |   } | 
 |  | 
 |  | 
 |   void AdjustToPrecision(SmallVectorImpl<char> &buffer, | 
 |                          int &exp, unsigned FormatPrecision) { | 
 |     unsigned N = buffer.size(); | 
 |     if (N <= FormatPrecision) return; | 
 |  | 
 |     // The most significant figures are the last ones in the buffer. | 
 |     unsigned FirstSignificant = N - FormatPrecision; | 
 |  | 
 |     // Round. | 
 |     // FIXME: this probably shouldn't use 'round half up'. | 
 |  | 
 |     // Rounding down is just a truncation, except we also want to drop | 
 |     // trailing zeros from the new result. | 
 |     if (buffer[FirstSignificant - 1] < '5') { | 
 |       while (FirstSignificant < N && buffer[FirstSignificant] == '0') | 
 |         FirstSignificant++; | 
 |  | 
 |       exp += FirstSignificant; | 
 |       buffer.erase(&buffer[0], &buffer[FirstSignificant]); | 
 |       return; | 
 |     } | 
 |  | 
 |     // Rounding up requires a decimal add-with-carry.  If we continue | 
 |     // the carry, the newly-introduced zeros will just be truncated. | 
 |     for (unsigned I = FirstSignificant; I != N; ++I) { | 
 |       if (buffer[I] == '9') { | 
 |         FirstSignificant++; | 
 |       } else { | 
 |         buffer[I]++; | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     // If we carried through, we have exactly one digit of precision. | 
 |     if (FirstSignificant == N) { | 
 |       exp += FirstSignificant; | 
 |       buffer.clear(); | 
 |       buffer.push_back('1'); | 
 |       return; | 
 |     } | 
 |  | 
 |     exp += FirstSignificant; | 
 |     buffer.erase(&buffer[0], &buffer[FirstSignificant]); | 
 |   } | 
 | } | 
 |  | 
 | void IEEEFloat::toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision, | 
 |                          unsigned FormatMaxPadding, bool TruncateZero) const { | 
 |   switch (category) { | 
 |   case fcInfinity: | 
 |     if (isNegative()) | 
 |       return append(Str, "-Inf"); | 
 |     else | 
 |       return append(Str, "+Inf"); | 
 |  | 
 |   case fcNaN: return append(Str, "NaN"); | 
 |  | 
 |   case fcZero: | 
 |     if (isNegative()) | 
 |       Str.push_back('-'); | 
 |  | 
 |     if (!FormatMaxPadding) { | 
 |       if (TruncateZero) | 
 |         append(Str, "0.0E+0"); | 
 |       else { | 
 |         append(Str, "0.0"); | 
 |         if (FormatPrecision > 1) | 
 |           Str.append(FormatPrecision - 1, '0'); | 
 |         append(Str, "e+00"); | 
 |       } | 
 |     } else | 
 |       Str.push_back('0'); | 
 |     return; | 
 |  | 
 |   case fcNormal: | 
 |     break; | 
 |   } | 
 |  | 
 |   if (isNegative()) | 
 |     Str.push_back('-'); | 
 |  | 
 |   // Decompose the number into an APInt and an exponent. | 
 |   int exp = exponent - ((int) semantics->precision - 1); | 
 |   APInt significand(semantics->precision, | 
 |                     makeArrayRef(significandParts(), | 
 |                                  partCountForBits(semantics->precision))); | 
 |  | 
 |   // Set FormatPrecision if zero.  We want to do this before we | 
 |   // truncate trailing zeros, as those are part of the precision. | 
 |   if (!FormatPrecision) { | 
 |     // We use enough digits so the number can be round-tripped back to an | 
 |     // APFloat. The formula comes from "How to Print Floating-Point Numbers | 
 |     // Accurately" by Steele and White. | 
 |     // FIXME: Using a formula based purely on the precision is conservative; | 
 |     // we can print fewer digits depending on the actual value being printed. | 
 |  | 
 |     // FormatPrecision = 2 + floor(significandBits / lg_2(10)) | 
 |     FormatPrecision = 2 + semantics->precision * 59 / 196; | 
 |   } | 
 |  | 
 |   // Ignore trailing binary zeros. | 
 |   int trailingZeros = significand.countTrailingZeros(); | 
 |   exp += trailingZeros; | 
 |   significand.lshrInPlace(trailingZeros); | 
 |  | 
 |   // Change the exponent from 2^e to 10^e. | 
 |   if (exp == 0) { | 
 |     // Nothing to do. | 
 |   } else if (exp > 0) { | 
 |     // Just shift left. | 
 |     significand = significand.zext(semantics->precision + exp); | 
 |     significand <<= exp; | 
 |     exp = 0; | 
 |   } else { /* exp < 0 */ | 
 |     int texp = -exp; | 
 |  | 
 |     // We transform this using the identity: | 
 |     //   (N)(2^-e) == (N)(5^e)(10^-e) | 
 |     // This means we have to multiply N (the significand) by 5^e. | 
 |     // To avoid overflow, we have to operate on numbers large | 
 |     // enough to store N * 5^e: | 
 |     //   log2(N * 5^e) == log2(N) + e * log2(5) | 
 |     //                 <= semantics->precision + e * 137 / 59 | 
 |     //   (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59) | 
 |  | 
 |     unsigned precision = semantics->precision + (137 * texp + 136) / 59; | 
 |  | 
 |     // Multiply significand by 5^e. | 
 |     //   N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8) | 
 |     significand = significand.zext(precision); | 
 |     APInt five_to_the_i(precision, 5); | 
 |     while (true) { | 
 |       if (texp & 1) significand *= five_to_the_i; | 
 |  | 
 |       texp >>= 1; | 
 |       if (!texp) break; | 
 |       five_to_the_i *= five_to_the_i; | 
 |     } | 
 |   } | 
 |  | 
 |   AdjustToPrecision(significand, exp, FormatPrecision); | 
 |  | 
 |   SmallVector<char, 256> buffer; | 
 |  | 
 |   // Fill the buffer. | 
 |   unsigned precision = significand.getBitWidth(); | 
 |   APInt ten(precision, 10); | 
 |   APInt digit(precision, 0); | 
 |  | 
 |   bool inTrail = true; | 
 |   while (significand != 0) { | 
 |     // digit <- significand % 10 | 
 |     // significand <- significand / 10 | 
 |     APInt::udivrem(significand, ten, significand, digit); | 
 |  | 
 |     unsigned d = digit.getZExtValue(); | 
 |  | 
 |     // Drop trailing zeros. | 
 |     if (inTrail && !d) exp++; | 
 |     else { | 
 |       buffer.push_back((char) ('0' + d)); | 
 |       inTrail = false; | 
 |     } | 
 |   } | 
 |  | 
 |   assert(!buffer.empty() && "no characters in buffer!"); | 
 |  | 
 |   // Drop down to FormatPrecision. | 
 |   // TODO: don't do more precise calculations above than are required. | 
 |   AdjustToPrecision(buffer, exp, FormatPrecision); | 
 |  | 
 |   unsigned NDigits = buffer.size(); | 
 |  | 
 |   // Check whether we should use scientific notation. | 
 |   bool FormatScientific; | 
 |   if (!FormatMaxPadding) | 
 |     FormatScientific = true; | 
 |   else { | 
 |     if (exp >= 0) { | 
 |       // 765e3 --> 765000 | 
 |       //              ^^^ | 
 |       // But we shouldn't make the number look more precise than it is. | 
 |       FormatScientific = ((unsigned) exp > FormatMaxPadding || | 
 |                           NDigits + (unsigned) exp > FormatPrecision); | 
 |     } else { | 
 |       // Power of the most significant digit. | 
 |       int MSD = exp + (int) (NDigits - 1); | 
 |       if (MSD >= 0) { | 
 |         // 765e-2 == 7.65 | 
 |         FormatScientific = false; | 
 |       } else { | 
 |         // 765e-5 == 0.00765 | 
 |         //           ^ ^^ | 
 |         FormatScientific = ((unsigned) -MSD) > FormatMaxPadding; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Scientific formatting is pretty straightforward. | 
 |   if (FormatScientific) { | 
 |     exp += (NDigits - 1); | 
 |  | 
 |     Str.push_back(buffer[NDigits-1]); | 
 |     Str.push_back('.'); | 
 |     if (NDigits == 1 && TruncateZero) | 
 |       Str.push_back('0'); | 
 |     else | 
 |       for (unsigned I = 1; I != NDigits; ++I) | 
 |         Str.push_back(buffer[NDigits-1-I]); | 
 |     // Fill with zeros up to FormatPrecision. | 
 |     if (!TruncateZero && FormatPrecision > NDigits - 1) | 
 |       Str.append(FormatPrecision - NDigits + 1, '0'); | 
 |     // For !TruncateZero we use lower 'e'. | 
 |     Str.push_back(TruncateZero ? 'E' : 'e'); | 
 |  | 
 |     Str.push_back(exp >= 0 ? '+' : '-'); | 
 |     if (exp < 0) exp = -exp; | 
 |     SmallVector<char, 6> expbuf; | 
 |     do { | 
 |       expbuf.push_back((char) ('0' + (exp % 10))); | 
 |       exp /= 10; | 
 |     } while (exp); | 
 |     // Exponent always at least two digits if we do not truncate zeros. | 
 |     if (!TruncateZero && expbuf.size() < 2) | 
 |       expbuf.push_back('0'); | 
 |     for (unsigned I = 0, E = expbuf.size(); I != E; ++I) | 
 |       Str.push_back(expbuf[E-1-I]); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Non-scientific, positive exponents. | 
 |   if (exp >= 0) { | 
 |     for (unsigned I = 0; I != NDigits; ++I) | 
 |       Str.push_back(buffer[NDigits-1-I]); | 
 |     for (unsigned I = 0; I != (unsigned) exp; ++I) | 
 |       Str.push_back('0'); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Non-scientific, negative exponents. | 
 |  | 
 |   // The number of digits to the left of the decimal point. | 
 |   int NWholeDigits = exp + (int) NDigits; | 
 |  | 
 |   unsigned I = 0; | 
 |   if (NWholeDigits > 0) { | 
 |     for (; I != (unsigned) NWholeDigits; ++I) | 
 |       Str.push_back(buffer[NDigits-I-1]); | 
 |     Str.push_back('.'); | 
 |   } else { | 
 |     unsigned NZeros = 1 + (unsigned) -NWholeDigits; | 
 |  | 
 |     Str.push_back('0'); | 
 |     Str.push_back('.'); | 
 |     for (unsigned Z = 1; Z != NZeros; ++Z) | 
 |       Str.push_back('0'); | 
 |   } | 
 |  | 
 |   for (; I != NDigits; ++I) | 
 |     Str.push_back(buffer[NDigits-I-1]); | 
 | } | 
 |  | 
 | bool IEEEFloat::getExactInverse(APFloat *inv) const { | 
 |   // Special floats and denormals have no exact inverse. | 
 |   if (!isFiniteNonZero()) | 
 |     return false; | 
 |  | 
 |   // Check that the number is a power of two by making sure that only the | 
 |   // integer bit is set in the significand. | 
 |   if (significandLSB() != semantics->precision - 1) | 
 |     return false; | 
 |  | 
 |   // Get the inverse. | 
 |   IEEEFloat reciprocal(*semantics, 1ULL); | 
 |   if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK) | 
 |     return false; | 
 |  | 
 |   // Avoid multiplication with a denormal, it is not safe on all platforms and | 
 |   // may be slower than a normal division. | 
 |   if (reciprocal.isDenormal()) | 
 |     return false; | 
 |  | 
 |   assert(reciprocal.isFiniteNonZero() && | 
 |          reciprocal.significandLSB() == reciprocal.semantics->precision - 1); | 
 |  | 
 |   if (inv) | 
 |     *inv = APFloat(reciprocal, *semantics); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool IEEEFloat::isSignaling() const { | 
 |   if (!isNaN()) | 
 |     return false; | 
 |  | 
 |   // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the | 
 |   // first bit of the trailing significand being 0. | 
 |   return !APInt::tcExtractBit(significandParts(), semantics->precision - 2); | 
 | } | 
 |  | 
 | /// IEEE-754R 2008 5.3.1: nextUp/nextDown. | 
 | /// | 
 | /// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with | 
 | /// appropriate sign switching before/after the computation. | 
 | IEEEFloat::opStatus IEEEFloat::next(bool nextDown) { | 
 |   // If we are performing nextDown, swap sign so we have -x. | 
 |   if (nextDown) | 
 |     changeSign(); | 
 |  | 
 |   // Compute nextUp(x) | 
 |   opStatus result = opOK; | 
 |  | 
 |   // Handle each float category separately. | 
 |   switch (category) { | 
 |   case fcInfinity: | 
 |     // nextUp(+inf) = +inf | 
 |     if (!isNegative()) | 
 |       break; | 
 |     // nextUp(-inf) = -getLargest() | 
 |     makeLargest(true); | 
 |     break; | 
 |   case fcNaN: | 
 |     // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag. | 
 |     // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not | 
 |     //                     change the payload. | 
 |     if (isSignaling()) { | 
 |       result = opInvalidOp; | 
 |       // For consistency, propagate the sign of the sNaN to the qNaN. | 
 |       makeNaN(false, isNegative(), nullptr); | 
 |     } | 
 |     break; | 
 |   case fcZero: | 
 |     // nextUp(pm 0) = +getSmallest() | 
 |     makeSmallest(false); | 
 |     break; | 
 |   case fcNormal: | 
 |     // nextUp(-getSmallest()) = -0 | 
 |     if (isSmallest() && isNegative()) { | 
 |       APInt::tcSet(significandParts(), 0, partCount()); | 
 |       category = fcZero; | 
 |       exponent = 0; | 
 |       break; | 
 |     } | 
 |  | 
 |     // nextUp(getLargest()) == INFINITY | 
 |     if (isLargest() && !isNegative()) { | 
 |       APInt::tcSet(significandParts(), 0, partCount()); | 
 |       category = fcInfinity; | 
 |       exponent = semantics->maxExponent + 1; | 
 |       break; | 
 |     } | 
 |  | 
 |     // nextUp(normal) == normal + inc. | 
 |     if (isNegative()) { | 
 |       // If we are negative, we need to decrement the significand. | 
 |  | 
 |       // We only cross a binade boundary that requires adjusting the exponent | 
 |       // if: | 
 |       //   1. exponent != semantics->minExponent. This implies we are not in the | 
 |       //   smallest binade or are dealing with denormals. | 
 |       //   2. Our significand excluding the integral bit is all zeros. | 
 |       bool WillCrossBinadeBoundary = | 
 |         exponent != semantics->minExponent && isSignificandAllZeros(); | 
 |  | 
 |       // Decrement the significand. | 
 |       // | 
 |       // We always do this since: | 
 |       //   1. If we are dealing with a non-binade decrement, by definition we | 
 |       //   just decrement the significand. | 
 |       //   2. If we are dealing with a normal -> normal binade decrement, since | 
 |       //   we have an explicit integral bit the fact that all bits but the | 
 |       //   integral bit are zero implies that subtracting one will yield a | 
 |       //   significand with 0 integral bit and 1 in all other spots. Thus we | 
 |       //   must just adjust the exponent and set the integral bit to 1. | 
 |       //   3. If we are dealing with a normal -> denormal binade decrement, | 
 |       //   since we set the integral bit to 0 when we represent denormals, we | 
 |       //   just decrement the significand. | 
 |       integerPart *Parts = significandParts(); | 
 |       APInt::tcDecrement(Parts, partCount()); | 
 |  | 
 |       if (WillCrossBinadeBoundary) { | 
 |         // Our result is a normal number. Do the following: | 
 |         // 1. Set the integral bit to 1. | 
 |         // 2. Decrement the exponent. | 
 |         APInt::tcSetBit(Parts, semantics->precision - 1); | 
 |         exponent--; | 
 |       } | 
 |     } else { | 
 |       // If we are positive, we need to increment the significand. | 
 |  | 
 |       // We only cross a binade boundary that requires adjusting the exponent if | 
 |       // the input is not a denormal and all of said input's significand bits | 
 |       // are set. If all of said conditions are true: clear the significand, set | 
 |       // the integral bit to 1, and increment the exponent. If we have a | 
 |       // denormal always increment since moving denormals and the numbers in the | 
 |       // smallest normal binade have the same exponent in our representation. | 
 |       bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes(); | 
 |  | 
 |       if (WillCrossBinadeBoundary) { | 
 |         integerPart *Parts = significandParts(); | 
 |         APInt::tcSet(Parts, 0, partCount()); | 
 |         APInt::tcSetBit(Parts, semantics->precision - 1); | 
 |         assert(exponent != semantics->maxExponent && | 
 |                "We can not increment an exponent beyond the maxExponent allowed" | 
 |                " by the given floating point semantics."); | 
 |         exponent++; | 
 |       } else { | 
 |         incrementSignificand(); | 
 |       } | 
 |     } | 
 |     break; | 
 |   } | 
 |  | 
 |   // If we are performing nextDown, swap sign so we have -nextUp(-x) | 
 |   if (nextDown) | 
 |     changeSign(); | 
 |  | 
 |   return result; | 
 | } | 
 |  | 
 | void IEEEFloat::makeInf(bool Negative) { | 
 |   category = fcInfinity; | 
 |   sign = Negative; | 
 |   exponent = semantics->maxExponent + 1; | 
 |   APInt::tcSet(significandParts(), 0, partCount()); | 
 | } | 
 |  | 
 | void IEEEFloat::makeZero(bool Negative) { | 
 |   category = fcZero; | 
 |   sign = Negative; | 
 |   exponent = semantics->minExponent-1; | 
 |   APInt::tcSet(significandParts(), 0, partCount()); | 
 | } | 
 |  | 
 | void IEEEFloat::makeQuiet() { | 
 |   assert(isNaN()); | 
 |   APInt::tcSetBit(significandParts(), semantics->precision - 2); | 
 | } | 
 |  | 
 | int ilogb(const IEEEFloat &Arg) { | 
 |   if (Arg.isNaN()) | 
 |     return IEEEFloat::IEK_NaN; | 
 |   if (Arg.isZero()) | 
 |     return IEEEFloat::IEK_Zero; | 
 |   if (Arg.isInfinity()) | 
 |     return IEEEFloat::IEK_Inf; | 
 |   if (!Arg.isDenormal()) | 
 |     return Arg.exponent; | 
 |  | 
 |   IEEEFloat Normalized(Arg); | 
 |   int SignificandBits = Arg.getSemantics().precision - 1; | 
 |  | 
 |   Normalized.exponent += SignificandBits; | 
 |   Normalized.normalize(IEEEFloat::rmNearestTiesToEven, lfExactlyZero); | 
 |   return Normalized.exponent - SignificandBits; | 
 | } | 
 |  | 
 | IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode RoundingMode) { | 
 |   auto MaxExp = X.getSemantics().maxExponent; | 
 |   auto MinExp = X.getSemantics().minExponent; | 
 |  | 
 |   // If Exp is wildly out-of-scale, simply adding it to X.exponent will | 
 |   // overflow; clamp it to a safe range before adding, but ensure that the range | 
 |   // is large enough that the clamp does not change the result. The range we | 
 |   // need to support is the difference between the largest possible exponent and | 
 |   // the normalized exponent of half the smallest denormal. | 
 |  | 
 |   int SignificandBits = X.getSemantics().precision - 1; | 
 |   int MaxIncrement = MaxExp - (MinExp - SignificandBits) + 1; | 
 |  | 
 |   // Clamp to one past the range ends to let normalize handle overlflow. | 
 |   X.exponent += std::min(std::max(Exp, -MaxIncrement - 1), MaxIncrement); | 
 |   X.normalize(RoundingMode, lfExactlyZero); | 
 |   if (X.isNaN()) | 
 |     X.makeQuiet(); | 
 |   return X; | 
 | } | 
 |  | 
 | IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM) { | 
 |   Exp = ilogb(Val); | 
 |  | 
 |   // Quiet signalling nans. | 
 |   if (Exp == IEEEFloat::IEK_NaN) { | 
 |     IEEEFloat Quiet(Val); | 
 |     Quiet.makeQuiet(); | 
 |     return Quiet; | 
 |   } | 
 |  | 
 |   if (Exp == IEEEFloat::IEK_Inf) | 
 |     return Val; | 
 |  | 
 |   // 1 is added because frexp is defined to return a normalized fraction in | 
 |   // +/-[0.5, 1.0), rather than the usual +/-[1.0, 2.0). | 
 |   Exp = Exp == IEEEFloat::IEK_Zero ? 0 : Exp + 1; | 
 |   return scalbn(Val, -Exp, RM); | 
 | } | 
 |  | 
 | DoubleAPFloat::DoubleAPFloat(const fltSemantics &S) | 
 |     : Semantics(&S), | 
 |       Floats(new APFloat[2]{APFloat(semIEEEdouble), APFloat(semIEEEdouble)}) { | 
 |   assert(Semantics == &semPPCDoubleDouble); | 
 | } | 
 |  | 
 | DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, uninitializedTag) | 
 |     : Semantics(&S), | 
 |       Floats(new APFloat[2]{APFloat(semIEEEdouble, uninitialized), | 
 |                             APFloat(semIEEEdouble, uninitialized)}) { | 
 |   assert(Semantics == &semPPCDoubleDouble); | 
 | } | 
 |  | 
 | DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, integerPart I) | 
 |     : Semantics(&S), Floats(new APFloat[2]{APFloat(semIEEEdouble, I), | 
 |                                            APFloat(semIEEEdouble)}) { | 
 |   assert(Semantics == &semPPCDoubleDouble); | 
 | } | 
 |  | 
 | DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, const APInt &I) | 
 |     : Semantics(&S), | 
 |       Floats(new APFloat[2]{ | 
 |           APFloat(semIEEEdouble, APInt(64, I.getRawData()[0])), | 
 |           APFloat(semIEEEdouble, APInt(64, I.getRawData()[1]))}) { | 
 |   assert(Semantics == &semPPCDoubleDouble); | 
 | } | 
 |  | 
 | DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, APFloat &&First, | 
 |                              APFloat &&Second) | 
 |     : Semantics(&S), | 
 |       Floats(new APFloat[2]{std::move(First), std::move(Second)}) { | 
 |   assert(Semantics == &semPPCDoubleDouble); | 
 |   assert(&Floats[0].getSemantics() == &semIEEEdouble); | 
 |   assert(&Floats[1].getSemantics() == &semIEEEdouble); | 
 | } | 
 |  | 
 | DoubleAPFloat::DoubleAPFloat(const DoubleAPFloat &RHS) | 
 |     : Semantics(RHS.Semantics), | 
 |       Floats(RHS.Floats ? new APFloat[2]{APFloat(RHS.Floats[0]), | 
 |                                          APFloat(RHS.Floats[1])} | 
 |                         : nullptr) { | 
 |   assert(Semantics == &semPPCDoubleDouble); | 
 | } | 
 |  | 
 | DoubleAPFloat::DoubleAPFloat(DoubleAPFloat &&RHS) | 
 |     : Semantics(RHS.Semantics), Floats(std::move(RHS.Floats)) { | 
 |   RHS.Semantics = &semBogus; | 
 |   assert(Semantics == &semPPCDoubleDouble); | 
 | } | 
 |  | 
 | DoubleAPFloat &DoubleAPFloat::operator=(const DoubleAPFloat &RHS) { | 
 |   if (Semantics == RHS.Semantics && RHS.Floats) { | 
 |     Floats[0] = RHS.Floats[0]; | 
 |     Floats[1] = RHS.Floats[1]; | 
 |   } else if (this != &RHS) { | 
 |     this->~DoubleAPFloat(); | 
 |     new (this) DoubleAPFloat(RHS); | 
 |   } | 
 |   return *this; | 
 | } | 
 |  | 
 | // Implement addition, subtraction, multiplication and division based on: | 
 | // "Software for Doubled-Precision Floating-Point Computations", | 
 | // by Seppo Linnainmaa, ACM TOMS vol 7 no 3, September 1981, pages 272-283. | 
 | APFloat::opStatus DoubleAPFloat::addImpl(const APFloat &a, const APFloat &aa, | 
 |                                          const APFloat &c, const APFloat &cc, | 
 |                                          roundingMode RM) { | 
 |   int Status = opOK; | 
 |   APFloat z = a; | 
 |   Status |= z.add(c, RM); | 
 |   if (!z.isFinite()) { | 
 |     if (!z.isInfinity()) { | 
 |       Floats[0] = std::move(z); | 
 |       Floats[1].makeZero(/* Neg = */ false); | 
 |       return (opStatus)Status; | 
 |     } | 
 |     Status = opOK; | 
 |     auto AComparedToC = a.compareAbsoluteValue(c); | 
 |     z = cc; | 
 |     Status |= z.add(aa, RM); | 
 |     if (AComparedToC == APFloat::cmpGreaterThan) { | 
 |       // z = cc + aa + c + a; | 
 |       Status |= z.add(c, RM); | 
 |       Status |= z.add(a, RM); | 
 |     } else { | 
 |       // z = cc + aa + a + c; | 
 |       Status |= z.add(a, RM); | 
 |       Status |= z.add(c, RM); | 
 |     } | 
 |     if (!z.isFinite()) { | 
 |       Floats[0] = std::move(z); | 
 |       Floats[1].makeZero(/* Neg = */ false); | 
 |       return (opStatus)Status; | 
 |     } | 
 |     Floats[0] = z; | 
 |     APFloat zz = aa; | 
 |     Status |= zz.add(cc, RM); | 
 |     if (AComparedToC == APFloat::cmpGreaterThan) { | 
 |       // Floats[1] = a - z + c + zz; | 
 |       Floats[1] = a; | 
 |       Status |= Floats[1].subtract(z, RM); | 
 |       Status |= Floats[1].add(c, RM); | 
 |       Status |= Floats[1].add(zz, RM); | 
 |     } else { | 
 |       // Floats[1] = c - z + a + zz; | 
 |       Floats[1] = c; | 
 |       Status |= Floats[1].subtract(z, RM); | 
 |       Status |= Floats[1].add(a, RM); | 
 |       Status |= Floats[1].add(zz, RM); | 
 |     } | 
 |   } else { | 
 |     // q = a - z; | 
 |     APFloat q = a; | 
 |     Status |= q.subtract(z, RM); | 
 |  | 
 |     // zz = q + c + (a - (q + z)) + aa + cc; | 
 |     // Compute a - (q + z) as -((q + z) - a) to avoid temporary copies. | 
 |     auto zz = q; | 
 |     Status |= zz.add(c, RM); | 
 |     Status |= q.add(z, RM); | 
 |     Status |= q.subtract(a, RM); | 
 |     q.changeSign(); | 
 |     Status |= zz.add(q, RM); | 
 |     Status |= zz.add(aa, RM); | 
 |     Status |= zz.add(cc, RM); | 
 |     if (zz.isZero() && !zz.isNegative()) { | 
 |       Floats[0] = std::move(z); | 
 |       Floats[1].makeZero(/* Neg = */ false); | 
 |       return opOK; | 
 |     } | 
 |     Floats[0] = z; | 
 |     Status |= Floats[0].add(zz, RM); | 
 |     if (!Floats[0].isFinite()) { | 
 |       Floats[1].makeZero(/* Neg = */ false); | 
 |       return (opStatus)Status; | 
 |     } | 
 |     Floats[1] = std::move(z); | 
 |     Status |= Floats[1].subtract(Floats[0], RM); | 
 |     Status |= Floats[1].add(zz, RM); | 
 |   } | 
 |   return (opStatus)Status; | 
 | } | 
 |  | 
 | APFloat::opStatus DoubleAPFloat::addWithSpecial(const DoubleAPFloat &LHS, | 
 |                                                 const DoubleAPFloat &RHS, | 
 |                                                 DoubleAPFloat &Out, | 
 |                                                 roundingMode RM) { | 
 |   if (LHS.getCategory() == fcNaN) { | 
 |     Out = LHS; | 
 |     return opOK; | 
 |   } | 
 |   if (RHS.getCategory() == fcNaN) { | 
 |     Out = RHS; | 
 |     return opOK; | 
 |   } | 
 |   if (LHS.getCategory() == fcZero) { | 
 |     Out = RHS; | 
 |     return opOK; | 
 |   } | 
 |   if (RHS.getCategory() == fcZero) { | 
 |     Out = LHS; | 
 |     return opOK; | 
 |   } | 
 |   if (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcInfinity && | 
 |       LHS.isNegative() != RHS.isNegative()) { | 
 |     Out.makeNaN(false, Out.isNegative(), nullptr); | 
 |     return opInvalidOp; | 
 |   } | 
 |   if (LHS.getCategory() == fcInfinity) { | 
 |     Out = LHS; | 
 |     return opOK; | 
 |   } | 
 |   if (RHS.getCategory() == fcInfinity) { | 
 |     Out = RHS; | 
 |     return opOK; | 
 |   } | 
 |   assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal); | 
 |  | 
 |   APFloat A(LHS.Floats[0]), AA(LHS.Floats[1]), C(RHS.Floats[0]), | 
 |       CC(RHS.Floats[1]); | 
 |   assert(&A.getSemantics() == &semIEEEdouble); | 
 |   assert(&AA.getSemantics() == &semIEEEdouble); | 
 |   assert(&C.getSemantics() == &semIEEEdouble); | 
 |   assert(&CC.getSemantics() == &semIEEEdouble); | 
 |   assert(&Out.Floats[0].getSemantics() == &semIEEEdouble); | 
 |   assert(&Out.Floats[1].getSemantics() == &semIEEEdouble); | 
 |   return Out.addImpl(A, AA, C, CC, RM); | 
 | } | 
 |  | 
 | APFloat::opStatus DoubleAPFloat::add(const DoubleAPFloat &RHS, | 
 |                                      roundingMode RM) { | 
 |   return addWithSpecial(*this, RHS, *this, RM); | 
 | } | 
 |  | 
 | APFloat::opStatus DoubleAPFloat::subtract(const DoubleAPFloat &RHS, | 
 |                                           roundingMode RM) { | 
 |   changeSign(); | 
 |   auto Ret = add(RHS, RM); | 
 |   changeSign(); | 
 |   return Ret; | 
 | } | 
 |  | 
 | APFloat::opStatus DoubleAPFloat::multiply(const DoubleAPFloat &RHS, | 
 |                                           APFloat::roundingMode RM) { | 
 |   const auto &LHS = *this; | 
 |   auto &Out = *this; | 
 |   /* Interesting observation: For special categories, finding the lowest | 
 |      common ancestor of the following layered graph gives the correct | 
 |      return category: | 
 |  | 
 |         NaN | 
 |        /   \ | 
 |      Zero  Inf | 
 |        \   / | 
 |        Normal | 
 |  | 
 |      e.g. NaN * NaN = NaN | 
 |           Zero * Inf = NaN | 
 |           Normal * Zero = Zero | 
 |           Normal * Inf = Inf | 
 |   */ | 
 |   if (LHS.getCategory() == fcNaN) { | 
 |     Out = LHS; | 
 |     return opOK; | 
 |   } | 
 |   if (RHS.getCategory() == fcNaN) { | 
 |     Out = RHS; | 
 |     return opOK; | 
 |   } | 
 |   if ((LHS.getCategory() == fcZero && RHS.getCategory() == fcInfinity) || | 
 |       (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcZero)) { | 
 |     Out.makeNaN(false, false, nullptr); | 
 |     return opOK; | 
 |   } | 
 |   if (LHS.getCategory() == fcZero || LHS.getCategory() == fcInfinity) { | 
 |     Out = LHS; | 
 |     return opOK; | 
 |   } | 
 |   if (RHS.getCategory() == fcZero || RHS.getCategory() == fcInfinity) { | 
 |     Out = RHS; | 
 |     return opOK; | 
 |   } | 
 |   assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal && | 
 |          "Special cases not handled exhaustively"); | 
 |  | 
 |   int Status = opOK; | 
 |   APFloat A = Floats[0], B = Floats[1], C = RHS.Floats[0], D = RHS.Floats[1]; | 
 |   // t = a * c | 
 |   APFloat T = A; | 
 |   Status |= T.multiply(C, RM); | 
 |   if (!T.isFiniteNonZero()) { | 
 |     Floats[0] = T; | 
 |     Floats[1].makeZero(/* Neg = */ false); | 
 |     return (opStatus)Status; | 
 |   } | 
 |  | 
 |   // tau = fmsub(a, c, t), that is -fmadd(-a, c, t). | 
 |   APFloat Tau = A; | 
 |   T.changeSign(); | 
 |   Status |= Tau.fusedMultiplyAdd(C, T, RM); | 
 |   T.changeSign(); | 
 |   { | 
 |     // v = a * d | 
 |     APFloat V = A; | 
 |     Status |= V.multiply(D, RM); | 
 |     // w = b * c | 
 |     APFloat W = B; | 
 |     Status |= W.multiply(C, RM); | 
 |     Status |= V.add(W, RM); | 
 |     // tau += v + w | 
 |     Status |= Tau.add(V, RM); | 
 |   } | 
 |   // u = t + tau | 
 |   APFloat U = T; | 
 |   Status |= U.add(Tau, RM); | 
 |  | 
 |   Floats[0] = U; | 
 |   if (!U.isFinite()) { | 
 |     Floats[1].makeZero(/* Neg = */ false); | 
 |   } else { | 
 |     // Floats[1] = (t - u) + tau | 
 |     Status |= T.subtract(U, RM); | 
 |     Status |= T.add(Tau, RM); | 
 |     Floats[1] = T; | 
 |   } | 
 |   return (opStatus)Status; | 
 | } | 
 |  | 
 | APFloat::opStatus DoubleAPFloat::divide(const DoubleAPFloat &RHS, | 
 |                                         APFloat::roundingMode RM) { | 
 |   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); | 
 |   APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); | 
 |   auto Ret = | 
 |       Tmp.divide(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()), RM); | 
 |   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | 
 |   return Ret; | 
 | } | 
 |  | 
 | APFloat::opStatus DoubleAPFloat::remainder(const DoubleAPFloat &RHS) { | 
 |   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); | 
 |   APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); | 
 |   auto Ret = | 
 |       Tmp.remainder(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt())); | 
 |   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | 
 |   return Ret; | 
 | } | 
 |  | 
 | APFloat::opStatus DoubleAPFloat::mod(const DoubleAPFloat &RHS) { | 
 |   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); | 
 |   APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); | 
 |   auto Ret = Tmp.mod(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt())); | 
 |   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | 
 |   return Ret; | 
 | } | 
 |  | 
 | APFloat::opStatus | 
 | DoubleAPFloat::fusedMultiplyAdd(const DoubleAPFloat &Multiplicand, | 
 |                                 const DoubleAPFloat &Addend, | 
 |                                 APFloat::roundingMode RM) { | 
 |   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); | 
 |   APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); | 
 |   auto Ret = Tmp.fusedMultiplyAdd( | 
 |       APFloat(semPPCDoubleDoubleLegacy, Multiplicand.bitcastToAPInt()), | 
 |       APFloat(semPPCDoubleDoubleLegacy, Addend.bitcastToAPInt()), RM); | 
 |   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | 
 |   return Ret; | 
 | } | 
 |  | 
 | APFloat::opStatus DoubleAPFloat::roundToIntegral(APFloat::roundingMode RM) { | 
 |   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); | 
 |   APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); | 
 |   auto Ret = Tmp.roundToIntegral(RM); | 
 |   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | 
 |   return Ret; | 
 | } | 
 |  | 
 | void DoubleAPFloat::changeSign() { | 
 |   Floats[0].changeSign(); | 
 |   Floats[1].changeSign(); | 
 | } | 
 |  | 
 | APFloat::cmpResult | 
 | DoubleAPFloat::compareAbsoluteValue(const DoubleAPFloat &RHS) const { | 
 |   auto Result = Floats[0].compareAbsoluteValue(RHS.Floats[0]); | 
 |   if (Result != cmpEqual) | 
 |     return Result; | 
 |   Result = Floats[1].compareAbsoluteValue(RHS.Floats[1]); | 
 |   if (Result == cmpLessThan || Result == cmpGreaterThan) { | 
 |     auto Against = Floats[0].isNegative() ^ Floats[1].isNegative(); | 
 |     auto RHSAgainst = RHS.Floats[0].isNegative() ^ RHS.Floats[1].isNegative(); | 
 |     if (Against && !RHSAgainst) | 
 |       return cmpLessThan; | 
 |     if (!Against && RHSAgainst) | 
 |       return cmpGreaterThan; | 
 |     if (!Against && !RHSAgainst) | 
 |       return Result; | 
 |     if (Against && RHSAgainst) | 
 |       return (cmpResult)(cmpLessThan + cmpGreaterThan - Result); | 
 |   } | 
 |   return Result; | 
 | } | 
 |  | 
 | APFloat::fltCategory DoubleAPFloat::getCategory() const { | 
 |   return Floats[0].getCategory(); | 
 | } | 
 |  | 
 | bool DoubleAPFloat::isNegative() const { return Floats[0].isNegative(); } | 
 |  | 
 | void DoubleAPFloat::makeInf(bool Neg) { | 
 |   Floats[0].makeInf(Neg); | 
 |   Floats[1].makeZero(/* Neg = */ false); | 
 | } | 
 |  | 
 | void DoubleAPFloat::makeZero(bool Neg) { | 
 |   Floats[0].makeZero(Neg); | 
 |   Floats[1].makeZero(/* Neg = */ false); | 
 | } | 
 |  | 
 | void DoubleAPFloat::makeLargest(bool Neg) { | 
 |   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); | 
 |   Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x7fefffffffffffffull)); | 
 |   Floats[1] = APFloat(semIEEEdouble, APInt(64, 0x7c8ffffffffffffeull)); | 
 |   if (Neg) | 
 |     changeSign(); | 
 | } | 
 |  | 
 | void DoubleAPFloat::makeSmallest(bool Neg) { | 
 |   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); | 
 |   Floats[0].makeSmallest(Neg); | 
 |   Floats[1].makeZero(/* Neg = */ false); | 
 | } | 
 |  | 
 | void DoubleAPFloat::makeSmallestNormalized(bool Neg) { | 
 |   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); | 
 |   Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x0360000000000000ull)); | 
 |   if (Neg) | 
 |     Floats[0].changeSign(); | 
 |   Floats[1].makeZero(/* Neg = */ false); | 
 | } | 
 |  | 
 | void DoubleAPFloat::makeNaN(bool SNaN, bool Neg, const APInt *fill) { | 
 |   Floats[0].makeNaN(SNaN, Neg, fill); | 
 |   Floats[1].makeZero(/* Neg = */ false); | 
 | } | 
 |  | 
 | APFloat::cmpResult DoubleAPFloat::compare(const DoubleAPFloat &RHS) const { | 
 |   auto Result = Floats[0].compare(RHS.Floats[0]); | 
 |   // |Float[0]| > |Float[1]| | 
 |   if (Result == APFloat::cmpEqual) | 
 |     return Floats[1].compare(RHS.Floats[1]); | 
 |   return Result; | 
 | } | 
 |  | 
 | bool DoubleAPFloat::bitwiseIsEqual(const DoubleAPFloat &RHS) const { | 
 |   return Floats[0].bitwiseIsEqual(RHS.Floats[0]) && | 
 |          Floats[1].bitwiseIsEqual(RHS.Floats[1]); | 
 | } | 
 |  | 
 | hash_code hash_value(const DoubleAPFloat &Arg) { | 
 |   if (Arg.Floats) | 
 |     return hash_combine(hash_value(Arg.Floats[0]), hash_value(Arg.Floats[1])); | 
 |   return hash_combine(Arg.Semantics); | 
 | } | 
 |  | 
 | APInt DoubleAPFloat::bitcastToAPInt() const { | 
 |   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); | 
 |   uint64_t Data[] = { | 
 |       Floats[0].bitcastToAPInt().getRawData()[0], | 
 |       Floats[1].bitcastToAPInt().getRawData()[0], | 
 |   }; | 
 |   return APInt(128, 2, Data); | 
 | } | 
 |  | 
 | APFloat::opStatus DoubleAPFloat::convertFromString(StringRef S, | 
 |                                                    roundingMode RM) { | 
 |   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); | 
 |   APFloat Tmp(semPPCDoubleDoubleLegacy); | 
 |   auto Ret = Tmp.convertFromString(S, RM); | 
 |   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | 
 |   return Ret; | 
 | } | 
 |  | 
 | APFloat::opStatus DoubleAPFloat::next(bool nextDown) { | 
 |   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); | 
 |   APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); | 
 |   auto Ret = Tmp.next(nextDown); | 
 |   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | 
 |   return Ret; | 
 | } | 
 |  | 
 | APFloat::opStatus | 
 | DoubleAPFloat::convertToInteger(MutableArrayRef<integerPart> Input, | 
 |                                 unsigned int Width, bool IsSigned, | 
 |                                 roundingMode RM, bool *IsExact) const { | 
 |   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); | 
 |   return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) | 
 |       .convertToInteger(Input, Width, IsSigned, RM, IsExact); | 
 | } | 
 |  | 
 | APFloat::opStatus DoubleAPFloat::convertFromAPInt(const APInt &Input, | 
 |                                                   bool IsSigned, | 
 |                                                   roundingMode RM) { | 
 |   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); | 
 |   APFloat Tmp(semPPCDoubleDoubleLegacy); | 
 |   auto Ret = Tmp.convertFromAPInt(Input, IsSigned, RM); | 
 |   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | 
 |   return Ret; | 
 | } | 
 |  | 
 | APFloat::opStatus | 
 | DoubleAPFloat::convertFromSignExtendedInteger(const integerPart *Input, | 
 |                                               unsigned int InputSize, | 
 |                                               bool IsSigned, roundingMode RM) { | 
 |   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); | 
 |   APFloat Tmp(semPPCDoubleDoubleLegacy); | 
 |   auto Ret = Tmp.convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM); | 
 |   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | 
 |   return Ret; | 
 | } | 
 |  | 
 | APFloat::opStatus | 
 | DoubleAPFloat::convertFromZeroExtendedInteger(const integerPart *Input, | 
 |                                               unsigned int InputSize, | 
 |                                               bool IsSigned, roundingMode RM) { | 
 |   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); | 
 |   APFloat Tmp(semPPCDoubleDoubleLegacy); | 
 |   auto Ret = Tmp.convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM); | 
 |   *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | 
 |   return Ret; | 
 | } | 
 |  | 
 | unsigned int DoubleAPFloat::convertToHexString(char *DST, | 
 |                                                unsigned int HexDigits, | 
 |                                                bool UpperCase, | 
 |                                                roundingMode RM) const { | 
 |   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); | 
 |   return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) | 
 |       .convertToHexString(DST, HexDigits, UpperCase, RM); | 
 | } | 
 |  | 
 | bool DoubleAPFloat::isDenormal() const { | 
 |   return getCategory() == fcNormal && | 
 |          (Floats[0].isDenormal() || Floats[1].isDenormal() || | 
 |           // (double)(Hi + Lo) == Hi defines a normal number. | 
 |           Floats[0].compare(Floats[0] + Floats[1]) != cmpEqual); | 
 | } | 
 |  | 
 | bool DoubleAPFloat::isSmallest() const { | 
 |   if (getCategory() != fcNormal) | 
 |     return false; | 
 |   DoubleAPFloat Tmp(*this); | 
 |   Tmp.makeSmallest(this->isNegative()); | 
 |   return Tmp.compare(*this) == cmpEqual; | 
 | } | 
 |  | 
 | bool DoubleAPFloat::isLargest() const { | 
 |   if (getCategory() != fcNormal) | 
 |     return false; | 
 |   DoubleAPFloat Tmp(*this); | 
 |   Tmp.makeLargest(this->isNegative()); | 
 |   return Tmp.compare(*this) == cmpEqual; | 
 | } | 
 |  | 
 | bool DoubleAPFloat::isInteger() const { | 
 |   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); | 
 |   return Floats[0].isInteger() && Floats[1].isInteger(); | 
 | } | 
 |  | 
 | void DoubleAPFloat::toString(SmallVectorImpl<char> &Str, | 
 |                              unsigned FormatPrecision, | 
 |                              unsigned FormatMaxPadding, | 
 |                              bool TruncateZero) const { | 
 |   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); | 
 |   APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) | 
 |       .toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero); | 
 | } | 
 |  | 
 | bool DoubleAPFloat::getExactInverse(APFloat *inv) const { | 
 |   assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); | 
 |   APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); | 
 |   if (!inv) | 
 |     return Tmp.getExactInverse(nullptr); | 
 |   APFloat Inv(semPPCDoubleDoubleLegacy); | 
 |   auto Ret = Tmp.getExactInverse(&Inv); | 
 |   *inv = APFloat(semPPCDoubleDouble, Inv.bitcastToAPInt()); | 
 |   return Ret; | 
 | } | 
 |  | 
 | DoubleAPFloat scalbn(DoubleAPFloat Arg, int Exp, APFloat::roundingMode RM) { | 
 |   assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); | 
 |   return DoubleAPFloat(semPPCDoubleDouble, scalbn(Arg.Floats[0], Exp, RM), | 
 |                        scalbn(Arg.Floats[1], Exp, RM)); | 
 | } | 
 |  | 
 | DoubleAPFloat frexp(const DoubleAPFloat &Arg, int &Exp, | 
 |                     APFloat::roundingMode RM) { | 
 |   assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); | 
 |   APFloat First = frexp(Arg.Floats[0], Exp, RM); | 
 |   APFloat Second = Arg.Floats[1]; | 
 |   if (Arg.getCategory() == APFloat::fcNormal) | 
 |     Second = scalbn(Second, -Exp, RM); | 
 |   return DoubleAPFloat(semPPCDoubleDouble, std::move(First), std::move(Second)); | 
 | } | 
 |  | 
 | } // End detail namespace | 
 |  | 
 | APFloat::Storage::Storage(IEEEFloat F, const fltSemantics &Semantics) { | 
 |   if (usesLayout<IEEEFloat>(Semantics)) { | 
 |     new (&IEEE) IEEEFloat(std::move(F)); | 
 |     return; | 
 |   } | 
 |   if (usesLayout<DoubleAPFloat>(Semantics)) { | 
 |     new (&Double) | 
 |         DoubleAPFloat(Semantics, APFloat(std::move(F), F.getSemantics()), | 
 |                       APFloat(semIEEEdouble)); | 
 |     return; | 
 |   } | 
 |   llvm_unreachable("Unexpected semantics"); | 
 | } | 
 |  | 
 | APFloat::opStatus APFloat::convertFromString(StringRef Str, roundingMode RM) { | 
 |   APFLOAT_DISPATCH_ON_SEMANTICS(convertFromString(Str, RM)); | 
 | } | 
 |  | 
 | hash_code hash_value(const APFloat &Arg) { | 
 |   if (APFloat::usesLayout<detail::IEEEFloat>(Arg.getSemantics())) | 
 |     return hash_value(Arg.U.IEEE); | 
 |   if (APFloat::usesLayout<detail::DoubleAPFloat>(Arg.getSemantics())) | 
 |     return hash_value(Arg.U.Double); | 
 |   llvm_unreachable("Unexpected semantics"); | 
 | } | 
 |  | 
 | APFloat::APFloat(const fltSemantics &Semantics, StringRef S) | 
 |     : APFloat(Semantics) { | 
 |   convertFromString(S, rmNearestTiesToEven); | 
 | } | 
 |  | 
 | APFloat::opStatus APFloat::convert(const fltSemantics &ToSemantics, | 
 |                                    roundingMode RM, bool *losesInfo) { | 
 |   if (&getSemantics() == &ToSemantics) { | 
 |     *losesInfo = false; | 
 |     return opOK; | 
 |   } | 
 |   if (usesLayout<IEEEFloat>(getSemantics()) && | 
 |       usesLayout<IEEEFloat>(ToSemantics)) | 
 |     return U.IEEE.convert(ToSemantics, RM, losesInfo); | 
 |   if (usesLayout<IEEEFloat>(getSemantics()) && | 
 |       usesLayout<DoubleAPFloat>(ToSemantics)) { | 
 |     assert(&ToSemantics == &semPPCDoubleDouble); | 
 |     auto Ret = U.IEEE.convert(semPPCDoubleDoubleLegacy, RM, losesInfo); | 
 |     *this = APFloat(ToSemantics, U.IEEE.bitcastToAPInt()); | 
 |     return Ret; | 
 |   } | 
 |   if (usesLayout<DoubleAPFloat>(getSemantics()) && | 
 |       usesLayout<IEEEFloat>(ToSemantics)) { | 
 |     auto Ret = getIEEE().convert(ToSemantics, RM, losesInfo); | 
 |     *this = APFloat(std::move(getIEEE()), ToSemantics); | 
 |     return Ret; | 
 |   } | 
 |   llvm_unreachable("Unexpected semantics"); | 
 | } | 
 |  | 
 | APFloat APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE) { | 
 |   if (isIEEE) { | 
 |     switch (BitWidth) { | 
 |     case 16: | 
 |       return APFloat(semIEEEhalf, APInt::getAllOnesValue(BitWidth)); | 
 |     case 32: | 
 |       return APFloat(semIEEEsingle, APInt::getAllOnesValue(BitWidth)); | 
 |     case 64: | 
 |       return APFloat(semIEEEdouble, APInt::getAllOnesValue(BitWidth)); | 
 |     case 80: | 
 |       return APFloat(semX87DoubleExtended, APInt::getAllOnesValue(BitWidth)); | 
 |     case 128: | 
 |       return APFloat(semIEEEquad, APInt::getAllOnesValue(BitWidth)); | 
 |     default: | 
 |       llvm_unreachable("Unknown floating bit width"); | 
 |     } | 
 |   } else { | 
 |     assert(BitWidth == 128); | 
 |     return APFloat(semPPCDoubleDouble, APInt::getAllOnesValue(BitWidth)); | 
 |   } | 
 | } | 
 |  | 
 | void APFloat::print(raw_ostream &OS) const { | 
 |   SmallVector<char, 16> Buffer; | 
 |   toString(Buffer); | 
 |   OS << Buffer << "\n"; | 
 | } | 
 |  | 
 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
 | LLVM_DUMP_METHOD void APFloat::dump() const { print(dbgs()); } | 
 | #endif | 
 |  | 
 | void APFloat::Profile(FoldingSetNodeID &NID) const { | 
 |   NID.Add(bitcastToAPInt()); | 
 | } | 
 |  | 
 | /* Same as convertToInteger(integerPart*, ...), except the result is returned in | 
 |    an APSInt, whose initial bit-width and signed-ness are used to determine the | 
 |    precision of the conversion. | 
 |  */ | 
 | APFloat::opStatus APFloat::convertToInteger(APSInt &result, | 
 |                                             roundingMode rounding_mode, | 
 |                                             bool *isExact) const { | 
 |   unsigned bitWidth = result.getBitWidth(); | 
 |   SmallVector<uint64_t, 4> parts(result.getNumWords()); | 
 |   opStatus status = convertToInteger(parts, bitWidth, result.isSigned(), | 
 |                                      rounding_mode, isExact); | 
 |   // Keeps the original signed-ness. | 
 |   result = APInt(bitWidth, parts); | 
 |   return status; | 
 | } | 
 |  | 
 | } // End llvm namespace | 
 |  | 
 | #undef APFLOAT_DISPATCH_ON_SEMANTICS |