| //===-- LanaiISelLowering.cpp - Lanai DAG Lowering Implementation ---------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the LanaiTargetLowering class. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "LanaiISelLowering.h" | 
 | #include "Lanai.h" | 
 | #include "LanaiCondCode.h" | 
 | #include "LanaiMachineFunctionInfo.h" | 
 | #include "LanaiSubtarget.h" | 
 | #include "LanaiTargetObjectFile.h" | 
 | #include "MCTargetDesc/LanaiBaseInfo.h" | 
 | #include "llvm/ADT/APInt.h" | 
 | #include "llvm/ADT/ArrayRef.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/StringRef.h" | 
 | #include "llvm/ADT/StringSwitch.h" | 
 | #include "llvm/CodeGen/CallingConvLower.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineMemOperand.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/RuntimeLibcalls.h" | 
 | #include "llvm/CodeGen/SelectionDAG.h" | 
 | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
 | #include "llvm/CodeGen/TargetCallingConv.h" | 
 | #include "llvm/CodeGen/ValueTypes.h" | 
 | #include "llvm/IR/CallingConv.h" | 
 | #include "llvm/IR/DerivedTypes.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/GlobalValue.h" | 
 | #include "llvm/Support/Casting.h" | 
 | #include "llvm/Support/CodeGen.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/KnownBits.h" | 
 | #include "llvm/Support/MachineValueType.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include <cassert> | 
 | #include <cmath> | 
 | #include <cstdint> | 
 | #include <cstdlib> | 
 | #include <utility> | 
 |  | 
 | #define DEBUG_TYPE "lanai-lower" | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | // Limit on number of instructions the lowered multiplication may have before a | 
 | // call to the library function should be generated instead. The threshold is | 
 | // currently set to 14 as this was the smallest threshold that resulted in all | 
 | // constant multiplications being lowered. A threshold of 5 covered all cases | 
 | // except for one multiplication which required 14. mulsi3 requires 16 | 
 | // instructions (including the prologue and epilogue but excluding instructions | 
 | // at call site). Until we can inline mulsi3, generating at most 14 instructions | 
 | // will be faster than invoking mulsi3. | 
 | static cl::opt<int> LanaiLowerConstantMulThreshold( | 
 |     "lanai-constant-mul-threshold", cl::Hidden, | 
 |     cl::desc("Maximum number of instruction to generate when lowering constant " | 
 |              "multiplication instead of calling library function [default=14]"), | 
 |     cl::init(14)); | 
 |  | 
 | LanaiTargetLowering::LanaiTargetLowering(const TargetMachine &TM, | 
 |                                          const LanaiSubtarget &STI) | 
 |     : TargetLowering(TM) { | 
 |   // Set up the register classes. | 
 |   addRegisterClass(MVT::i32, &Lanai::GPRRegClass); | 
 |  | 
 |   // Compute derived properties from the register classes | 
 |   TRI = STI.getRegisterInfo(); | 
 |   computeRegisterProperties(TRI); | 
 |  | 
 |   setStackPointerRegisterToSaveRestore(Lanai::SP); | 
 |  | 
 |   setOperationAction(ISD::BR_CC, MVT::i32, Custom); | 
 |   setOperationAction(ISD::BR_JT, MVT::Other, Expand); | 
 |   setOperationAction(ISD::BRCOND, MVT::Other, Expand); | 
 |   setOperationAction(ISD::SETCC, MVT::i32, Custom); | 
 |   setOperationAction(ISD::SELECT, MVT::i32, Expand); | 
 |   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); | 
 |  | 
 |   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); | 
 |   setOperationAction(ISD::BlockAddress, MVT::i32, Custom); | 
 |   setOperationAction(ISD::JumpTable, MVT::i32, Custom); | 
 |   setOperationAction(ISD::ConstantPool, MVT::i32, Custom); | 
 |  | 
 |   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); | 
 |   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); | 
 |   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); | 
 |  | 
 |   setOperationAction(ISD::VASTART, MVT::Other, Custom); | 
 |   setOperationAction(ISD::VAARG, MVT::Other, Expand); | 
 |   setOperationAction(ISD::VACOPY, MVT::Other, Expand); | 
 |   setOperationAction(ISD::VAEND, MVT::Other, Expand); | 
 |  | 
 |   setOperationAction(ISD::SDIV, MVT::i32, Expand); | 
 |   setOperationAction(ISD::UDIV, MVT::i32, Expand); | 
 |   setOperationAction(ISD::SDIVREM, MVT::i32, Expand); | 
 |   setOperationAction(ISD::UDIVREM, MVT::i32, Expand); | 
 |   setOperationAction(ISD::SREM, MVT::i32, Expand); | 
 |   setOperationAction(ISD::UREM, MVT::i32, Expand); | 
 |  | 
 |   setOperationAction(ISD::MUL, MVT::i32, Custom); | 
 |   setOperationAction(ISD::MULHU, MVT::i32, Expand); | 
 |   setOperationAction(ISD::MULHS, MVT::i32, Expand); | 
 |   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); | 
 |   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); | 
 |  | 
 |   setOperationAction(ISD::ROTR, MVT::i32, Expand); | 
 |   setOperationAction(ISD::ROTL, MVT::i32, Expand); | 
 |   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); | 
 |   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); | 
 |   setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); | 
 |  | 
 |   setOperationAction(ISD::BSWAP, MVT::i32, Expand); | 
 |   setOperationAction(ISD::CTPOP, MVT::i32, Legal); | 
 |   setOperationAction(ISD::CTLZ, MVT::i32, Legal); | 
 |   setOperationAction(ISD::CTTZ, MVT::i32, Legal); | 
 |  | 
 |   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); | 
 |   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); | 
 |   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); | 
 |  | 
 |   // Extended load operations for i1 types must be promoted | 
 |   for (MVT VT : MVT::integer_valuetypes()) { | 
 |     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); | 
 |     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); | 
 |     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); | 
 |   } | 
 |  | 
 |   setTargetDAGCombine(ISD::ADD); | 
 |   setTargetDAGCombine(ISD::SUB); | 
 |   setTargetDAGCombine(ISD::AND); | 
 |   setTargetDAGCombine(ISD::OR); | 
 |   setTargetDAGCombine(ISD::XOR); | 
 |  | 
 |   // Function alignments (log2) | 
 |   setMinFunctionAlignment(2); | 
 |   setPrefFunctionAlignment(2); | 
 |  | 
 |   setJumpIsExpensive(true); | 
 |  | 
 |   // TODO: Setting the minimum jump table entries needed before a | 
 |   // switch is transformed to a jump table to 100 to avoid creating jump tables | 
 |   // as this was causing bad performance compared to a large group of if | 
 |   // statements. Re-evaluate this on new benchmarks. | 
 |   setMinimumJumpTableEntries(100); | 
 |  | 
 |   // Use fast calling convention for library functions. | 
 |   for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) { | 
 |     setLibcallCallingConv(static_cast<RTLIB::Libcall>(I), CallingConv::Fast); | 
 |   } | 
 |  | 
 |   MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores | 
 |   MaxStoresPerMemsetOptSize = 8; | 
 |   MaxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores | 
 |   MaxStoresPerMemcpyOptSize = 8; | 
 |   MaxStoresPerMemmove = 16; // For @llvm.memmove -> sequence of stores | 
 |   MaxStoresPerMemmoveOptSize = 8; | 
 |  | 
 |   // Booleans always contain 0 or 1. | 
 |   setBooleanContents(ZeroOrOneBooleanContent); | 
 | } | 
 |  | 
 | SDValue LanaiTargetLowering::LowerOperation(SDValue Op, | 
 |                                             SelectionDAG &DAG) const { | 
 |   switch (Op.getOpcode()) { | 
 |   case ISD::MUL: | 
 |     return LowerMUL(Op, DAG); | 
 |   case ISD::BR_CC: | 
 |     return LowerBR_CC(Op, DAG); | 
 |   case ISD::ConstantPool: | 
 |     return LowerConstantPool(Op, DAG); | 
 |   case ISD::GlobalAddress: | 
 |     return LowerGlobalAddress(Op, DAG); | 
 |   case ISD::BlockAddress: | 
 |     return LowerBlockAddress(Op, DAG); | 
 |   case ISD::JumpTable: | 
 |     return LowerJumpTable(Op, DAG); | 
 |   case ISD::SELECT_CC: | 
 |     return LowerSELECT_CC(Op, DAG); | 
 |   case ISD::SETCC: | 
 |     return LowerSETCC(Op, DAG); | 
 |   case ISD::SHL_PARTS: | 
 |     return LowerSHL_PARTS(Op, DAG); | 
 |   case ISD::SRL_PARTS: | 
 |     return LowerSRL_PARTS(Op, DAG); | 
 |   case ISD::VASTART: | 
 |     return LowerVASTART(Op, DAG); | 
 |   case ISD::DYNAMIC_STACKALLOC: | 
 |     return LowerDYNAMIC_STACKALLOC(Op, DAG); | 
 |   case ISD::RETURNADDR: | 
 |     return LowerRETURNADDR(Op, DAG); | 
 |   case ISD::FRAMEADDR: | 
 |     return LowerFRAMEADDR(Op, DAG); | 
 |   default: | 
 |     llvm_unreachable("unimplemented operand"); | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                       Lanai Inline Assembly Support | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | unsigned LanaiTargetLowering::getRegisterByName(const char *RegName, EVT /*VT*/, | 
 |                                                 SelectionDAG & /*DAG*/) const { | 
 |   // Only unallocatable registers should be matched here. | 
 |   unsigned Reg = StringSwitch<unsigned>(RegName) | 
 |                      .Case("pc", Lanai::PC) | 
 |                      .Case("sp", Lanai::SP) | 
 |                      .Case("fp", Lanai::FP) | 
 |                      .Case("rr1", Lanai::RR1) | 
 |                      .Case("r10", Lanai::R10) | 
 |                      .Case("rr2", Lanai::RR2) | 
 |                      .Case("r11", Lanai::R11) | 
 |                      .Case("rca", Lanai::RCA) | 
 |                      .Default(0); | 
 |  | 
 |   if (Reg) | 
 |     return Reg; | 
 |   report_fatal_error("Invalid register name global variable"); | 
 | } | 
 |  | 
 | std::pair<unsigned, const TargetRegisterClass *> | 
 | LanaiTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, | 
 |                                                   StringRef Constraint, | 
 |                                                   MVT VT) const { | 
 |   if (Constraint.size() == 1) | 
 |     // GCC Constraint Letters | 
 |     switch (Constraint[0]) { | 
 |     case 'r': // GENERAL_REGS | 
 |       return std::make_pair(0U, &Lanai::GPRRegClass); | 
 |     default: | 
 |       break; | 
 |     } | 
 |  | 
 |   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); | 
 | } | 
 |  | 
 | // Examine constraint type and operand type and determine a weight value. | 
 | // This object must already have been set up with the operand type | 
 | // and the current alternative constraint selected. | 
 | TargetLowering::ConstraintWeight | 
 | LanaiTargetLowering::getSingleConstraintMatchWeight( | 
 |     AsmOperandInfo &Info, const char *Constraint) const { | 
 |   ConstraintWeight Weight = CW_Invalid; | 
 |   Value *CallOperandVal = Info.CallOperandVal; | 
 |   // If we don't have a value, we can't do a match, | 
 |   // but allow it at the lowest weight. | 
 |   if (CallOperandVal == nullptr) | 
 |     return CW_Default; | 
 |   // Look at the constraint type. | 
 |   switch (*Constraint) { | 
 |   case 'I': // signed 16 bit immediate | 
 |   case 'J': // integer zero | 
 |   case 'K': // unsigned 16 bit immediate | 
 |   case 'L': // immediate in the range 0 to 31 | 
 |   case 'M': // signed 32 bit immediate where lower 16 bits are 0 | 
 |   case 'N': // signed 26 bit immediate | 
 |   case 'O': // integer zero | 
 |     if (isa<ConstantInt>(CallOperandVal)) | 
 |       Weight = CW_Constant; | 
 |     break; | 
 |   default: | 
 |     Weight = TargetLowering::getSingleConstraintMatchWeight(Info, Constraint); | 
 |     break; | 
 |   } | 
 |   return Weight; | 
 | } | 
 |  | 
 | // LowerAsmOperandForConstraint - Lower the specified operand into the Ops | 
 | // vector.  If it is invalid, don't add anything to Ops. | 
 | void LanaiTargetLowering::LowerAsmOperandForConstraint( | 
 |     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, | 
 |     SelectionDAG &DAG) const { | 
 |   SDValue Result(nullptr, 0); | 
 |  | 
 |   // Only support length 1 constraints for now. | 
 |   if (Constraint.length() > 1) | 
 |     return; | 
 |  | 
 |   char ConstraintLetter = Constraint[0]; | 
 |   switch (ConstraintLetter) { | 
 |   case 'I': // Signed 16 bit constant | 
 |     // If this fails, the parent routine will give an error | 
 |     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
 |       if (isInt<16>(C->getSExtValue())) { | 
 |         Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C), | 
 |                                        Op.getValueType()); | 
 |         break; | 
 |       } | 
 |     } | 
 |     return; | 
 |   case 'J': // integer zero | 
 |   case 'O': | 
 |     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
 |       if (C->getZExtValue() == 0) { | 
 |         Result = DAG.getTargetConstant(0, SDLoc(C), Op.getValueType()); | 
 |         break; | 
 |       } | 
 |     } | 
 |     return; | 
 |   case 'K': // unsigned 16 bit immediate | 
 |     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
 |       if (isUInt<16>(C->getZExtValue())) { | 
 |         Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C), | 
 |                                        Op.getValueType()); | 
 |         break; | 
 |       } | 
 |     } | 
 |     return; | 
 |   case 'L': // immediate in the range 0 to 31 | 
 |     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
 |       if (C->getZExtValue() <= 31) { | 
 |         Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(C), | 
 |                                        Op.getValueType()); | 
 |         break; | 
 |       } | 
 |     } | 
 |     return; | 
 |   case 'M': // signed 32 bit immediate where lower 16 bits are 0 | 
 |     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
 |       int64_t Val = C->getSExtValue(); | 
 |       if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)) { | 
 |         Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType()); | 
 |         break; | 
 |       } | 
 |     } | 
 |     return; | 
 |   case 'N': // signed 26 bit immediate | 
 |     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { | 
 |       int64_t Val = C->getSExtValue(); | 
 |       if ((Val >= -33554432) && (Val <= 33554431)) { | 
 |         Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType()); | 
 |         break; | 
 |       } | 
 |     } | 
 |     return; | 
 |   default: | 
 |     break; // This will fall through to the generic implementation | 
 |   } | 
 |  | 
 |   if (Result.getNode()) { | 
 |     Ops.push_back(Result); | 
 |     return; | 
 |   } | 
 |  | 
 |   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                      Calling Convention Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "LanaiGenCallingConv.inc" | 
 |  | 
 | static unsigned NumFixedArgs; | 
 | static bool CC_Lanai32_VarArg(unsigned ValNo, MVT ValVT, MVT LocVT, | 
 |                               CCValAssign::LocInfo LocInfo, | 
 |                               ISD::ArgFlagsTy ArgFlags, CCState &State) { | 
 |   // Handle fixed arguments with default CC. | 
 |   // Note: Both the default and fast CC handle VarArg the same and hence the | 
 |   // calling convention of the function is not considered here. | 
 |   if (ValNo < NumFixedArgs) { | 
 |     return CC_Lanai32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State); | 
 |   } | 
 |  | 
 |   // Promote i8/i16 args to i32 | 
 |   if (LocVT == MVT::i8 || LocVT == MVT::i16) { | 
 |     LocVT = MVT::i32; | 
 |     if (ArgFlags.isSExt()) | 
 |       LocInfo = CCValAssign::SExt; | 
 |     else if (ArgFlags.isZExt()) | 
 |       LocInfo = CCValAssign::ZExt; | 
 |     else | 
 |       LocInfo = CCValAssign::AExt; | 
 |   } | 
 |  | 
 |   // VarArgs get passed on stack | 
 |   unsigned Offset = State.AllocateStack(4, 4); | 
 |   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); | 
 |   return false; | 
 | } | 
 |  | 
 | SDValue LanaiTargetLowering::LowerFormalArguments( | 
 |     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, | 
 |     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, | 
 |     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { | 
 |   switch (CallConv) { | 
 |   case CallingConv::C: | 
 |   case CallingConv::Fast: | 
 |     return LowerCCCArguments(Chain, CallConv, IsVarArg, Ins, DL, DAG, InVals); | 
 |   default: | 
 |     report_fatal_error("Unsupported calling convention"); | 
 |   } | 
 | } | 
 |  | 
 | SDValue LanaiTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, | 
 |                                        SmallVectorImpl<SDValue> &InVals) const { | 
 |   SelectionDAG &DAG = CLI.DAG; | 
 |   SDLoc &DL = CLI.DL; | 
 |   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; | 
 |   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; | 
 |   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; | 
 |   SDValue Chain = CLI.Chain; | 
 |   SDValue Callee = CLI.Callee; | 
 |   bool &IsTailCall = CLI.IsTailCall; | 
 |   CallingConv::ID CallConv = CLI.CallConv; | 
 |   bool IsVarArg = CLI.IsVarArg; | 
 |  | 
 |   // Lanai target does not yet support tail call optimization. | 
 |   IsTailCall = false; | 
 |  | 
 |   switch (CallConv) { | 
 |   case CallingConv::Fast: | 
 |   case CallingConv::C: | 
 |     return LowerCCCCallTo(Chain, Callee, CallConv, IsVarArg, IsTailCall, Outs, | 
 |                           OutVals, Ins, DL, DAG, InVals); | 
 |   default: | 
 |     report_fatal_error("Unsupported calling convention"); | 
 |   } | 
 | } | 
 |  | 
 | // LowerCCCArguments - transform physical registers into virtual registers and | 
 | // generate load operations for arguments places on the stack. | 
 | SDValue LanaiTargetLowering::LowerCCCArguments( | 
 |     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, | 
 |     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, | 
 |     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   MachineRegisterInfo &RegInfo = MF.getRegInfo(); | 
 |   LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>(); | 
 |  | 
 |   // Assign locations to all of the incoming arguments. | 
 |   SmallVector<CCValAssign, 16> ArgLocs; | 
 |   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, | 
 |                  *DAG.getContext()); | 
 |   if (CallConv == CallingConv::Fast) { | 
 |     CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32_Fast); | 
 |   } else { | 
 |     CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32); | 
 |   } | 
 |  | 
 |   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
 |     CCValAssign &VA = ArgLocs[i]; | 
 |     if (VA.isRegLoc()) { | 
 |       // Arguments passed in registers | 
 |       EVT RegVT = VA.getLocVT(); | 
 |       switch (RegVT.getSimpleVT().SimpleTy) { | 
 |       case MVT::i32: { | 
 |         unsigned VReg = RegInfo.createVirtualRegister(&Lanai::GPRRegClass); | 
 |         RegInfo.addLiveIn(VA.getLocReg(), VReg); | 
 |         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT); | 
 |  | 
 |         // If this is an 8/16-bit value, it is really passed promoted to 32 | 
 |         // bits. Insert an assert[sz]ext to capture this, then truncate to the | 
 |         // right size. | 
 |         if (VA.getLocInfo() == CCValAssign::SExt) | 
 |           ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue, | 
 |                                  DAG.getValueType(VA.getValVT())); | 
 |         else if (VA.getLocInfo() == CCValAssign::ZExt) | 
 |           ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue, | 
 |                                  DAG.getValueType(VA.getValVT())); | 
 |  | 
 |         if (VA.getLocInfo() != CCValAssign::Full) | 
 |           ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue); | 
 |  | 
 |         InVals.push_back(ArgValue); | 
 |         break; | 
 |       } | 
 |       default: | 
 |         LLVM_DEBUG(dbgs() << "LowerFormalArguments Unhandled argument type: " | 
 |                           << RegVT.getEVTString() << "\n"); | 
 |         llvm_unreachable("unhandled argument type"); | 
 |       } | 
 |     } else { | 
 |       // Sanity check | 
 |       assert(VA.isMemLoc()); | 
 |       // Load the argument to a virtual register | 
 |       unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8; | 
 |       // Check that the argument fits in stack slot | 
 |       if (ObjSize > 4) { | 
 |         errs() << "LowerFormalArguments Unhandled argument type: " | 
 |                << EVT(VA.getLocVT()).getEVTString() << "\n"; | 
 |       } | 
 |       // Create the frame index object for this incoming parameter... | 
 |       int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true); | 
 |  | 
 |       // Create the SelectionDAG nodes corresponding to a load | 
 |       // from this parameter | 
 |       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); | 
 |       InVals.push_back(DAG.getLoad( | 
 |           VA.getLocVT(), DL, Chain, FIN, | 
 |           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); | 
 |     } | 
 |   } | 
 |  | 
 |   // The Lanai ABI for returning structs by value requires that we copy | 
 |   // the sret argument into rv for the return. Save the argument into | 
 |   // a virtual register so that we can access it from the return points. | 
 |   if (MF.getFunction().hasStructRetAttr()) { | 
 |     unsigned Reg = LanaiMFI->getSRetReturnReg(); | 
 |     if (!Reg) { | 
 |       Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32)); | 
 |       LanaiMFI->setSRetReturnReg(Reg); | 
 |     } | 
 |     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]); | 
 |     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); | 
 |   } | 
 |  | 
 |   if (IsVarArg) { | 
 |     // Record the frame index of the first variable argument | 
 |     // which is a value necessary to VASTART. | 
 |     int FI = MFI.CreateFixedObject(4, CCInfo.getNextStackOffset(), true); | 
 |     LanaiMFI->setVarArgsFrameIndex(FI); | 
 |   } | 
 |  | 
 |   return Chain; | 
 | } | 
 |  | 
 | SDValue | 
 | LanaiTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, | 
 |                                  bool IsVarArg, | 
 |                                  const SmallVectorImpl<ISD::OutputArg> &Outs, | 
 |                                  const SmallVectorImpl<SDValue> &OutVals, | 
 |                                  const SDLoc &DL, SelectionDAG &DAG) const { | 
 |   // CCValAssign - represent the assignment of the return value to a location | 
 |   SmallVector<CCValAssign, 16> RVLocs; | 
 |  | 
 |   // CCState - Info about the registers and stack slot. | 
 |   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, | 
 |                  *DAG.getContext()); | 
 |  | 
 |   // Analize return values. | 
 |   CCInfo.AnalyzeReturn(Outs, RetCC_Lanai32); | 
 |  | 
 |   SDValue Flag; | 
 |   SmallVector<SDValue, 4> RetOps(1, Chain); | 
 |  | 
 |   // Copy the result values into the output registers. | 
 |   for (unsigned i = 0; i != RVLocs.size(); ++i) { | 
 |     CCValAssign &VA = RVLocs[i]; | 
 |     assert(VA.isRegLoc() && "Can only return in registers!"); | 
 |  | 
 |     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag); | 
 |  | 
 |     // Guarantee that all emitted copies are stuck together with flags. | 
 |     Flag = Chain.getValue(1); | 
 |     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); | 
 |   } | 
 |  | 
 |   // The Lanai ABI for returning structs by value requires that we copy | 
 |   // the sret argument into rv for the return. We saved the argument into | 
 |   // a virtual register in the entry block, so now we copy the value out | 
 |   // and into rv. | 
 |   if (DAG.getMachineFunction().getFunction().hasStructRetAttr()) { | 
 |     MachineFunction &MF = DAG.getMachineFunction(); | 
 |     LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>(); | 
 |     unsigned Reg = LanaiMFI->getSRetReturnReg(); | 
 |     assert(Reg && | 
 |            "SRetReturnReg should have been set in LowerFormalArguments()."); | 
 |     SDValue Val = | 
 |         DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout())); | 
 |  | 
 |     Chain = DAG.getCopyToReg(Chain, DL, Lanai::RV, Val, Flag); | 
 |     Flag = Chain.getValue(1); | 
 |     RetOps.push_back( | 
 |         DAG.getRegister(Lanai::RV, getPointerTy(DAG.getDataLayout()))); | 
 |   } | 
 |  | 
 |   RetOps[0] = Chain; // Update chain | 
 |  | 
 |   unsigned Opc = LanaiISD::RET_FLAG; | 
 |   if (Flag.getNode()) | 
 |     RetOps.push_back(Flag); | 
 |  | 
 |   // Return Void | 
 |   return DAG.getNode(Opc, DL, MVT::Other, | 
 |                      ArrayRef<SDValue>(&RetOps[0], RetOps.size())); | 
 | } | 
 |  | 
 | // LowerCCCCallTo - functions arguments are copied from virtual regs to | 
 | // (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. | 
 | SDValue LanaiTargetLowering::LowerCCCCallTo( | 
 |     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool IsVarArg, | 
 |     bool /*IsTailCall*/, const SmallVectorImpl<ISD::OutputArg> &Outs, | 
 |     const SmallVectorImpl<SDValue> &OutVals, | 
 |     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, | 
 |     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { | 
 |   // Analyze operands of the call, assigning locations to each operand. | 
 |   SmallVector<CCValAssign, 16> ArgLocs; | 
 |   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, | 
 |                  *DAG.getContext()); | 
 |   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); | 
 |   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); | 
 |  | 
 |   NumFixedArgs = 0; | 
 |   if (IsVarArg && G) { | 
 |     const Function *CalleeFn = dyn_cast<Function>(G->getGlobal()); | 
 |     if (CalleeFn) | 
 |       NumFixedArgs = CalleeFn->getFunctionType()->getNumParams(); | 
 |   } | 
 |   if (NumFixedArgs) | 
 |     CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_VarArg); | 
 |   else { | 
 |     if (CallConv == CallingConv::Fast) | 
 |       CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_Fast); | 
 |     else | 
 |       CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32); | 
 |   } | 
 |  | 
 |   // Get a count of how many bytes are to be pushed on the stack. | 
 |   unsigned NumBytes = CCInfo.getNextStackOffset(); | 
 |  | 
 |   // Create local copies for byval args. | 
 |   SmallVector<SDValue, 8> ByValArgs; | 
 |   for (unsigned I = 0, E = Outs.size(); I != E; ++I) { | 
 |     ISD::ArgFlagsTy Flags = Outs[I].Flags; | 
 |     if (!Flags.isByVal()) | 
 |       continue; | 
 |  | 
 |     SDValue Arg = OutVals[I]; | 
 |     unsigned Size = Flags.getByValSize(); | 
 |     unsigned Align = Flags.getByValAlign(); | 
 |  | 
 |     int FI = MFI.CreateStackObject(Size, Align, false); | 
 |     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); | 
 |     SDValue SizeNode = DAG.getConstant(Size, DL, MVT::i32); | 
 |  | 
 |     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align, | 
 |                           /*IsVolatile=*/false, | 
 |                           /*AlwaysInline=*/false, | 
 |                           /*isTailCall=*/false, MachinePointerInfo(), | 
 |                           MachinePointerInfo()); | 
 |     ByValArgs.push_back(FIPtr); | 
 |   } | 
 |  | 
 |   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); | 
 |  | 
 |   SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; | 
 |   SmallVector<SDValue, 12> MemOpChains; | 
 |   SDValue StackPtr; | 
 |  | 
 |   // Walk the register/memloc assignments, inserting copies/loads. | 
 |   for (unsigned I = 0, J = 0, E = ArgLocs.size(); I != E; ++I) { | 
 |     CCValAssign &VA = ArgLocs[I]; | 
 |     SDValue Arg = OutVals[I]; | 
 |     ISD::ArgFlagsTy Flags = Outs[I].Flags; | 
 |  | 
 |     // Promote the value if needed. | 
 |     switch (VA.getLocInfo()) { | 
 |     case CCValAssign::Full: | 
 |       break; | 
 |     case CCValAssign::SExt: | 
 |       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); | 
 |       break; | 
 |     case CCValAssign::ZExt: | 
 |       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); | 
 |       break; | 
 |     case CCValAssign::AExt: | 
 |       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); | 
 |       break; | 
 |     default: | 
 |       llvm_unreachable("Unknown loc info!"); | 
 |     } | 
 |  | 
 |     // Use local copy if it is a byval arg. | 
 |     if (Flags.isByVal()) | 
 |       Arg = ByValArgs[J++]; | 
 |  | 
 |     // Arguments that can be passed on register must be kept at RegsToPass | 
 |     // vector | 
 |     if (VA.isRegLoc()) { | 
 |       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); | 
 |     } else { | 
 |       assert(VA.isMemLoc()); | 
 |  | 
 |       if (StackPtr.getNode() == nullptr) | 
 |         StackPtr = DAG.getCopyFromReg(Chain, DL, Lanai::SP, | 
 |                                       getPointerTy(DAG.getDataLayout())); | 
 |  | 
 |       SDValue PtrOff = | 
 |           DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr, | 
 |                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL)); | 
 |  | 
 |       MemOpChains.push_back( | 
 |           DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo())); | 
 |     } | 
 |   } | 
 |  | 
 |   // Transform all store nodes into one single node because all store nodes are | 
 |   // independent of each other. | 
 |   if (!MemOpChains.empty()) | 
 |     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, | 
 |                         ArrayRef<SDValue>(&MemOpChains[0], MemOpChains.size())); | 
 |  | 
 |   SDValue InFlag; | 
 |  | 
 |   // Build a sequence of copy-to-reg nodes chained together with token chain and | 
 |   // flag operands which copy the outgoing args into registers.  The InFlag in | 
 |   // necessary since all emitted instructions must be stuck together. | 
 |   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { | 
 |     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, | 
 |                              RegsToPass[I].second, InFlag); | 
 |     InFlag = Chain.getValue(1); | 
 |   } | 
 |  | 
 |   // If the callee is a GlobalAddress node (quite common, every direct call is) | 
 |   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. | 
 |   // Likewise ExternalSymbol -> TargetExternalSymbol. | 
 |   uint8_t OpFlag = LanaiII::MO_NO_FLAG; | 
 |   if (G) { | 
 |     Callee = DAG.getTargetGlobalAddress( | 
 |         G->getGlobal(), DL, getPointerTy(DAG.getDataLayout()), 0, OpFlag); | 
 |   } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { | 
 |     Callee = DAG.getTargetExternalSymbol( | 
 |         E->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlag); | 
 |   } | 
 |  | 
 |   // Returns a chain & a flag for retval copy to use. | 
 |   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
 |   SmallVector<SDValue, 8> Ops; | 
 |   Ops.push_back(Chain); | 
 |   Ops.push_back(Callee); | 
 |  | 
 |   // Add a register mask operand representing the call-preserved registers. | 
 |   // TODO: Should return-twice functions be handled? | 
 |   const uint32_t *Mask = | 
 |       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); | 
 |   assert(Mask && "Missing call preserved mask for calling convention"); | 
 |   Ops.push_back(DAG.getRegisterMask(Mask)); | 
 |  | 
 |   // Add argument registers to the end of the list so that they are | 
 |   // known live into the call. | 
 |   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) | 
 |     Ops.push_back(DAG.getRegister(RegsToPass[I].first, | 
 |                                   RegsToPass[I].second.getValueType())); | 
 |  | 
 |   if (InFlag.getNode()) | 
 |     Ops.push_back(InFlag); | 
 |  | 
 |   Chain = DAG.getNode(LanaiISD::CALL, DL, NodeTys, | 
 |                       ArrayRef<SDValue>(&Ops[0], Ops.size())); | 
 |   InFlag = Chain.getValue(1); | 
 |  | 
 |   // Create the CALLSEQ_END node. | 
 |   Chain = DAG.getCALLSEQ_END( | 
 |       Chain, | 
 |       DAG.getConstant(NumBytes, DL, getPointerTy(DAG.getDataLayout()), true), | 
 |       DAG.getConstant(0, DL, getPointerTy(DAG.getDataLayout()), true), InFlag, | 
 |       DL); | 
 |   InFlag = Chain.getValue(1); | 
 |  | 
 |   // Handle result values, copying them out of physregs into vregs that we | 
 |   // return. | 
 |   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, | 
 |                          InVals); | 
 | } | 
 |  | 
 | // LowerCallResult - Lower the result values of a call into the | 
 | // appropriate copies out of appropriate physical registers. | 
 | SDValue LanaiTargetLowering::LowerCallResult( | 
 |     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, | 
 |     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, | 
 |     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { | 
 |   // Assign locations to each value returned by this call. | 
 |   SmallVector<CCValAssign, 16> RVLocs; | 
 |   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, | 
 |                  *DAG.getContext()); | 
 |  | 
 |   CCInfo.AnalyzeCallResult(Ins, RetCC_Lanai32); | 
 |  | 
 |   // Copy all of the result registers out of their specified physreg. | 
 |   for (unsigned I = 0; I != RVLocs.size(); ++I) { | 
 |     Chain = DAG.getCopyFromReg(Chain, DL, RVLocs[I].getLocReg(), | 
 |                                RVLocs[I].getValVT(), InFlag) | 
 |                 .getValue(1); | 
 |     InFlag = Chain.getValue(2); | 
 |     InVals.push_back(Chain.getValue(0)); | 
 |   } | 
 |  | 
 |   return Chain; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                      Custom Lowerings | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static LPCC::CondCode IntCondCCodeToICC(SDValue CC, const SDLoc &DL, | 
 |                                         SDValue &RHS, SelectionDAG &DAG) { | 
 |   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); | 
 |  | 
 |   // For integer, only the SETEQ, SETNE, SETLT, SETLE, SETGT, SETGE, SETULT, | 
 |   // SETULE, SETUGT, and SETUGE opcodes are used (see CodeGen/ISDOpcodes.h) | 
 |   // and Lanai only supports integer comparisons, so only provide definitions | 
 |   // for them. | 
 |   switch (SetCCOpcode) { | 
 |   case ISD::SETEQ: | 
 |     return LPCC::ICC_EQ; | 
 |   case ISD::SETGT: | 
 |     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) | 
 |       if (RHSC->getZExtValue() == 0xFFFFFFFF) { | 
 |         // X > -1 -> X >= 0 -> is_plus(X) | 
 |         RHS = DAG.getConstant(0, DL, RHS.getValueType()); | 
 |         return LPCC::ICC_PL; | 
 |       } | 
 |     return LPCC::ICC_GT; | 
 |   case ISD::SETUGT: | 
 |     return LPCC::ICC_UGT; | 
 |   case ISD::SETLT: | 
 |     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) | 
 |       if (RHSC->getZExtValue() == 0) | 
 |         // X < 0 -> is_minus(X) | 
 |         return LPCC::ICC_MI; | 
 |     return LPCC::ICC_LT; | 
 |   case ISD::SETULT: | 
 |     return LPCC::ICC_ULT; | 
 |   case ISD::SETLE: | 
 |     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) | 
 |       if (RHSC->getZExtValue() == 0xFFFFFFFF) { | 
 |         // X <= -1 -> X < 0 -> is_minus(X) | 
 |         RHS = DAG.getConstant(0, DL, RHS.getValueType()); | 
 |         return LPCC::ICC_MI; | 
 |       } | 
 |     return LPCC::ICC_LE; | 
 |   case ISD::SETULE: | 
 |     return LPCC::ICC_ULE; | 
 |   case ISD::SETGE: | 
 |     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) | 
 |       if (RHSC->getZExtValue() == 0) | 
 |         // X >= 0 -> is_plus(X) | 
 |         return LPCC::ICC_PL; | 
 |     return LPCC::ICC_GE; | 
 |   case ISD::SETUGE: | 
 |     return LPCC::ICC_UGE; | 
 |   case ISD::SETNE: | 
 |     return LPCC::ICC_NE; | 
 |   case ISD::SETONE: | 
 |   case ISD::SETUNE: | 
 |   case ISD::SETOGE: | 
 |   case ISD::SETOLE: | 
 |   case ISD::SETOLT: | 
 |   case ISD::SETOGT: | 
 |   case ISD::SETOEQ: | 
 |   case ISD::SETUEQ: | 
 |   case ISD::SETO: | 
 |   case ISD::SETUO: | 
 |     llvm_unreachable("Unsupported comparison."); | 
 |   default: | 
 |     llvm_unreachable("Unknown integer condition code!"); | 
 |   } | 
 | } | 
 |  | 
 | SDValue LanaiTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { | 
 |   SDValue Chain = Op.getOperand(0); | 
 |   SDValue Cond = Op.getOperand(1); | 
 |   SDValue LHS = Op.getOperand(2); | 
 |   SDValue RHS = Op.getOperand(3); | 
 |   SDValue Dest = Op.getOperand(4); | 
 |   SDLoc DL(Op); | 
 |  | 
 |   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); | 
 |   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); | 
 |   SDValue Flag = | 
 |       DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); | 
 |  | 
 |   return DAG.getNode(LanaiISD::BR_CC, DL, Op.getValueType(), Chain, Dest, | 
 |                      TargetCC, Flag); | 
 | } | 
 |  | 
 | SDValue LanaiTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { | 
 |   EVT VT = Op->getValueType(0); | 
 |   if (VT != MVT::i32) | 
 |     return SDValue(); | 
 |  | 
 |   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op->getOperand(1)); | 
 |   if (!C) | 
 |     return SDValue(); | 
 |  | 
 |   int64_t MulAmt = C->getSExtValue(); | 
 |   int32_t HighestOne = -1; | 
 |   uint32_t NonzeroEntries = 0; | 
 |   int SignedDigit[32] = {0}; | 
 |  | 
 |   // Convert to non-adjacent form (NAF) signed-digit representation. | 
 |   // NAF is a signed-digit form where no adjacent digits are non-zero. It is the | 
 |   // minimal Hamming weight representation of a number (on average 1/3 of the | 
 |   // digits will be non-zero vs 1/2 for regular binary representation). And as | 
 |   // the non-zero digits will be the only digits contributing to the instruction | 
 |   // count, this is desirable. The next loop converts it to NAF (following the | 
 |   // approach in 'Guide to Elliptic Curve Cryptography' [ISBN: 038795273X]) by | 
 |   // choosing the non-zero coefficients such that the resulting quotient is | 
 |   // divisible by 2 which will cause the next coefficient to be zero. | 
 |   int64_t E = std::abs(MulAmt); | 
 |   int S = (MulAmt < 0 ? -1 : 1); | 
 |   int I = 0; | 
 |   while (E > 0) { | 
 |     int ZI = 0; | 
 |     if (E % 2 == 1) { | 
 |       ZI = 2 - (E % 4); | 
 |       if (ZI != 0) | 
 |         ++NonzeroEntries; | 
 |     } | 
 |     SignedDigit[I] = S * ZI; | 
 |     if (SignedDigit[I] == 1) | 
 |       HighestOne = I; | 
 |     E = (E - ZI) / 2; | 
 |     ++I; | 
 |   } | 
 |  | 
 |   // Compute number of instructions required. Due to differences in lowering | 
 |   // between the different processors this count is not exact. | 
 |   // Start by assuming a shift and a add/sub for every non-zero entry (hence | 
 |   // every non-zero entry requires 1 shift and 1 add/sub except for the first | 
 |   // entry). | 
 |   int32_t InstrRequired = 2 * NonzeroEntries - 1; | 
 |   // Correct possible over-adding due to shift by 0 (which is not emitted). | 
 |   if (std::abs(MulAmt) % 2 == 1) | 
 |     --InstrRequired; | 
 |   // Return if the form generated would exceed the instruction threshold. | 
 |   if (InstrRequired > LanaiLowerConstantMulThreshold) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue Res; | 
 |   SDLoc DL(Op); | 
 |   SDValue V = Op->getOperand(0); | 
 |  | 
 |   // Initialize the running sum. Set the running sum to the maximal shifted | 
 |   // positive value (i.e., largest i such that zi == 1 and MulAmt has V<<i as a | 
 |   // term NAF). | 
 |   if (HighestOne == -1) | 
 |     Res = DAG.getConstant(0, DL, MVT::i32); | 
 |   else { | 
 |     Res = DAG.getNode(ISD::SHL, DL, VT, V, | 
 |                       DAG.getConstant(HighestOne, DL, MVT::i32)); | 
 |     SignedDigit[HighestOne] = 0; | 
 |   } | 
 |  | 
 |   // Assemble multiplication from shift, add, sub using NAF form and running | 
 |   // sum. | 
 |   for (unsigned int I = 0; I < sizeof(SignedDigit) / sizeof(SignedDigit[0]); | 
 |        ++I) { | 
 |     if (SignedDigit[I] == 0) | 
 |       continue; | 
 |  | 
 |     // Shifted multiplicand (v<<i). | 
 |     SDValue Op = | 
 |         DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(I, DL, MVT::i32)); | 
 |     if (SignedDigit[I] == 1) | 
 |       Res = DAG.getNode(ISD::ADD, DL, VT, Res, Op); | 
 |     else if (SignedDigit[I] == -1) | 
 |       Res = DAG.getNode(ISD::SUB, DL, VT, Res, Op); | 
 |   } | 
 |   return Res; | 
 | } | 
 |  | 
 | SDValue LanaiTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { | 
 |   SDValue LHS = Op.getOperand(0); | 
 |   SDValue RHS = Op.getOperand(1); | 
 |   SDValue Cond = Op.getOperand(2); | 
 |   SDLoc DL(Op); | 
 |  | 
 |   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); | 
 |   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); | 
 |   SDValue Flag = | 
 |       DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); | 
 |  | 
 |   return DAG.getNode(LanaiISD::SETCC, DL, Op.getValueType(), TargetCC, Flag); | 
 | } | 
 |  | 
 | SDValue LanaiTargetLowering::LowerSELECT_CC(SDValue Op, | 
 |                                             SelectionDAG &DAG) const { | 
 |   SDValue LHS = Op.getOperand(0); | 
 |   SDValue RHS = Op.getOperand(1); | 
 |   SDValue TrueV = Op.getOperand(2); | 
 |   SDValue FalseV = Op.getOperand(3); | 
 |   SDValue Cond = Op.getOperand(4); | 
 |   SDLoc DL(Op); | 
 |  | 
 |   LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG); | 
 |   SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32); | 
 |   SDValue Flag = | 
 |       DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC); | 
 |  | 
 |   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); | 
 |   return DAG.getNode(LanaiISD::SELECT_CC, DL, VTs, TrueV, FalseV, TargetCC, | 
 |                      Flag); | 
 | } | 
 |  | 
 | SDValue LanaiTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   LanaiMachineFunctionInfo *FuncInfo = MF.getInfo<LanaiMachineFunctionInfo>(); | 
 |  | 
 |   SDLoc DL(Op); | 
 |   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), | 
 |                                  getPointerTy(DAG.getDataLayout())); | 
 |  | 
 |   // vastart just stores the address of the VarArgsFrameIndex slot into the | 
 |   // memory location argument. | 
 |   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
 |   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), | 
 |                       MachinePointerInfo(SV)); | 
 | } | 
 |  | 
 | SDValue LanaiTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, | 
 |                                                      SelectionDAG &DAG) const { | 
 |   SDValue Chain = Op.getOperand(0); | 
 |   SDValue Size = Op.getOperand(1); | 
 |   SDLoc DL(Op); | 
 |  | 
 |   unsigned SPReg = getStackPointerRegisterToSaveRestore(); | 
 |  | 
 |   // Get a reference to the stack pointer. | 
 |   SDValue StackPointer = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i32); | 
 |  | 
 |   // Subtract the dynamic size from the actual stack size to | 
 |   // obtain the new stack size. | 
 |   SDValue Sub = DAG.getNode(ISD::SUB, DL, MVT::i32, StackPointer, Size); | 
 |  | 
 |   // For Lanai, the outgoing memory arguments area should be on top of the | 
 |   // alloca area on the stack i.e., the outgoing memory arguments should be | 
 |   // at a lower address than the alloca area. Move the alloca area down the | 
 |   // stack by adding back the space reserved for outgoing arguments to SP | 
 |   // here. | 
 |   // | 
 |   // We do not know what the size of the outgoing args is at this point. | 
 |   // So, we add a pseudo instruction ADJDYNALLOC that will adjust the | 
 |   // stack pointer. We replace this instruction with on that has the correct, | 
 |   // known offset in emitPrologue(). | 
 |   SDValue ArgAdjust = DAG.getNode(LanaiISD::ADJDYNALLOC, DL, MVT::i32, Sub); | 
 |  | 
 |   // The Sub result contains the new stack start address, so it | 
 |   // must be placed in the stack pointer register. | 
 |   SDValue CopyChain = DAG.getCopyToReg(Chain, DL, SPReg, Sub); | 
 |  | 
 |   SDValue Ops[2] = {ArgAdjust, CopyChain}; | 
 |   return DAG.getMergeValues(Ops, DL); | 
 | } | 
 |  | 
 | SDValue LanaiTargetLowering::LowerRETURNADDR(SDValue Op, | 
 |                                              SelectionDAG &DAG) const { | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   MFI.setReturnAddressIsTaken(true); | 
 |  | 
 |   EVT VT = Op.getValueType(); | 
 |   SDLoc DL(Op); | 
 |   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
 |   if (Depth) { | 
 |     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); | 
 |     const unsigned Offset = -4; | 
 |     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, | 
 |                               DAG.getIntPtrConstant(Offset, DL)); | 
 |     return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); | 
 |   } | 
 |  | 
 |   // Return the link register, which contains the return address. | 
 |   // Mark it an implicit live-in. | 
 |   unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32)); | 
 |   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); | 
 | } | 
 |  | 
 | SDValue LanaiTargetLowering::LowerFRAMEADDR(SDValue Op, | 
 |                                             SelectionDAG &DAG) const { | 
 |   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); | 
 |   MFI.setFrameAddressIsTaken(true); | 
 |  | 
 |   EVT VT = Op.getValueType(); | 
 |   SDLoc DL(Op); | 
 |   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Lanai::FP, VT); | 
 |   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
 |   while (Depth--) { | 
 |     const unsigned Offset = -8; | 
 |     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr, | 
 |                               DAG.getIntPtrConstant(Offset, DL)); | 
 |     FrameAddr = | 
 |         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); | 
 |   } | 
 |   return FrameAddr; | 
 | } | 
 |  | 
 | const char *LanaiTargetLowering::getTargetNodeName(unsigned Opcode) const { | 
 |   switch (Opcode) { | 
 |   case LanaiISD::ADJDYNALLOC: | 
 |     return "LanaiISD::ADJDYNALLOC"; | 
 |   case LanaiISD::RET_FLAG: | 
 |     return "LanaiISD::RET_FLAG"; | 
 |   case LanaiISD::CALL: | 
 |     return "LanaiISD::CALL"; | 
 |   case LanaiISD::SELECT_CC: | 
 |     return "LanaiISD::SELECT_CC"; | 
 |   case LanaiISD::SETCC: | 
 |     return "LanaiISD::SETCC"; | 
 |   case LanaiISD::SUBBF: | 
 |     return "LanaiISD::SUBBF"; | 
 |   case LanaiISD::SET_FLAG: | 
 |     return "LanaiISD::SET_FLAG"; | 
 |   case LanaiISD::BR_CC: | 
 |     return "LanaiISD::BR_CC"; | 
 |   case LanaiISD::Wrapper: | 
 |     return "LanaiISD::Wrapper"; | 
 |   case LanaiISD::HI: | 
 |     return "LanaiISD::HI"; | 
 |   case LanaiISD::LO: | 
 |     return "LanaiISD::LO"; | 
 |   case LanaiISD::SMALL: | 
 |     return "LanaiISD::SMALL"; | 
 |   default: | 
 |     return nullptr; | 
 |   } | 
 | } | 
 |  | 
 | SDValue LanaiTargetLowering::LowerConstantPool(SDValue Op, | 
 |                                                SelectionDAG &DAG) const { | 
 |   SDLoc DL(Op); | 
 |   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); | 
 |   const Constant *C = N->getConstVal(); | 
 |   const LanaiTargetObjectFile *TLOF = | 
 |       static_cast<const LanaiTargetObjectFile *>( | 
 |           getTargetMachine().getObjFileLowering()); | 
 |  | 
 |   // If the code model is small or constant will be placed in the small section, | 
 |   // then assume address will fit in 21-bits. | 
 |   if (getTargetMachine().getCodeModel() == CodeModel::Small || | 
 |       TLOF->isConstantInSmallSection(DAG.getDataLayout(), C)) { | 
 |     SDValue Small = DAG.getTargetConstantPool( | 
 |         C, MVT::i32, N->getAlignment(), N->getOffset(), LanaiII::MO_NO_FLAG); | 
 |     return DAG.getNode(ISD::OR, DL, MVT::i32, | 
 |                        DAG.getRegister(Lanai::R0, MVT::i32), | 
 |                        DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); | 
 |   } else { | 
 |     uint8_t OpFlagHi = LanaiII::MO_ABS_HI; | 
 |     uint8_t OpFlagLo = LanaiII::MO_ABS_LO; | 
 |  | 
 |     SDValue Hi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(), | 
 |                                            N->getOffset(), OpFlagHi); | 
 |     SDValue Lo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(), | 
 |                                            N->getOffset(), OpFlagLo); | 
 |     Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); | 
 |     Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); | 
 |     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); | 
 |     return Result; | 
 |   } | 
 | } | 
 |  | 
 | SDValue LanaiTargetLowering::LowerGlobalAddress(SDValue Op, | 
 |                                                 SelectionDAG &DAG) const { | 
 |   SDLoc DL(Op); | 
 |   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); | 
 |   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); | 
 |  | 
 |   const LanaiTargetObjectFile *TLOF = | 
 |       static_cast<const LanaiTargetObjectFile *>( | 
 |           getTargetMachine().getObjFileLowering()); | 
 |  | 
 |   // If the code model is small or global variable will be placed in the small | 
 |   // section, then assume address will fit in 21-bits. | 
 |   const GlobalObject *GO = GV->getBaseObject(); | 
 |   if (TLOF->isGlobalInSmallSection(GO, getTargetMachine())) { | 
 |     SDValue Small = DAG.getTargetGlobalAddress( | 
 |         GV, DL, getPointerTy(DAG.getDataLayout()), Offset, LanaiII::MO_NO_FLAG); | 
 |     return DAG.getNode(ISD::OR, DL, MVT::i32, | 
 |                        DAG.getRegister(Lanai::R0, MVT::i32), | 
 |                        DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); | 
 |   } else { | 
 |     uint8_t OpFlagHi = LanaiII::MO_ABS_HI; | 
 |     uint8_t OpFlagLo = LanaiII::MO_ABS_LO; | 
 |  | 
 |     // Create the TargetGlobalAddress node, folding in the constant offset. | 
 |     SDValue Hi = DAG.getTargetGlobalAddress( | 
 |         GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagHi); | 
 |     SDValue Lo = DAG.getTargetGlobalAddress( | 
 |         GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagLo); | 
 |     Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); | 
 |     Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); | 
 |     return DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); | 
 |   } | 
 | } | 
 |  | 
 | SDValue LanaiTargetLowering::LowerBlockAddress(SDValue Op, | 
 |                                                SelectionDAG &DAG) const { | 
 |   SDLoc DL(Op); | 
 |   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); | 
 |  | 
 |   uint8_t OpFlagHi = LanaiII::MO_ABS_HI; | 
 |   uint8_t OpFlagLo = LanaiII::MO_ABS_LO; | 
 |  | 
 |   SDValue Hi = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagHi); | 
 |   SDValue Lo = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagLo); | 
 |   Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); | 
 |   Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); | 
 |   SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); | 
 |   return Result; | 
 | } | 
 |  | 
 | SDValue LanaiTargetLowering::LowerJumpTable(SDValue Op, | 
 |                                             SelectionDAG &DAG) const { | 
 |   SDLoc DL(Op); | 
 |   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); | 
 |  | 
 |   // If the code model is small assume address will fit in 21-bits. | 
 |   if (getTargetMachine().getCodeModel() == CodeModel::Small) { | 
 |     SDValue Small = DAG.getTargetJumpTable( | 
 |         JT->getIndex(), getPointerTy(DAG.getDataLayout()), LanaiII::MO_NO_FLAG); | 
 |     return DAG.getNode(ISD::OR, DL, MVT::i32, | 
 |                        DAG.getRegister(Lanai::R0, MVT::i32), | 
 |                        DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small)); | 
 |   } else { | 
 |     uint8_t OpFlagHi = LanaiII::MO_ABS_HI; | 
 |     uint8_t OpFlagLo = LanaiII::MO_ABS_LO; | 
 |  | 
 |     SDValue Hi = DAG.getTargetJumpTable( | 
 |         JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagHi); | 
 |     SDValue Lo = DAG.getTargetJumpTable( | 
 |         JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagLo); | 
 |     Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi); | 
 |     Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo); | 
 |     SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo); | 
 |     return Result; | 
 |   } | 
 | } | 
 |  | 
 | SDValue LanaiTargetLowering::LowerSHL_PARTS(SDValue Op, | 
 |                                             SelectionDAG &DAG) const { | 
 |   EVT VT = Op.getValueType(); | 
 |   unsigned VTBits = VT.getSizeInBits(); | 
 |   SDLoc dl(Op); | 
 |   assert(Op.getNumOperands() == 3 && "Unexpected SHL!"); | 
 |   SDValue ShOpLo = Op.getOperand(0); | 
 |   SDValue ShOpHi = Op.getOperand(1); | 
 |   SDValue ShAmt = Op.getOperand(2); | 
 |  | 
 |   // Performs the following for (ShOpLo + (ShOpHi << 32)) << ShAmt: | 
 |   //   LoBitsForHi = (ShAmt == 0) ? 0 : (ShOpLo >> (32-ShAmt)) | 
 |   //   HiBitsForHi = ShOpHi << ShAmt | 
 |   //   Hi = (ShAmt >= 32) ? (ShOpLo << (ShAmt-32)) : (LoBitsForHi | HiBitsForHi) | 
 |   //   Lo = (ShAmt >= 32) ? 0 : (ShOpLo << ShAmt) | 
 |   //   return (Hi << 32) | Lo; | 
 |  | 
 |   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, | 
 |                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); | 
 |   SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); | 
 |  | 
 |   // If ShAmt == 0, we just calculated "(SRL ShOpLo, 32)" which is "undef". We | 
 |   // wanted 0, so CSEL it directly. | 
 |   SDValue Zero = DAG.getConstant(0, dl, MVT::i32); | 
 |   SDValue SetCC = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ); | 
 |   LoBitsForHi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, LoBitsForHi); | 
 |  | 
 |   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, | 
 |                                    DAG.getConstant(VTBits, dl, MVT::i32)); | 
 |   SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); | 
 |   SDValue HiForNormalShift = | 
 |       DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi); | 
 |  | 
 |   SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); | 
 |  | 
 |   SetCC = DAG.getSetCC(dl, MVT::i32, ExtraShAmt, Zero, ISD::SETGE); | 
 |   SDValue Hi = | 
 |       DAG.getSelect(dl, MVT::i32, SetCC, HiForBigShift, HiForNormalShift); | 
 |  | 
 |   // Lanai shifts of larger than register sizes are wrapped rather than | 
 |   // clamped, so we can't just emit "lo << b" if b is too big. | 
 |   SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); | 
 |   SDValue Lo = DAG.getSelect( | 
 |       dl, MVT::i32, SetCC, DAG.getConstant(0, dl, MVT::i32), LoForNormalShift); | 
 |  | 
 |   SDValue Ops[2] = {Lo, Hi}; | 
 |   return DAG.getMergeValues(Ops, dl); | 
 | } | 
 |  | 
 | SDValue LanaiTargetLowering::LowerSRL_PARTS(SDValue Op, | 
 |                                             SelectionDAG &DAG) const { | 
 |   MVT VT = Op.getSimpleValueType(); | 
 |   unsigned VTBits = VT.getSizeInBits(); | 
 |   SDLoc dl(Op); | 
 |   SDValue ShOpLo = Op.getOperand(0); | 
 |   SDValue ShOpHi = Op.getOperand(1); | 
 |   SDValue ShAmt = Op.getOperand(2); | 
 |  | 
 |   // Performs the following for a >> b: | 
 |   //   unsigned r_high = a_high >> b; | 
 |   //   r_high = (32 - b <= 0) ? 0 : r_high; | 
 |   // | 
 |   //   unsigned r_low = a_low >> b; | 
 |   //   r_low = (32 - b <= 0) ? r_high : r_low; | 
 |   //   r_low = (b == 0) ? r_low : r_low | (a_high << (32 - b)); | 
 |   //   return (unsigned long long)r_high << 32 | r_low; | 
 |   // Note: This takes advantage of Lanai's shift behavior to avoid needing to | 
 |   // mask the shift amount. | 
 |  | 
 |   SDValue Zero = DAG.getConstant(0, dl, MVT::i32); | 
 |   SDValue NegatedPlus32 = DAG.getNode( | 
 |       ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); | 
 |   SDValue SetCC = DAG.getSetCC(dl, MVT::i32, NegatedPlus32, Zero, ISD::SETLE); | 
 |  | 
 |   SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpHi, ShAmt); | 
 |   Hi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, Hi); | 
 |  | 
 |   SDValue Lo = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpLo, ShAmt); | 
 |   Lo = DAG.getSelect(dl, MVT::i32, SetCC, Hi, Lo); | 
 |   SDValue CarryBits = | 
 |       DAG.getNode(ISD::SHL, dl, MVT::i32, ShOpHi, NegatedPlus32); | 
 |   SDValue ShiftIsZero = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ); | 
 |   Lo = DAG.getSelect(dl, MVT::i32, ShiftIsZero, Lo, | 
 |                      DAG.getNode(ISD::OR, dl, MVT::i32, Lo, CarryBits)); | 
 |  | 
 |   SDValue Ops[2] = {Lo, Hi}; | 
 |   return DAG.getMergeValues(Ops, dl); | 
 | } | 
 |  | 
 | // Helper function that checks if N is a null or all ones constant. | 
 | static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) { | 
 |   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); | 
 | } | 
 |  | 
 | // Return true if N is conditionally 0 or all ones. | 
 | // Detects these expressions where cc is an i1 value: | 
 | // | 
 | //   (select cc 0, y)   [AllOnes=0] | 
 | //   (select cc y, 0)   [AllOnes=0] | 
 | //   (zext cc)          [AllOnes=0] | 
 | //   (sext cc)          [AllOnes=0/1] | 
 | //   (select cc -1, y)  [AllOnes=1] | 
 | //   (select cc y, -1)  [AllOnes=1] | 
 | // | 
 | // * AllOnes determines whether to check for an all zero (AllOnes false) or an | 
 | //   all ones operand (AllOnes true). | 
 | // * Invert is set when N is the all zero/ones constant when CC is false. | 
 | // * OtherOp is set to the alternative value of N. | 
 | // | 
 | // For example, for (select cc X, Y) and AllOnes = 0 if: | 
 | // * X = 0, Invert = False and OtherOp = Y | 
 | // * Y = 0, Invert = True and OtherOp = X | 
 | static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC, | 
 |                                        bool &Invert, SDValue &OtherOp, | 
 |                                        SelectionDAG &DAG) { | 
 |   switch (N->getOpcode()) { | 
 |   default: | 
 |     return false; | 
 |   case ISD::SELECT: { | 
 |     CC = N->getOperand(0); | 
 |     SDValue N1 = N->getOperand(1); | 
 |     SDValue N2 = N->getOperand(2); | 
 |     if (isZeroOrAllOnes(N1, AllOnes)) { | 
 |       Invert = false; | 
 |       OtherOp = N2; | 
 |       return true; | 
 |     } | 
 |     if (isZeroOrAllOnes(N2, AllOnes)) { | 
 |       Invert = true; | 
 |       OtherOp = N1; | 
 |       return true; | 
 |     } | 
 |     return false; | 
 |   } | 
 |   case ISD::ZERO_EXTEND: { | 
 |     // (zext cc) can never be the all ones value. | 
 |     if (AllOnes) | 
 |       return false; | 
 |     CC = N->getOperand(0); | 
 |     if (CC.getValueType() != MVT::i1) | 
 |       return false; | 
 |     SDLoc dl(N); | 
 |     EVT VT = N->getValueType(0); | 
 |     OtherOp = DAG.getConstant(1, dl, VT); | 
 |     Invert = true; | 
 |     return true; | 
 |   } | 
 |   case ISD::SIGN_EXTEND: { | 
 |     CC = N->getOperand(0); | 
 |     if (CC.getValueType() != MVT::i1) | 
 |       return false; | 
 |     SDLoc dl(N); | 
 |     EVT VT = N->getValueType(0); | 
 |     Invert = !AllOnes; | 
 |     if (AllOnes) | 
 |       // When looking for an AllOnes constant, N is an sext, and the 'other' | 
 |       // value is 0. | 
 |       OtherOp = DAG.getConstant(0, dl, VT); | 
 |     else | 
 |       OtherOp = | 
 |           DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, VT); | 
 |     return true; | 
 |   } | 
 |   } | 
 | } | 
 |  | 
 | // Combine a constant select operand into its use: | 
 | // | 
 | //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c)) | 
 | //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c)) | 
 | //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1] | 
 | //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c)) | 
 | //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c)) | 
 | // | 
 | // The transform is rejected if the select doesn't have a constant operand that | 
 | // is null, or all ones when AllOnes is set. | 
 | // | 
 | // Also recognize sext/zext from i1: | 
 | // | 
 | //   (add (zext cc), x) -> (select cc (add x, 1), x) | 
 | //   (add (sext cc), x) -> (select cc (add x, -1), x) | 
 | // | 
 | // These transformations eventually create predicated instructions. | 
 | static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, | 
 |                                    TargetLowering::DAGCombinerInfo &DCI, | 
 |                                    bool AllOnes) { | 
 |   SelectionDAG &DAG = DCI.DAG; | 
 |   EVT VT = N->getValueType(0); | 
 |   SDValue NonConstantVal; | 
 |   SDValue CCOp; | 
 |   bool SwapSelectOps; | 
 |   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps, | 
 |                                   NonConstantVal, DAG)) | 
 |     return SDValue(); | 
 |  | 
 |   // Slct is now know to be the desired identity constant when CC is true. | 
 |   SDValue TrueVal = OtherOp; | 
 |   SDValue FalseVal = | 
 |       DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal); | 
 |   // Unless SwapSelectOps says CC should be false. | 
 |   if (SwapSelectOps) | 
 |     std::swap(TrueVal, FalseVal); | 
 |  | 
 |   return DAG.getNode(ISD::SELECT, SDLoc(N), VT, CCOp, TrueVal, FalseVal); | 
 | } | 
 |  | 
 | // Attempt combineSelectAndUse on each operand of a commutative operator N. | 
 | static SDValue | 
 | combineSelectAndUseCommutative(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, | 
 |                                bool AllOnes) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |   if (N0.getNode()->hasOneUse()) | 
 |     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes)) | 
 |       return Result; | 
 |   if (N1.getNode()->hasOneUse()) | 
 |     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes)) | 
 |       return Result; | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | // PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. | 
 | static SDValue PerformSUBCombine(SDNode *N, | 
 |                                  TargetLowering::DAGCombinerInfo &DCI) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |   SDValue N1 = N->getOperand(1); | 
 |  | 
 |   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) | 
 |   if (N1.getNode()->hasOneUse()) | 
 |     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, /*AllOnes=*/false)) | 
 |       return Result; | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | SDValue LanaiTargetLowering::PerformDAGCombine(SDNode *N, | 
 |                                                DAGCombinerInfo &DCI) const { | 
 |   switch (N->getOpcode()) { | 
 |   default: | 
 |     break; | 
 |   case ISD::ADD: | 
 |   case ISD::OR: | 
 |   case ISD::XOR: | 
 |     return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/false); | 
 |   case ISD::AND: | 
 |     return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/true); | 
 |   case ISD::SUB: | 
 |     return PerformSUBCombine(N, DCI); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | void LanaiTargetLowering::computeKnownBitsForTargetNode( | 
 |     const SDValue Op, KnownBits &Known, const APInt &DemandedElts, | 
 |     const SelectionDAG &DAG, unsigned Depth) const { | 
 |   unsigned BitWidth = Known.getBitWidth(); | 
 |   switch (Op.getOpcode()) { | 
 |   default: | 
 |     break; | 
 |   case LanaiISD::SETCC: | 
 |     Known = KnownBits(BitWidth); | 
 |     Known.Zero.setBits(1, BitWidth); | 
 |     break; | 
 |   case LanaiISD::SELECT_CC: | 
 |     KnownBits Known2; | 
 |     DAG.computeKnownBits(Op->getOperand(0), Known, Depth + 1); | 
 |     DAG.computeKnownBits(Op->getOperand(1), Known2, Depth + 1); | 
 |     Known.Zero &= Known2.Zero; | 
 |     Known.One &= Known2.One; | 
 |     break; | 
 |   } | 
 | } |