|  | //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines an instruction selector for the SystemZ target. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "SystemZTargetMachine.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "systemz-isel" | 
|  |  | 
|  | namespace { | 
|  | // Used to build addressing modes. | 
|  | struct SystemZAddressingMode { | 
|  | // The shape of the address. | 
|  | enum AddrForm { | 
|  | // base+displacement | 
|  | FormBD, | 
|  |  | 
|  | // base+displacement+index for load and store operands | 
|  | FormBDXNormal, | 
|  |  | 
|  | // base+displacement+index for load address operands | 
|  | FormBDXLA, | 
|  |  | 
|  | // base+displacement+index+ADJDYNALLOC | 
|  | FormBDXDynAlloc | 
|  | }; | 
|  | AddrForm Form; | 
|  |  | 
|  | // The type of displacement.  The enum names here correspond directly | 
|  | // to the definitions in SystemZOperand.td.  We could split them into | 
|  | // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it. | 
|  | enum DispRange { | 
|  | Disp12Only, | 
|  | Disp12Pair, | 
|  | Disp20Only, | 
|  | Disp20Only128, | 
|  | Disp20Pair | 
|  | }; | 
|  | DispRange DR; | 
|  |  | 
|  | // The parts of the address.  The address is equivalent to: | 
|  | // | 
|  | //     Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0) | 
|  | SDValue Base; | 
|  | int64_t Disp; | 
|  | SDValue Index; | 
|  | bool IncludesDynAlloc; | 
|  |  | 
|  | SystemZAddressingMode(AddrForm form, DispRange dr) | 
|  | : Form(form), DR(dr), Base(), Disp(0), Index(), | 
|  | IncludesDynAlloc(false) {} | 
|  |  | 
|  | // True if the address can have an index register. | 
|  | bool hasIndexField() { return Form != FormBD; } | 
|  |  | 
|  | // True if the address can (and must) include ADJDYNALLOC. | 
|  | bool isDynAlloc() { return Form == FormBDXDynAlloc; } | 
|  |  | 
|  | void dump() { | 
|  | errs() << "SystemZAddressingMode " << this << '\n'; | 
|  |  | 
|  | errs() << " Base "; | 
|  | if (Base.getNode()) | 
|  | Base.getNode()->dump(); | 
|  | else | 
|  | errs() << "null\n"; | 
|  |  | 
|  | if (hasIndexField()) { | 
|  | errs() << " Index "; | 
|  | if (Index.getNode()) | 
|  | Index.getNode()->dump(); | 
|  | else | 
|  | errs() << "null\n"; | 
|  | } | 
|  |  | 
|  | errs() << " Disp " << Disp; | 
|  | if (IncludesDynAlloc) | 
|  | errs() << " + ADJDYNALLOC"; | 
|  | errs() << '\n'; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Return a mask with Count low bits set. | 
|  | static uint64_t allOnes(unsigned int Count) { | 
|  | assert(Count <= 64); | 
|  | if (Count > 63) | 
|  | return UINT64_MAX; | 
|  | return (uint64_t(1) << Count) - 1; | 
|  | } | 
|  |  | 
|  | // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation | 
|  | // given by Opcode.  The operands are: Input (R2), Start (I3), End (I4) and | 
|  | // Rotate (I5).  The combined operand value is effectively: | 
|  | // | 
|  | //   (or (rotl Input, Rotate), ~Mask) | 
|  | // | 
|  | // for RNSBG and: | 
|  | // | 
|  | //   (and (rotl Input, Rotate), Mask) | 
|  | // | 
|  | // otherwise.  The output value has BitSize bits, although Input may be | 
|  | // narrower (in which case the upper bits are don't care), or wider (in which | 
|  | // case the result will be truncated as part of the operation). | 
|  | struct RxSBGOperands { | 
|  | RxSBGOperands(unsigned Op, SDValue N) | 
|  | : Opcode(Op), BitSize(N.getValueSizeInBits()), | 
|  | Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63), | 
|  | Rotate(0) {} | 
|  |  | 
|  | unsigned Opcode; | 
|  | unsigned BitSize; | 
|  | uint64_t Mask; | 
|  | SDValue Input; | 
|  | unsigned Start; | 
|  | unsigned End; | 
|  | unsigned Rotate; | 
|  | }; | 
|  |  | 
|  | class SystemZDAGToDAGISel : public SelectionDAGISel { | 
|  | const SystemZSubtarget *Subtarget; | 
|  |  | 
|  | // Used by SystemZOperands.td to create integer constants. | 
|  | inline SDValue getImm(const SDNode *Node, uint64_t Imm) const { | 
|  | return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0)); | 
|  | } | 
|  |  | 
|  | const SystemZTargetMachine &getTargetMachine() const { | 
|  | return static_cast<const SystemZTargetMachine &>(TM); | 
|  | } | 
|  |  | 
|  | const SystemZInstrInfo *getInstrInfo() const { | 
|  | return Subtarget->getInstrInfo(); | 
|  | } | 
|  |  | 
|  | // Try to fold more of the base or index of AM into AM, where IsBase | 
|  | // selects between the base and index. | 
|  | bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const; | 
|  |  | 
|  | // Try to describe N in AM, returning true on success. | 
|  | bool selectAddress(SDValue N, SystemZAddressingMode &AM) const; | 
|  |  | 
|  | // Extract individual target operands from matched address AM. | 
|  | void getAddressOperands(const SystemZAddressingMode &AM, EVT VT, | 
|  | SDValue &Base, SDValue &Disp) const; | 
|  | void getAddressOperands(const SystemZAddressingMode &AM, EVT VT, | 
|  | SDValue &Base, SDValue &Disp, SDValue &Index) const; | 
|  |  | 
|  | // Try to match Addr as a FormBD address with displacement type DR. | 
|  | // Return true on success, storing the base and displacement in | 
|  | // Base and Disp respectively. | 
|  | bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr, | 
|  | SDValue &Base, SDValue &Disp) const; | 
|  |  | 
|  | // Try to match Addr as a FormBDX address with displacement type DR. | 
|  | // Return true on success and if the result had no index.  Store the | 
|  | // base and displacement in Base and Disp respectively. | 
|  | bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr, | 
|  | SDValue &Base, SDValue &Disp) const; | 
|  |  | 
|  | // Try to match Addr as a FormBDX* address of form Form with | 
|  | // displacement type DR.  Return true on success, storing the base, | 
|  | // displacement and index in Base, Disp and Index respectively. | 
|  | bool selectBDXAddr(SystemZAddressingMode::AddrForm Form, | 
|  | SystemZAddressingMode::DispRange DR, SDValue Addr, | 
|  | SDValue &Base, SDValue &Disp, SDValue &Index) const; | 
|  |  | 
|  | // PC-relative address matching routines used by SystemZOperands.td. | 
|  | bool selectPCRelAddress(SDValue Addr, SDValue &Target) const { | 
|  | if (SystemZISD::isPCREL(Addr.getOpcode())) { | 
|  | Target = Addr.getOperand(0); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // BD matching routines used by SystemZOperands.td. | 
|  | bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const { | 
|  | return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp); | 
|  | } | 
|  | bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { | 
|  | return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp); | 
|  | } | 
|  | bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const { | 
|  | return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp); | 
|  | } | 
|  | bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { | 
|  | return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp); | 
|  | } | 
|  |  | 
|  | // MVI matching routines used by SystemZOperands.td. | 
|  | bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { | 
|  | return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp); | 
|  | } | 
|  | bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const { | 
|  | return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp); | 
|  | } | 
|  |  | 
|  | // BDX matching routines used by SystemZOperands.td. | 
|  | bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp, | 
|  | SDValue &Index) const { | 
|  | return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, | 
|  | SystemZAddressingMode::Disp12Only, | 
|  | Addr, Base, Disp, Index); | 
|  | } | 
|  | bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp, | 
|  | SDValue &Index) const { | 
|  | return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, | 
|  | SystemZAddressingMode::Disp12Pair, | 
|  | Addr, Base, Disp, Index); | 
|  | } | 
|  | bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp, | 
|  | SDValue &Index) const { | 
|  | return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc, | 
|  | SystemZAddressingMode::Disp12Only, | 
|  | Addr, Base, Disp, Index); | 
|  | } | 
|  | bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp, | 
|  | SDValue &Index) const { | 
|  | return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, | 
|  | SystemZAddressingMode::Disp20Only, | 
|  | Addr, Base, Disp, Index); | 
|  | } | 
|  | bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp, | 
|  | SDValue &Index) const { | 
|  | return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, | 
|  | SystemZAddressingMode::Disp20Only128, | 
|  | Addr, Base, Disp, Index); | 
|  | } | 
|  | bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp, | 
|  | SDValue &Index) const { | 
|  | return selectBDXAddr(SystemZAddressingMode::FormBDXNormal, | 
|  | SystemZAddressingMode::Disp20Pair, | 
|  | Addr, Base, Disp, Index); | 
|  | } | 
|  | bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp, | 
|  | SDValue &Index) const { | 
|  | return selectBDXAddr(SystemZAddressingMode::FormBDXLA, | 
|  | SystemZAddressingMode::Disp12Pair, | 
|  | Addr, Base, Disp, Index); | 
|  | } | 
|  | bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp, | 
|  | SDValue &Index) const { | 
|  | return selectBDXAddr(SystemZAddressingMode::FormBDXLA, | 
|  | SystemZAddressingMode::Disp20Pair, | 
|  | Addr, Base, Disp, Index); | 
|  | } | 
|  |  | 
|  | // Try to match Addr as an address with a base, 12-bit displacement | 
|  | // and index, where the index is element Elem of a vector. | 
|  | // Return true on success, storing the base, displacement and vector | 
|  | // in Base, Disp and Index respectively. | 
|  | bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base, | 
|  | SDValue &Disp, SDValue &Index) const; | 
|  |  | 
|  | // Check whether (or Op (and X InsertMask)) is effectively an insertion | 
|  | // of X into bits InsertMask of some Y != Op.  Return true if so and | 
|  | // set Op to that Y. | 
|  | bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const; | 
|  |  | 
|  | // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used. | 
|  | // Return true on success. | 
|  | bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const; | 
|  |  | 
|  | // Try to fold some of RxSBG.Input into other fields of RxSBG. | 
|  | // Return true on success. | 
|  | bool expandRxSBG(RxSBGOperands &RxSBG) const; | 
|  |  | 
|  | // Return an undefined value of type VT. | 
|  | SDValue getUNDEF(const SDLoc &DL, EVT VT) const; | 
|  |  | 
|  | // Convert N to VT, if it isn't already. | 
|  | SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const; | 
|  |  | 
|  | // Try to implement AND or shift node N using RISBG with the zero flag set. | 
|  | // Return the selected node on success, otherwise return null. | 
|  | bool tryRISBGZero(SDNode *N); | 
|  |  | 
|  | // Try to use RISBG or Opcode to implement OR or XOR node N. | 
|  | // Return the selected node on success, otherwise return null. | 
|  | bool tryRxSBG(SDNode *N, unsigned Opcode); | 
|  |  | 
|  | // If Op0 is null, then Node is a constant that can be loaded using: | 
|  | // | 
|  | //   (Opcode UpperVal LowerVal) | 
|  | // | 
|  | // If Op0 is nonnull, then Node can be implemented using: | 
|  | // | 
|  | //   (Opcode (Opcode Op0 UpperVal) LowerVal) | 
|  | void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0, | 
|  | uint64_t UpperVal, uint64_t LowerVal); | 
|  |  | 
|  | // Try to use gather instruction Opcode to implement vector insertion N. | 
|  | bool tryGather(SDNode *N, unsigned Opcode); | 
|  |  | 
|  | // Try to use scatter instruction Opcode to implement store Store. | 
|  | bool tryScatter(StoreSDNode *Store, unsigned Opcode); | 
|  |  | 
|  | // Change a chain of {load; op; store} of the same value into a simple op | 
|  | // through memory of that value, if the uses of the modified value and its | 
|  | // address are suitable. | 
|  | bool tryFoldLoadStoreIntoMemOperand(SDNode *Node); | 
|  |  | 
|  | // Return true if Load and Store are loads and stores of the same size | 
|  | // and are guaranteed not to overlap.  Such operations can be implemented | 
|  | // using block (SS-format) instructions. | 
|  | // | 
|  | // Partial overlap would lead to incorrect code, since the block operations | 
|  | // are logically bytewise, even though they have a fast path for the | 
|  | // non-overlapping case.  We also need to avoid full overlap (i.e. two | 
|  | // addresses that might be equal at run time) because although that case | 
|  | // would be handled correctly, it might be implemented by millicode. | 
|  | bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const; | 
|  |  | 
|  | // N is a (store (load Y), X) pattern.  Return true if it can use an MVC | 
|  | // from Y to X. | 
|  | bool storeLoadCanUseMVC(SDNode *N) const; | 
|  |  | 
|  | // N is a (store (op (load A[0]), (load A[1])), X) pattern.  Return true | 
|  | // if A[1 - I] == X and if N can use a block operation like NC from A[I] | 
|  | // to X. | 
|  | bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const; | 
|  |  | 
|  | // Try to expand a boolean SELECT_CCMASK using an IPM sequence. | 
|  | SDValue expandSelectBoolean(SDNode *Node); | 
|  |  | 
|  | public: | 
|  | SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel) | 
|  | : SelectionDAGISel(TM, OptLevel) {} | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override { | 
|  | Subtarget = &MF.getSubtarget<SystemZSubtarget>(); | 
|  | return SelectionDAGISel::runOnMachineFunction(MF); | 
|  | } | 
|  |  | 
|  | // Override MachineFunctionPass. | 
|  | StringRef getPassName() const override { | 
|  | return "SystemZ DAG->DAG Pattern Instruction Selection"; | 
|  | } | 
|  |  | 
|  | // Override SelectionDAGISel. | 
|  | void Select(SDNode *Node) override; | 
|  | bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, | 
|  | std::vector<SDValue> &OutOps) override; | 
|  | bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override; | 
|  | void PreprocessISelDAG() override; | 
|  |  | 
|  | // Include the pieces autogenerated from the target description. | 
|  | #include "SystemZGenDAGISel.inc" | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM, | 
|  | CodeGenOpt::Level OptLevel) { | 
|  | return new SystemZDAGToDAGISel(TM, OptLevel); | 
|  | } | 
|  |  | 
|  | // Return true if Val should be selected as a displacement for an address | 
|  | // with range DR.  Here we're interested in the range of both the instruction | 
|  | // described by DR and of any pairing instruction. | 
|  | static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) { | 
|  | switch (DR) { | 
|  | case SystemZAddressingMode::Disp12Only: | 
|  | return isUInt<12>(Val); | 
|  |  | 
|  | case SystemZAddressingMode::Disp12Pair: | 
|  | case SystemZAddressingMode::Disp20Only: | 
|  | case SystemZAddressingMode::Disp20Pair: | 
|  | return isInt<20>(Val); | 
|  |  | 
|  | case SystemZAddressingMode::Disp20Only128: | 
|  | return isInt<20>(Val) && isInt<20>(Val + 8); | 
|  | } | 
|  | llvm_unreachable("Unhandled displacement range"); | 
|  | } | 
|  |  | 
|  | // Change the base or index in AM to Value, where IsBase selects | 
|  | // between the base and index. | 
|  | static void changeComponent(SystemZAddressingMode &AM, bool IsBase, | 
|  | SDValue Value) { | 
|  | if (IsBase) | 
|  | AM.Base = Value; | 
|  | else | 
|  | AM.Index = Value; | 
|  | } | 
|  |  | 
|  | // The base or index of AM is equivalent to Value + ADJDYNALLOC, | 
|  | // where IsBase selects between the base and index.  Try to fold the | 
|  | // ADJDYNALLOC into AM. | 
|  | static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase, | 
|  | SDValue Value) { | 
|  | if (AM.isDynAlloc() && !AM.IncludesDynAlloc) { | 
|  | changeComponent(AM, IsBase, Value); | 
|  | AM.IncludesDynAlloc = true; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The base of AM is equivalent to Base + Index.  Try to use Index as | 
|  | // the index register. | 
|  | static bool expandIndex(SystemZAddressingMode &AM, SDValue Base, | 
|  | SDValue Index) { | 
|  | if (AM.hasIndexField() && !AM.Index.getNode()) { | 
|  | AM.Base = Base; | 
|  | AM.Index = Index; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects | 
|  | // between the base and index.  Try to fold Op1 into AM's displacement. | 
|  | static bool expandDisp(SystemZAddressingMode &AM, bool IsBase, | 
|  | SDValue Op0, uint64_t Op1) { | 
|  | // First try adjusting the displacement. | 
|  | int64_t TestDisp = AM.Disp + Op1; | 
|  | if (selectDisp(AM.DR, TestDisp)) { | 
|  | changeComponent(AM, IsBase, Op0); | 
|  | AM.Disp = TestDisp; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // We could consider forcing the displacement into a register and | 
|  | // using it as an index, but it would need to be carefully tuned. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM, | 
|  | bool IsBase) const { | 
|  | SDValue N = IsBase ? AM.Base : AM.Index; | 
|  | unsigned Opcode = N.getOpcode(); | 
|  | if (Opcode == ISD::TRUNCATE) { | 
|  | N = N.getOperand(0); | 
|  | Opcode = N.getOpcode(); | 
|  | } | 
|  | if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) { | 
|  | SDValue Op0 = N.getOperand(0); | 
|  | SDValue Op1 = N.getOperand(1); | 
|  |  | 
|  | unsigned Op0Code = Op0->getOpcode(); | 
|  | unsigned Op1Code = Op1->getOpcode(); | 
|  |  | 
|  | if (Op0Code == SystemZISD::ADJDYNALLOC) | 
|  | return expandAdjDynAlloc(AM, IsBase, Op1); | 
|  | if (Op1Code == SystemZISD::ADJDYNALLOC) | 
|  | return expandAdjDynAlloc(AM, IsBase, Op0); | 
|  |  | 
|  | if (Op0Code == ISD::Constant) | 
|  | return expandDisp(AM, IsBase, Op1, | 
|  | cast<ConstantSDNode>(Op0)->getSExtValue()); | 
|  | if (Op1Code == ISD::Constant) | 
|  | return expandDisp(AM, IsBase, Op0, | 
|  | cast<ConstantSDNode>(Op1)->getSExtValue()); | 
|  |  | 
|  | if (IsBase && expandIndex(AM, Op0, Op1)) | 
|  | return true; | 
|  | } | 
|  | if (Opcode == SystemZISD::PCREL_OFFSET) { | 
|  | SDValue Full = N.getOperand(0); | 
|  | SDValue Base = N.getOperand(1); | 
|  | SDValue Anchor = Base.getOperand(0); | 
|  | uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() - | 
|  | cast<GlobalAddressSDNode>(Anchor)->getOffset()); | 
|  | return expandDisp(AM, IsBase, Base, Offset); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return true if an instruction with displacement range DR should be | 
|  | // used for displacement value Val.  selectDisp(DR, Val) must already hold. | 
|  | static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) { | 
|  | assert(selectDisp(DR, Val) && "Invalid displacement"); | 
|  | switch (DR) { | 
|  | case SystemZAddressingMode::Disp12Only: | 
|  | case SystemZAddressingMode::Disp20Only: | 
|  | case SystemZAddressingMode::Disp20Only128: | 
|  | return true; | 
|  |  | 
|  | case SystemZAddressingMode::Disp12Pair: | 
|  | // Use the other instruction if the displacement is too large. | 
|  | return isUInt<12>(Val); | 
|  |  | 
|  | case SystemZAddressingMode::Disp20Pair: | 
|  | // Use the other instruction if the displacement is small enough. | 
|  | return !isUInt<12>(Val); | 
|  | } | 
|  | llvm_unreachable("Unhandled displacement range"); | 
|  | } | 
|  |  | 
|  | // Return true if Base + Disp + Index should be performed by LA(Y). | 
|  | static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) { | 
|  | // Don't use LA(Y) for constants. | 
|  | if (!Base) | 
|  | return false; | 
|  |  | 
|  | // Always use LA(Y) for frame addresses, since we know that the destination | 
|  | // register is almost always (perhaps always) going to be different from | 
|  | // the frame register. | 
|  | if (Base->getOpcode() == ISD::FrameIndex) | 
|  | return true; | 
|  |  | 
|  | if (Disp) { | 
|  | // Always use LA(Y) if there is a base, displacement and index. | 
|  | if (Index) | 
|  | return true; | 
|  |  | 
|  | // Always use LA if the displacement is small enough.  It should always | 
|  | // be no worse than AGHI (and better if it avoids a move). | 
|  | if (isUInt<12>(Disp)) | 
|  | return true; | 
|  |  | 
|  | // For similar reasons, always use LAY if the constant is too big for AGHI. | 
|  | // LAY should be no worse than AGFI. | 
|  | if (!isInt<16>(Disp)) | 
|  | return true; | 
|  | } else { | 
|  | // Don't use LA for plain registers. | 
|  | if (!Index) | 
|  | return false; | 
|  |  | 
|  | // Don't use LA for plain addition if the index operand is only used | 
|  | // once.  It should be a natural two-operand addition in that case. | 
|  | if (Index->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // Prefer addition if the second operation is sign-extended, in the | 
|  | // hope of using AGF. | 
|  | unsigned IndexOpcode = Index->getOpcode(); | 
|  | if (IndexOpcode == ISD::SIGN_EXTEND || | 
|  | IndexOpcode == ISD::SIGN_EXTEND_INREG) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Don't use LA for two-operand addition if either operand is only | 
|  | // used once.  The addition instructions are better in that case. | 
|  | if (Base->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Return true if Addr is suitable for AM, updating AM if so. | 
|  | bool SystemZDAGToDAGISel::selectAddress(SDValue Addr, | 
|  | SystemZAddressingMode &AM) const { | 
|  | // Start out assuming that the address will need to be loaded separately, | 
|  | // then try to extend it as much as we can. | 
|  | AM.Base = Addr; | 
|  |  | 
|  | // First try treating the address as a constant. | 
|  | if (Addr.getOpcode() == ISD::Constant && | 
|  | expandDisp(AM, true, SDValue(), | 
|  | cast<ConstantSDNode>(Addr)->getSExtValue())) | 
|  | ; | 
|  | // Also see if it's a bare ADJDYNALLOC. | 
|  | else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC && | 
|  | expandAdjDynAlloc(AM, true, SDValue())) | 
|  | ; | 
|  | else | 
|  | // Otherwise try expanding each component. | 
|  | while (expandAddress(AM, true) || | 
|  | (AM.Index.getNode() && expandAddress(AM, false))) | 
|  | continue; | 
|  |  | 
|  | // Reject cases where it isn't profitable to use LA(Y). | 
|  | if (AM.Form == SystemZAddressingMode::FormBDXLA && | 
|  | !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode())) | 
|  | return false; | 
|  |  | 
|  | // Reject cases where the other instruction in a pair should be used. | 
|  | if (!isValidDisp(AM.DR, AM.Disp)) | 
|  | return false; | 
|  |  | 
|  | // Make sure that ADJDYNALLOC is included where necessary. | 
|  | if (AM.isDynAlloc() && !AM.IncludesDynAlloc) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG(AM.dump()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Insert a node into the DAG at least before Pos.  This will reposition | 
|  | // the node as needed, and will assign it a node ID that is <= Pos's ID. | 
|  | // Note that this does *not* preserve the uniqueness of node IDs! | 
|  | // The selection DAG must no longer depend on their uniqueness when this | 
|  | // function is used. | 
|  | static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) { | 
|  | if (N->getNodeId() == -1 || | 
|  | (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) > | 
|  | SelectionDAGISel::getUninvalidatedNodeId(Pos))) { | 
|  | DAG->RepositionNode(Pos->getIterator(), N.getNode()); | 
|  | // Mark Node as invalid for pruning as after this it may be a successor to a | 
|  | // selected node but otherwise be in the same position of Pos. | 
|  | // Conservatively mark it with the same -abs(Id) to assure node id | 
|  | // invariant is preserved. | 
|  | N->setNodeId(Pos->getNodeId()); | 
|  | SelectionDAGISel::InvalidateNodeId(N.getNode()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM, | 
|  | EVT VT, SDValue &Base, | 
|  | SDValue &Disp) const { | 
|  | Base = AM.Base; | 
|  | if (!Base.getNode()) | 
|  | // Register 0 means "no base".  This is mostly useful for shifts. | 
|  | Base = CurDAG->getRegister(0, VT); | 
|  | else if (Base.getOpcode() == ISD::FrameIndex) { | 
|  | // Lower a FrameIndex to a TargetFrameIndex. | 
|  | int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex(); | 
|  | Base = CurDAG->getTargetFrameIndex(FrameIndex, VT); | 
|  | } else if (Base.getValueType() != VT) { | 
|  | // Truncate values from i64 to i32, for shifts. | 
|  | assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 && | 
|  | "Unexpected truncation"); | 
|  | SDLoc DL(Base); | 
|  | SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base); | 
|  | insertDAGNode(CurDAG, Base.getNode(), Trunc); | 
|  | Base = Trunc; | 
|  | } | 
|  |  | 
|  | // Lower the displacement to a TargetConstant. | 
|  | Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT); | 
|  | } | 
|  |  | 
|  | void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM, | 
|  | EVT VT, SDValue &Base, | 
|  | SDValue &Disp, | 
|  | SDValue &Index) const { | 
|  | getAddressOperands(AM, VT, Base, Disp); | 
|  |  | 
|  | Index = AM.Index; | 
|  | if (!Index.getNode()) | 
|  | // Register 0 means "no index". | 
|  | Index = CurDAG->getRegister(0, VT); | 
|  | } | 
|  |  | 
|  | bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR, | 
|  | SDValue Addr, SDValue &Base, | 
|  | SDValue &Disp) const { | 
|  | SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR); | 
|  | if (!selectAddress(Addr, AM)) | 
|  | return false; | 
|  |  | 
|  | getAddressOperands(AM, Addr.getValueType(), Base, Disp); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR, | 
|  | SDValue Addr, SDValue &Base, | 
|  | SDValue &Disp) const { | 
|  | SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR); | 
|  | if (!selectAddress(Addr, AM) || AM.Index.getNode()) | 
|  | return false; | 
|  |  | 
|  | getAddressOperands(AM, Addr.getValueType(), Base, Disp); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form, | 
|  | SystemZAddressingMode::DispRange DR, | 
|  | SDValue Addr, SDValue &Base, | 
|  | SDValue &Disp, SDValue &Index) const { | 
|  | SystemZAddressingMode AM(Form, DR); | 
|  | if (!selectAddress(Addr, AM)) | 
|  | return false; | 
|  |  | 
|  | getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem, | 
|  | SDValue &Base, | 
|  | SDValue &Disp, | 
|  | SDValue &Index) const { | 
|  | SDValue Regs[2]; | 
|  | if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) && | 
|  | Regs[0].getNode() && Regs[1].getNode()) { | 
|  | for (unsigned int I = 0; I < 2; ++I) { | 
|  | Base = Regs[I]; | 
|  | Index = Regs[1 - I]; | 
|  | // We can't tell here whether the index vector has the right type | 
|  | // for the access; the caller needs to do that instead. | 
|  | if (Index.getOpcode() == ISD::ZERO_EXTEND) | 
|  | Index = Index.getOperand(0); | 
|  | if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT && | 
|  | Index.getOperand(1) == Elem) { | 
|  | Index = Index.getOperand(0); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op, | 
|  | uint64_t InsertMask) const { | 
|  | // We're only interested in cases where the insertion is into some operand | 
|  | // of Op, rather than into Op itself.  The only useful case is an AND. | 
|  | if (Op.getOpcode() != ISD::AND) | 
|  | return false; | 
|  |  | 
|  | // We need a constant mask. | 
|  | auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode()); | 
|  | if (!MaskNode) | 
|  | return false; | 
|  |  | 
|  | // It's not an insertion of Op.getOperand(0) if the two masks overlap. | 
|  | uint64_t AndMask = MaskNode->getZExtValue(); | 
|  | if (InsertMask & AndMask) | 
|  | return false; | 
|  |  | 
|  | // It's only an insertion if all bits are covered or are known to be zero. | 
|  | // The inner check covers all cases but is more expensive. | 
|  | uint64_t Used = allOnes(Op.getValueSizeInBits()); | 
|  | if (Used != (AndMask | InsertMask)) { | 
|  | KnownBits Known; | 
|  | CurDAG->computeKnownBits(Op.getOperand(0), Known); | 
|  | if (Used != (AndMask | InsertMask | Known.Zero.getZExtValue())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Op = Op.getOperand(0); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG, | 
|  | uint64_t Mask) const { | 
|  | const SystemZInstrInfo *TII = getInstrInfo(); | 
|  | if (RxSBG.Rotate != 0) | 
|  | Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)); | 
|  | Mask &= RxSBG.Mask; | 
|  | if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) { | 
|  | RxSBG.Mask = Mask; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return true if any bits of (RxSBG.Input & Mask) are significant. | 
|  | static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) { | 
|  | // Rotate the mask in the same way as RxSBG.Input is rotated. | 
|  | if (RxSBG.Rotate != 0) | 
|  | Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate))); | 
|  | return (Mask & RxSBG.Mask) != 0; | 
|  | } | 
|  |  | 
|  | bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const { | 
|  | SDValue N = RxSBG.Input; | 
|  | unsigned Opcode = N.getOpcode(); | 
|  | switch (Opcode) { | 
|  | case ISD::TRUNCATE: { | 
|  | if (RxSBG.Opcode == SystemZ::RNSBG) | 
|  | return false; | 
|  | uint64_t BitSize = N.getValueSizeInBits(); | 
|  | uint64_t Mask = allOnes(BitSize); | 
|  | if (!refineRxSBGMask(RxSBG, Mask)) | 
|  | return false; | 
|  | RxSBG.Input = N.getOperand(0); | 
|  | return true; | 
|  | } | 
|  | case ISD::AND: { | 
|  | if (RxSBG.Opcode == SystemZ::RNSBG) | 
|  | return false; | 
|  |  | 
|  | auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); | 
|  | if (!MaskNode) | 
|  | return false; | 
|  |  | 
|  | SDValue Input = N.getOperand(0); | 
|  | uint64_t Mask = MaskNode->getZExtValue(); | 
|  | if (!refineRxSBGMask(RxSBG, Mask)) { | 
|  | // If some bits of Input are already known zeros, those bits will have | 
|  | // been removed from the mask.  See if adding them back in makes the | 
|  | // mask suitable. | 
|  | KnownBits Known; | 
|  | CurDAG->computeKnownBits(Input, Known); | 
|  | Mask |= Known.Zero.getZExtValue(); | 
|  | if (!refineRxSBGMask(RxSBG, Mask)) | 
|  | return false; | 
|  | } | 
|  | RxSBG.Input = Input; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ISD::OR: { | 
|  | if (RxSBG.Opcode != SystemZ::RNSBG) | 
|  | return false; | 
|  |  | 
|  | auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); | 
|  | if (!MaskNode) | 
|  | return false; | 
|  |  | 
|  | SDValue Input = N.getOperand(0); | 
|  | uint64_t Mask = ~MaskNode->getZExtValue(); | 
|  | if (!refineRxSBGMask(RxSBG, Mask)) { | 
|  | // If some bits of Input are already known ones, those bits will have | 
|  | // been removed from the mask.  See if adding them back in makes the | 
|  | // mask suitable. | 
|  | KnownBits Known; | 
|  | CurDAG->computeKnownBits(Input, Known); | 
|  | Mask &= ~Known.One.getZExtValue(); | 
|  | if (!refineRxSBGMask(RxSBG, Mask)) | 
|  | return false; | 
|  | } | 
|  | RxSBG.Input = Input; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ISD::ROTL: { | 
|  | // Any 64-bit rotate left can be merged into the RxSBG. | 
|  | if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64) | 
|  | return false; | 
|  | auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); | 
|  | if (!CountNode) | 
|  | return false; | 
|  |  | 
|  | RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63; | 
|  | RxSBG.Input = N.getOperand(0); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ISD::ANY_EXTEND: | 
|  | // Bits above the extended operand are don't-care. | 
|  | RxSBG.Input = N.getOperand(0); | 
|  | return true; | 
|  |  | 
|  | case ISD::ZERO_EXTEND: | 
|  | if (RxSBG.Opcode != SystemZ::RNSBG) { | 
|  | // Restrict the mask to the extended operand. | 
|  | unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits(); | 
|  | if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize))) | 
|  | return false; | 
|  |  | 
|  | RxSBG.Input = N.getOperand(0); | 
|  | return true; | 
|  | } | 
|  | LLVM_FALLTHROUGH; | 
|  |  | 
|  | case ISD::SIGN_EXTEND: { | 
|  | // Check that the extension bits are don't-care (i.e. are masked out | 
|  | // by the final mask). | 
|  | unsigned BitSize = N.getValueSizeInBits(); | 
|  | unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits(); | 
|  | if (maskMatters(RxSBG, allOnes(BitSize) - allOnes(InnerBitSize))) { | 
|  | // In the case where only the sign bit is active, increase Rotate with | 
|  | // the extension width. | 
|  | if (RxSBG.Mask == 1 && RxSBG.Rotate == 1) | 
|  | RxSBG.Rotate += (BitSize - InnerBitSize); | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | RxSBG.Input = N.getOperand(0); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ISD::SHL: { | 
|  | auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); | 
|  | if (!CountNode) | 
|  | return false; | 
|  |  | 
|  | uint64_t Count = CountNode->getZExtValue(); | 
|  | unsigned BitSize = N.getValueSizeInBits(); | 
|  | if (Count < 1 || Count >= BitSize) | 
|  | return false; | 
|  |  | 
|  | if (RxSBG.Opcode == SystemZ::RNSBG) { | 
|  | // Treat (shl X, count) as (rotl X, size-count) as long as the bottom | 
|  | // count bits from RxSBG.Input are ignored. | 
|  | if (maskMatters(RxSBG, allOnes(Count))) | 
|  | return false; | 
|  | } else { | 
|  | // Treat (shl X, count) as (and (rotl X, count), ~0<<count). | 
|  | if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | RxSBG.Rotate = (RxSBG.Rotate + Count) & 63; | 
|  | RxSBG.Input = N.getOperand(0); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case ISD::SRL: | 
|  | case ISD::SRA: { | 
|  | auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode()); | 
|  | if (!CountNode) | 
|  | return false; | 
|  |  | 
|  | uint64_t Count = CountNode->getZExtValue(); | 
|  | unsigned BitSize = N.getValueSizeInBits(); | 
|  | if (Count < 1 || Count >= BitSize) | 
|  | return false; | 
|  |  | 
|  | if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) { | 
|  | // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top | 
|  | // count bits from RxSBG.Input are ignored. | 
|  | if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count))) | 
|  | return false; | 
|  | } else { | 
|  | // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count), | 
|  | // which is similar to SLL above. | 
|  | if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count))) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | RxSBG.Rotate = (RxSBG.Rotate - Count) & 63; | 
|  | RxSBG.Input = N.getOperand(0); | 
|  | return true; | 
|  | } | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const { | 
|  | SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT); | 
|  | return SDValue(N, 0); | 
|  | } | 
|  |  | 
|  | SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT, | 
|  | SDValue N) const { | 
|  | if (N.getValueType() == MVT::i32 && VT == MVT::i64) | 
|  | return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32, | 
|  | DL, VT, getUNDEF(DL, MVT::i64), N); | 
|  | if (N.getValueType() == MVT::i64 && VT == MVT::i32) | 
|  | return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N); | 
|  | assert(N.getValueType() == VT && "Unexpected value types"); | 
|  | return N; | 
|  | } | 
|  |  | 
|  | bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) { | 
|  | SDLoc DL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | if (!VT.isInteger() || VT.getSizeInBits() > 64) | 
|  | return false; | 
|  | RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0)); | 
|  | unsigned Count = 0; | 
|  | while (expandRxSBG(RISBG)) | 
|  | // The widening or narrowing is expected to be free. | 
|  | // Counting widening or narrowing as a saved operation will result in | 
|  | // preferring an R*SBG over a simple shift/logical instruction. | 
|  | if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND && | 
|  | RISBG.Input.getOpcode() != ISD::TRUNCATE) | 
|  | Count += 1; | 
|  | if (Count == 0) | 
|  | return false; | 
|  |  | 
|  | // Prefer to use normal shift instructions over RISBG, since they can handle | 
|  | // all cases and are sometimes shorter. | 
|  | if (Count == 1 && N->getOpcode() != ISD::AND) | 
|  | return false; | 
|  |  | 
|  | // Prefer register extensions like LLC over RISBG.  Also prefer to start | 
|  | // out with normal ANDs if one instruction would be enough.  We can convert | 
|  | // these ANDs into an RISBG later if a three-address instruction is useful. | 
|  | if (RISBG.Rotate == 0) { | 
|  | bool PreferAnd = false; | 
|  | // Prefer AND for any 32-bit and-immediate operation. | 
|  | if (VT == MVT::i32) | 
|  | PreferAnd = true; | 
|  | // As well as for any 64-bit operation that can be implemented via LLC(R), | 
|  | // LLH(R), LLGT(R), or one of the and-immediate instructions. | 
|  | else if (RISBG.Mask == 0xff || | 
|  | RISBG.Mask == 0xffff || | 
|  | RISBG.Mask == 0x7fffffff || | 
|  | SystemZ::isImmLF(~RISBG.Mask) || | 
|  | SystemZ::isImmHF(~RISBG.Mask)) | 
|  | PreferAnd = true; | 
|  | // And likewise for the LLZRGF instruction, which doesn't have a register | 
|  | // to register version. | 
|  | else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) { | 
|  | if (Load->getMemoryVT() == MVT::i32 && | 
|  | (Load->getExtensionType() == ISD::EXTLOAD || | 
|  | Load->getExtensionType() == ISD::ZEXTLOAD) && | 
|  | RISBG.Mask == 0xffffff00 && | 
|  | Subtarget->hasLoadAndZeroRightmostByte()) | 
|  | PreferAnd = true; | 
|  | } | 
|  | if (PreferAnd) { | 
|  | // Replace the current node with an AND.  Note that the current node | 
|  | // might already be that same AND, in which case it is already CSE'd | 
|  | // with it, and we must not call ReplaceNode. | 
|  | SDValue In = convertTo(DL, VT, RISBG.Input); | 
|  | SDValue Mask = CurDAG->getConstant(RISBG.Mask, DL, VT); | 
|  | SDValue New = CurDAG->getNode(ISD::AND, DL, VT, In, Mask); | 
|  | if (N != New.getNode()) { | 
|  | insertDAGNode(CurDAG, N, Mask); | 
|  | insertDAGNode(CurDAG, N, New); | 
|  | ReplaceNode(N, New.getNode()); | 
|  | N = New.getNode(); | 
|  | } | 
|  | // Now, select the machine opcode to implement this operation. | 
|  | if (!N->isMachineOpcode()) | 
|  | SelectCode(N); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned Opcode = SystemZ::RISBG; | 
|  | // Prefer RISBGN if available, since it does not clobber CC. | 
|  | if (Subtarget->hasMiscellaneousExtensions()) | 
|  | Opcode = SystemZ::RISBGN; | 
|  | EVT OpcodeVT = MVT::i64; | 
|  | if (VT == MVT::i32 && Subtarget->hasHighWord() && | 
|  | // We can only use the 32-bit instructions if all source bits are | 
|  | // in the low 32 bits without wrapping, both after rotation (because | 
|  | // of the smaller range for Start and End) and before rotation | 
|  | // (because the input value is truncated). | 
|  | RISBG.Start >= 32 && RISBG.End >= RISBG.Start && | 
|  | ((RISBG.Start + RISBG.Rotate) & 63) >= 32 && | 
|  | ((RISBG.End + RISBG.Rotate) & 63) >= | 
|  | ((RISBG.Start + RISBG.Rotate) & 63)) { | 
|  | Opcode = SystemZ::RISBMux; | 
|  | OpcodeVT = MVT::i32; | 
|  | RISBG.Start &= 31; | 
|  | RISBG.End &= 31; | 
|  | } | 
|  | SDValue Ops[5] = { | 
|  | getUNDEF(DL, OpcodeVT), | 
|  | convertTo(DL, OpcodeVT, RISBG.Input), | 
|  | CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32), | 
|  | CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32), | 
|  | CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32) | 
|  | }; | 
|  | SDValue New = convertTo( | 
|  | DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0)); | 
|  | ReplaceNode(N, New.getNode()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) { | 
|  | SDLoc DL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | if (!VT.isInteger() || VT.getSizeInBits() > 64) | 
|  | return false; | 
|  | // Try treating each operand of N as the second operand of the RxSBG | 
|  | // and see which goes deepest. | 
|  | RxSBGOperands RxSBG[] = { | 
|  | RxSBGOperands(Opcode, N->getOperand(0)), | 
|  | RxSBGOperands(Opcode, N->getOperand(1)) | 
|  | }; | 
|  | unsigned Count[] = { 0, 0 }; | 
|  | for (unsigned I = 0; I < 2; ++I) | 
|  | while (expandRxSBG(RxSBG[I])) | 
|  | // The widening or narrowing is expected to be free. | 
|  | // Counting widening or narrowing as a saved operation will result in | 
|  | // preferring an R*SBG over a simple shift/logical instruction. | 
|  | if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND && | 
|  | RxSBG[I].Input.getOpcode() != ISD::TRUNCATE) | 
|  | Count[I] += 1; | 
|  |  | 
|  | // Do nothing if neither operand is suitable. | 
|  | if (Count[0] == 0 && Count[1] == 0) | 
|  | return false; | 
|  |  | 
|  | // Pick the deepest second operand. | 
|  | unsigned I = Count[0] > Count[1] ? 0 : 1; | 
|  | SDValue Op0 = N->getOperand(I ^ 1); | 
|  |  | 
|  | // Prefer IC for character insertions from memory. | 
|  | if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0) | 
|  | if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode())) | 
|  | if (Load->getMemoryVT() == MVT::i8) | 
|  | return false; | 
|  |  | 
|  | // See whether we can avoid an AND in the first operand by converting | 
|  | // ROSBG to RISBG. | 
|  | if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) { | 
|  | Opcode = SystemZ::RISBG; | 
|  | // Prefer RISBGN if available, since it does not clobber CC. | 
|  | if (Subtarget->hasMiscellaneousExtensions()) | 
|  | Opcode = SystemZ::RISBGN; | 
|  | } | 
|  |  | 
|  | SDValue Ops[5] = { | 
|  | convertTo(DL, MVT::i64, Op0), | 
|  | convertTo(DL, MVT::i64, RxSBG[I].Input), | 
|  | CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32), | 
|  | CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32), | 
|  | CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32) | 
|  | }; | 
|  | SDValue New = convertTo( | 
|  | DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0)); | 
|  | ReplaceNode(N, New.getNode()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node, | 
|  | SDValue Op0, uint64_t UpperVal, | 
|  | uint64_t LowerVal) { | 
|  | EVT VT = Node->getValueType(0); | 
|  | SDLoc DL(Node); | 
|  | SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT); | 
|  | if (Op0.getNode()) | 
|  | Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper); | 
|  |  | 
|  | { | 
|  | // When we haven't passed in Op0, Upper will be a constant. In order to | 
|  | // prevent folding back to the large immediate in `Or = getNode(...)` we run | 
|  | // SelectCode first and end up with an opaque machine node. This means that | 
|  | // we need to use a handle to keep track of Upper in case it gets CSE'd by | 
|  | // SelectCode. | 
|  | // | 
|  | // Note that in the case where Op0 is passed in we could just call | 
|  | // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing | 
|  | // the handle at all, but it's fine to do it here. | 
|  | // | 
|  | // TODO: This is a pretty hacky way to do this. Can we do something that | 
|  | // doesn't require a two paragraph explanation? | 
|  | HandleSDNode Handle(Upper); | 
|  | SelectCode(Upper.getNode()); | 
|  | Upper = Handle.getValue(); | 
|  | } | 
|  |  | 
|  | SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT); | 
|  | SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower); | 
|  |  | 
|  | ReplaceNode(Node, Or.getNode()); | 
|  |  | 
|  | SelectCode(Or.getNode()); | 
|  | } | 
|  |  | 
|  | bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) { | 
|  | SDValue ElemV = N->getOperand(2); | 
|  | auto *ElemN = dyn_cast<ConstantSDNode>(ElemV); | 
|  | if (!ElemN) | 
|  | return false; | 
|  |  | 
|  | unsigned Elem = ElemN->getZExtValue(); | 
|  | EVT VT = N->getValueType(0); | 
|  | if (Elem >= VT.getVectorNumElements()) | 
|  | return false; | 
|  |  | 
|  | auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1)); | 
|  | if (!Load || !Load->hasOneUse()) | 
|  | return false; | 
|  | if (Load->getMemoryVT().getSizeInBits() != | 
|  | Load->getValueType(0).getSizeInBits()) | 
|  | return false; | 
|  |  | 
|  | SDValue Base, Disp, Index; | 
|  | if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) || | 
|  | Index.getValueType() != VT.changeVectorElementTypeToInteger()) | 
|  | return false; | 
|  |  | 
|  | SDLoc DL(Load); | 
|  | SDValue Ops[] = { | 
|  | N->getOperand(0), Base, Disp, Index, | 
|  | CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain() | 
|  | }; | 
|  | SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops); | 
|  | ReplaceUses(SDValue(Load, 1), SDValue(Res, 1)); | 
|  | ReplaceNode(N, Res); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) { | 
|  | SDValue Value = Store->getValue(); | 
|  | if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT) | 
|  | return false; | 
|  | if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits()) | 
|  | return false; | 
|  |  | 
|  | SDValue ElemV = Value.getOperand(1); | 
|  | auto *ElemN = dyn_cast<ConstantSDNode>(ElemV); | 
|  | if (!ElemN) | 
|  | return false; | 
|  |  | 
|  | SDValue Vec = Value.getOperand(0); | 
|  | EVT VT = Vec.getValueType(); | 
|  | unsigned Elem = ElemN->getZExtValue(); | 
|  | if (Elem >= VT.getVectorNumElements()) | 
|  | return false; | 
|  |  | 
|  | SDValue Base, Disp, Index; | 
|  | if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) || | 
|  | Index.getValueType() != VT.changeVectorElementTypeToInteger()) | 
|  | return false; | 
|  |  | 
|  | SDLoc DL(Store); | 
|  | SDValue Ops[] = { | 
|  | Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32), | 
|  | Store->getChain() | 
|  | }; | 
|  | ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check whether or not the chain ending in StoreNode is suitable for doing | 
|  | // the {load; op; store} to modify transformation. | 
|  | static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode, | 
|  | SDValue StoredVal, SelectionDAG *CurDAG, | 
|  | LoadSDNode *&LoadNode, | 
|  | SDValue &InputChain) { | 
|  | // Is the stored value result 0 of the operation? | 
|  | if (StoredVal.getResNo() != 0) | 
|  | return false; | 
|  |  | 
|  | // Are there other uses of the loaded value than the operation? | 
|  | if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) | 
|  | return false; | 
|  |  | 
|  | // Is the store non-extending and non-indexed? | 
|  | if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal()) | 
|  | return false; | 
|  |  | 
|  | SDValue Load = StoredVal->getOperand(0); | 
|  | // Is the stored value a non-extending and non-indexed load? | 
|  | if (!ISD::isNormalLoad(Load.getNode())) | 
|  | return false; | 
|  |  | 
|  | // Return LoadNode by reference. | 
|  | LoadNode = cast<LoadSDNode>(Load); | 
|  |  | 
|  | // Is store the only read of the loaded value? | 
|  | if (!Load.hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // Is the address of the store the same as the load? | 
|  | if (LoadNode->getBasePtr() != StoreNode->getBasePtr() || | 
|  | LoadNode->getOffset() != StoreNode->getOffset()) | 
|  | return false; | 
|  |  | 
|  | // Check if the chain is produced by the load or is a TokenFactor with | 
|  | // the load output chain as an operand. Return InputChain by reference. | 
|  | SDValue Chain = StoreNode->getChain(); | 
|  |  | 
|  | bool ChainCheck = false; | 
|  | if (Chain == Load.getValue(1)) { | 
|  | ChainCheck = true; | 
|  | InputChain = LoadNode->getChain(); | 
|  | } else if (Chain.getOpcode() == ISD::TokenFactor) { | 
|  | SmallVector<SDValue, 4> ChainOps; | 
|  | for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) { | 
|  | SDValue Op = Chain.getOperand(i); | 
|  | if (Op == Load.getValue(1)) { | 
|  | ChainCheck = true; | 
|  | // Drop Load, but keep its chain. No cycle check necessary. | 
|  | ChainOps.push_back(Load.getOperand(0)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Make sure using Op as part of the chain would not cause a cycle here. | 
|  | // In theory, we could check whether the chain node is a predecessor of | 
|  | // the load. But that can be very expensive. Instead visit the uses and | 
|  | // make sure they all have smaller node id than the load. | 
|  | int LoadId = LoadNode->getNodeId(); | 
|  | for (SDNode::use_iterator UI = Op.getNode()->use_begin(), | 
|  | UE = UI->use_end(); UI != UE; ++UI) { | 
|  | if (UI.getUse().getResNo() != 0) | 
|  | continue; | 
|  | if (UI->getNodeId() > LoadId) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ChainOps.push_back(Op); | 
|  | } | 
|  |  | 
|  | if (ChainCheck) | 
|  | // Make a new TokenFactor with all the other input chains except | 
|  | // for the load. | 
|  | InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), | 
|  | MVT::Other, ChainOps); | 
|  | } | 
|  | if (!ChainCheck) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Change a chain of {load; op; store} of the same value into a simple op | 
|  | // through memory of that value, if the uses of the modified value and its | 
|  | // address are suitable. | 
|  | // | 
|  | // The tablegen pattern memory operand pattern is currently not able to match | 
|  | // the case where the CC on the original operation are used. | 
|  | // | 
|  | // See the equivalent routine in X86ISelDAGToDAG for further comments. | 
|  | bool SystemZDAGToDAGISel::tryFoldLoadStoreIntoMemOperand(SDNode *Node) { | 
|  | StoreSDNode *StoreNode = cast<StoreSDNode>(Node); | 
|  | SDValue StoredVal = StoreNode->getOperand(1); | 
|  | unsigned Opc = StoredVal->getOpcode(); | 
|  | SDLoc DL(StoreNode); | 
|  |  | 
|  | // Before we try to select anything, make sure this is memory operand size | 
|  | // and opcode we can handle. Note that this must match the code below that | 
|  | // actually lowers the opcodes. | 
|  | EVT MemVT = StoreNode->getMemoryVT(); | 
|  | unsigned NewOpc = 0; | 
|  | bool NegateOperand = false; | 
|  | switch (Opc) { | 
|  | default: | 
|  | return false; | 
|  | case SystemZISD::SSUBO: | 
|  | NegateOperand = true; | 
|  | /* fall through */ | 
|  | case SystemZISD::SADDO: | 
|  | if (MemVT == MVT::i32) | 
|  | NewOpc = SystemZ::ASI; | 
|  | else if (MemVT == MVT::i64) | 
|  | NewOpc = SystemZ::AGSI; | 
|  | else | 
|  | return false; | 
|  | break; | 
|  | case SystemZISD::USUBO: | 
|  | NegateOperand = true; | 
|  | /* fall through */ | 
|  | case SystemZISD::UADDO: | 
|  | if (MemVT == MVT::i32) | 
|  | NewOpc = SystemZ::ALSI; | 
|  | else if (MemVT == MVT::i64) | 
|  | NewOpc = SystemZ::ALGSI; | 
|  | else | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | LoadSDNode *LoadNode = nullptr; | 
|  | SDValue InputChain; | 
|  | if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadNode, | 
|  | InputChain)) | 
|  | return false; | 
|  |  | 
|  | SDValue Operand = StoredVal.getOperand(1); | 
|  | auto *OperandC = dyn_cast<ConstantSDNode>(Operand); | 
|  | if (!OperandC) | 
|  | return false; | 
|  | auto OperandV = OperandC->getAPIntValue(); | 
|  | if (NegateOperand) | 
|  | OperandV = -OperandV; | 
|  | if (OperandV.getMinSignedBits() > 8) | 
|  | return false; | 
|  | Operand = CurDAG->getTargetConstant(OperandV, DL, MemVT); | 
|  |  | 
|  | SDValue Base, Disp; | 
|  | if (!selectBDAddr20Only(StoreNode->getBasePtr(), Base, Disp)) | 
|  | return false; | 
|  |  | 
|  | SDValue Ops[] = { Base, Disp, Operand, InputChain }; | 
|  | MachineSDNode *Result = | 
|  | CurDAG->getMachineNode(NewOpc, DL, MVT::i32, MVT::Other, Ops); | 
|  |  | 
|  | MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2); | 
|  | MemOp[0] = StoreNode->getMemOperand(); | 
|  | MemOp[1] = LoadNode->getMemOperand(); | 
|  | Result->setMemRefs(MemOp, MemOp + 2); | 
|  |  | 
|  | ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1)); | 
|  | ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0)); | 
|  | CurDAG->RemoveDeadNode(Node); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store, | 
|  | LoadSDNode *Load) const { | 
|  | // Check that the two memory operands have the same size. | 
|  | if (Load->getMemoryVT() != Store->getMemoryVT()) | 
|  | return false; | 
|  |  | 
|  | // Volatility stops an access from being decomposed. | 
|  | if (Load->isVolatile() || Store->isVolatile()) | 
|  | return false; | 
|  |  | 
|  | // There's no chance of overlap if the load is invariant. | 
|  | if (Load->isInvariant() && Load->isDereferenceable()) | 
|  | return true; | 
|  |  | 
|  | // Otherwise we need to check whether there's an alias. | 
|  | const Value *V1 = Load->getMemOperand()->getValue(); | 
|  | const Value *V2 = Store->getMemOperand()->getValue(); | 
|  | if (!V1 || !V2) | 
|  | return false; | 
|  |  | 
|  | // Reject equality. | 
|  | uint64_t Size = Load->getMemoryVT().getStoreSize(); | 
|  | int64_t End1 = Load->getSrcValueOffset() + Size; | 
|  | int64_t End2 = Store->getSrcValueOffset() + Size; | 
|  | if (V1 == V2 && End1 == End2) | 
|  | return false; | 
|  |  | 
|  | return !AA->alias(MemoryLocation(V1, End1, Load->getAAInfo()), | 
|  | MemoryLocation(V2, End2, Store->getAAInfo())); | 
|  | } | 
|  |  | 
|  | bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const { | 
|  | auto *Store = cast<StoreSDNode>(N); | 
|  | auto *Load = cast<LoadSDNode>(Store->getValue()); | 
|  |  | 
|  | // Prefer not to use MVC if either address can use ... RELATIVE LONG | 
|  | // instructions. | 
|  | uint64_t Size = Load->getMemoryVT().getStoreSize(); | 
|  | if (Size > 1 && Size <= 8) { | 
|  | // Prefer LHRL, LRL and LGRL. | 
|  | if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode())) | 
|  | return false; | 
|  | // Prefer STHRL, STRL and STGRL. | 
|  | if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return canUseBlockOperation(Store, Load); | 
|  | } | 
|  |  | 
|  | bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N, | 
|  | unsigned I) const { | 
|  | auto *StoreA = cast<StoreSDNode>(N); | 
|  | auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I)); | 
|  | auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I)); | 
|  | return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB); | 
|  | } | 
|  |  | 
|  | void SystemZDAGToDAGISel::Select(SDNode *Node) { | 
|  | // If we have a custom node, we already have selected! | 
|  | if (Node->isMachineOpcode()) { | 
|  | LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n"); | 
|  | Node->setNodeId(-1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned Opcode = Node->getOpcode(); | 
|  | switch (Opcode) { | 
|  | case ISD::OR: | 
|  | if (Node->getOperand(1).getOpcode() != ISD::Constant) | 
|  | if (tryRxSBG(Node, SystemZ::ROSBG)) | 
|  | return; | 
|  | goto or_xor; | 
|  |  | 
|  | case ISD::XOR: | 
|  | if (Node->getOperand(1).getOpcode() != ISD::Constant) | 
|  | if (tryRxSBG(Node, SystemZ::RXSBG)) | 
|  | return; | 
|  | // Fall through. | 
|  | or_xor: | 
|  | // If this is a 64-bit operation in which both 32-bit halves are nonzero, | 
|  | // split the operation into two.  If both operands here happen to be | 
|  | // constant, leave this to common code to optimize. | 
|  | if (Node->getValueType(0) == MVT::i64 && | 
|  | Node->getOperand(0).getOpcode() != ISD::Constant) | 
|  | if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) { | 
|  | uint64_t Val = Op1->getZExtValue(); | 
|  | if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) { | 
|  | splitLargeImmediate(Opcode, Node, Node->getOperand(0), | 
|  | Val - uint32_t(Val), uint32_t(Val)); | 
|  | return; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::AND: | 
|  | if (Node->getOperand(1).getOpcode() != ISD::Constant) | 
|  | if (tryRxSBG(Node, SystemZ::RNSBG)) | 
|  | return; | 
|  | LLVM_FALLTHROUGH; | 
|  | case ISD::ROTL: | 
|  | case ISD::SHL: | 
|  | case ISD::SRL: | 
|  | case ISD::ZERO_EXTEND: | 
|  | if (tryRISBGZero(Node)) | 
|  | return; | 
|  | break; | 
|  |  | 
|  | case ISD::Constant: | 
|  | // If this is a 64-bit constant that is out of the range of LLILF, | 
|  | // LLIHF and LGFI, split it into two 32-bit pieces. | 
|  | if (Node->getValueType(0) == MVT::i64) { | 
|  | uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue(); | 
|  | if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) { | 
|  | splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val), | 
|  | uint32_t(Val)); | 
|  | return; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SystemZISD::SELECT_CCMASK: { | 
|  | SDValue Op0 = Node->getOperand(0); | 
|  | SDValue Op1 = Node->getOperand(1); | 
|  | // Prefer to put any load first, so that it can be matched as a | 
|  | // conditional load.  Likewise for constants in range for LOCHI. | 
|  | if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) || | 
|  | (Subtarget->hasLoadStoreOnCond2() && | 
|  | Node->getValueType(0).isInteger() && | 
|  | Op1.getOpcode() == ISD::Constant && | 
|  | isInt<16>(cast<ConstantSDNode>(Op1)->getSExtValue()) && | 
|  | !(Op0.getOpcode() == ISD::Constant && | 
|  | isInt<16>(cast<ConstantSDNode>(Op0)->getSExtValue())))) { | 
|  | SDValue CCValid = Node->getOperand(2); | 
|  | SDValue CCMask = Node->getOperand(3); | 
|  | uint64_t ConstCCValid = | 
|  | cast<ConstantSDNode>(CCValid.getNode())->getZExtValue(); | 
|  | uint64_t ConstCCMask = | 
|  | cast<ConstantSDNode>(CCMask.getNode())->getZExtValue(); | 
|  | // Invert the condition. | 
|  | CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask, SDLoc(Node), | 
|  | CCMask.getValueType()); | 
|  | SDValue Op4 = Node->getOperand(4); | 
|  | SDNode *UpdatedNode = | 
|  | CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4); | 
|  | if (UpdatedNode != Node) { | 
|  | // In case this node already exists then replace Node with it. | 
|  | ReplaceNode(Node, UpdatedNode); | 
|  | Node = UpdatedNode; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::INSERT_VECTOR_ELT: { | 
|  | EVT VT = Node->getValueType(0); | 
|  | unsigned ElemBitSize = VT.getScalarSizeInBits(); | 
|  | if (ElemBitSize == 32) { | 
|  | if (tryGather(Node, SystemZ::VGEF)) | 
|  | return; | 
|  | } else if (ElemBitSize == 64) { | 
|  | if (tryGather(Node, SystemZ::VGEG)) | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::STORE: { | 
|  | if (tryFoldLoadStoreIntoMemOperand(Node)) | 
|  | return; | 
|  | auto *Store = cast<StoreSDNode>(Node); | 
|  | unsigned ElemBitSize = Store->getValue().getValueSizeInBits(); | 
|  | if (ElemBitSize == 32) { | 
|  | if (tryScatter(Store, SystemZ::VSCEF)) | 
|  | return; | 
|  | } else if (ElemBitSize == 64) { | 
|  | if (tryScatter(Store, SystemZ::VSCEG)) | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | SelectCode(Node); | 
|  | } | 
|  |  | 
|  | bool SystemZDAGToDAGISel:: | 
|  | SelectInlineAsmMemoryOperand(const SDValue &Op, | 
|  | unsigned ConstraintID, | 
|  | std::vector<SDValue> &OutOps) { | 
|  | SystemZAddressingMode::AddrForm Form; | 
|  | SystemZAddressingMode::DispRange DispRange; | 
|  | SDValue Base, Disp, Index; | 
|  |  | 
|  | switch(ConstraintID) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected asm memory constraint"); | 
|  | case InlineAsm::Constraint_i: | 
|  | case InlineAsm::Constraint_Q: | 
|  | // Accept an address with a short displacement, but no index. | 
|  | Form = SystemZAddressingMode::FormBD; | 
|  | DispRange = SystemZAddressingMode::Disp12Only; | 
|  | break; | 
|  | case InlineAsm::Constraint_R: | 
|  | // Accept an address with a short displacement and an index. | 
|  | Form = SystemZAddressingMode::FormBDXNormal; | 
|  | DispRange = SystemZAddressingMode::Disp12Only; | 
|  | break; | 
|  | case InlineAsm::Constraint_S: | 
|  | // Accept an address with a long displacement, but no index. | 
|  | Form = SystemZAddressingMode::FormBD; | 
|  | DispRange = SystemZAddressingMode::Disp20Only; | 
|  | break; | 
|  | case InlineAsm::Constraint_T: | 
|  | case InlineAsm::Constraint_m: | 
|  | case InlineAsm::Constraint_o: | 
|  | // Accept an address with a long displacement and an index. | 
|  | // m works the same as T, as this is the most general case. | 
|  | // We don't really have any special handling of "offsettable" | 
|  | // memory addresses, so just treat o the same as m. | 
|  | Form = SystemZAddressingMode::FormBDXNormal; | 
|  | DispRange = SystemZAddressingMode::Disp20Only; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) { | 
|  | const TargetRegisterClass *TRC = | 
|  | Subtarget->getRegisterInfo()->getPointerRegClass(*MF); | 
|  | SDLoc DL(Base); | 
|  | SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32); | 
|  |  | 
|  | // Make sure that the base address doesn't go into %r0. | 
|  | // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything. | 
|  | if (Base.getOpcode() != ISD::TargetFrameIndex && | 
|  | Base.getOpcode() != ISD::Register) { | 
|  | Base = | 
|  | SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, | 
|  | DL, Base.getValueType(), | 
|  | Base, RC), 0); | 
|  | } | 
|  |  | 
|  | // Make sure that the index register isn't assigned to %r0 either. | 
|  | if (Index.getOpcode() != ISD::Register) { | 
|  | Index = | 
|  | SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, | 
|  | DL, Index.getValueType(), | 
|  | Index, RC), 0); | 
|  | } | 
|  |  | 
|  | OutOps.push_back(Base); | 
|  | OutOps.push_back(Disp); | 
|  | OutOps.push_back(Index); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // IsProfitableToFold - Returns true if is profitable to fold the specific | 
|  | // operand node N of U during instruction selection that starts at Root. | 
|  | bool | 
|  | SystemZDAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, | 
|  | SDNode *Root) const { | 
|  | // We want to avoid folding a LOAD into an ICMP node if as a result | 
|  | // we would be forced to spill the condition code into a GPR. | 
|  | if (N.getOpcode() == ISD::LOAD && U->getOpcode() == SystemZISD::ICMP) { | 
|  | if (!N.hasOneUse() || !U->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // The user of the CC value will usually be a CopyToReg into the | 
|  | // physical CC register, which in turn is glued and chained to the | 
|  | // actual instruction that uses the CC value.  Bail out if we have | 
|  | // anything else than that. | 
|  | SDNode *CCUser = *U->use_begin(); | 
|  | SDNode *CCRegUser = nullptr; | 
|  | if (CCUser->getOpcode() == ISD::CopyToReg || | 
|  | cast<RegisterSDNode>(CCUser->getOperand(1))->getReg() == SystemZ::CC) { | 
|  | for (auto *U : CCUser->uses()) { | 
|  | if (CCRegUser == nullptr) | 
|  | CCRegUser = U; | 
|  | else if (CCRegUser != U) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (CCRegUser == nullptr) | 
|  | return false; | 
|  |  | 
|  | // If the actual instruction is a branch, the only thing that remains to be | 
|  | // checked is whether the CCUser chain is a predecessor of the load. | 
|  | if (CCRegUser->isMachineOpcode() && | 
|  | CCRegUser->getMachineOpcode() == SystemZ::BRC) | 
|  | return !N->isPredecessorOf(CCUser->getOperand(0).getNode()); | 
|  |  | 
|  | // Otherwise, the instruction may have multiple operands, and we need to | 
|  | // verify that none of them are a predecessor of the load.  This is exactly | 
|  | // the same check that would be done by common code if the CC setter were | 
|  | // glued to the CC user, so simply invoke that check here. | 
|  | if (!IsLegalToFold(N, U, CCRegUser, OptLevel, false)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Represents a sequence for extracting a 0/1 value from an IPM result: | 
|  | // (((X ^ XORValue) + AddValue) >> Bit) | 
|  | struct IPMConversion { | 
|  | IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) | 
|  | : XORValue(xorValue), AddValue(addValue), Bit(bit) {} | 
|  |  | 
|  | int64_t XORValue; | 
|  | int64_t AddValue; | 
|  | unsigned Bit; | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | // Return a sequence for getting a 1 from an IPM result when CC has a | 
|  | // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. | 
|  | // The handling of CC values outside CCValid doesn't matter. | 
|  | static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { | 
|  | // Deal with cases where the result can be taken directly from a bit | 
|  | // of the IPM result. | 
|  | if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) | 
|  | return IPMConversion(0, 0, SystemZ::IPM_CC); | 
|  | if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) | 
|  | return IPMConversion(0, 0, SystemZ::IPM_CC + 1); | 
|  |  | 
|  | // Deal with cases where we can add a value to force the sign bit | 
|  | // to contain the right value.  Putting the bit in 31 means we can | 
|  | // use SRL rather than RISBG(L), and also makes it easier to get a | 
|  | // 0/-1 value, so it has priority over the other tests below. | 
|  | // | 
|  | // These sequences rely on the fact that the upper two bits of the | 
|  | // IPM result are zero. | 
|  | uint64_t TopBit = uint64_t(1) << 31; | 
|  | if (CCMask == (CCValid & SystemZ::CCMASK_0)) | 
|  | return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); | 
|  | if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) | 
|  | return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); | 
|  | if (CCMask == (CCValid & (SystemZ::CCMASK_0 | 
|  | | SystemZ::CCMASK_1 | 
|  | | SystemZ::CCMASK_2))) | 
|  | return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); | 
|  | if (CCMask == (CCValid & SystemZ::CCMASK_3)) | 
|  | return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); | 
|  | if (CCMask == (CCValid & (SystemZ::CCMASK_1 | 
|  | | SystemZ::CCMASK_2 | 
|  | | SystemZ::CCMASK_3))) | 
|  | return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); | 
|  |  | 
|  | // Next try inverting the value and testing a bit.  0/1 could be | 
|  | // handled this way too, but we dealt with that case above. | 
|  | if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) | 
|  | return IPMConversion(-1, 0, SystemZ::IPM_CC); | 
|  |  | 
|  | // Handle cases where adding a value forces a non-sign bit to contain | 
|  | // the right value. | 
|  | if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) | 
|  | return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); | 
|  | if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) | 
|  | return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); | 
|  |  | 
|  | // The remaining cases are 1, 2, 0/1/3 and 0/2/3.  All these are | 
|  | // can be done by inverting the low CC bit and applying one of the | 
|  | // sign-based extractions above. | 
|  | if (CCMask == (CCValid & SystemZ::CCMASK_1)) | 
|  | return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); | 
|  | if (CCMask == (CCValid & SystemZ::CCMASK_2)) | 
|  | return IPMConversion(1 << SystemZ::IPM_CC, | 
|  | TopBit - (3 << SystemZ::IPM_CC), 31); | 
|  | if (CCMask == (CCValid & (SystemZ::CCMASK_0 | 
|  | | SystemZ::CCMASK_1 | 
|  | | SystemZ::CCMASK_3))) | 
|  | return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); | 
|  | if (CCMask == (CCValid & (SystemZ::CCMASK_0 | 
|  | | SystemZ::CCMASK_2 | 
|  | | SystemZ::CCMASK_3))) | 
|  | return IPMConversion(1 << SystemZ::IPM_CC, | 
|  | TopBit - (1 << SystemZ::IPM_CC), 31); | 
|  |  | 
|  | llvm_unreachable("Unexpected CC combination"); | 
|  | } | 
|  |  | 
|  | SDValue SystemZDAGToDAGISel::expandSelectBoolean(SDNode *Node) { | 
|  | auto *TrueOp = dyn_cast<ConstantSDNode>(Node->getOperand(0)); | 
|  | auto *FalseOp = dyn_cast<ConstantSDNode>(Node->getOperand(1)); | 
|  | if (!TrueOp || !FalseOp) | 
|  | return SDValue(); | 
|  | if (FalseOp->getZExtValue() != 0) | 
|  | return SDValue(); | 
|  | if (TrueOp->getSExtValue() != 1 && TrueOp->getSExtValue() != -1) | 
|  | return SDValue(); | 
|  |  | 
|  | auto *CCValidOp = dyn_cast<ConstantSDNode>(Node->getOperand(2)); | 
|  | auto *CCMaskOp = dyn_cast<ConstantSDNode>(Node->getOperand(3)); | 
|  | if (!CCValidOp || !CCMaskOp) | 
|  | return SDValue(); | 
|  | int CCValid = CCValidOp->getZExtValue(); | 
|  | int CCMask = CCMaskOp->getZExtValue(); | 
|  |  | 
|  | SDLoc DL(Node); | 
|  | SDValue CCReg = Node->getOperand(4); | 
|  | IPMConversion IPM = getIPMConversion(CCValid, CCMask); | 
|  | SDValue Result = CurDAG->getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); | 
|  |  | 
|  | if (IPM.XORValue) | 
|  | Result = CurDAG->getNode(ISD::XOR, DL, MVT::i32, Result, | 
|  | CurDAG->getConstant(IPM.XORValue, DL, MVT::i32)); | 
|  |  | 
|  | if (IPM.AddValue) | 
|  | Result = CurDAG->getNode(ISD::ADD, DL, MVT::i32, Result, | 
|  | CurDAG->getConstant(IPM.AddValue, DL, MVT::i32)); | 
|  |  | 
|  | EVT VT = Node->getValueType(0); | 
|  | if (VT == MVT::i32 && IPM.Bit == 31) { | 
|  | unsigned ShiftOp = TrueOp->getSExtValue() == 1 ? ISD::SRL : ISD::SRA; | 
|  | Result = CurDAG->getNode(ShiftOp, DL, MVT::i32, Result, | 
|  | CurDAG->getConstant(IPM.Bit, DL, MVT::i32)); | 
|  | } else { | 
|  | if (VT != MVT::i32) | 
|  | Result = CurDAG->getNode(ISD::ANY_EXTEND, DL, VT, Result); | 
|  |  | 
|  | if (TrueOp->getSExtValue() == 1) { | 
|  | // The SHR/AND sequence should get optimized to an RISBG. | 
|  | Result = CurDAG->getNode(ISD::SRL, DL, VT, Result, | 
|  | CurDAG->getConstant(IPM.Bit, DL, MVT::i32)); | 
|  | Result = CurDAG->getNode(ISD::AND, DL, VT, Result, | 
|  | CurDAG->getConstant(1, DL, VT)); | 
|  | } else { | 
|  | // Sign-extend from IPM.Bit using a pair of shifts. | 
|  | int ShlAmt = VT.getSizeInBits() - 1 - IPM.Bit; | 
|  | int SraAmt = VT.getSizeInBits() - 1; | 
|  | Result = CurDAG->getNode(ISD::SHL, DL, VT, Result, | 
|  | CurDAG->getConstant(ShlAmt, DL, MVT::i32)); | 
|  | Result = CurDAG->getNode(ISD::SRA, DL, VT, Result, | 
|  | CurDAG->getConstant(SraAmt, DL, MVT::i32)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void SystemZDAGToDAGISel::PreprocessISelDAG() { | 
|  | // If we have conditional immediate loads, we always prefer | 
|  | // using those over an IPM sequence. | 
|  | if (Subtarget->hasLoadStoreOnCond2()) | 
|  | return; | 
|  |  | 
|  | bool MadeChange = false; | 
|  |  | 
|  | for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), | 
|  | E = CurDAG->allnodes_end(); | 
|  | I != E;) { | 
|  | SDNode *N = &*I++; | 
|  | if (N->use_empty()) | 
|  | continue; | 
|  |  | 
|  | SDValue Res; | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case SystemZISD::SELECT_CCMASK: | 
|  | Res = expandSelectBoolean(N); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (Res) { | 
|  | LLVM_DEBUG(dbgs() << "SystemZ DAG preprocessing replacing:\nOld:    "); | 
|  | LLVM_DEBUG(N->dump(CurDAG)); | 
|  | LLVM_DEBUG(dbgs() << "\nNew: "); | 
|  | LLVM_DEBUG(Res.getNode()->dump(CurDAG)); | 
|  | LLVM_DEBUG(dbgs() << "\n"); | 
|  |  | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); | 
|  | MadeChange = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MadeChange) | 
|  | CurDAG->RemoveDeadNodes(); | 
|  | } |