|  | //===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the PassManagerBuilder class, which is used to set up a | 
|  | // "standard" optimization sequence suitable for languages like C and C++. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/IPO/PassManagerBuilder.h" | 
|  | #include "llvm-c/Transforms/PassManagerBuilder.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/BasicAliasAnalysis.h" | 
|  | #include "llvm/Analysis/CFLAndersAliasAnalysis.h" | 
|  | #include "llvm/Analysis/CFLSteensAliasAnalysis.h" | 
|  | #include "llvm/Analysis/GlobalsModRef.h" | 
|  | #include "llvm/Analysis/InlineCost.h" | 
|  | #include "llvm/Analysis/Passes.h" | 
|  | #include "llvm/Analysis/ScopedNoAliasAA.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/TypeBasedAliasAnalysis.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/LegacyPassManager.h" | 
|  | #include "llvm/IR/Verifier.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/ManagedStatic.h" | 
|  | #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h" | 
|  | #include "llvm/Transforms/IPO.h" | 
|  | #include "llvm/Transforms/IPO/ForceFunctionAttrs.h" | 
|  | #include "llvm/Transforms/IPO/FunctionAttrs.h" | 
|  | #include "llvm/Transforms/IPO/InferFunctionAttrs.h" | 
|  | #include "llvm/Transforms/InstCombine/InstCombine.h" | 
|  | #include "llvm/Transforms/Instrumentation.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Scalar/GVN.h" | 
|  | #include "llvm/Transforms/Scalar/InstSimplifyPass.h" | 
|  | #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" | 
|  | #include "llvm/Transforms/Utils.h" | 
|  | #include "llvm/Transforms/Vectorize.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> | 
|  | RunPartialInlining("enable-partial-inlining", cl::init(false), cl::Hidden, | 
|  | cl::ZeroOrMore, cl::desc("Run Partial inlinining pass")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | RunLoopVectorization("vectorize-loops", cl::Hidden, | 
|  | cl::desc("Run the Loop vectorization passes")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | RunSLPVectorization("vectorize-slp", cl::Hidden, | 
|  | cl::desc("Run the SLP vectorization passes")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | UseGVNAfterVectorization("use-gvn-after-vectorization", | 
|  | cl::init(false), cl::Hidden, | 
|  | cl::desc("Run GVN instead of Early CSE after vectorization passes")); | 
|  |  | 
|  | static cl::opt<bool> ExtraVectorizerPasses( | 
|  | "extra-vectorizer-passes", cl::init(false), cl::Hidden, | 
|  | cl::desc("Run cleanup optimization passes after vectorization.")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | RunLoopRerolling("reroll-loops", cl::Hidden, | 
|  | cl::desc("Run the loop rerolling pass")); | 
|  |  | 
|  | static cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden, | 
|  | cl::desc("Run the NewGVN pass")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | RunSLPAfterLoopVectorization("run-slp-after-loop-vectorization", | 
|  | cl::init(true), cl::Hidden, | 
|  | cl::desc("Run the SLP vectorizer (and BB vectorizer) after the Loop " | 
|  | "vectorizer instead of before")); | 
|  |  | 
|  | // Experimental option to use CFL-AA | 
|  | enum class CFLAAType { None, Steensgaard, Andersen, Both }; | 
|  | static cl::opt<CFLAAType> | 
|  | UseCFLAA("use-cfl-aa", cl::init(CFLAAType::None), cl::Hidden, | 
|  | cl::desc("Enable the new, experimental CFL alias analysis"), | 
|  | cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"), | 
|  | clEnumValN(CFLAAType::Steensgaard, "steens", | 
|  | "Enable unification-based CFL-AA"), | 
|  | clEnumValN(CFLAAType::Andersen, "anders", | 
|  | "Enable inclusion-based CFL-AA"), | 
|  | clEnumValN(CFLAAType::Both, "both", | 
|  | "Enable both variants of CFL-AA"))); | 
|  |  | 
|  | static cl::opt<bool> EnableLoopInterchange( | 
|  | "enable-loopinterchange", cl::init(false), cl::Hidden, | 
|  | cl::desc("Enable the new, experimental LoopInterchange Pass")); | 
|  |  | 
|  | static cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam", | 
|  | cl::init(false), cl::Hidden, | 
|  | cl::desc("Enable Unroll And Jam Pass")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden, | 
|  | cl::desc("Enable preparation for ThinLTO.")); | 
|  |  | 
|  | static cl::opt<bool> RunPGOInstrGen( | 
|  | "profile-generate", cl::init(false), cl::Hidden, | 
|  | cl::desc("Enable PGO instrumentation.")); | 
|  |  | 
|  | static cl::opt<std::string> | 
|  | PGOOutputFile("profile-generate-file", cl::init(""), cl::Hidden, | 
|  | cl::desc("Specify the path of profile data file.")); | 
|  |  | 
|  | static cl::opt<std::string> RunPGOInstrUse( | 
|  | "profile-use", cl::init(""), cl::Hidden, cl::value_desc("filename"), | 
|  | cl::desc("Enable use phase of PGO instrumentation and specify the path " | 
|  | "of profile data file")); | 
|  |  | 
|  | static cl::opt<bool> UseLoopVersioningLICM( | 
|  | "enable-loop-versioning-licm", cl::init(false), cl::Hidden, | 
|  | cl::desc("Enable the experimental Loop Versioning LICM pass")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden, | 
|  | cl::desc("Disable pre-instrumentation inliner")); | 
|  |  | 
|  | static cl::opt<int> PreInlineThreshold( | 
|  | "preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore, | 
|  | cl::desc("Control the amount of inlining in pre-instrumentation inliner " | 
|  | "(default = 75)")); | 
|  |  | 
|  | static cl::opt<bool> EnableEarlyCSEMemSSA( | 
|  | "enable-earlycse-memssa", cl::init(true), cl::Hidden, | 
|  | cl::desc("Enable the EarlyCSE w/ MemorySSA pass (default = on)")); | 
|  |  | 
|  | static cl::opt<bool> EnableGVNHoist( | 
|  | "enable-gvn-hoist", cl::init(false), cl::Hidden, | 
|  | cl::desc("Enable the GVN hoisting pass (default = off)")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false), | 
|  | cl::Hidden, | 
|  | cl::desc("Disable shrink-wrap library calls")); | 
|  |  | 
|  | static cl::opt<bool> EnableSimpleLoopUnswitch( | 
|  | "enable-simple-loop-unswitch", cl::init(false), cl::Hidden, | 
|  | cl::desc("Enable the simple loop unswitch pass. Also enables independent " | 
|  | "cleanup passes integrated into the loop pass manager pipeline.")); | 
|  |  | 
|  | static cl::opt<bool> EnableGVNSink( | 
|  | "enable-gvn-sink", cl::init(false), cl::Hidden, | 
|  | cl::desc("Enable the GVN sinking pass (default = off)")); | 
|  |  | 
|  | PassManagerBuilder::PassManagerBuilder() { | 
|  | OptLevel = 2; | 
|  | SizeLevel = 0; | 
|  | LibraryInfo = nullptr; | 
|  | Inliner = nullptr; | 
|  | DisableUnrollLoops = false; | 
|  | SLPVectorize = RunSLPVectorization; | 
|  | LoopVectorize = RunLoopVectorization; | 
|  | RerollLoops = RunLoopRerolling; | 
|  | NewGVN = RunNewGVN; | 
|  | DisableGVNLoadPRE = false; | 
|  | VerifyInput = false; | 
|  | VerifyOutput = false; | 
|  | MergeFunctions = false; | 
|  | PrepareForLTO = false; | 
|  | EnablePGOInstrGen = RunPGOInstrGen; | 
|  | PGOInstrGen = PGOOutputFile; | 
|  | PGOInstrUse = RunPGOInstrUse; | 
|  | PrepareForThinLTO = EnablePrepareForThinLTO; | 
|  | PerformThinLTO = false; | 
|  | DivergentTarget = false; | 
|  | } | 
|  |  | 
|  | PassManagerBuilder::~PassManagerBuilder() { | 
|  | delete LibraryInfo; | 
|  | delete Inliner; | 
|  | } | 
|  |  | 
|  | /// Set of global extensions, automatically added as part of the standard set. | 
|  | static ManagedStatic<SmallVector<std::pair<PassManagerBuilder::ExtensionPointTy, | 
|  | PassManagerBuilder::ExtensionFn>, 8> > GlobalExtensions; | 
|  |  | 
|  | /// Check if GlobalExtensions is constructed and not empty. | 
|  | /// Since GlobalExtensions is a managed static, calling 'empty()' will trigger | 
|  | /// the construction of the object. | 
|  | static bool GlobalExtensionsNotEmpty() { | 
|  | return GlobalExtensions.isConstructed() && !GlobalExtensions->empty(); | 
|  | } | 
|  |  | 
|  | void PassManagerBuilder::addGlobalExtension( | 
|  | PassManagerBuilder::ExtensionPointTy Ty, | 
|  | PassManagerBuilder::ExtensionFn Fn) { | 
|  | GlobalExtensions->push_back(std::make_pair(Ty, std::move(Fn))); | 
|  | } | 
|  |  | 
|  | void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) { | 
|  | Extensions.push_back(std::make_pair(Ty, std::move(Fn))); | 
|  | } | 
|  |  | 
|  | void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy, | 
|  | legacy::PassManagerBase &PM) const { | 
|  | if (GlobalExtensionsNotEmpty()) { | 
|  | for (auto &Ext : *GlobalExtensions) { | 
|  | if (Ext.first == ETy) | 
|  | Ext.second(*this, PM); | 
|  | } | 
|  | } | 
|  | for (unsigned i = 0, e = Extensions.size(); i != e; ++i) | 
|  | if (Extensions[i].first == ETy) | 
|  | Extensions[i].second(*this, PM); | 
|  | } | 
|  |  | 
|  | void PassManagerBuilder::addInitialAliasAnalysisPasses( | 
|  | legacy::PassManagerBase &PM) const { | 
|  | switch (UseCFLAA) { | 
|  | case CFLAAType::Steensgaard: | 
|  | PM.add(createCFLSteensAAWrapperPass()); | 
|  | break; | 
|  | case CFLAAType::Andersen: | 
|  | PM.add(createCFLAndersAAWrapperPass()); | 
|  | break; | 
|  | case CFLAAType::Both: | 
|  | PM.add(createCFLSteensAAWrapperPass()); | 
|  | PM.add(createCFLAndersAAWrapperPass()); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that | 
|  | // BasicAliasAnalysis wins if they disagree. This is intended to help | 
|  | // support "obvious" type-punning idioms. | 
|  | PM.add(createTypeBasedAAWrapperPass()); | 
|  | PM.add(createScopedNoAliasAAWrapperPass()); | 
|  | } | 
|  |  | 
|  | void PassManagerBuilder::addInstructionCombiningPass( | 
|  | legacy::PassManagerBase &PM) const { | 
|  | bool ExpensiveCombines = OptLevel > 2; | 
|  | PM.add(createInstructionCombiningPass(ExpensiveCombines)); | 
|  | } | 
|  |  | 
|  | void PassManagerBuilder::populateFunctionPassManager( | 
|  | legacy::FunctionPassManager &FPM) { | 
|  | addExtensionsToPM(EP_EarlyAsPossible, FPM); | 
|  | FPM.add(createEntryExitInstrumenterPass()); | 
|  |  | 
|  | // Add LibraryInfo if we have some. | 
|  | if (LibraryInfo) | 
|  | FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); | 
|  |  | 
|  | if (OptLevel == 0) return; | 
|  |  | 
|  | addInitialAliasAnalysisPasses(FPM); | 
|  |  | 
|  | FPM.add(createCFGSimplificationPass()); | 
|  | FPM.add(createSROAPass()); | 
|  | FPM.add(createEarlyCSEPass()); | 
|  | FPM.add(createLowerExpectIntrinsicPass()); | 
|  | } | 
|  |  | 
|  | // Do PGO instrumentation generation or use pass as the option specified. | 
|  | void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM) { | 
|  | if (!EnablePGOInstrGen && PGOInstrUse.empty() && PGOSampleUse.empty()) | 
|  | return; | 
|  | // Perform the preinline and cleanup passes for O1 and above. | 
|  | // And avoid doing them if optimizing for size. | 
|  | if (OptLevel > 0 && SizeLevel == 0 && !DisablePreInliner && | 
|  | PGOSampleUse.empty()) { | 
|  | // Create preinline pass. We construct an InlineParams object and specify | 
|  | // the threshold here to avoid the command line options of the regular | 
|  | // inliner to influence pre-inlining. The only fields of InlineParams we | 
|  | // care about are DefaultThreshold and HintThreshold. | 
|  | InlineParams IP; | 
|  | IP.DefaultThreshold = PreInlineThreshold; | 
|  | // FIXME: The hint threshold has the same value used by the regular inliner. | 
|  | // This should probably be lowered after performance testing. | 
|  | IP.HintThreshold = 325; | 
|  |  | 
|  | MPM.add(createFunctionInliningPass(IP)); | 
|  | MPM.add(createSROAPass()); | 
|  | MPM.add(createEarlyCSEPass());             // Catch trivial redundancies | 
|  | MPM.add(createCFGSimplificationPass());    // Merge & remove BBs | 
|  | MPM.add(createInstructionCombiningPass()); // Combine silly seq's | 
|  | addExtensionsToPM(EP_Peephole, MPM); | 
|  | } | 
|  | if (EnablePGOInstrGen) { | 
|  | MPM.add(createPGOInstrumentationGenLegacyPass()); | 
|  | // Add the profile lowering pass. | 
|  | InstrProfOptions Options; | 
|  | if (!PGOInstrGen.empty()) | 
|  | Options.InstrProfileOutput = PGOInstrGen; | 
|  | Options.DoCounterPromotion = true; | 
|  | MPM.add(createLoopRotatePass()); | 
|  | MPM.add(createInstrProfilingLegacyPass(Options)); | 
|  | } | 
|  | if (!PGOInstrUse.empty()) | 
|  | MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse)); | 
|  | // Indirect call promotion that promotes intra-module targets only. | 
|  | // For ThinLTO this is done earlier due to interactions with globalopt | 
|  | // for imported functions. We don't run this at -O0. | 
|  | if (OptLevel > 0) | 
|  | MPM.add( | 
|  | createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty())); | 
|  | } | 
|  | void PassManagerBuilder::addFunctionSimplificationPasses( | 
|  | legacy::PassManagerBase &MPM) { | 
|  | // Start of function pass. | 
|  | // Break up aggregate allocas, using SSAUpdater. | 
|  | MPM.add(createSROAPass()); | 
|  | MPM.add(createEarlyCSEPass(EnableEarlyCSEMemSSA)); // Catch trivial redundancies | 
|  | if (EnableGVNHoist) | 
|  | MPM.add(createGVNHoistPass()); | 
|  | if (EnableGVNSink) { | 
|  | MPM.add(createGVNSinkPass()); | 
|  | MPM.add(createCFGSimplificationPass()); | 
|  | } | 
|  |  | 
|  | // Speculative execution if the target has divergent branches; otherwise nop. | 
|  | MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass()); | 
|  | MPM.add(createJumpThreadingPass());         // Thread jumps. | 
|  | MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals | 
|  | MPM.add(createCFGSimplificationPass());     // Merge & remove BBs | 
|  | // Combine silly seq's | 
|  | if (OptLevel > 2) | 
|  | MPM.add(createAggressiveInstCombinerPass()); | 
|  | addInstructionCombiningPass(MPM); | 
|  | if (SizeLevel == 0 && !DisableLibCallsShrinkWrap) | 
|  | MPM.add(createLibCallsShrinkWrapPass()); | 
|  | addExtensionsToPM(EP_Peephole, MPM); | 
|  |  | 
|  | // Optimize memory intrinsic calls based on the profiled size information. | 
|  | if (SizeLevel == 0) | 
|  | MPM.add(createPGOMemOPSizeOptLegacyPass()); | 
|  |  | 
|  | MPM.add(createTailCallEliminationPass()); // Eliminate tail calls | 
|  | MPM.add(createCFGSimplificationPass());     // Merge & remove BBs | 
|  | MPM.add(createReassociatePass());           // Reassociate expressions | 
|  |  | 
|  | // Begin the loop pass pipeline. | 
|  | if (EnableSimpleLoopUnswitch) { | 
|  | // The simple loop unswitch pass relies on separate cleanup passes. Schedule | 
|  | // them first so when we re-process a loop they run before other loop | 
|  | // passes. | 
|  | MPM.add(createLoopInstSimplifyPass()); | 
|  | MPM.add(createLoopSimplifyCFGPass()); | 
|  | } | 
|  | // Rotate Loop - disable header duplication at -Oz | 
|  | MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); | 
|  | MPM.add(createLICMPass());                  // Hoist loop invariants | 
|  | if (EnableSimpleLoopUnswitch) | 
|  | MPM.add(createSimpleLoopUnswitchLegacyPass()); | 
|  | else | 
|  | MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); | 
|  | // FIXME: We break the loop pass pipeline here in order to do full | 
|  | // simplify-cfg. Eventually loop-simplifycfg should be enhanced to replace the | 
|  | // need for this. | 
|  | MPM.add(createCFGSimplificationPass()); | 
|  | addInstructionCombiningPass(MPM); | 
|  | // We resume loop passes creating a second loop pipeline here. | 
|  | MPM.add(createIndVarSimplifyPass());        // Canonicalize indvars | 
|  | MPM.add(createLoopIdiomPass());             // Recognize idioms like memset. | 
|  | addExtensionsToPM(EP_LateLoopOptimizations, MPM); | 
|  | MPM.add(createLoopDeletionPass());          // Delete dead loops | 
|  |  | 
|  | if (EnableLoopInterchange) { | 
|  | // FIXME: These are function passes and break the loop pass pipeline. | 
|  | MPM.add(createLoopInterchangePass()); // Interchange loops | 
|  | MPM.add(createCFGSimplificationPass()); | 
|  | } | 
|  | if (!DisableUnrollLoops) | 
|  | MPM.add(createSimpleLoopUnrollPass(OptLevel));    // Unroll small loops | 
|  | addExtensionsToPM(EP_LoopOptimizerEnd, MPM); | 
|  | // This ends the loop pass pipelines. | 
|  |  | 
|  | if (OptLevel > 1) { | 
|  | MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds | 
|  | MPM.add(NewGVN ? createNewGVNPass() | 
|  | : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies | 
|  | } | 
|  | MPM.add(createMemCpyOptPass());             // Remove memcpy / form memset | 
|  | MPM.add(createSCCPPass());                  // Constant prop with SCCP | 
|  |  | 
|  | // Delete dead bit computations (instcombine runs after to fold away the dead | 
|  | // computations, and then ADCE will run later to exploit any new DCE | 
|  | // opportunities that creates). | 
|  | MPM.add(createBitTrackingDCEPass());        // Delete dead bit computations | 
|  |  | 
|  | // Run instcombine after redundancy elimination to exploit opportunities | 
|  | // opened up by them. | 
|  | addInstructionCombiningPass(MPM); | 
|  | addExtensionsToPM(EP_Peephole, MPM); | 
|  | MPM.add(createJumpThreadingPass());         // Thread jumps | 
|  | MPM.add(createCorrelatedValuePropagationPass()); | 
|  | MPM.add(createDeadStoreEliminationPass());  // Delete dead stores | 
|  | MPM.add(createLICMPass()); | 
|  |  | 
|  | addExtensionsToPM(EP_ScalarOptimizerLate, MPM); | 
|  |  | 
|  | if (RerollLoops) | 
|  | MPM.add(createLoopRerollPass()); | 
|  | if (!RunSLPAfterLoopVectorization && SLPVectorize) | 
|  | MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. | 
|  |  | 
|  | MPM.add(createAggressiveDCEPass());         // Delete dead instructions | 
|  | MPM.add(createCFGSimplificationPass()); // Merge & remove BBs | 
|  | // Clean up after everything. | 
|  | addInstructionCombiningPass(MPM); | 
|  | addExtensionsToPM(EP_Peephole, MPM); | 
|  | } | 
|  |  | 
|  | void PassManagerBuilder::populateModulePassManager( | 
|  | legacy::PassManagerBase &MPM) { | 
|  | if (!PGOSampleUse.empty()) { | 
|  | MPM.add(createPruneEHPass()); | 
|  | MPM.add(createSampleProfileLoaderPass(PGOSampleUse)); | 
|  | } | 
|  |  | 
|  | // Allow forcing function attributes as a debugging and tuning aid. | 
|  | MPM.add(createForceFunctionAttrsLegacyPass()); | 
|  |  | 
|  | // If all optimizations are disabled, just run the always-inline pass and, | 
|  | // if enabled, the function merging pass. | 
|  | if (OptLevel == 0) { | 
|  | addPGOInstrPasses(MPM); | 
|  | if (Inliner) { | 
|  | MPM.add(Inliner); | 
|  | Inliner = nullptr; | 
|  | } | 
|  |  | 
|  | // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly | 
|  | // creates a CGSCC pass manager, but we don't want to add extensions into | 
|  | // that pass manager. To prevent this we insert a no-op module pass to reset | 
|  | // the pass manager to get the same behavior as EP_OptimizerLast in non-O0 | 
|  | // builds. The function merging pass is | 
|  | if (MergeFunctions) | 
|  | MPM.add(createMergeFunctionsPass()); | 
|  | else if (GlobalExtensionsNotEmpty() || !Extensions.empty()) | 
|  | MPM.add(createBarrierNoopPass()); | 
|  |  | 
|  | if (PerformThinLTO) { | 
|  | // Drop available_externally and unreferenced globals. This is necessary | 
|  | // with ThinLTO in order to avoid leaving undefined references to dead | 
|  | // globals in the object file. | 
|  | MPM.add(createEliminateAvailableExternallyPass()); | 
|  | MPM.add(createGlobalDCEPass()); | 
|  | } | 
|  |  | 
|  | addExtensionsToPM(EP_EnabledOnOptLevel0, MPM); | 
|  |  | 
|  | // Rename anon globals to be able to export them in the summary. | 
|  | // This has to be done after we add the extensions to the pass manager | 
|  | // as there could be passes (e.g. Adddress sanitizer) which introduce | 
|  | // new unnamed globals. | 
|  | if (PrepareForLTO || PrepareForThinLTO) | 
|  | MPM.add(createNameAnonGlobalPass()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Add LibraryInfo if we have some. | 
|  | if (LibraryInfo) | 
|  | MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); | 
|  |  | 
|  | addInitialAliasAnalysisPasses(MPM); | 
|  |  | 
|  | // For ThinLTO there are two passes of indirect call promotion. The | 
|  | // first is during the compile phase when PerformThinLTO=false and | 
|  | // intra-module indirect call targets are promoted. The second is during | 
|  | // the ThinLTO backend when PerformThinLTO=true, when we promote imported | 
|  | // inter-module indirect calls. For that we perform indirect call promotion | 
|  | // earlier in the pass pipeline, here before globalopt. Otherwise imported | 
|  | // available_externally functions look unreferenced and are removed. | 
|  | if (PerformThinLTO) | 
|  | MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true, | 
|  | !PGOSampleUse.empty())); | 
|  |  | 
|  | // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops | 
|  | // as it will change the CFG too much to make the 2nd profile annotation | 
|  | // in backend more difficult. | 
|  | bool PrepareForThinLTOUsingPGOSampleProfile = | 
|  | PrepareForThinLTO && !PGOSampleUse.empty(); | 
|  | if (PrepareForThinLTOUsingPGOSampleProfile) | 
|  | DisableUnrollLoops = true; | 
|  |  | 
|  | // Infer attributes about declarations if possible. | 
|  | MPM.add(createInferFunctionAttrsLegacyPass()); | 
|  |  | 
|  | addExtensionsToPM(EP_ModuleOptimizerEarly, MPM); | 
|  |  | 
|  | if (OptLevel > 2) | 
|  | MPM.add(createCallSiteSplittingPass()); | 
|  |  | 
|  | MPM.add(createIPSCCPPass());          // IP SCCP | 
|  | MPM.add(createCalledValuePropagationPass()); | 
|  | MPM.add(createGlobalOptimizerPass()); // Optimize out global vars | 
|  | // Promote any localized global vars. | 
|  | MPM.add(createPromoteMemoryToRegisterPass()); | 
|  |  | 
|  | MPM.add(createDeadArgEliminationPass()); // Dead argument elimination | 
|  |  | 
|  | addInstructionCombiningPass(MPM); // Clean up after IPCP & DAE | 
|  | addExtensionsToPM(EP_Peephole, MPM); | 
|  | MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE | 
|  |  | 
|  | // For SamplePGO in ThinLTO compile phase, we do not want to do indirect | 
|  | // call promotion as it will change the CFG too much to make the 2nd | 
|  | // profile annotation in backend more difficult. | 
|  | // PGO instrumentation is added during the compile phase for ThinLTO, do | 
|  | // not run it a second time | 
|  | if (!PerformThinLTO && !PrepareForThinLTOUsingPGOSampleProfile) | 
|  | addPGOInstrPasses(MPM); | 
|  |  | 
|  | // We add a module alias analysis pass here. In part due to bugs in the | 
|  | // analysis infrastructure this "works" in that the analysis stays alive | 
|  | // for the entire SCC pass run below. | 
|  | MPM.add(createGlobalsAAWrapperPass()); | 
|  |  | 
|  | // Start of CallGraph SCC passes. | 
|  | MPM.add(createPruneEHPass()); // Remove dead EH info | 
|  | bool RunInliner = false; | 
|  | if (Inliner) { | 
|  | MPM.add(Inliner); | 
|  | Inliner = nullptr; | 
|  | RunInliner = true; | 
|  | } | 
|  |  | 
|  | MPM.add(createPostOrderFunctionAttrsLegacyPass()); | 
|  | if (OptLevel > 2) | 
|  | MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args | 
|  |  | 
|  | addExtensionsToPM(EP_CGSCCOptimizerLate, MPM); | 
|  | addFunctionSimplificationPasses(MPM); | 
|  |  | 
|  | // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC | 
|  | // pass manager that we are specifically trying to avoid. To prevent this | 
|  | // we must insert a no-op module pass to reset the pass manager. | 
|  | MPM.add(createBarrierNoopPass()); | 
|  |  | 
|  | if (RunPartialInlining) | 
|  | MPM.add(createPartialInliningPass()); | 
|  |  | 
|  | if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO) | 
|  | // Remove avail extern fns and globals definitions if we aren't | 
|  | // compiling an object file for later LTO. For LTO we want to preserve | 
|  | // these so they are eligible for inlining at link-time. Note if they | 
|  | // are unreferenced they will be removed by GlobalDCE later, so | 
|  | // this only impacts referenced available externally globals. | 
|  | // Eventually they will be suppressed during codegen, but eliminating | 
|  | // here enables more opportunity for GlobalDCE as it may make | 
|  | // globals referenced by available external functions dead | 
|  | // and saves running remaining passes on the eliminated functions. | 
|  | MPM.add(createEliminateAvailableExternallyPass()); | 
|  |  | 
|  | MPM.add(createReversePostOrderFunctionAttrsPass()); | 
|  |  | 
|  | // The inliner performs some kind of dead code elimination as it goes, | 
|  | // but there are cases that are not really caught by it. We might | 
|  | // at some point consider teaching the inliner about them, but it | 
|  | // is OK for now to run GlobalOpt + GlobalDCE in tandem as their | 
|  | // benefits generally outweight the cost, making the whole pipeline | 
|  | // faster. | 
|  | if (RunInliner) { | 
|  | MPM.add(createGlobalOptimizerPass()); | 
|  | MPM.add(createGlobalDCEPass()); | 
|  | } | 
|  |  | 
|  | // If we are planning to perform ThinLTO later, let's not bloat the code with | 
|  | // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes | 
|  | // during ThinLTO and perform the rest of the optimizations afterward. | 
|  | if (PrepareForThinLTO) { | 
|  | // Ensure we perform any last passes, but do so before renaming anonymous | 
|  | // globals in case the passes add any. | 
|  | addExtensionsToPM(EP_OptimizerLast, MPM); | 
|  | // Rename anon globals to be able to export them in the summary. | 
|  | MPM.add(createNameAnonGlobalPass()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (PerformThinLTO) | 
|  | // Optimize globals now when performing ThinLTO, this enables more | 
|  | // optimizations later. | 
|  | MPM.add(createGlobalOptimizerPass()); | 
|  |  | 
|  | // Scheduling LoopVersioningLICM when inlining is over, because after that | 
|  | // we may see more accurate aliasing. Reason to run this late is that too | 
|  | // early versioning may prevent further inlining due to increase of code | 
|  | // size. By placing it just after inlining other optimizations which runs | 
|  | // later might get benefit of no-alias assumption in clone loop. | 
|  | if (UseLoopVersioningLICM) { | 
|  | MPM.add(createLoopVersioningLICMPass());    // Do LoopVersioningLICM | 
|  | MPM.add(createLICMPass());                  // Hoist loop invariants | 
|  | } | 
|  |  | 
|  | // We add a fresh GlobalsModRef run at this point. This is particularly | 
|  | // useful as the above will have inlined, DCE'ed, and function-attr | 
|  | // propagated everything. We should at this point have a reasonably minimal | 
|  | // and richly annotated call graph. By computing aliasing and mod/ref | 
|  | // information for all local globals here, the late loop passes and notably | 
|  | // the vectorizer will be able to use them to help recognize vectorizable | 
|  | // memory operations. | 
|  | // | 
|  | // Note that this relies on a bug in the pass manager which preserves | 
|  | // a module analysis into a function pass pipeline (and throughout it) so | 
|  | // long as the first function pass doesn't invalidate the module analysis. | 
|  | // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for | 
|  | // this to work. Fortunately, it is trivial to preserve AliasAnalysis | 
|  | // (doing nothing preserves it as it is required to be conservatively | 
|  | // correct in the face of IR changes). | 
|  | MPM.add(createGlobalsAAWrapperPass()); | 
|  |  | 
|  | MPM.add(createFloat2IntPass()); | 
|  |  | 
|  | addExtensionsToPM(EP_VectorizerStart, MPM); | 
|  |  | 
|  | // Re-rotate loops in all our loop nests. These may have fallout out of | 
|  | // rotated form due to GVN or other transformations, and the vectorizer relies | 
|  | // on the rotated form. Disable header duplication at -Oz. | 
|  | MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); | 
|  |  | 
|  | // Distribute loops to allow partial vectorization.  I.e. isolate dependences | 
|  | // into separate loop that would otherwise inhibit vectorization.  This is | 
|  | // currently only performed for loops marked with the metadata | 
|  | // llvm.loop.distribute=true or when -enable-loop-distribute is specified. | 
|  | MPM.add(createLoopDistributePass()); | 
|  |  | 
|  | MPM.add(createLoopVectorizePass(DisableUnrollLoops, LoopVectorize)); | 
|  |  | 
|  | // Eliminate loads by forwarding stores from the previous iteration to loads | 
|  | // of the current iteration. | 
|  | MPM.add(createLoopLoadEliminationPass()); | 
|  |  | 
|  | // FIXME: Because of #pragma vectorize enable, the passes below are always | 
|  | // inserted in the pipeline, even when the vectorizer doesn't run (ex. when | 
|  | // on -O1 and no #pragma is found). Would be good to have these two passes | 
|  | // as function calls, so that we can only pass them when the vectorizer | 
|  | // changed the code. | 
|  | addInstructionCombiningPass(MPM); | 
|  | if (OptLevel > 1 && ExtraVectorizerPasses) { | 
|  | // At higher optimization levels, try to clean up any runtime overlap and | 
|  | // alignment checks inserted by the vectorizer. We want to track correllated | 
|  | // runtime checks for two inner loops in the same outer loop, fold any | 
|  | // common computations, hoist loop-invariant aspects out of any outer loop, | 
|  | // and unswitch the runtime checks if possible. Once hoisted, we may have | 
|  | // dead (or speculatable) control flows or more combining opportunities. | 
|  | MPM.add(createEarlyCSEPass()); | 
|  | MPM.add(createCorrelatedValuePropagationPass()); | 
|  | addInstructionCombiningPass(MPM); | 
|  | MPM.add(createLICMPass()); | 
|  | MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); | 
|  | MPM.add(createCFGSimplificationPass()); | 
|  | addInstructionCombiningPass(MPM); | 
|  | } | 
|  |  | 
|  | // Cleanup after loop vectorization, etc. Simplification passes like CVP and | 
|  | // GVN, loop transforms, and others have already run, so it's now better to | 
|  | // convert to more optimized IR using more aggressive simplify CFG options. | 
|  | // The extra sinking transform can create larger basic blocks, so do this | 
|  | // before SLP vectorization. | 
|  | MPM.add(createCFGSimplificationPass(1, true, true, false, true)); | 
|  |  | 
|  | if (RunSLPAfterLoopVectorization && SLPVectorize) { | 
|  | MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. | 
|  | if (OptLevel > 1 && ExtraVectorizerPasses) { | 
|  | MPM.add(createEarlyCSEPass()); | 
|  | } | 
|  | } | 
|  |  | 
|  | addExtensionsToPM(EP_Peephole, MPM); | 
|  | addInstructionCombiningPass(MPM); | 
|  |  | 
|  | if (!DisableUnrollLoops) { | 
|  | if (EnableUnrollAndJam) { | 
|  | // Unroll and Jam. We do this before unroll but need to be in a separate | 
|  | // loop pass manager in order for the outer loop to be processed by | 
|  | // unroll and jam before the inner loop is unrolled. | 
|  | MPM.add(createLoopUnrollAndJamPass(OptLevel)); | 
|  | } | 
|  |  | 
|  | MPM.add(createLoopUnrollPass(OptLevel));    // Unroll small loops | 
|  |  | 
|  | // LoopUnroll may generate some redundency to cleanup. | 
|  | addInstructionCombiningPass(MPM); | 
|  |  | 
|  | // Runtime unrolling will introduce runtime check in loop prologue. If the | 
|  | // unrolled loop is a inner loop, then the prologue will be inside the | 
|  | // outer loop. LICM pass can help to promote the runtime check out if the | 
|  | // checked value is loop invariant. | 
|  | MPM.add(createLICMPass()); | 
|  | } | 
|  |  | 
|  | // After vectorization and unrolling, assume intrinsics may tell us more | 
|  | // about pointer alignments. | 
|  | MPM.add(createAlignmentFromAssumptionsPass()); | 
|  |  | 
|  | // FIXME: We shouldn't bother with this anymore. | 
|  | MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes | 
|  |  | 
|  | // GlobalOpt already deletes dead functions and globals, at -O2 try a | 
|  | // late pass of GlobalDCE.  It is capable of deleting dead cycles. | 
|  | if (OptLevel > 1) { | 
|  | MPM.add(createGlobalDCEPass());         // Remove dead fns and globals. | 
|  | MPM.add(createConstantMergePass());     // Merge dup global constants | 
|  | } | 
|  |  | 
|  | if (MergeFunctions) | 
|  | MPM.add(createMergeFunctionsPass()); | 
|  |  | 
|  | // LoopSink pass sinks instructions hoisted by LICM, which serves as a | 
|  | // canonicalization pass that enables other optimizations. As a result, | 
|  | // LoopSink pass needs to be a very late IR pass to avoid undoing LICM | 
|  | // result too early. | 
|  | MPM.add(createLoopSinkPass()); | 
|  | // Get rid of LCSSA nodes. | 
|  | MPM.add(createInstSimplifyLegacyPass()); | 
|  |  | 
|  | // This hoists/decomposes div/rem ops. It should run after other sink/hoist | 
|  | // passes to avoid re-sinking, but before SimplifyCFG because it can allow | 
|  | // flattening of blocks. | 
|  | MPM.add(createDivRemPairsPass()); | 
|  |  | 
|  | // LoopSink (and other loop passes since the last simplifyCFG) might have | 
|  | // resulted in single-entry-single-exit or empty blocks. Clean up the CFG. | 
|  | MPM.add(createCFGSimplificationPass()); | 
|  |  | 
|  | addExtensionsToPM(EP_OptimizerLast, MPM); | 
|  |  | 
|  | // Rename anon globals to be able to handle them in the summary | 
|  | if (PrepareForLTO) | 
|  | MPM.add(createNameAnonGlobalPass()); | 
|  | } | 
|  |  | 
|  | void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) { | 
|  | // Remove unused virtual tables to improve the quality of code generated by | 
|  | // whole-program devirtualization and bitset lowering. | 
|  | PM.add(createGlobalDCEPass()); | 
|  |  | 
|  | // Provide AliasAnalysis services for optimizations. | 
|  | addInitialAliasAnalysisPasses(PM); | 
|  |  | 
|  | // Allow forcing function attributes as a debugging and tuning aid. | 
|  | PM.add(createForceFunctionAttrsLegacyPass()); | 
|  |  | 
|  | // Infer attributes about declarations if possible. | 
|  | PM.add(createInferFunctionAttrsLegacyPass()); | 
|  |  | 
|  | if (OptLevel > 1) { | 
|  | // Split call-site with more constrained arguments. | 
|  | PM.add(createCallSiteSplittingPass()); | 
|  |  | 
|  | // Indirect call promotion. This should promote all the targets that are | 
|  | // left by the earlier promotion pass that promotes intra-module targets. | 
|  | // This two-step promotion is to save the compile time. For LTO, it should | 
|  | // produce the same result as if we only do promotion here. | 
|  | PM.add( | 
|  | createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty())); | 
|  |  | 
|  | // Propagate constants at call sites into the functions they call.  This | 
|  | // opens opportunities for globalopt (and inlining) by substituting function | 
|  | // pointers passed as arguments to direct uses of functions. | 
|  | PM.add(createIPSCCPPass()); | 
|  |  | 
|  | // Attach metadata to indirect call sites indicating the set of functions | 
|  | // they may target at run-time. This should follow IPSCCP. | 
|  | PM.add(createCalledValuePropagationPass()); | 
|  | } | 
|  |  | 
|  | // Infer attributes about definitions. The readnone attribute in particular is | 
|  | // required for virtual constant propagation. | 
|  | PM.add(createPostOrderFunctionAttrsLegacyPass()); | 
|  | PM.add(createReversePostOrderFunctionAttrsPass()); | 
|  |  | 
|  | // Split globals using inrange annotations on GEP indices. This can help | 
|  | // improve the quality of generated code when virtual constant propagation or | 
|  | // control flow integrity are enabled. | 
|  | PM.add(createGlobalSplitPass()); | 
|  |  | 
|  | // Apply whole-program devirtualization and virtual constant propagation. | 
|  | PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr)); | 
|  |  | 
|  | // That's all we need at opt level 1. | 
|  | if (OptLevel == 1) | 
|  | return; | 
|  |  | 
|  | // Now that we internalized some globals, see if we can hack on them! | 
|  | PM.add(createGlobalOptimizerPass()); | 
|  | // Promote any localized global vars. | 
|  | PM.add(createPromoteMemoryToRegisterPass()); | 
|  |  | 
|  | // Linking modules together can lead to duplicated global constants, only | 
|  | // keep one copy of each constant. | 
|  | PM.add(createConstantMergePass()); | 
|  |  | 
|  | // Remove unused arguments from functions. | 
|  | PM.add(createDeadArgEliminationPass()); | 
|  |  | 
|  | // Reduce the code after globalopt and ipsccp.  Both can open up significant | 
|  | // simplification opportunities, and both can propagate functions through | 
|  | // function pointers.  When this happens, we often have to resolve varargs | 
|  | // calls, etc, so let instcombine do this. | 
|  | if (OptLevel > 2) | 
|  | PM.add(createAggressiveInstCombinerPass()); | 
|  | addInstructionCombiningPass(PM); | 
|  | addExtensionsToPM(EP_Peephole, PM); | 
|  |  | 
|  | // Inline small functions | 
|  | bool RunInliner = Inliner; | 
|  | if (RunInliner) { | 
|  | PM.add(Inliner); | 
|  | Inliner = nullptr; | 
|  | } | 
|  |  | 
|  | PM.add(createPruneEHPass());   // Remove dead EH info. | 
|  |  | 
|  | // Optimize globals again if we ran the inliner. | 
|  | if (RunInliner) | 
|  | PM.add(createGlobalOptimizerPass()); | 
|  | PM.add(createGlobalDCEPass()); // Remove dead functions. | 
|  |  | 
|  | // If we didn't decide to inline a function, check to see if we can | 
|  | // transform it to pass arguments by value instead of by reference. | 
|  | PM.add(createArgumentPromotionPass()); | 
|  |  | 
|  | // The IPO passes may leave cruft around.  Clean up after them. | 
|  | addInstructionCombiningPass(PM); | 
|  | addExtensionsToPM(EP_Peephole, PM); | 
|  | PM.add(createJumpThreadingPass()); | 
|  |  | 
|  | // Break up allocas | 
|  | PM.add(createSROAPass()); | 
|  |  | 
|  | // Run a few AA driven optimizations here and now, to cleanup the code. | 
|  | PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture. | 
|  | PM.add(createGlobalsAAWrapperPass()); // IP alias analysis. | 
|  |  | 
|  | PM.add(createLICMPass());                 // Hoist loop invariants. | 
|  | PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds. | 
|  | PM.add(NewGVN ? createNewGVNPass() | 
|  | : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies. | 
|  | PM.add(createMemCpyOptPass());            // Remove dead memcpys. | 
|  |  | 
|  | // Nuke dead stores. | 
|  | PM.add(createDeadStoreEliminationPass()); | 
|  |  | 
|  | // More loops are countable; try to optimize them. | 
|  | PM.add(createIndVarSimplifyPass()); | 
|  | PM.add(createLoopDeletionPass()); | 
|  | if (EnableLoopInterchange) | 
|  | PM.add(createLoopInterchangePass()); | 
|  |  | 
|  | if (!DisableUnrollLoops) | 
|  | PM.add(createSimpleLoopUnrollPass(OptLevel));   // Unroll small loops | 
|  | PM.add(createLoopVectorizePass(true, LoopVectorize)); | 
|  | // The vectorizer may have significantly shortened a loop body; unroll again. | 
|  | if (!DisableUnrollLoops) | 
|  | PM.add(createLoopUnrollPass(OptLevel)); | 
|  |  | 
|  | // Now that we've optimized loops (in particular loop induction variables), | 
|  | // we may have exposed more scalar opportunities. Run parts of the scalar | 
|  | // optimizer again at this point. | 
|  | addInstructionCombiningPass(PM); // Initial cleanup | 
|  | PM.add(createCFGSimplificationPass()); // if-convert | 
|  | PM.add(createSCCPPass()); // Propagate exposed constants | 
|  | addInstructionCombiningPass(PM); // Clean up again | 
|  | PM.add(createBitTrackingDCEPass()); | 
|  |  | 
|  | // More scalar chains could be vectorized due to more alias information | 
|  | if (RunSLPAfterLoopVectorization) | 
|  | if (SLPVectorize) | 
|  | PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. | 
|  |  | 
|  | // After vectorization, assume intrinsics may tell us more about pointer | 
|  | // alignments. | 
|  | PM.add(createAlignmentFromAssumptionsPass()); | 
|  |  | 
|  | // Cleanup and simplify the code after the scalar optimizations. | 
|  | addInstructionCombiningPass(PM); | 
|  | addExtensionsToPM(EP_Peephole, PM); | 
|  |  | 
|  | PM.add(createJumpThreadingPass()); | 
|  | } | 
|  |  | 
|  | void PassManagerBuilder::addLateLTOOptimizationPasses( | 
|  | legacy::PassManagerBase &PM) { | 
|  | // Delete basic blocks, which optimization passes may have killed. | 
|  | PM.add(createCFGSimplificationPass()); | 
|  |  | 
|  | // Drop bodies of available externally objects to improve GlobalDCE. | 
|  | PM.add(createEliminateAvailableExternallyPass()); | 
|  |  | 
|  | // Now that we have optimized the program, discard unreachable functions. | 
|  | PM.add(createGlobalDCEPass()); | 
|  |  | 
|  | // FIXME: this is profitable (for compiler time) to do at -O0 too, but | 
|  | // currently it damages debug info. | 
|  | if (MergeFunctions) | 
|  | PM.add(createMergeFunctionsPass()); | 
|  | } | 
|  |  | 
|  | void PassManagerBuilder::populateThinLTOPassManager( | 
|  | legacy::PassManagerBase &PM) { | 
|  | PerformThinLTO = true; | 
|  | if (LibraryInfo) | 
|  | PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); | 
|  |  | 
|  | if (VerifyInput) | 
|  | PM.add(createVerifierPass()); | 
|  |  | 
|  | if (ImportSummary) { | 
|  | // These passes import type identifier resolutions for whole-program | 
|  | // devirtualization and CFI. They must run early because other passes may | 
|  | // disturb the specific instruction patterns that these passes look for, | 
|  | // creating dependencies on resolutions that may not appear in the summary. | 
|  | // | 
|  | // For example, GVN may transform the pattern assume(type.test) appearing in | 
|  | // two basic blocks into assume(phi(type.test, type.test)), which would | 
|  | // transform a dependency on a WPD resolution into a dependency on a type | 
|  | // identifier resolution for CFI. | 
|  | // | 
|  | // Also, WPD has access to more precise information than ICP and can | 
|  | // devirtualize more effectively, so it should operate on the IR first. | 
|  | PM.add(createWholeProgramDevirtPass(nullptr, ImportSummary)); | 
|  | PM.add(createLowerTypeTestsPass(nullptr, ImportSummary)); | 
|  | } | 
|  |  | 
|  | populateModulePassManager(PM); | 
|  |  | 
|  | if (VerifyOutput) | 
|  | PM.add(createVerifierPass()); | 
|  | PerformThinLTO = false; | 
|  | } | 
|  |  | 
|  | void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) { | 
|  | if (LibraryInfo) | 
|  | PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); | 
|  |  | 
|  | if (VerifyInput) | 
|  | PM.add(createVerifierPass()); | 
|  |  | 
|  | if (OptLevel != 0) | 
|  | addLTOOptimizationPasses(PM); | 
|  | else { | 
|  | // The whole-program-devirt pass needs to run at -O0 because only it knows | 
|  | // about the llvm.type.checked.load intrinsic: it needs to both lower the | 
|  | // intrinsic itself and handle it in the summary. | 
|  | PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr)); | 
|  | } | 
|  |  | 
|  | // Create a function that performs CFI checks for cross-DSO calls with targets | 
|  | // in the current module. | 
|  | PM.add(createCrossDSOCFIPass()); | 
|  |  | 
|  | // Lower type metadata and the type.test intrinsic. This pass supports Clang's | 
|  | // control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at | 
|  | // link time if CFI is enabled. The pass does nothing if CFI is disabled. | 
|  | PM.add(createLowerTypeTestsPass(ExportSummary, nullptr)); | 
|  |  | 
|  | if (OptLevel != 0) | 
|  | addLateLTOOptimizationPasses(PM); | 
|  |  | 
|  | if (VerifyOutput) | 
|  | PM.add(createVerifierPass()); | 
|  | } | 
|  |  | 
|  | inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) { | 
|  | return reinterpret_cast<PassManagerBuilder*>(P); | 
|  | } | 
|  |  | 
|  | inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) { | 
|  | return reinterpret_cast<LLVMPassManagerBuilderRef>(P); | 
|  | } | 
|  |  | 
|  | LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() { | 
|  | PassManagerBuilder *PMB = new PassManagerBuilder(); | 
|  | return wrap(PMB); | 
|  | } | 
|  |  | 
|  | void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) { | 
|  | PassManagerBuilder *Builder = unwrap(PMB); | 
|  | delete Builder; | 
|  | } | 
|  |  | 
|  | void | 
|  | LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB, | 
|  | unsigned OptLevel) { | 
|  | PassManagerBuilder *Builder = unwrap(PMB); | 
|  | Builder->OptLevel = OptLevel; | 
|  | } | 
|  |  | 
|  | void | 
|  | LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB, | 
|  | unsigned SizeLevel) { | 
|  | PassManagerBuilder *Builder = unwrap(PMB); | 
|  | Builder->SizeLevel = SizeLevel; | 
|  | } | 
|  |  | 
|  | void | 
|  | LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB, | 
|  | LLVMBool Value) { | 
|  | // NOTE: The DisableUnitAtATime switch has been removed. | 
|  | } | 
|  |  | 
|  | void | 
|  | LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB, | 
|  | LLVMBool Value) { | 
|  | PassManagerBuilder *Builder = unwrap(PMB); | 
|  | Builder->DisableUnrollLoops = Value; | 
|  | } | 
|  |  | 
|  | void | 
|  | LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB, | 
|  | LLVMBool Value) { | 
|  | // NOTE: The simplify-libcalls pass has been removed. | 
|  | } | 
|  |  | 
|  | void | 
|  | LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB, | 
|  | unsigned Threshold) { | 
|  | PassManagerBuilder *Builder = unwrap(PMB); | 
|  | Builder->Inliner = createFunctionInliningPass(Threshold); | 
|  | } | 
|  |  | 
|  | void | 
|  | LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB, | 
|  | LLVMPassManagerRef PM) { | 
|  | PassManagerBuilder *Builder = unwrap(PMB); | 
|  | legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM); | 
|  | Builder->populateFunctionPassManager(*FPM); | 
|  | } | 
|  |  | 
|  | void | 
|  | LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB, | 
|  | LLVMPassManagerRef PM) { | 
|  | PassManagerBuilder *Builder = unwrap(PMB); | 
|  | legacy::PassManagerBase *MPM = unwrap(PM); | 
|  | Builder->populateModulePassManager(*MPM); | 
|  | } | 
|  |  | 
|  | void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB, | 
|  | LLVMPassManagerRef PM, | 
|  | LLVMBool Internalize, | 
|  | LLVMBool RunInliner) { | 
|  | PassManagerBuilder *Builder = unwrap(PMB); | 
|  | legacy::PassManagerBase *LPM = unwrap(PM); | 
|  |  | 
|  | // A small backwards compatibility hack. populateLTOPassManager used to take | 
|  | // an RunInliner option. | 
|  | if (RunInliner && !Builder->Inliner) | 
|  | Builder->Inliner = createFunctionInliningPass(); | 
|  |  | 
|  | Builder->populateLTOPassManager(*LPM); | 
|  | } |