| /* |
| * Copyright 2013 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/private/SkPathRef.h" |
| |
| #include "include/core/SkPath.h" |
| #include "include/private/SkNx.h" |
| #include "include/private/SkOnce.h" |
| #include "include/private/SkTo.h" |
| #include "src/core/SkBuffer.h" |
| #include "src/core/SkPathPriv.h" |
| #include "src/core/SkSafeMath.h" |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| SkPathRef::Editor::Editor(sk_sp<SkPathRef>* pathRef, |
| int incReserveVerbs, |
| int incReservePoints) |
| { |
| SkASSERT(incReserveVerbs >= 0); |
| SkASSERT(incReservePoints >= 0); |
| |
| if ((*pathRef)->unique()) { |
| (*pathRef)->incReserve(incReserveVerbs, incReservePoints); |
| } else { |
| SkPathRef* copy = new SkPathRef; |
| copy->copy(**pathRef, incReserveVerbs, incReservePoints); |
| pathRef->reset(copy); |
| } |
| fPathRef = pathRef->get(); |
| fPathRef->callGenIDChangeListeners(); |
| fPathRef->fGenerationID = 0; |
| fPathRef->fBoundsIsDirty = true; |
| SkDEBUGCODE(fPathRef->fEditorsAttached++;) |
| } |
| |
| // Sort of like makeSpace(0) but the the additional requirement that we actively shrink the |
| // allocations to just fit the current needs. makeSpace() will only grow, but never shrinks. |
| // |
| void SkPath::shrinkToFit() { |
| fPathRef->fPoints.shrinkToFit(); |
| fPathRef->fVerbs.shrinkToFit(); |
| fPathRef->fConicWeights.shrinkToFit(); |
| SkDEBUGCODE(fPathRef->validate();) |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| SkPathRef::~SkPathRef() { |
| // Deliberately don't validate() this path ref, otherwise there's no way |
| // to read one that's not valid and then free its memory without asserting. |
| this->callGenIDChangeListeners(); |
| SkASSERT(fGenIDChangeListeners.empty()); // These are raw ptrs. |
| SkDEBUGCODE(fGenerationID = 0xEEEEEEEE;) |
| SkDEBUGCODE(fEditorsAttached.store(0x7777777);) |
| } |
| |
| static SkPathRef* gEmpty = nullptr; |
| |
| SkPathRef* SkPathRef::CreateEmpty() { |
| static SkOnce once; |
| once([]{ |
| gEmpty = new SkPathRef; |
| gEmpty->computeBounds(); // Avoids races later to be the first to do this. |
| }); |
| return SkRef(gEmpty); |
| } |
| |
| static void transform_dir_and_start(const SkMatrix& matrix, bool isRRect, bool* isCCW, |
| unsigned* start) { |
| int inStart = *start; |
| int rm = 0; |
| if (isRRect) { |
| // Degenerate rrect indices to oval indices and remember the remainder. |
| // Ovals have one index per side whereas rrects have two. |
| rm = inStart & 0b1; |
| inStart /= 2; |
| } |
| // Is the antidiagonal non-zero (otherwise the diagonal is zero) |
| int antiDiag; |
| // Is the non-zero value in the top row (either kMScaleX or kMSkewX) negative |
| int topNeg; |
| // Are the two non-zero diagonal or antidiagonal values the same sign. |
| int sameSign; |
| if (matrix.get(SkMatrix::kMScaleX) != 0) { |
| antiDiag = 0b00; |
| if (matrix.get(SkMatrix::kMScaleX) > 0) { |
| topNeg = 0b00; |
| sameSign = matrix.get(SkMatrix::kMScaleY) > 0 ? 0b01 : 0b00; |
| } else { |
| topNeg = 0b10; |
| sameSign = matrix.get(SkMatrix::kMScaleY) > 0 ? 0b00 : 0b01; |
| } |
| } else { |
| antiDiag = 0b01; |
| if (matrix.get(SkMatrix::kMSkewX) > 0) { |
| topNeg = 0b00; |
| sameSign = matrix.get(SkMatrix::kMSkewY) > 0 ? 0b01 : 0b00; |
| } else { |
| topNeg = 0b10; |
| sameSign = matrix.get(SkMatrix::kMSkewY) > 0 ? 0b00 : 0b01; |
| } |
| } |
| if (sameSign != antiDiag) { |
| // This is a rotation (and maybe scale). The direction is unchanged. |
| // Trust me on the start computation (or draw yourself some pictures) |
| *start = (inStart + 4 - (topNeg | antiDiag)) % 4; |
| SkASSERT(*start < 4); |
| if (isRRect) { |
| *start = 2 * *start + rm; |
| } |
| } else { |
| // This is a mirror (and maybe scale). The direction is reversed. |
| *isCCW = !*isCCW; |
| // Trust me on the start computation (or draw yourself some pictures) |
| *start = (6 + (topNeg | antiDiag) - inStart) % 4; |
| SkASSERT(*start < 4); |
| if (isRRect) { |
| *start = 2 * *start + (rm ? 0 : 1); |
| } |
| } |
| } |
| |
| void SkPathRef::CreateTransformedCopy(sk_sp<SkPathRef>* dst, |
| const SkPathRef& src, |
| const SkMatrix& matrix) { |
| SkDEBUGCODE(src.validate();) |
| if (matrix.isIdentity()) { |
| if (dst->get() != &src) { |
| src.ref(); |
| dst->reset(const_cast<SkPathRef*>(&src)); |
| SkDEBUGCODE((*dst)->validate();) |
| } |
| return; |
| } |
| |
| if (!(*dst)->unique()) { |
| dst->reset(new SkPathRef); |
| } |
| |
| if (dst->get() != &src) { |
| (*dst)->fPoints = src.fPoints; |
| (*dst)->fVerbs = src.fVerbs; |
| (*dst)->fConicWeights = src.fConicWeights; |
| (*dst)->callGenIDChangeListeners(); |
| (*dst)->fGenerationID = 0; // mark as dirty |
| } |
| |
| // Need to check this here in case (&src == dst) |
| bool canXformBounds = !src.fBoundsIsDirty && matrix.rectStaysRect() && src.countPoints() > 1; |
| |
| matrix.mapPoints((*dst)->fPoints.begin(), src.fPoints.begin(), src.fPoints.count()); |
| |
| /* |
| * Here we optimize the bounds computation, by noting if the bounds are |
| * already known, and if so, we just transform those as well and mark |
| * them as "known", rather than force the transformed path to have to |
| * recompute them. |
| * |
| * Special gotchas if the path is effectively empty (<= 1 point) or |
| * if it is non-finite. In those cases bounds need to stay empty, |
| * regardless of the matrix. |
| */ |
| if (canXformBounds) { |
| (*dst)->fBoundsIsDirty = false; |
| if (src.fIsFinite) { |
| matrix.mapRect(&(*dst)->fBounds, src.fBounds); |
| if (!((*dst)->fIsFinite = (*dst)->fBounds.isFinite())) { |
| (*dst)->fBounds.setEmpty(); |
| } |
| } else { |
| (*dst)->fIsFinite = false; |
| (*dst)->fBounds.setEmpty(); |
| } |
| } else { |
| (*dst)->fBoundsIsDirty = true; |
| } |
| |
| (*dst)->fSegmentMask = src.fSegmentMask; |
| |
| // It's an oval only if it stays a rect. |
| bool rectStaysRect = matrix.rectStaysRect(); |
| (*dst)->fIsOval = src.fIsOval && rectStaysRect; |
| (*dst)->fIsRRect = src.fIsRRect && rectStaysRect; |
| if ((*dst)->fIsOval || (*dst)->fIsRRect) { |
| unsigned start = src.fRRectOrOvalStartIdx; |
| bool isCCW = SkToBool(src.fRRectOrOvalIsCCW); |
| transform_dir_and_start(matrix, (*dst)->fIsRRect, &isCCW, &start); |
| (*dst)->fRRectOrOvalIsCCW = isCCW; |
| (*dst)->fRRectOrOvalStartIdx = start; |
| } |
| |
| if (dst->get() == &src) { |
| (*dst)->callGenIDChangeListeners(); |
| (*dst)->fGenerationID = 0; |
| } |
| |
| SkDEBUGCODE((*dst)->validate();) |
| } |
| |
| void SkPathRef::Rewind(sk_sp<SkPathRef>* pathRef) { |
| if ((*pathRef)->unique()) { |
| SkDEBUGCODE((*pathRef)->validate();) |
| (*pathRef)->callGenIDChangeListeners(); |
| (*pathRef)->fBoundsIsDirty = true; // this also invalidates fIsFinite |
| (*pathRef)->fGenerationID = 0; |
| (*pathRef)->fPoints.rewind(); |
| (*pathRef)->fVerbs.rewind(); |
| (*pathRef)->fConicWeights.rewind(); |
| (*pathRef)->fSegmentMask = 0; |
| (*pathRef)->fIsOval = false; |
| (*pathRef)->fIsRRect = false; |
| SkDEBUGCODE((*pathRef)->validate();) |
| } else { |
| int oldVCnt = (*pathRef)->countVerbs(); |
| int oldPCnt = (*pathRef)->countPoints(); |
| pathRef->reset(new SkPathRef); |
| (*pathRef)->resetToSize(0, 0, 0, oldVCnt, oldPCnt); |
| } |
| } |
| |
| bool SkPathRef::operator== (const SkPathRef& ref) const { |
| SkDEBUGCODE(this->validate();) |
| SkDEBUGCODE(ref.validate();) |
| |
| // We explicitly check fSegmentMask as a quick-reject. We could skip it, |
| // since it is only a cache of info in the fVerbs, but its a fast way to |
| // notice a difference |
| if (fSegmentMask != ref.fSegmentMask) { |
| return false; |
| } |
| |
| bool genIDMatch = fGenerationID && fGenerationID == ref.fGenerationID; |
| #ifdef SK_RELEASE |
| if (genIDMatch) { |
| return true; |
| } |
| #endif |
| if (fPoints != ref.fPoints || fConicWeights != ref.fConicWeights || fVerbs != ref.fVerbs) { |
| SkASSERT(!genIDMatch); |
| return false; |
| } |
| if (ref.fVerbs.count() == 0) { |
| SkASSERT(ref.fPoints.count() == 0); |
| } |
| return true; |
| } |
| |
| void SkPathRef::writeToBuffer(SkWBuffer* buffer) const { |
| SkDEBUGCODE(this->validate();) |
| SkDEBUGCODE(size_t beforePos = buffer->pos();) |
| |
| // Call getBounds() to ensure (as a side-effect) that fBounds |
| // and fIsFinite are computed. |
| const SkRect& bounds = this->getBounds(); |
| |
| // We store fSegmentMask for older readers, but current readers can't trust it, so they |
| // don't read it. |
| int32_t packed = ((fIsFinite & 1) << kIsFinite_SerializationShift) | |
| (fSegmentMask << kSegmentMask_SerializationShift); |
| buffer->write32(packed); |
| |
| // TODO: write gen ID here. Problem: We don't know if we're cross process or not from |
| // SkWBuffer. Until this is fixed we write 0. |
| buffer->write32(0); |
| buffer->write32(fVerbs.count()); |
| buffer->write32(fPoints.count()); |
| buffer->write32(fConicWeights.count()); |
| buffer->write(fVerbs.begin(), fVerbs.bytes()); |
| buffer->write(fPoints.begin(), fVerbs.bytes()); |
| buffer->write(fConicWeights.begin(), fConicWeights.bytes()); |
| buffer->write(&bounds, sizeof(bounds)); |
| |
| SkASSERT(buffer->pos() - beforePos == (size_t) this->writeSize()); |
| } |
| |
| uint32_t SkPathRef::writeSize() const { |
| return uint32_t(5 * sizeof(uint32_t) + |
| fVerbs.bytes() + fPoints.bytes() + fConicWeights.bytes() + |
| sizeof(SkRect)); |
| } |
| |
| void SkPathRef::copy(const SkPathRef& ref, |
| int additionalReserveVerbs, |
| int additionalReservePoints) { |
| SkDEBUGCODE(this->validate();) |
| this->resetToSize(ref.fVerbs.count(), ref.fPoints.count(), ref.fConicWeights.count(), |
| additionalReserveVerbs, additionalReservePoints); |
| fVerbs = ref.fVerbs; |
| fPoints = ref.fPoints; |
| fConicWeights = ref.fConicWeights; |
| fBoundsIsDirty = ref.fBoundsIsDirty; |
| if (!fBoundsIsDirty) { |
| fBounds = ref.fBounds; |
| fIsFinite = ref.fIsFinite; |
| } |
| fSegmentMask = ref.fSegmentMask; |
| fIsOval = ref.fIsOval; |
| fIsRRect = ref.fIsRRect; |
| fRRectOrOvalIsCCW = ref.fRRectOrOvalIsCCW; |
| fRRectOrOvalStartIdx = ref.fRRectOrOvalStartIdx; |
| SkDEBUGCODE(this->validate();) |
| } |
| |
| unsigned SkPathRef::computeSegmentMask() const { |
| const uint8_t* verbs = fVerbs.begin(); |
| unsigned mask = 0; |
| for (int i = 0; i < fVerbs.count(); ++i) { |
| switch (verbs[i]) { |
| case SkPath::kLine_Verb: mask |= SkPath::kLine_SegmentMask; break; |
| case SkPath::kQuad_Verb: mask |= SkPath::kQuad_SegmentMask; break; |
| case SkPath::kConic_Verb: mask |= SkPath::kConic_SegmentMask; break; |
| case SkPath::kCubic_Verb: mask |= SkPath::kCubic_SegmentMask; break; |
| default: break; |
| } |
| } |
| return mask; |
| } |
| |
| void SkPathRef::interpolate(const SkPathRef& ending, SkScalar weight, SkPathRef* out) const { |
| const SkScalar* inValues = &ending.getPoints()->fX; |
| SkScalar* outValues = &out->getWritablePoints()->fX; |
| int count = out->countPoints() * 2; |
| for (int index = 0; index < count; ++index) { |
| outValues[index] = outValues[index] * weight + inValues[index] * (1 - weight); |
| } |
| out->fBoundsIsDirty = true; |
| out->fIsOval = false; |
| out->fIsRRect = false; |
| } |
| |
| SkPoint* SkPathRef::growForRepeatedVerb(int /*SkPath::Verb*/ verb, |
| int numVbs, |
| SkScalar** weights) { |
| SkDEBUGCODE(this->validate();) |
| int pCnt; |
| switch (verb) { |
| case SkPath::kMove_Verb: |
| pCnt = numVbs; |
| break; |
| case SkPath::kLine_Verb: |
| fSegmentMask |= SkPath::kLine_SegmentMask; |
| pCnt = numVbs; |
| break; |
| case SkPath::kQuad_Verb: |
| fSegmentMask |= SkPath::kQuad_SegmentMask; |
| pCnt = 2 * numVbs; |
| break; |
| case SkPath::kConic_Verb: |
| fSegmentMask |= SkPath::kConic_SegmentMask; |
| pCnt = 2 * numVbs; |
| break; |
| case SkPath::kCubic_Verb: |
| fSegmentMask |= SkPath::kCubic_SegmentMask; |
| pCnt = 3 * numVbs; |
| break; |
| case SkPath::kClose_Verb: |
| SkDEBUGFAIL("growForRepeatedVerb called for kClose_Verb"); |
| pCnt = 0; |
| break; |
| case SkPath::kDone_Verb: |
| SkDEBUGFAIL("growForRepeatedVerb called for kDone"); |
| // fall through |
| default: |
| SkDEBUGFAIL("default should not be reached"); |
| pCnt = 0; |
| } |
| |
| fBoundsIsDirty = true; // this also invalidates fIsFinite |
| fIsOval = false; |
| fIsRRect = false; |
| |
| memset(fVerbs.append(numVbs), verb, numVbs); |
| if (SkPath::kConic_Verb == verb) { |
| SkASSERT(weights); |
| *weights = fConicWeights.append(numVbs); |
| } |
| SkPoint* pts = fPoints.append(pCnt); |
| |
| SkDEBUGCODE(this->validate();) |
| return pts; |
| } |
| |
| SkPoint* SkPathRef::growForVerb(int /* SkPath::Verb*/ verb, SkScalar weight) { |
| SkDEBUGCODE(this->validate();) |
| int pCnt; |
| unsigned mask = 0; |
| switch (verb) { |
| case SkPath::kMove_Verb: |
| pCnt = 1; |
| break; |
| case SkPath::kLine_Verb: |
| mask = SkPath::kLine_SegmentMask; |
| pCnt = 1; |
| break; |
| case SkPath::kQuad_Verb: |
| mask = SkPath::kQuad_SegmentMask; |
| pCnt = 2; |
| break; |
| case SkPath::kConic_Verb: |
| mask = SkPath::kConic_SegmentMask; |
| pCnt = 2; |
| break; |
| case SkPath::kCubic_Verb: |
| mask = SkPath::kCubic_SegmentMask; |
| pCnt = 3; |
| break; |
| case SkPath::kClose_Verb: |
| pCnt = 0; |
| break; |
| case SkPath::kDone_Verb: |
| SkDEBUGFAIL("growForVerb called for kDone"); |
| // fall through |
| default: |
| SkDEBUGFAIL("default is not reached"); |
| pCnt = 0; |
| } |
| |
| fSegmentMask |= mask; |
| fBoundsIsDirty = true; // this also invalidates fIsFinite |
| fIsOval = false; |
| fIsRRect = false; |
| |
| *fVerbs.append() = verb; |
| if (SkPath::kConic_Verb == verb) { |
| *fConicWeights.append() = weight; |
| } |
| SkPoint* pts = fPoints.append(pCnt); |
| |
| SkDEBUGCODE(this->validate();) |
| return pts; |
| } |
| |
| uint32_t SkPathRef::genID() const { |
| SkASSERT(fEditorsAttached.load() == 0); |
| static const uint32_t kMask = (static_cast<int64_t>(1) << SkPathPriv::kPathRefGenIDBitCnt) - 1; |
| |
| if (fGenerationID == 0) { |
| if (fPoints.count() == 0 && fVerbs.count() == 0) { |
| fGenerationID = kEmptyGenID; |
| } else { |
| static std::atomic<uint32_t> nextID{kEmptyGenID + 1}; |
| do { |
| fGenerationID = nextID.fetch_add(1, std::memory_order_relaxed) & kMask; |
| } while (fGenerationID == 0 || fGenerationID == kEmptyGenID); |
| } |
| } |
| return fGenerationID; |
| } |
| |
| void SkPathRef::addGenIDChangeListener(sk_sp<GenIDChangeListener> listener) { |
| if (nullptr == listener || this == gEmpty) { |
| return; |
| } |
| |
| SkAutoMutexExclusive lock(fGenIDChangeListenersMutex); |
| |
| // Clean out any stale listeners before we append the new one. |
| for (int i = 0; i < fGenIDChangeListeners.count(); ++i) { |
| if (fGenIDChangeListeners[i]->shouldUnregisterFromPath()) { |
| fGenIDChangeListeners[i]->unref(); |
| fGenIDChangeListeners.removeShuffle(i--); // No need to preserve the order after i. |
| } |
| } |
| |
| SkASSERT(!listener->shouldUnregisterFromPath()); |
| *fGenIDChangeListeners.append() = listener.release(); |
| } |
| |
| // we need to be called *before* the genID gets changed or zerod |
| void SkPathRef::callGenIDChangeListeners() { |
| auto visit = [this]() { |
| for (GenIDChangeListener* listener : fGenIDChangeListeners) { |
| if (!listener->shouldUnregisterFromPath()) { |
| listener->onChange(); |
| } |
| // Listeners get at most one shot, so whether these triggered or not, blow them away. |
| listener->unref(); |
| } |
| fGenIDChangeListeners.reset(); |
| }; |
| |
| // Acquiring the mutex is relatively expensive, compared to operations like moveTo, etc. |
| // Thus we want to skip it if we're unique. This is safe because the only purpose of the |
| // mutex is to keep the listener-list intact while we iterate/edit it, and if we're unique, |
| // no one else can modify fGenIDChangeListeners. |
| |
| if (this->unique()) { |
| visit(); |
| } else { |
| SkAutoMutexExclusive lock(fGenIDChangeListenersMutex); |
| visit(); |
| } |
| } |
| |
| SkRRect SkPathRef::getRRect() const { |
| const SkRect& bounds = this->getBounds(); |
| SkVector radii[4] = {{0, 0}, {0, 0}, {0, 0}, {0, 0}}; |
| Iter iter(*this); |
| SkPoint pts[4]; |
| uint8_t verb = iter.next(pts); |
| SkASSERT(SkPath::kMove_Verb == verb); |
| while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
| if (SkPath::kConic_Verb == verb) { |
| SkVector v1_0 = pts[1] - pts[0]; |
| SkVector v2_1 = pts[2] - pts[1]; |
| SkVector dxdy; |
| if (v1_0.fX) { |
| SkASSERT(!v2_1.fX && !v1_0.fY); |
| dxdy.set(SkScalarAbs(v1_0.fX), SkScalarAbs(v2_1.fY)); |
| } else if (!v1_0.fY) { |
| SkASSERT(!v2_1.fX || !v2_1.fY); |
| dxdy.set(SkScalarAbs(v2_1.fX), SkScalarAbs(v2_1.fY)); |
| } else { |
| SkASSERT(!v2_1.fY); |
| dxdy.set(SkScalarAbs(v2_1.fX), SkScalarAbs(v1_0.fY)); |
| } |
| SkRRect::Corner corner = |
| pts[1].fX == bounds.fLeft ? |
| pts[1].fY == bounds.fTop ? |
| SkRRect::kUpperLeft_Corner : SkRRect::kLowerLeft_Corner : |
| pts[1].fY == bounds.fTop ? |
| SkRRect::kUpperRight_Corner : SkRRect::kLowerRight_Corner; |
| SkASSERT(!radii[corner].fX && !radii[corner].fY); |
| radii[corner] = dxdy; |
| } else { |
| SkASSERT((verb == SkPath::kLine_Verb |
| && (!(pts[1].fX - pts[0].fX) || !(pts[1].fY - pts[0].fY))) |
| || verb == SkPath::kClose_Verb); |
| } |
| } |
| SkRRect rrect; |
| rrect.setRectRadii(bounds, radii); |
| return rrect; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkPathRef::Iter::Iter() { |
| #ifdef SK_DEBUG |
| fPts = nullptr; |
| fConicWeights = nullptr; |
| #endif |
| // need to init enough to make next() harmlessly return kDone_Verb |
| fVerbs = nullptr; |
| fVerbStop = nullptr; |
| } |
| |
| SkPathRef::Iter::Iter(const SkPathRef& path) { |
| this->setPathRef(path); |
| } |
| |
| void SkPathRef::Iter::setPathRef(const SkPathRef& path) { |
| fPts = path.points(); |
| fVerbs = path.verbsBegin(); |
| fVerbStop = path.verbsEnd(); |
| fConicWeights = path.conicWeights(); |
| if (fConicWeights) { |
| fConicWeights -= 1; // begin one behind |
| } |
| |
| // Don't allow iteration through non-finite points. |
| if (!path.isFinite()) { |
| fVerbStop = fVerbs; |
| } |
| } |
| |
| uint8_t SkPathRef::Iter::next(SkPoint pts[4]) { |
| SkASSERT(pts); |
| |
| SkDEBUGCODE(unsigned peekResult = this->peek();) |
| |
| if (fVerbs == fVerbStop) { |
| SkASSERT(peekResult == SkPath::kDone_Verb); |
| return (uint8_t) SkPath::kDone_Verb; |
| } |
| |
| // fVerbs points one beyond next verb so decrement first. |
| unsigned verb = *fVerbs++; |
| const SkPoint* srcPts = fPts; |
| |
| switch (verb) { |
| case SkPath::kMove_Verb: |
| pts[0] = srcPts[0]; |
| srcPts += 1; |
| break; |
| case SkPath::kLine_Verb: |
| pts[0] = srcPts[-1]; |
| pts[1] = srcPts[0]; |
| srcPts += 1; |
| break; |
| case SkPath::kConic_Verb: |
| fConicWeights += 1; |
| // fall-through |
| case SkPath::kQuad_Verb: |
| pts[0] = srcPts[-1]; |
| pts[1] = srcPts[0]; |
| pts[2] = srcPts[1]; |
| srcPts += 2; |
| break; |
| case SkPath::kCubic_Verb: |
| pts[0] = srcPts[-1]; |
| pts[1] = srcPts[0]; |
| pts[2] = srcPts[1]; |
| pts[3] = srcPts[2]; |
| srcPts += 3; |
| break; |
| case SkPath::kClose_Verb: |
| break; |
| case SkPath::kDone_Verb: |
| SkASSERT(fVerbs == fVerbStop); |
| break; |
| } |
| fPts = srcPts; |
| SkASSERT(peekResult == verb); |
| return (uint8_t) verb; |
| } |
| |
| uint8_t SkPathRef::Iter::peek() const { |
| return fVerbs < fVerbStop ? *fVerbs : (uint8_t) SkPath::kDone_Verb; |
| } |
| |
| |
| bool SkPathRef::isValid() const { |
| if (fIsOval || fIsRRect) { |
| // Currently we don't allow both of these to be set, even though ovals are ro |
| if (fIsOval == fIsRRect) { |
| return false; |
| } |
| if (fIsOval) { |
| if (fRRectOrOvalStartIdx >= 4) { |
| return false; |
| } |
| } else { |
| if (fRRectOrOvalStartIdx >= 8) { |
| return false; |
| } |
| } |
| } |
| |
| if (!fBoundsIsDirty && !fBounds.isEmpty()) { |
| bool isFinite = true; |
| Sk2s leftTop = Sk2s(fBounds.fLeft, fBounds.fTop); |
| Sk2s rightBot = Sk2s(fBounds.fRight, fBounds.fBottom); |
| for (int i = 0; i < fPoints.count(); ++i) { |
| Sk2s point = Sk2s(fPoints[i].fX, fPoints[i].fY); |
| #ifdef SK_DEBUG |
| if (fPoints[i].isFinite() && |
| ((point < leftTop).anyTrue() || (point > rightBot).anyTrue())) { |
| SkDebugf("bad SkPathRef bounds: %g %g %g %g\n", |
| fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom); |
| for (int j = 0; j < fPoints.count(); ++j) { |
| if (i == j) { |
| SkDebugf("*** bounds do not contain: "); |
| } |
| SkDebugf("%g %g\n", fPoints[j].fX, fPoints[j].fY); |
| } |
| return false; |
| } |
| #endif |
| |
| if (fPoints[i].isFinite() && (point < leftTop).anyTrue() && !(point > rightBot).anyTrue()) |
| return false; |
| if (!fPoints[i].isFinite()) { |
| isFinite = false; |
| } |
| } |
| if (SkToBool(fIsFinite) != isFinite) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| SkPathEdgeIter::SkPathEdgeIter(const SkPath& path) { |
| fMoveToPtr = fPts = path.fPathRef->points(); |
| fVerbs = path.fPathRef->verbsBegin(); |
| fVerbsStop = path.fPathRef->verbsEnd(); |
| fConicWeights = path.fPathRef->conicWeights(); |
| if (fConicWeights) { |
| fConicWeights -= 1; // begin one behind |
| } |
| |
| fNeedsCloseLine = false; |
| SkDEBUGCODE(fIsConic = false;) |
| } |