| // Copyright (c) 2015 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "net/base/ip_address.h" |
| |
| #include <algorithm> |
| #include <climits> |
| |
| #include "base/containers/stack_container.h" |
| #include "base/stl_util.h" |
| #include "base/strings/string_piece.h" |
| #include "base/strings/string_split.h" |
| #include "base/strings/stringprintf.h" |
| #include "net/base/parse_number.h" |
| #include "url/gurl.h" |
| #include "url/url_canon_ip.h" |
| |
| namespace net { |
| namespace { |
| |
| // The prefix for IPv6 mapped IPv4 addresses. |
| // https://tools.ietf.org/html/rfc4291#section-2.5.5.2 |
| constexpr uint8_t kIPv4MappedPrefix[] = {0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0xFF, 0xFF}; |
| |
| // Note that this function assumes: |
| // * |ip_address| is at least |prefix_length_in_bits| (bits) long; |
| // * |ip_prefix| is at least |prefix_length_in_bits| (bits) long. |
| bool IPAddressPrefixCheck(const IPAddressBytes& ip_address, |
| const uint8_t* ip_prefix, |
| size_t prefix_length_in_bits) { |
| // Compare all the bytes that fall entirely within the prefix. |
| size_t num_entire_bytes_in_prefix = prefix_length_in_bits / 8; |
| for (size_t i = 0; i < num_entire_bytes_in_prefix; ++i) { |
| if (ip_address[i] != ip_prefix[i]) |
| return false; |
| } |
| |
| // In case the prefix was not a multiple of 8, there will be 1 byte |
| // which is only partially masked. |
| size_t remaining_bits = prefix_length_in_bits % 8; |
| if (remaining_bits != 0) { |
| uint8_t mask = 0xFF << (8 - remaining_bits); |
| size_t i = num_entire_bytes_in_prefix; |
| if ((ip_address[i] & mask) != (ip_prefix[i] & mask)) |
| return false; |
| } |
| return true; |
| } |
| |
| // Returns false if |ip_address| matches any of the reserved IPv4 ranges. This |
| // method operates on a blacklist of reserved IPv4 ranges. Some ranges are |
| // consolidated. |
| // Sources for info: |
| // www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xhtml |
| // www.iana.org/assignments/iana-ipv4-special-registry/ |
| // iana-ipv4-special-registry.xhtml |
| bool IsPubliclyRoutableIPv4(const IPAddressBytes& ip_address) { |
| // Different IP versions have different range reservations. |
| DCHECK_EQ(IPAddress::kIPv4AddressSize, ip_address.size()); |
| struct { |
| const uint8_t address[4]; |
| size_t prefix_length_in_bits; |
| } static const kReservedIPv4Ranges[] = { |
| {{0, 0, 0, 0}, 8}, {{10, 0, 0, 0}, 8}, {{100, 64, 0, 0}, 10}, |
| {{127, 0, 0, 0}, 8}, {{169, 254, 0, 0}, 16}, {{172, 16, 0, 0}, 12}, |
| {{192, 0, 2, 0}, 24}, {{192, 88, 99, 0}, 24}, {{192, 168, 0, 0}, 16}, |
| {{198, 18, 0, 0}, 15}, {{198, 51, 100, 0}, 24}, {{203, 0, 113, 0}, 24}, |
| {{224, 0, 0, 0}, 3}}; |
| |
| for (const auto& range : kReservedIPv4Ranges) { |
| if (IPAddressPrefixCheck(ip_address, range.address, |
| range.prefix_length_in_bits)) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| // Returns false if |ip_address| matches any of the IPv6 ranges IANA reserved |
| // for local networks. This method operates on a whitelist of non-reserved |
| // IPv6 ranges, plus the blacklist of reserved IPv4 ranges mapped to IPv6. |
| // Sources for info: |
| // www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml |
| bool IsPubliclyRoutableIPv6(const IPAddressBytes& ip_address) { |
| DCHECK_EQ(IPAddress::kIPv6AddressSize, ip_address.size()); |
| struct { |
| const uint8_t address_prefix[2]; |
| size_t prefix_length_in_bits; |
| } static const kPublicIPv6Ranges[] = {// 2000::/3 -- Global Unicast |
| {{0x20, 0}, 3}, |
| // ff00::/8 -- Multicast |
| {{0xff, 0}, 8}}; |
| |
| for (const auto& range : kPublicIPv6Ranges) { |
| if (IPAddressPrefixCheck(ip_address, range.address_prefix, |
| range.prefix_length_in_bits)) { |
| return true; |
| } |
| } |
| |
| IPAddress addr(ip_address); |
| if (addr.IsIPv4MappedIPv6()) { |
| IPAddress ipv4 = ConvertIPv4MappedIPv6ToIPv4(addr); |
| return IsPubliclyRoutableIPv4(ipv4.bytes()); |
| } |
| |
| return false; |
| } |
| |
| bool ParseIPLiteralToBytes(const base::StringPiece& ip_literal, |
| IPAddressBytes* bytes) { |
| // |ip_literal| could be either an IPv4 or an IPv6 literal. If it contains |
| // a colon however, it must be an IPv6 address. |
| if (ip_literal.find(':') != base::StringPiece::npos) { |
| // GURL expects IPv6 hostnames to be surrounded with brackets. |
| std::string host_brackets = "["; |
| ip_literal.AppendToString(&host_brackets); |
| host_brackets.push_back(']'); |
| url::Component host_comp(0, host_brackets.size()); |
| |
| // Try parsing the hostname as an IPv6 literal. |
| bytes->Resize(16); // 128 bits. |
| return url::IPv6AddressToNumber(host_brackets.data(), host_comp, |
| bytes->data()); |
| } |
| |
| // Otherwise the string is an IPv4 address. |
| bytes->Resize(4); // 32 bits. |
| url::Component host_comp(0, ip_literal.size()); |
| int num_components; |
| url::CanonHostInfo::Family family = url::IPv4AddressToNumber( |
| ip_literal.data(), host_comp, bytes->data(), &num_components); |
| return family == url::CanonHostInfo::IPV4; |
| } |
| |
| } // namespace |
| |
| IPAddressBytes::IPAddressBytes() : size_(0) {} |
| |
| IPAddressBytes::IPAddressBytes(const uint8_t* data, size_t data_len) { |
| Assign(data, data_len); |
| } |
| |
| IPAddressBytes::~IPAddressBytes() = default; |
| IPAddressBytes::IPAddressBytes(IPAddressBytes const& other) = default; |
| |
| void IPAddressBytes::Assign(const uint8_t* data, size_t data_len) { |
| size_ = data_len; |
| CHECK_GE(16u, data_len); |
| std::copy_n(data, data_len, bytes_.data()); |
| } |
| |
| bool IPAddressBytes::operator<(const IPAddressBytes& other) const { |
| if (size_ == other.size_) |
| return std::lexicographical_compare(begin(), end(), other.begin(), |
| other.end()); |
| return size_ < other.size_; |
| } |
| |
| bool IPAddressBytes::operator==(const IPAddressBytes& other) const { |
| return size_ == other.size_ && std::equal(begin(), end(), other.begin()); |
| } |
| |
| bool IPAddressBytes::operator!=(const IPAddressBytes& other) const { |
| return !(*this == other); |
| } |
| |
| IPAddress::IPAddress() = default; |
| |
| IPAddress::IPAddress(const IPAddress& other) = default; |
| |
| IPAddress::IPAddress(const IPAddressBytes& address) : ip_address_(address) {} |
| |
| IPAddress::IPAddress(const uint8_t* address, size_t address_len) |
| : ip_address_(address, address_len) {} |
| |
| IPAddress::IPAddress(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3) { |
| ip_address_.push_back(b0); |
| ip_address_.push_back(b1); |
| ip_address_.push_back(b2); |
| ip_address_.push_back(b3); |
| } |
| |
| IPAddress::IPAddress(uint8_t b0, |
| uint8_t b1, |
| uint8_t b2, |
| uint8_t b3, |
| uint8_t b4, |
| uint8_t b5, |
| uint8_t b6, |
| uint8_t b7, |
| uint8_t b8, |
| uint8_t b9, |
| uint8_t b10, |
| uint8_t b11, |
| uint8_t b12, |
| uint8_t b13, |
| uint8_t b14, |
| uint8_t b15) { |
| ip_address_.push_back(b0); |
| ip_address_.push_back(b1); |
| ip_address_.push_back(b2); |
| ip_address_.push_back(b3); |
| ip_address_.push_back(b4); |
| ip_address_.push_back(b5); |
| ip_address_.push_back(b6); |
| ip_address_.push_back(b7); |
| ip_address_.push_back(b8); |
| ip_address_.push_back(b9); |
| ip_address_.push_back(b10); |
| ip_address_.push_back(b11); |
| ip_address_.push_back(b12); |
| ip_address_.push_back(b13); |
| ip_address_.push_back(b14); |
| ip_address_.push_back(b15); |
| } |
| |
| IPAddress::~IPAddress() = default; |
| |
| bool IPAddress::IsIPv4() const { |
| return ip_address_.size() == kIPv4AddressSize; |
| } |
| |
| bool IPAddress::IsIPv6() const { |
| return ip_address_.size() == kIPv6AddressSize; |
| } |
| |
| bool IPAddress::IsValid() const { |
| return IsIPv4() || IsIPv6(); |
| } |
| |
| bool IPAddress::IsPubliclyRoutable() const { |
| if (IsIPv4()) { |
| return IsPubliclyRoutableIPv4(ip_address_); |
| } else if (IsIPv6()) { |
| return IsPubliclyRoutableIPv6(ip_address_); |
| } |
| return true; |
| } |
| |
| bool IPAddress::IsZero() const { |
| for (auto x : ip_address_) { |
| if (x != 0) |
| return false; |
| } |
| |
| return !empty(); |
| } |
| |
| bool IPAddress::IsIPv4MappedIPv6() const { |
| return IsIPv6() && IPAddressStartsWith(*this, kIPv4MappedPrefix); |
| } |
| |
| bool IPAddress::AssignFromIPLiteral(const base::StringPiece& ip_literal) { |
| bool success = ParseIPLiteralToBytes(ip_literal, &ip_address_); |
| if (!success) |
| ip_address_.Resize(0); |
| return success; |
| } |
| |
| std::vector<uint8_t> IPAddress::CopyBytesToVector() const { |
| return std::vector<uint8_t>(ip_address_.begin(), ip_address_.end()); |
| } |
| |
| // static |
| IPAddress IPAddress::IPv4Localhost() { |
| static const uint8_t kLocalhostIPv4[] = {127, 0, 0, 1}; |
| return IPAddress(kLocalhostIPv4); |
| } |
| |
| // static |
| IPAddress IPAddress::IPv6Localhost() { |
| static const uint8_t kLocalhostIPv6[] = {0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 1}; |
| return IPAddress(kLocalhostIPv6); |
| } |
| |
| // static |
| IPAddress IPAddress::AllZeros(size_t num_zero_bytes) { |
| CHECK_LE(num_zero_bytes, 16u); |
| IPAddress result; |
| for (size_t i = 0; i < num_zero_bytes; ++i) |
| result.ip_address_.push_back(0u); |
| return result; |
| } |
| |
| // static |
| IPAddress IPAddress::IPv4AllZeros() { |
| return AllZeros(kIPv4AddressSize); |
| } |
| |
| // static |
| IPAddress IPAddress::IPv6AllZeros() { |
| return AllZeros(kIPv6AddressSize); |
| } |
| |
| bool IPAddress::operator==(const IPAddress& that) const { |
| return ip_address_ == that.ip_address_; |
| } |
| |
| bool IPAddress::operator!=(const IPAddress& that) const { |
| return ip_address_ != that.ip_address_; |
| } |
| |
| bool IPAddress::operator<(const IPAddress& that) const { |
| // Sort IPv4 before IPv6. |
| if (ip_address_.size() != that.ip_address_.size()) { |
| return ip_address_.size() < that.ip_address_.size(); |
| } |
| |
| return ip_address_ < that.ip_address_; |
| } |
| |
| std::string IPAddress::ToString() const { |
| std::string str; |
| url::StdStringCanonOutput output(&str); |
| |
| if (IsIPv4()) { |
| url::AppendIPv4Address(ip_address_.data(), &output); |
| } else if (IsIPv6()) { |
| url::AppendIPv6Address(ip_address_.data(), &output); |
| } |
| |
| output.Complete(); |
| return str; |
| } |
| |
| std::string IPAddressToStringWithPort(const IPAddress& address, uint16_t port) { |
| std::string address_str = address.ToString(); |
| if (address_str.empty()) |
| return address_str; |
| |
| if (address.IsIPv6()) { |
| // Need to bracket IPv6 addresses since they contain colons. |
| return base::StringPrintf("[%s]:%d", address_str.c_str(), port); |
| } |
| return base::StringPrintf("%s:%d", address_str.c_str(), port); |
| } |
| |
| std::string IPAddressToPackedString(const IPAddress& address) { |
| return std::string(reinterpret_cast<const char*>(address.bytes().data()), |
| address.size()); |
| } |
| |
| IPAddress ConvertIPv4ToIPv4MappedIPv6(const IPAddress& address) { |
| DCHECK(address.IsIPv4()); |
| // IPv4-mapped addresses are formed by: |
| // <80 bits of zeros> + <16 bits of ones> + <32-bit IPv4 address>. |
| base::StackVector<uint8_t, 16> bytes; |
| bytes->insert(bytes->end(), std::begin(kIPv4MappedPrefix), |
| std::end(kIPv4MappedPrefix)); |
| bytes->insert(bytes->end(), address.bytes().begin(), address.bytes().end()); |
| return IPAddress(bytes->data(), bytes->size()); |
| } |
| |
| IPAddress ConvertIPv4MappedIPv6ToIPv4(const IPAddress& address) { |
| DCHECK(address.IsIPv4MappedIPv6()); |
| |
| base::StackVector<uint8_t, 16> bytes; |
| bytes->insert(bytes->end(), |
| address.bytes().begin() + base::size(kIPv4MappedPrefix), |
| address.bytes().end()); |
| return IPAddress(bytes->data(), bytes->size()); |
| } |
| |
| bool IPAddressMatchesPrefix(const IPAddress& ip_address, |
| const IPAddress& ip_prefix, |
| size_t prefix_length_in_bits) { |
| // Both the input IP address and the prefix IP address should be either IPv4 |
| // or IPv6. |
| DCHECK(ip_address.IsValid()); |
| DCHECK(ip_prefix.IsValid()); |
| |
| DCHECK_LE(prefix_length_in_bits, ip_prefix.size() * 8); |
| |
| // In case we have an IPv6 / IPv4 mismatch, convert the IPv4 addresses to |
| // IPv6 addresses in order to do the comparison. |
| if (ip_address.size() != ip_prefix.size()) { |
| if (ip_address.IsIPv4()) { |
| return IPAddressMatchesPrefix(ConvertIPv4ToIPv4MappedIPv6(ip_address), |
| ip_prefix, prefix_length_in_bits); |
| } |
| return IPAddressMatchesPrefix(ip_address, |
| ConvertIPv4ToIPv4MappedIPv6(ip_prefix), |
| 96 + prefix_length_in_bits); |
| } |
| |
| return IPAddressPrefixCheck(ip_address.bytes(), ip_prefix.bytes().data(), |
| prefix_length_in_bits); |
| } |
| |
| bool ParseCIDRBlock(const std::string& cidr_literal, |
| IPAddress* ip_address, |
| size_t* prefix_length_in_bits) { |
| // We expect CIDR notation to match one of these two templates: |
| // <IPv4-literal> "/" <number of bits> |
| // <IPv6-literal> "/" <number of bits> |
| |
| std::vector<base::StringPiece> parts = base::SplitStringPiece( |
| cidr_literal, "/", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL); |
| if (parts.size() != 2) |
| return false; |
| |
| // Parse the IP address. |
| if (!ip_address->AssignFromIPLiteral(parts[0])) |
| return false; |
| |
| // Parse the prefix length. |
| uint32_t number_of_bits; |
| if (!ParseUint32(parts[1], &number_of_bits)) |
| return false; |
| |
| // Make sure the prefix length is in a valid range. |
| if (number_of_bits > ip_address->size() * 8) |
| return false; |
| |
| *prefix_length_in_bits = number_of_bits; |
| return true; |
| } |
| |
| bool ParseURLHostnameToAddress(const base::StringPiece& hostname, |
| IPAddress* ip_address) { |
| if (hostname.size() >= 2 && hostname.front() == '[' && |
| hostname.back() == ']') { |
| // Strip the square brackets that surround IPv6 literals. |
| auto ip_literal = |
| base::StringPiece(hostname).substr(1, hostname.size() - 2); |
| return ip_address->AssignFromIPLiteral(ip_literal) && ip_address->IsIPv6(); |
| } |
| |
| return ip_address->AssignFromIPLiteral(hostname) && ip_address->IsIPv4(); |
| } |
| |
| unsigned CommonPrefixLength(const IPAddress& a1, const IPAddress& a2) { |
| DCHECK_EQ(a1.size(), a2.size()); |
| for (size_t i = 0; i < a1.size(); ++i) { |
| unsigned diff = a1.bytes()[i] ^ a2.bytes()[i]; |
| if (!diff) |
| continue; |
| for (unsigned j = 0; j < CHAR_BIT; ++j) { |
| if (diff & (1 << (CHAR_BIT - 1))) |
| return i * CHAR_BIT + j; |
| diff <<= 1; |
| } |
| NOTREACHED(); |
| } |
| return a1.size() * CHAR_BIT; |
| } |
| |
| unsigned MaskPrefixLength(const IPAddress& mask) { |
| base::StackVector<uint8_t, 16> all_ones; |
| all_ones->resize(mask.size(), 0xFF); |
| return CommonPrefixLength(mask, |
| IPAddress(all_ones->data(), all_ones->size())); |
| } |
| |
| } // namespace net |