| //===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the C++ related Decl classes. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "clang/AST/DeclCXX.h" | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "clang/AST/ASTLambda.h" | 
 | #include "clang/AST/ASTMutationListener.h" | 
 | #include "clang/AST/ASTUnresolvedSet.h" | 
 | #include "clang/AST/CXXInheritance.h" | 
 | #include "clang/AST/DeclBase.h" | 
 | #include "clang/AST/DeclTemplate.h" | 
 | #include "clang/AST/DeclarationName.h" | 
 | #include "clang/AST/Expr.h" | 
 | #include "clang/AST/ExprCXX.h" | 
 | #include "clang/AST/LambdaCapture.h" | 
 | #include "clang/AST/NestedNameSpecifier.h" | 
 | #include "clang/AST/ODRHash.h" | 
 | #include "clang/AST/Type.h" | 
 | #include "clang/AST/TypeLoc.h" | 
 | #include "clang/AST/UnresolvedSet.h" | 
 | #include "clang/Basic/Diagnostic.h" | 
 | #include "clang/Basic/IdentifierTable.h" | 
 | #include "clang/Basic/LLVM.h" | 
 | #include "clang/Basic/LangOptions.h" | 
 | #include "clang/Basic/OperatorKinds.h" | 
 | #include "clang/Basic/PartialDiagnostic.h" | 
 | #include "clang/Basic/SourceLocation.h" | 
 | #include "clang/Basic/Specifiers.h" | 
 | #include "llvm/ADT/None.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/iterator_range.h" | 
 | #include "llvm/Support/Casting.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <cstddef> | 
 | #include <cstdint> | 
 |  | 
 | using namespace clang; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Decl Allocation/Deallocation Method Implementations | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void AccessSpecDecl::anchor() {} | 
 |  | 
 | AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   return new (C, ID) AccessSpecDecl(EmptyShell()); | 
 | } | 
 |  | 
 | void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const { | 
 |   ExternalASTSource *Source = C.getExternalSource(); | 
 |   assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set"); | 
 |   assert(Source && "getFromExternalSource with no external source"); | 
 |  | 
 |   for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I) | 
 |     I.setDecl(cast<NamedDecl>(Source->GetExternalDecl( | 
 |         reinterpret_cast<uintptr_t>(I.getDecl()) >> 2))); | 
 |   Impl.Decls.setLazy(false); | 
 | } | 
 |  | 
 | CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D) | 
 |     : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0), | 
 |       Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false), | 
 |       Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true), | 
 |       HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false), | 
 |       HasPrivateFields(false), HasProtectedFields(false), | 
 |       HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false), | 
 |       HasOnlyCMembers(true), HasInClassInitializer(false), | 
 |       HasUninitializedReferenceMember(false), HasUninitializedFields(false), | 
 |       HasInheritedConstructor(false), HasInheritedAssignment(false), | 
 |       NeedOverloadResolutionForCopyConstructor(false), | 
 |       NeedOverloadResolutionForMoveConstructor(false), | 
 |       NeedOverloadResolutionForMoveAssignment(false), | 
 |       NeedOverloadResolutionForDestructor(false), | 
 |       DefaultedCopyConstructorIsDeleted(false), | 
 |       DefaultedMoveConstructorIsDeleted(false), | 
 |       DefaultedMoveAssignmentIsDeleted(false), | 
 |       DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All), | 
 |       HasTrivialSpecialMembersForCall(SMF_All), | 
 |       DeclaredNonTrivialSpecialMembers(0), | 
 |       DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true), | 
 |       HasConstexprNonCopyMoveConstructor(false), | 
 |       HasDefaultedDefaultConstructor(false), | 
 |       DefaultedDefaultConstructorIsConstexpr(true), | 
 |       HasConstexprDefaultConstructor(false), | 
 |       HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false), | 
 |       UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0), | 
 |       ImplicitCopyConstructorCanHaveConstParamForVBase(true), | 
 |       ImplicitCopyConstructorCanHaveConstParamForNonVBase(true), | 
 |       ImplicitCopyAssignmentHasConstParam(true), | 
 |       HasDeclaredCopyConstructorWithConstParam(false), | 
 |       HasDeclaredCopyAssignmentWithConstParam(false), IsLambda(false), | 
 |       IsParsingBaseSpecifiers(false), HasODRHash(false), Definition(D) {} | 
 |  | 
 | CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const { | 
 |   return Bases.get(Definition->getASTContext().getExternalSource()); | 
 | } | 
 |  | 
 | CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const { | 
 |   return VBases.get(Definition->getASTContext().getExternalSource()); | 
 | } | 
 |  | 
 | CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, | 
 |                              DeclContext *DC, SourceLocation StartLoc, | 
 |                              SourceLocation IdLoc, IdentifierInfo *Id, | 
 |                              CXXRecordDecl *PrevDecl) | 
 |     : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl), | 
 |       DefinitionData(PrevDecl ? PrevDecl->DefinitionData | 
 |                               : nullptr) {} | 
 |  | 
 | CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK, | 
 |                                      DeclContext *DC, SourceLocation StartLoc, | 
 |                                      SourceLocation IdLoc, IdentifierInfo *Id, | 
 |                                      CXXRecordDecl *PrevDecl, | 
 |                                      bool DelayTypeCreation) { | 
 |   auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id, | 
 |                                       PrevDecl); | 
 |   R->MayHaveOutOfDateDef = C.getLangOpts().Modules; | 
 |  | 
 |   // FIXME: DelayTypeCreation seems like such a hack | 
 |   if (!DelayTypeCreation) | 
 |     C.getTypeDeclType(R, PrevDecl); | 
 |   return R; | 
 | } | 
 |  | 
 | CXXRecordDecl * | 
 | CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC, | 
 |                             TypeSourceInfo *Info, SourceLocation Loc, | 
 |                             bool Dependent, bool IsGeneric, | 
 |                             LambdaCaptureDefault CaptureDefault) { | 
 |   auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc, | 
 |                                       nullptr, nullptr); | 
 |   R->IsBeingDefined = true; | 
 |   R->DefinitionData = | 
 |       new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric, | 
 |                                           CaptureDefault); | 
 |   R->MayHaveOutOfDateDef = false; | 
 |   R->setImplicit(true); | 
 |   C.getTypeDeclType(R, /*PrevDecl=*/nullptr); | 
 |   return R; | 
 | } | 
 |  | 
 | CXXRecordDecl * | 
 | CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { | 
 |   auto *R = new (C, ID) CXXRecordDecl( | 
 |       CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(), | 
 |       nullptr, nullptr); | 
 |   R->MayHaveOutOfDateDef = false; | 
 |   return R; | 
 | } | 
 |  | 
 | /// Determine whether a class has a repeated base class. This is intended for | 
 | /// use when determining if a class is standard-layout, so makes no attempt to | 
 | /// handle virtual bases. | 
 | static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) { | 
 |   llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes; | 
 |   SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD}; | 
 |   while (!WorkList.empty()) { | 
 |     const CXXRecordDecl *RD = WorkList.pop_back_val(); | 
 |     for (const CXXBaseSpecifier &BaseSpec : RD->bases()) { | 
 |       if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) { | 
 |         if (!SeenBaseTypes.insert(B).second) | 
 |           return true; | 
 |         WorkList.push_back(B); | 
 |       } | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | void | 
 | CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases, | 
 |                         unsigned NumBases) { | 
 |   ASTContext &C = getASTContext(); | 
 |  | 
 |   if (!data().Bases.isOffset() && data().NumBases > 0) | 
 |     C.Deallocate(data().getBases()); | 
 |  | 
 |   if (NumBases) { | 
 |     if (!C.getLangOpts().CPlusPlus17) { | 
 |       // C++ [dcl.init.aggr]p1: | 
 |       //   An aggregate is [...] a class with [...] no base classes [...]. | 
 |       data().Aggregate = false; | 
 |     } | 
 |  | 
 |     // C++ [class]p4: | 
 |     //   A POD-struct is an aggregate class... | 
 |     data().PlainOldData = false; | 
 |   } | 
 |  | 
 |   // The set of seen virtual base types. | 
 |   llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes; | 
 |  | 
 |   // The virtual bases of this class. | 
 |   SmallVector<const CXXBaseSpecifier *, 8> VBases; | 
 |  | 
 |   data().Bases = new(C) CXXBaseSpecifier [NumBases]; | 
 |   data().NumBases = NumBases; | 
 |   for (unsigned i = 0; i < NumBases; ++i) { | 
 |     data().getBases()[i] = *Bases[i]; | 
 |     // Keep track of inherited vbases for this base class. | 
 |     const CXXBaseSpecifier *Base = Bases[i]; | 
 |     QualType BaseType = Base->getType(); | 
 |     // Skip dependent types; we can't do any checking on them now. | 
 |     if (BaseType->isDependentType()) | 
 |       continue; | 
 |     auto *BaseClassDecl = | 
 |         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); | 
 |  | 
 |     // C++2a [class]p7: | 
 |     //   A standard-layout class is a class that: | 
 |     //    [...] | 
 |     //    -- has all non-static data members and bit-fields in the class and | 
 |     //       its base classes first declared in the same class | 
 |     if (BaseClassDecl->data().HasBasesWithFields || | 
 |         !BaseClassDecl->field_empty()) { | 
 |       if (data().HasBasesWithFields) | 
 |         // Two bases have members or bit-fields: not standard-layout. | 
 |         data().IsStandardLayout = false; | 
 |       data().HasBasesWithFields = true; | 
 |     } | 
 |  | 
 |     // C++11 [class]p7: | 
 |     //   A standard-layout class is a class that: | 
 |     //     -- [...] has [...] at most one base class with non-static data | 
 |     //        members | 
 |     if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers || | 
 |         BaseClassDecl->hasDirectFields()) { | 
 |       if (data().HasBasesWithNonStaticDataMembers) | 
 |         data().IsCXX11StandardLayout = false; | 
 |       data().HasBasesWithNonStaticDataMembers = true; | 
 |     } | 
 |  | 
 |     if (!BaseClassDecl->isEmpty()) { | 
 |       // C++14 [meta.unary.prop]p4: | 
 |       //   T is a class type [...] with [...] no base class B for which | 
 |       //   is_empty<B>::value is false. | 
 |       data().Empty = false; | 
 |     } | 
 |  | 
 |     // C++1z [dcl.init.agg]p1: | 
 |     //   An aggregate is a class with [...] no private or protected base classes | 
 |     if (Base->getAccessSpecifier() != AS_public) | 
 |       data().Aggregate = false; | 
 |  | 
 |     // C++ [class.virtual]p1: | 
 |     //   A class that declares or inherits a virtual function is called a | 
 |     //   polymorphic class. | 
 |     if (BaseClassDecl->isPolymorphic()) { | 
 |       data().Polymorphic = true; | 
 |  | 
 |       //   An aggregate is a class with [...] no virtual functions. | 
 |       data().Aggregate = false; | 
 |     } | 
 |  | 
 |     // C++0x [class]p7: | 
 |     //   A standard-layout class is a class that: [...] | 
 |     //    -- has no non-standard-layout base classes | 
 |     if (!BaseClassDecl->isStandardLayout()) | 
 |       data().IsStandardLayout = false; | 
 |     if (!BaseClassDecl->isCXX11StandardLayout()) | 
 |       data().IsCXX11StandardLayout = false; | 
 |  | 
 |     // Record if this base is the first non-literal field or base. | 
 |     if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C)) | 
 |       data().HasNonLiteralTypeFieldsOrBases = true; | 
 |  | 
 |     // Now go through all virtual bases of this base and add them. | 
 |     for (const auto &VBase : BaseClassDecl->vbases()) { | 
 |       // Add this base if it's not already in the list. | 
 |       if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) { | 
 |         VBases.push_back(&VBase); | 
 |  | 
 |         // C++11 [class.copy]p8: | 
 |         //   The implicitly-declared copy constructor for a class X will have | 
 |         //   the form 'X::X(const X&)' if each [...] virtual base class B of X | 
 |         //   has a copy constructor whose first parameter is of type | 
 |         //   'const B&' or 'const volatile B&' [...] | 
 |         if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl()) | 
 |           if (!VBaseDecl->hasCopyConstructorWithConstParam()) | 
 |             data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; | 
 |  | 
 |         // C++1z [dcl.init.agg]p1: | 
 |         //   An aggregate is a class with [...] no virtual base classes | 
 |         data().Aggregate = false; | 
 |       } | 
 |     } | 
 |  | 
 |     if (Base->isVirtual()) { | 
 |       // Add this base if it's not already in the list. | 
 |       if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second) | 
 |         VBases.push_back(Base); | 
 |  | 
 |       // C++14 [meta.unary.prop] is_empty: | 
 |       //   T is a class type, but not a union type, with ... no virtual base | 
 |       //   classes | 
 |       data().Empty = false; | 
 |  | 
 |       // C++1z [dcl.init.agg]p1: | 
 |       //   An aggregate is a class with [...] no virtual base classes | 
 |       data().Aggregate = false; | 
 |  | 
 |       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: | 
 |       //   A [default constructor, copy/move constructor, or copy/move assignment | 
 |       //   operator for a class X] is trivial [...] if: | 
 |       //    -- class X has [...] no virtual base classes | 
 |       data().HasTrivialSpecialMembers &= SMF_Destructor; | 
 |       data().HasTrivialSpecialMembersForCall &= SMF_Destructor; | 
 |  | 
 |       // C++0x [class]p7: | 
 |       //   A standard-layout class is a class that: [...] | 
 |       //    -- has [...] no virtual base classes | 
 |       data().IsStandardLayout = false; | 
 |       data().IsCXX11StandardLayout = false; | 
 |  | 
 |       // C++11 [dcl.constexpr]p4: | 
 |       //   In the definition of a constexpr constructor [...] | 
 |       //    -- the class shall not have any virtual base classes | 
 |       data().DefaultedDefaultConstructorIsConstexpr = false; | 
 |  | 
 |       // C++1z [class.copy]p8: | 
 |       //   The implicitly-declared copy constructor for a class X will have | 
 |       //   the form 'X::X(const X&)' if each potentially constructed subobject | 
 |       //   has a copy constructor whose first parameter is of type | 
 |       //   'const B&' or 'const volatile B&' [...] | 
 |       if (!BaseClassDecl->hasCopyConstructorWithConstParam()) | 
 |         data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; | 
 |     } else { | 
 |       // C++ [class.ctor]p5: | 
 |       //   A default constructor is trivial [...] if: | 
 |       //    -- all the direct base classes of its class have trivial default | 
 |       //       constructors. | 
 |       if (!BaseClassDecl->hasTrivialDefaultConstructor()) | 
 |         data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; | 
 |  | 
 |       // C++0x [class.copy]p13: | 
 |       //   A copy/move constructor for class X is trivial if [...] | 
 |       //    [...] | 
 |       //    -- the constructor selected to copy/move each direct base class | 
 |       //       subobject is trivial, and | 
 |       if (!BaseClassDecl->hasTrivialCopyConstructor()) | 
 |         data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; | 
 |  | 
 |       if (!BaseClassDecl->hasTrivialCopyConstructorForCall()) | 
 |         data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; | 
 |  | 
 |       // If the base class doesn't have a simple move constructor, we'll eagerly | 
 |       // declare it and perform overload resolution to determine which function | 
 |       // it actually calls. If it does have a simple move constructor, this | 
 |       // check is correct. | 
 |       if (!BaseClassDecl->hasTrivialMoveConstructor()) | 
 |         data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; | 
 |  | 
 |       if (!BaseClassDecl->hasTrivialMoveConstructorForCall()) | 
 |         data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; | 
 |  | 
 |       // C++0x [class.copy]p27: | 
 |       //   A copy/move assignment operator for class X is trivial if [...] | 
 |       //    [...] | 
 |       //    -- the assignment operator selected to copy/move each direct base | 
 |       //       class subobject is trivial, and | 
 |       if (!BaseClassDecl->hasTrivialCopyAssignment()) | 
 |         data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; | 
 |       // If the base class doesn't have a simple move assignment, we'll eagerly | 
 |       // declare it and perform overload resolution to determine which function | 
 |       // it actually calls. If it does have a simple move assignment, this | 
 |       // check is correct. | 
 |       if (!BaseClassDecl->hasTrivialMoveAssignment()) | 
 |         data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; | 
 |  | 
 |       // C++11 [class.ctor]p6: | 
 |       //   If that user-written default constructor would satisfy the | 
 |       //   requirements of a constexpr constructor, the implicitly-defined | 
 |       //   default constructor is constexpr. | 
 |       if (!BaseClassDecl->hasConstexprDefaultConstructor()) | 
 |         data().DefaultedDefaultConstructorIsConstexpr = false; | 
 |  | 
 |       // C++1z [class.copy]p8: | 
 |       //   The implicitly-declared copy constructor for a class X will have | 
 |       //   the form 'X::X(const X&)' if each potentially constructed subobject | 
 |       //   has a copy constructor whose first parameter is of type | 
 |       //   'const B&' or 'const volatile B&' [...] | 
 |       if (!BaseClassDecl->hasCopyConstructorWithConstParam()) | 
 |         data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; | 
 |     } | 
 |  | 
 |     // C++ [class.ctor]p3: | 
 |     //   A destructor is trivial if all the direct base classes of its class | 
 |     //   have trivial destructors. | 
 |     if (!BaseClassDecl->hasTrivialDestructor()) | 
 |       data().HasTrivialSpecialMembers &= ~SMF_Destructor; | 
 |  | 
 |     if (!BaseClassDecl->hasTrivialDestructorForCall()) | 
 |       data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; | 
 |  | 
 |     if (!BaseClassDecl->hasIrrelevantDestructor()) | 
 |       data().HasIrrelevantDestructor = false; | 
 |  | 
 |     // C++11 [class.copy]p18: | 
 |     //   The implicitly-declared copy assignment oeprator for a class X will | 
 |     //   have the form 'X& X::operator=(const X&)' if each direct base class B | 
 |     //   of X has a copy assignment operator whose parameter is of type 'const | 
 |     //   B&', 'const volatile B&', or 'B' [...] | 
 |     if (!BaseClassDecl->hasCopyAssignmentWithConstParam()) | 
 |       data().ImplicitCopyAssignmentHasConstParam = false; | 
 |  | 
 |     // A class has an Objective-C object member if... or any of its bases | 
 |     // has an Objective-C object member. | 
 |     if (BaseClassDecl->hasObjectMember()) | 
 |       setHasObjectMember(true); | 
 |  | 
 |     if (BaseClassDecl->hasVolatileMember()) | 
 |       setHasVolatileMember(true); | 
 |  | 
 |     if (BaseClassDecl->getArgPassingRestrictions() == | 
 |         RecordDecl::APK_CanNeverPassInRegs) | 
 |       setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); | 
 |  | 
 |     // Keep track of the presence of mutable fields. | 
 |     if (BaseClassDecl->hasMutableFields()) { | 
 |       data().HasMutableFields = true; | 
 |       data().NeedOverloadResolutionForCopyConstructor = true; | 
 |     } | 
 |  | 
 |     if (BaseClassDecl->hasUninitializedReferenceMember()) | 
 |       data().HasUninitializedReferenceMember = true; | 
 |  | 
 |     if (!BaseClassDecl->allowConstDefaultInit()) | 
 |       data().HasUninitializedFields = true; | 
 |  | 
 |     addedClassSubobject(BaseClassDecl); | 
 |   } | 
 |  | 
 |   // C++2a [class]p7: | 
 |   //   A class S is a standard-layout class if it: | 
 |   //     -- has at most one base class subobject of any given type | 
 |   // | 
 |   // Note that we only need to check this for classes with more than one base | 
 |   // class. If there's only one base class, and it's standard layout, then | 
 |   // we know there are no repeated base classes. | 
 |   if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this)) | 
 |     data().IsStandardLayout = false; | 
 |  | 
 |   if (VBases.empty()) { | 
 |     data().IsParsingBaseSpecifiers = false; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Create base specifier for any direct or indirect virtual bases. | 
 |   data().VBases = new (C) CXXBaseSpecifier[VBases.size()]; | 
 |   data().NumVBases = VBases.size(); | 
 |   for (int I = 0, E = VBases.size(); I != E; ++I) { | 
 |     QualType Type = VBases[I]->getType(); | 
 |     if (!Type->isDependentType()) | 
 |       addedClassSubobject(Type->getAsCXXRecordDecl()); | 
 |     data().getVBases()[I] = *VBases[I]; | 
 |   } | 
 |  | 
 |   data().IsParsingBaseSpecifiers = false; | 
 | } | 
 |  | 
 | unsigned CXXRecordDecl::getODRHash() const { | 
 |   assert(hasDefinition() && "ODRHash only for records with definitions"); | 
 |  | 
 |   // Previously calculated hash is stored in DefinitionData. | 
 |   if (DefinitionData->HasODRHash) | 
 |     return DefinitionData->ODRHash; | 
 |  | 
 |   // Only calculate hash on first call of getODRHash per record. | 
 |   ODRHash Hash; | 
 |   Hash.AddCXXRecordDecl(getDefinition()); | 
 |   DefinitionData->HasODRHash = true; | 
 |   DefinitionData->ODRHash = Hash.CalculateHash(); | 
 |  | 
 |   return DefinitionData->ODRHash; | 
 | } | 
 |  | 
 | void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) { | 
 |   // C++11 [class.copy]p11: | 
 |   //   A defaulted copy/move constructor for a class X is defined as | 
 |   //   deleted if X has: | 
 |   //    -- a direct or virtual base class B that cannot be copied/moved [...] | 
 |   //    -- a non-static data member of class type M (or array thereof) | 
 |   //       that cannot be copied or moved [...] | 
 |   if (!Subobj->hasSimpleCopyConstructor()) | 
 |     data().NeedOverloadResolutionForCopyConstructor = true; | 
 |   if (!Subobj->hasSimpleMoveConstructor()) | 
 |     data().NeedOverloadResolutionForMoveConstructor = true; | 
 |  | 
 |   // C++11 [class.copy]p23: | 
 |   //   A defaulted copy/move assignment operator for a class X is defined as | 
 |   //   deleted if X has: | 
 |   //    -- a direct or virtual base class B that cannot be copied/moved [...] | 
 |   //    -- a non-static data member of class type M (or array thereof) | 
 |   //        that cannot be copied or moved [...] | 
 |   if (!Subobj->hasSimpleMoveAssignment()) | 
 |     data().NeedOverloadResolutionForMoveAssignment = true; | 
 |  | 
 |   // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5: | 
 |   //   A defaulted [ctor or dtor] for a class X is defined as | 
 |   //   deleted if X has: | 
 |   //    -- any direct or virtual base class [...] has a type with a destructor | 
 |   //       that is deleted or inaccessible from the defaulted [ctor or dtor]. | 
 |   //    -- any non-static data member has a type with a destructor | 
 |   //       that is deleted or inaccessible from the defaulted [ctor or dtor]. | 
 |   if (!Subobj->hasSimpleDestructor()) { | 
 |     data().NeedOverloadResolutionForCopyConstructor = true; | 
 |     data().NeedOverloadResolutionForMoveConstructor = true; | 
 |     data().NeedOverloadResolutionForDestructor = true; | 
 |   } | 
 | } | 
 |  | 
 | bool CXXRecordDecl::hasAnyDependentBases() const { | 
 |   if (!isDependentContext()) | 
 |     return false; | 
 |  | 
 |   return !forallBases([](const CXXRecordDecl *) { return true; }); | 
 | } | 
 |  | 
 | bool CXXRecordDecl::isTriviallyCopyable() const { | 
 |   // C++0x [class]p5: | 
 |   //   A trivially copyable class is a class that: | 
 |   //   -- has no non-trivial copy constructors, | 
 |   if (hasNonTrivialCopyConstructor()) return false; | 
 |   //   -- has no non-trivial move constructors, | 
 |   if (hasNonTrivialMoveConstructor()) return false; | 
 |   //   -- has no non-trivial copy assignment operators, | 
 |   if (hasNonTrivialCopyAssignment()) return false; | 
 |   //   -- has no non-trivial move assignment operators, and | 
 |   if (hasNonTrivialMoveAssignment()) return false; | 
 |   //   -- has a trivial destructor. | 
 |   if (!hasTrivialDestructor()) return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | void CXXRecordDecl::markedVirtualFunctionPure() { | 
 |   // C++ [class.abstract]p2: | 
 |   //   A class is abstract if it has at least one pure virtual function. | 
 |   data().Abstract = true; | 
 | } | 
 |  | 
 | bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType( | 
 |     ASTContext &Ctx, const CXXRecordDecl *XFirst) { | 
 |   if (!getNumBases()) | 
 |     return false; | 
 |  | 
 |   llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases; | 
 |   llvm::SmallPtrSet<const CXXRecordDecl*, 8> M; | 
 |   SmallVector<const CXXRecordDecl*, 8> WorkList; | 
 |  | 
 |   // Visit a type that we have determined is an element of M(S). | 
 |   auto Visit = [&](const CXXRecordDecl *RD) -> bool { | 
 |     RD = RD->getCanonicalDecl(); | 
 |  | 
 |     // C++2a [class]p8: | 
 |     //   A class S is a standard-layout class if it [...] has no element of the | 
 |     //   set M(S) of types as a base class. | 
 |     // | 
 |     // If we find a subobject of an empty type, it might also be a base class, | 
 |     // so we'll need to walk the base classes to check. | 
 |     if (!RD->data().HasBasesWithFields) { | 
 |       // Walk the bases the first time, stopping if we find the type. Build a | 
 |       // set of them so we don't need to walk them again. | 
 |       if (Bases.empty()) { | 
 |         bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool { | 
 |           Base = Base->getCanonicalDecl(); | 
 |           if (RD == Base) | 
 |             return false; | 
 |           Bases.insert(Base); | 
 |           return true; | 
 |         }); | 
 |         if (RDIsBase) | 
 |           return true; | 
 |       } else { | 
 |         if (Bases.count(RD)) | 
 |           return true; | 
 |       } | 
 |     } | 
 |  | 
 |     if (M.insert(RD).second) | 
 |       WorkList.push_back(RD); | 
 |     return false; | 
 |   }; | 
 |  | 
 |   if (Visit(XFirst)) | 
 |     return true; | 
 |  | 
 |   while (!WorkList.empty()) { | 
 |     const CXXRecordDecl *X = WorkList.pop_back_val(); | 
 |  | 
 |     // FIXME: We don't check the bases of X. That matches the standard, but | 
 |     // that sure looks like a wording bug. | 
 |  | 
 |     //   -- If X is a non-union class type with a non-static data member | 
 |     //      [recurse to] the first non-static data member of X | 
 |     //   -- If X is a union type, [recurse to union members] | 
 |     for (auto *FD : X->fields()) { | 
 |       // FIXME: Should we really care about the type of the first non-static | 
 |       // data member of a non-union if there are preceding unnamed bit-fields? | 
 |       if (FD->isUnnamedBitfield()) | 
 |         continue; | 
 |  | 
 |       //   -- If X is n array type, [visit the element type] | 
 |       QualType T = Ctx.getBaseElementType(FD->getType()); | 
 |       if (auto *RD = T->getAsCXXRecordDecl()) | 
 |         if (Visit(RD)) | 
 |           return true; | 
 |  | 
 |       if (!X->isUnion()) | 
 |         break; | 
 |     } | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | void CXXRecordDecl::addedMember(Decl *D) { | 
 |   if (!D->isImplicit() && | 
 |       !isa<FieldDecl>(D) && | 
 |       !isa<IndirectFieldDecl>(D) && | 
 |       (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class || | 
 |         cast<TagDecl>(D)->getTagKind() == TTK_Interface)) | 
 |     data().HasOnlyCMembers = false; | 
 |  | 
 |   // Ignore friends and invalid declarations. | 
 |   if (D->getFriendObjectKind() || D->isInvalidDecl()) | 
 |     return; | 
 |  | 
 |   auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); | 
 |   if (FunTmpl) | 
 |     D = FunTmpl->getTemplatedDecl(); | 
 |  | 
 |   // FIXME: Pass NamedDecl* to addedMember? | 
 |   Decl *DUnderlying = D; | 
 |   if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) { | 
 |     DUnderlying = ND->getUnderlyingDecl(); | 
 |     if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(DUnderlying)) | 
 |       DUnderlying = UnderlyingFunTmpl->getTemplatedDecl(); | 
 |   } | 
 |  | 
 |   if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { | 
 |     if (Method->isVirtual()) { | 
 |       // C++ [dcl.init.aggr]p1: | 
 |       //   An aggregate is an array or a class with [...] no virtual functions. | 
 |       data().Aggregate = false; | 
 |  | 
 |       // C++ [class]p4: | 
 |       //   A POD-struct is an aggregate class... | 
 |       data().PlainOldData = false; | 
 |  | 
 |       // C++14 [meta.unary.prop]p4: | 
 |       //   T is a class type [...] with [...] no virtual member functions... | 
 |       data().Empty = false; | 
 |  | 
 |       // C++ [class.virtual]p1: | 
 |       //   A class that declares or inherits a virtual function is called a | 
 |       //   polymorphic class. | 
 |       data().Polymorphic = true; | 
 |  | 
 |       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: | 
 |       //   A [default constructor, copy/move constructor, or copy/move | 
 |       //   assignment operator for a class X] is trivial [...] if: | 
 |       //    -- class X has no virtual functions [...] | 
 |       data().HasTrivialSpecialMembers &= SMF_Destructor; | 
 |       data().HasTrivialSpecialMembersForCall &= SMF_Destructor; | 
 |  | 
 |       // C++0x [class]p7: | 
 |       //   A standard-layout class is a class that: [...] | 
 |       //    -- has no virtual functions | 
 |       data().IsStandardLayout = false; | 
 |       data().IsCXX11StandardLayout = false; | 
 |     } | 
 |   } | 
 |  | 
 |   // Notify the listener if an implicit member was added after the definition | 
 |   // was completed. | 
 |   if (!isBeingDefined() && D->isImplicit()) | 
 |     if (ASTMutationListener *L = getASTMutationListener()) | 
 |       L->AddedCXXImplicitMember(data().Definition, D); | 
 |  | 
 |   // The kind of special member this declaration is, if any. | 
 |   unsigned SMKind = 0; | 
 |  | 
 |   // Handle constructors. | 
 |   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { | 
 |     if (!Constructor->isImplicit()) { | 
 |       // Note that we have a user-declared constructor. | 
 |       data().UserDeclaredConstructor = true; | 
 |  | 
 |       // C++ [class]p4: | 
 |       //   A POD-struct is an aggregate class [...] | 
 |       // Since the POD bit is meant to be C++03 POD-ness, clear it even if the | 
 |       // type is technically an aggregate in C++0x since it wouldn't be in 03. | 
 |       data().PlainOldData = false; | 
 |     } | 
 |  | 
 |     if (Constructor->isDefaultConstructor()) { | 
 |       SMKind |= SMF_DefaultConstructor; | 
 |  | 
 |       if (Constructor->isUserProvided()) | 
 |         data().UserProvidedDefaultConstructor = true; | 
 |       if (Constructor->isConstexpr()) | 
 |         data().HasConstexprDefaultConstructor = true; | 
 |       if (Constructor->isDefaulted()) | 
 |         data().HasDefaultedDefaultConstructor = true; | 
 |     } | 
 |  | 
 |     if (!FunTmpl) { | 
 |       unsigned Quals; | 
 |       if (Constructor->isCopyConstructor(Quals)) { | 
 |         SMKind |= SMF_CopyConstructor; | 
 |  | 
 |         if (Quals & Qualifiers::Const) | 
 |           data().HasDeclaredCopyConstructorWithConstParam = true; | 
 |       } else if (Constructor->isMoveConstructor()) | 
 |         SMKind |= SMF_MoveConstructor; | 
 |     } | 
 |  | 
 |     // C++11 [dcl.init.aggr]p1: DR1518 | 
 |     //   An aggregate is an array or a class with no user-provided, explicit, or | 
 |     //   inherited constructors | 
 |     if (Constructor->isUserProvided() || Constructor->isExplicit()) | 
 |       data().Aggregate = false; | 
 |   } | 
 |  | 
 |   // Handle constructors, including those inherited from base classes. | 
 |   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(DUnderlying)) { | 
 |     // Record if we see any constexpr constructors which are neither copy | 
 |     // nor move constructors. | 
 |     // C++1z [basic.types]p10: | 
 |     //   [...] has at least one constexpr constructor or constructor template | 
 |     //   (possibly inherited from a base class) that is not a copy or move | 
 |     //   constructor [...] | 
 |     if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor()) | 
 |       data().HasConstexprNonCopyMoveConstructor = true; | 
 |   } | 
 |  | 
 |   // Handle destructors. | 
 |   if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) { | 
 |     SMKind |= SMF_Destructor; | 
 |  | 
 |     if (DD->isUserProvided()) | 
 |       data().HasIrrelevantDestructor = false; | 
 |     // If the destructor is explicitly defaulted and not trivial or not public | 
 |     // or if the destructor is deleted, we clear HasIrrelevantDestructor in | 
 |     // finishedDefaultedOrDeletedMember. | 
 |  | 
 |     // C++11 [class.dtor]p5: | 
 |     //   A destructor is trivial if [...] the destructor is not virtual. | 
 |     if (DD->isVirtual()) { | 
 |       data().HasTrivialSpecialMembers &= ~SMF_Destructor; | 
 |       data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; | 
 |     } | 
 |   } | 
 |  | 
 |   // Handle member functions. | 
 |   if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { | 
 |     if (Method->isCopyAssignmentOperator()) { | 
 |       SMKind |= SMF_CopyAssignment; | 
 |  | 
 |       const auto *ParamTy = | 
 |           Method->getParamDecl(0)->getType()->getAs<ReferenceType>(); | 
 |       if (!ParamTy || ParamTy->getPointeeType().isConstQualified()) | 
 |         data().HasDeclaredCopyAssignmentWithConstParam = true; | 
 |     } | 
 |  | 
 |     if (Method->isMoveAssignmentOperator()) | 
 |       SMKind |= SMF_MoveAssignment; | 
 |  | 
 |     // Keep the list of conversion functions up-to-date. | 
 |     if (auto *Conversion = dyn_cast<CXXConversionDecl>(D)) { | 
 |       // FIXME: We use the 'unsafe' accessor for the access specifier here, | 
 |       // because Sema may not have set it yet. That's really just a misdesign | 
 |       // in Sema. However, LLDB *will* have set the access specifier correctly, | 
 |       // and adds declarations after the class is technically completed, | 
 |       // so completeDefinition()'s overriding of the access specifiers doesn't | 
 |       // work. | 
 |       AccessSpecifier AS = Conversion->getAccessUnsafe(); | 
 |  | 
 |       if (Conversion->getPrimaryTemplate()) { | 
 |         // We don't record specializations. | 
 |       } else { | 
 |         ASTContext &Ctx = getASTContext(); | 
 |         ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx); | 
 |         NamedDecl *Primary = | 
 |             FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion); | 
 |         if (Primary->getPreviousDecl()) | 
 |           Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()), | 
 |                               Primary, AS); | 
 |         else | 
 |           Conversions.addDecl(Ctx, Primary, AS); | 
 |       } | 
 |     } | 
 |  | 
 |     if (SMKind) { | 
 |       // If this is the first declaration of a special member, we no longer have | 
 |       // an implicit trivial special member. | 
 |       data().HasTrivialSpecialMembers &= | 
 |           data().DeclaredSpecialMembers | ~SMKind; | 
 |       data().HasTrivialSpecialMembersForCall &= | 
 |           data().DeclaredSpecialMembers | ~SMKind; | 
 |  | 
 |       if (!Method->isImplicit() && !Method->isUserProvided()) { | 
 |         // This method is user-declared but not user-provided. We can't work out | 
 |         // whether it's trivial yet (not until we get to the end of the class). | 
 |         // We'll handle this method in finishedDefaultedOrDeletedMember. | 
 |       } else if (Method->isTrivial()) { | 
 |         data().HasTrivialSpecialMembers |= SMKind; | 
 |         data().HasTrivialSpecialMembersForCall |= SMKind; | 
 |       } else if (Method->isTrivialForCall()) { | 
 |         data().HasTrivialSpecialMembersForCall |= SMKind; | 
 |         data().DeclaredNonTrivialSpecialMembers |= SMKind; | 
 |       } else { | 
 |         data().DeclaredNonTrivialSpecialMembers |= SMKind; | 
 |         // If this is a user-provided function, do not set | 
 |         // DeclaredNonTrivialSpecialMembersForCall here since we don't know | 
 |         // yet whether the method would be considered non-trivial for the | 
 |         // purpose of calls (attribute "trivial_abi" can be dropped from the | 
 |         // class later, which can change the special method's triviality). | 
 |         if (!Method->isUserProvided()) | 
 |           data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; | 
 |       } | 
 |  | 
 |       // Note when we have declared a declared special member, and suppress the | 
 |       // implicit declaration of this special member. | 
 |       data().DeclaredSpecialMembers |= SMKind; | 
 |  | 
 |       if (!Method->isImplicit()) { | 
 |         data().UserDeclaredSpecialMembers |= SMKind; | 
 |  | 
 |         // C++03 [class]p4: | 
 |         //   A POD-struct is an aggregate class that has [...] no user-defined | 
 |         //   copy assignment operator and no user-defined destructor. | 
 |         // | 
 |         // Since the POD bit is meant to be C++03 POD-ness, and in C++03, | 
 |         // aggregates could not have any constructors, clear it even for an | 
 |         // explicitly defaulted or deleted constructor. | 
 |         // type is technically an aggregate in C++0x since it wouldn't be in 03. | 
 |         // | 
 |         // Also, a user-declared move assignment operator makes a class non-POD. | 
 |         // This is an extension in C++03. | 
 |         data().PlainOldData = false; | 
 |       } | 
 |     } | 
 |  | 
 |     return; | 
 |   } | 
 |  | 
 |   // Handle non-static data members. | 
 |   if (const auto *Field = dyn_cast<FieldDecl>(D)) { | 
 |     ASTContext &Context = getASTContext(); | 
 |  | 
 |     // C++2a [class]p7: | 
 |     //   A standard-layout class is a class that: | 
 |     //    [...] | 
 |     //    -- has all non-static data members and bit-fields in the class and | 
 |     //       its base classes first declared in the same class | 
 |     if (data().HasBasesWithFields) | 
 |       data().IsStandardLayout = false; | 
 |  | 
 |     // C++ [class.bit]p2: | 
 |     //   A declaration for a bit-field that omits the identifier declares an | 
 |     //   unnamed bit-field. Unnamed bit-fields are not members and cannot be | 
 |     //   initialized. | 
 |     if (Field->isUnnamedBitfield()) { | 
 |       // C++ [meta.unary.prop]p4: [LWG2358] | 
 |       //   T is a class type [...] with [...] no unnamed bit-fields of non-zero | 
 |       //   length | 
 |       if (data().Empty && !Field->isZeroLengthBitField(Context) && | 
 |           Context.getLangOpts().getClangABICompat() > | 
 |               LangOptions::ClangABI::Ver6) | 
 |         data().Empty = false; | 
 |       return; | 
 |     } | 
 |  | 
 |     // C++11 [class]p7: | 
 |     //   A standard-layout class is a class that: | 
 |     //    -- either has no non-static data members in the most derived class | 
 |     //       [...] or has no base classes with non-static data members | 
 |     if (data().HasBasesWithNonStaticDataMembers) | 
 |       data().IsCXX11StandardLayout = false; | 
 |  | 
 |     // C++ [dcl.init.aggr]p1: | 
 |     //   An aggregate is an array or a class (clause 9) with [...] no | 
 |     //   private or protected non-static data members (clause 11). | 
 |     // | 
 |     // A POD must be an aggregate. | 
 |     if (D->getAccess() == AS_private || D->getAccess() == AS_protected) { | 
 |       data().Aggregate = false; | 
 |       data().PlainOldData = false; | 
 |     } | 
 |  | 
 |     // Track whether this is the first field. We use this when checking | 
 |     // whether the class is standard-layout below. | 
 |     bool IsFirstField = !data().HasPrivateFields && | 
 |                         !data().HasProtectedFields && !data().HasPublicFields; | 
 |  | 
 |     // C++0x [class]p7: | 
 |     //   A standard-layout class is a class that: | 
 |     //    [...] | 
 |     //    -- has the same access control for all non-static data members, | 
 |     switch (D->getAccess()) { | 
 |     case AS_private:    data().HasPrivateFields = true;   break; | 
 |     case AS_protected:  data().HasProtectedFields = true; break; | 
 |     case AS_public:     data().HasPublicFields = true;    break; | 
 |     case AS_none:       llvm_unreachable("Invalid access specifier"); | 
 |     }; | 
 |     if ((data().HasPrivateFields + data().HasProtectedFields + | 
 |          data().HasPublicFields) > 1) { | 
 |       data().IsStandardLayout = false; | 
 |       data().IsCXX11StandardLayout = false; | 
 |     } | 
 |  | 
 |     // Keep track of the presence of mutable fields. | 
 |     if (Field->isMutable()) { | 
 |       data().HasMutableFields = true; | 
 |       data().NeedOverloadResolutionForCopyConstructor = true; | 
 |     } | 
 |  | 
 |     // C++11 [class.union]p8, DR1460: | 
 |     //   If X is a union, a non-static data member of X that is not an anonymous | 
 |     //   union is a variant member of X. | 
 |     if (isUnion() && !Field->isAnonymousStructOrUnion()) | 
 |       data().HasVariantMembers = true; | 
 |  | 
 |     // C++0x [class]p9: | 
 |     //   A POD struct is a class that is both a trivial class and a | 
 |     //   standard-layout class, and has no non-static data members of type | 
 |     //   non-POD struct, non-POD union (or array of such types). | 
 |     // | 
 |     // Automatic Reference Counting: the presence of a member of Objective-C pointer type | 
 |     // that does not explicitly have no lifetime makes the class a non-POD. | 
 |     QualType T = Context.getBaseElementType(Field->getType()); | 
 |     if (T->isObjCRetainableType() || T.isObjCGCStrong()) { | 
 |       if (T.hasNonTrivialObjCLifetime()) { | 
 |         // Objective-C Automatic Reference Counting: | 
 |         //   If a class has a non-static data member of Objective-C pointer | 
 |         //   type (or array thereof), it is a non-POD type and its | 
 |         //   default constructor (if any), copy constructor, move constructor, | 
 |         //   copy assignment operator, move assignment operator, and destructor are | 
 |         //   non-trivial. | 
 |         setHasObjectMember(true); | 
 |         struct DefinitionData &Data = data(); | 
 |         Data.PlainOldData = false; | 
 |         Data.HasTrivialSpecialMembers = 0; | 
 |  | 
 |         // __strong or __weak fields do not make special functions non-trivial | 
 |         // for the purpose of calls. | 
 |         Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime(); | 
 |         if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak) | 
 |           data().HasTrivialSpecialMembersForCall = 0; | 
 |  | 
 |         // Structs with __weak fields should never be passed directly. | 
 |         if (LT == Qualifiers::OCL_Weak) | 
 |           setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); | 
 |  | 
 |         Data.HasIrrelevantDestructor = false; | 
 |       } else if (!Context.getLangOpts().ObjCAutoRefCount) { | 
 |         setHasObjectMember(true); | 
 |       } | 
 |     } else if (!T.isCXX98PODType(Context)) | 
 |       data().PlainOldData = false; | 
 |  | 
 |     if (T->isReferenceType()) { | 
 |       if (!Field->hasInClassInitializer()) | 
 |         data().HasUninitializedReferenceMember = true; | 
 |  | 
 |       // C++0x [class]p7: | 
 |       //   A standard-layout class is a class that: | 
 |       //    -- has no non-static data members of type [...] reference, | 
 |       data().IsStandardLayout = false; | 
 |       data().IsCXX11StandardLayout = false; | 
 |  | 
 |       // C++1z [class.copy.ctor]p10: | 
 |       //   A defaulted copy constructor for a class X is defined as deleted if X has: | 
 |       //    -- a non-static data member of rvalue reference type | 
 |       if (T->isRValueReferenceType()) | 
 |         data().DefaultedCopyConstructorIsDeleted = true; | 
 |     } | 
 |  | 
 |     if (!Field->hasInClassInitializer() && !Field->isMutable()) { | 
 |       if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) { | 
 |         if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit()) | 
 |           data().HasUninitializedFields = true; | 
 |       } else { | 
 |         data().HasUninitializedFields = true; | 
 |       } | 
 |     } | 
 |  | 
 |     // Record if this field is the first non-literal or volatile field or base. | 
 |     if (!T->isLiteralType(Context) || T.isVolatileQualified()) | 
 |       data().HasNonLiteralTypeFieldsOrBases = true; | 
 |  | 
 |     if (Field->hasInClassInitializer() || | 
 |         (Field->isAnonymousStructOrUnion() && | 
 |          Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) { | 
 |       data().HasInClassInitializer = true; | 
 |  | 
 |       // C++11 [class]p5: | 
 |       //   A default constructor is trivial if [...] no non-static data member | 
 |       //   of its class has a brace-or-equal-initializer. | 
 |       data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; | 
 |  | 
 |       // C++11 [dcl.init.aggr]p1: | 
 |       //   An aggregate is a [...] class with [...] no | 
 |       //   brace-or-equal-initializers for non-static data members. | 
 |       // | 
 |       // This rule was removed in C++14. | 
 |       if (!getASTContext().getLangOpts().CPlusPlus14) | 
 |         data().Aggregate = false; | 
 |  | 
 |       // C++11 [class]p10: | 
 |       //   A POD struct is [...] a trivial class. | 
 |       data().PlainOldData = false; | 
 |     } | 
 |  | 
 |     // C++11 [class.copy]p23: | 
 |     //   A defaulted copy/move assignment operator for a class X is defined | 
 |     //   as deleted if X has: | 
 |     //    -- a non-static data member of reference type | 
 |     if (T->isReferenceType()) | 
 |       data().DefaultedMoveAssignmentIsDeleted = true; | 
 |  | 
 |     if (const auto *RecordTy = T->getAs<RecordType>()) { | 
 |       auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl()); | 
 |       if (FieldRec->getDefinition()) { | 
 |         addedClassSubobject(FieldRec); | 
 |  | 
 |         // We may need to perform overload resolution to determine whether a | 
 |         // field can be moved if it's const or volatile qualified. | 
 |         if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) { | 
 |           // We need to care about 'const' for the copy constructor because an | 
 |           // implicit copy constructor might be declared with a non-const | 
 |           // parameter. | 
 |           data().NeedOverloadResolutionForCopyConstructor = true; | 
 |           data().NeedOverloadResolutionForMoveConstructor = true; | 
 |           data().NeedOverloadResolutionForMoveAssignment = true; | 
 |         } | 
 |  | 
 |         // C++11 [class.ctor]p5, C++11 [class.copy]p11: | 
 |         //   A defaulted [special member] for a class X is defined as | 
 |         //   deleted if: | 
 |         //    -- X is a union-like class that has a variant member with a | 
 |         //       non-trivial [corresponding special member] | 
 |         if (isUnion()) { | 
 |           if (FieldRec->hasNonTrivialCopyConstructor()) | 
 |             data().DefaultedCopyConstructorIsDeleted = true; | 
 |           if (FieldRec->hasNonTrivialMoveConstructor()) | 
 |             data().DefaultedMoveConstructorIsDeleted = true; | 
 |           if (FieldRec->hasNonTrivialMoveAssignment()) | 
 |             data().DefaultedMoveAssignmentIsDeleted = true; | 
 |           if (FieldRec->hasNonTrivialDestructor()) | 
 |             data().DefaultedDestructorIsDeleted = true; | 
 |         } | 
 |  | 
 |         // For an anonymous union member, our overload resolution will perform | 
 |         // overload resolution for its members. | 
 |         if (Field->isAnonymousStructOrUnion()) { | 
 |           data().NeedOverloadResolutionForCopyConstructor |= | 
 |               FieldRec->data().NeedOverloadResolutionForCopyConstructor; | 
 |           data().NeedOverloadResolutionForMoveConstructor |= | 
 |               FieldRec->data().NeedOverloadResolutionForMoveConstructor; | 
 |           data().NeedOverloadResolutionForMoveAssignment |= | 
 |               FieldRec->data().NeedOverloadResolutionForMoveAssignment; | 
 |           data().NeedOverloadResolutionForDestructor |= | 
 |               FieldRec->data().NeedOverloadResolutionForDestructor; | 
 |         } | 
 |  | 
 |         // C++0x [class.ctor]p5: | 
 |         //   A default constructor is trivial [...] if: | 
 |         //    -- for all the non-static data members of its class that are of | 
 |         //       class type (or array thereof), each such class has a trivial | 
 |         //       default constructor. | 
 |         if (!FieldRec->hasTrivialDefaultConstructor()) | 
 |           data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; | 
 |  | 
 |         // C++0x [class.copy]p13: | 
 |         //   A copy/move constructor for class X is trivial if [...] | 
 |         //    [...] | 
 |         //    -- for each non-static data member of X that is of class type (or | 
 |         //       an array thereof), the constructor selected to copy/move that | 
 |         //       member is trivial; | 
 |         if (!FieldRec->hasTrivialCopyConstructor()) | 
 |           data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; | 
 |  | 
 |         if (!FieldRec->hasTrivialCopyConstructorForCall()) | 
 |           data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; | 
 |  | 
 |         // If the field doesn't have a simple move constructor, we'll eagerly | 
 |         // declare the move constructor for this class and we'll decide whether | 
 |         // it's trivial then. | 
 |         if (!FieldRec->hasTrivialMoveConstructor()) | 
 |           data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; | 
 |  | 
 |         if (!FieldRec->hasTrivialMoveConstructorForCall()) | 
 |           data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; | 
 |  | 
 |         // C++0x [class.copy]p27: | 
 |         //   A copy/move assignment operator for class X is trivial if [...] | 
 |         //    [...] | 
 |         //    -- for each non-static data member of X that is of class type (or | 
 |         //       an array thereof), the assignment operator selected to | 
 |         //       copy/move that member is trivial; | 
 |         if (!FieldRec->hasTrivialCopyAssignment()) | 
 |           data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; | 
 |         // If the field doesn't have a simple move assignment, we'll eagerly | 
 |         // declare the move assignment for this class and we'll decide whether | 
 |         // it's trivial then. | 
 |         if (!FieldRec->hasTrivialMoveAssignment()) | 
 |           data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; | 
 |  | 
 |         if (!FieldRec->hasTrivialDestructor()) | 
 |           data().HasTrivialSpecialMembers &= ~SMF_Destructor; | 
 |         if (!FieldRec->hasTrivialDestructorForCall()) | 
 |           data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; | 
 |         if (!FieldRec->hasIrrelevantDestructor()) | 
 |           data().HasIrrelevantDestructor = false; | 
 |         if (FieldRec->hasObjectMember()) | 
 |           setHasObjectMember(true); | 
 |         if (FieldRec->hasVolatileMember()) | 
 |           setHasVolatileMember(true); | 
 |         if (FieldRec->getArgPassingRestrictions() == | 
 |             RecordDecl::APK_CanNeverPassInRegs) | 
 |           setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); | 
 |  | 
 |         // C++0x [class]p7: | 
 |         //   A standard-layout class is a class that: | 
 |         //    -- has no non-static data members of type non-standard-layout | 
 |         //       class (or array of such types) [...] | 
 |         if (!FieldRec->isStandardLayout()) | 
 |           data().IsStandardLayout = false; | 
 |         if (!FieldRec->isCXX11StandardLayout()) | 
 |           data().IsCXX11StandardLayout = false; | 
 |  | 
 |         // C++2a [class]p7: | 
 |         //   A standard-layout class is a class that: | 
 |         //    [...] | 
 |         //    -- has no element of the set M(S) of types as a base class. | 
 |         if (data().IsStandardLayout && (isUnion() || IsFirstField) && | 
 |             hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec)) | 
 |           data().IsStandardLayout = false; | 
 |  | 
 |         // C++11 [class]p7: | 
 |         //   A standard-layout class is a class that: | 
 |         //    -- has no base classes of the same type as the first non-static | 
 |         //       data member | 
 |         if (data().IsCXX11StandardLayout && IsFirstField) { | 
 |           // FIXME: We should check all base classes here, not just direct | 
 |           // base classes. | 
 |           for (const auto &BI : bases()) { | 
 |             if (Context.hasSameUnqualifiedType(BI.getType(), T)) { | 
 |               data().IsCXX11StandardLayout = false; | 
 |               break; | 
 |             } | 
 |           } | 
 |         } | 
 |  | 
 |         // Keep track of the presence of mutable fields. | 
 |         if (FieldRec->hasMutableFields()) { | 
 |           data().HasMutableFields = true; | 
 |           data().NeedOverloadResolutionForCopyConstructor = true; | 
 |         } | 
 |  | 
 |         // C++11 [class.copy]p13: | 
 |         //   If the implicitly-defined constructor would satisfy the | 
 |         //   requirements of a constexpr constructor, the implicitly-defined | 
 |         //   constructor is constexpr. | 
 |         // C++11 [dcl.constexpr]p4: | 
 |         //    -- every constructor involved in initializing non-static data | 
 |         //       members [...] shall be a constexpr constructor | 
 |         if (!Field->hasInClassInitializer() && | 
 |             !FieldRec->hasConstexprDefaultConstructor() && !isUnion()) | 
 |           // The standard requires any in-class initializer to be a constant | 
 |           // expression. We consider this to be a defect. | 
 |           data().DefaultedDefaultConstructorIsConstexpr = false; | 
 |  | 
 |         // C++11 [class.copy]p8: | 
 |         //   The implicitly-declared copy constructor for a class X will have | 
 |         //   the form 'X::X(const X&)' if each potentially constructed subobject | 
 |         //   of a class type M (or array thereof) has a copy constructor whose | 
 |         //   first parameter is of type 'const M&' or 'const volatile M&'. | 
 |         if (!FieldRec->hasCopyConstructorWithConstParam()) | 
 |           data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; | 
 |  | 
 |         // C++11 [class.copy]p18: | 
 |         //   The implicitly-declared copy assignment oeprator for a class X will | 
 |         //   have the form 'X& X::operator=(const X&)' if [...] for all the | 
 |         //   non-static data members of X that are of a class type M (or array | 
 |         //   thereof), each such class type has a copy assignment operator whose | 
 |         //   parameter is of type 'const M&', 'const volatile M&' or 'M'. | 
 |         if (!FieldRec->hasCopyAssignmentWithConstParam()) | 
 |           data().ImplicitCopyAssignmentHasConstParam = false; | 
 |  | 
 |         if (FieldRec->hasUninitializedReferenceMember() && | 
 |             !Field->hasInClassInitializer()) | 
 |           data().HasUninitializedReferenceMember = true; | 
 |  | 
 |         // C++11 [class.union]p8, DR1460: | 
 |         //   a non-static data member of an anonymous union that is a member of | 
 |         //   X is also a variant member of X. | 
 |         if (FieldRec->hasVariantMembers() && | 
 |             Field->isAnonymousStructOrUnion()) | 
 |           data().HasVariantMembers = true; | 
 |       } | 
 |     } else { | 
 |       // Base element type of field is a non-class type. | 
 |       if (!T->isLiteralType(Context) || | 
 |           (!Field->hasInClassInitializer() && !isUnion())) | 
 |         data().DefaultedDefaultConstructorIsConstexpr = false; | 
 |  | 
 |       // C++11 [class.copy]p23: | 
 |       //   A defaulted copy/move assignment operator for a class X is defined | 
 |       //   as deleted if X has: | 
 |       //    -- a non-static data member of const non-class type (or array | 
 |       //       thereof) | 
 |       if (T.isConstQualified()) | 
 |         data().DefaultedMoveAssignmentIsDeleted = true; | 
 |     } | 
 |  | 
 |     // C++14 [meta.unary.prop]p4: | 
 |     //   T is a class type [...] with [...] no non-static data members | 
 |     data().Empty = false; | 
 |   } | 
 |  | 
 |   // Handle using declarations of conversion functions. | 
 |   if (auto *Shadow = dyn_cast<UsingShadowDecl>(D)) { | 
 |     if (Shadow->getDeclName().getNameKind() | 
 |           == DeclarationName::CXXConversionFunctionName) { | 
 |       ASTContext &Ctx = getASTContext(); | 
 |       data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess()); | 
 |     } | 
 |   } | 
 |  | 
 |   if (const auto *Using = dyn_cast<UsingDecl>(D)) { | 
 |     if (Using->getDeclName().getNameKind() == | 
 |         DeclarationName::CXXConstructorName) { | 
 |       data().HasInheritedConstructor = true; | 
 |       // C++1z [dcl.init.aggr]p1: | 
 |       //  An aggregate is [...] a class [...] with no inherited constructors | 
 |       data().Aggregate = false; | 
 |     } | 
 |  | 
 |     if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal) | 
 |       data().HasInheritedAssignment = true; | 
 |   } | 
 | } | 
 |  | 
 | void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) { | 
 |   assert(!D->isImplicit() && !D->isUserProvided()); | 
 |  | 
 |   // The kind of special member this declaration is, if any. | 
 |   unsigned SMKind = 0; | 
 |  | 
 |   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { | 
 |     if (Constructor->isDefaultConstructor()) { | 
 |       SMKind |= SMF_DefaultConstructor; | 
 |       if (Constructor->isConstexpr()) | 
 |         data().HasConstexprDefaultConstructor = true; | 
 |     } | 
 |     if (Constructor->isCopyConstructor()) | 
 |       SMKind |= SMF_CopyConstructor; | 
 |     else if (Constructor->isMoveConstructor()) | 
 |       SMKind |= SMF_MoveConstructor; | 
 |     else if (Constructor->isConstexpr()) | 
 |       // We may now know that the constructor is constexpr. | 
 |       data().HasConstexprNonCopyMoveConstructor = true; | 
 |   } else if (isa<CXXDestructorDecl>(D)) { | 
 |     SMKind |= SMF_Destructor; | 
 |     if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted()) | 
 |       data().HasIrrelevantDestructor = false; | 
 |   } else if (D->isCopyAssignmentOperator()) | 
 |     SMKind |= SMF_CopyAssignment; | 
 |   else if (D->isMoveAssignmentOperator()) | 
 |     SMKind |= SMF_MoveAssignment; | 
 |  | 
 |   // Update which trivial / non-trivial special members we have. | 
 |   // addedMember will have skipped this step for this member. | 
 |   if (D->isTrivial()) | 
 |     data().HasTrivialSpecialMembers |= SMKind; | 
 |   else | 
 |     data().DeclaredNonTrivialSpecialMembers |= SMKind; | 
 | } | 
 |  | 
 | void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) { | 
 |   unsigned SMKind = 0; | 
 |  | 
 |   if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { | 
 |     if (Constructor->isCopyConstructor()) | 
 |       SMKind = SMF_CopyConstructor; | 
 |     else if (Constructor->isMoveConstructor()) | 
 |       SMKind = SMF_MoveConstructor; | 
 |   } else if (isa<CXXDestructorDecl>(D)) | 
 |     SMKind = SMF_Destructor; | 
 |  | 
 |   if (D->isTrivialForCall()) | 
 |     data().HasTrivialSpecialMembersForCall |= SMKind; | 
 |   else | 
 |     data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; | 
 | } | 
 |  | 
 | bool CXXRecordDecl::isCLike() const { | 
 |   if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface || | 
 |       !TemplateOrInstantiation.isNull()) | 
 |     return false; | 
 |   if (!hasDefinition()) | 
 |     return true; | 
 |  | 
 |   return isPOD() && data().HasOnlyCMembers; | 
 | } | 
 |  | 
 | bool CXXRecordDecl::isGenericLambda() const { | 
 |   if (!isLambda()) return false; | 
 |   return getLambdaData().IsGenericLambda; | 
 | } | 
 |  | 
 | CXXMethodDecl* CXXRecordDecl::getLambdaCallOperator() const { | 
 |   if (!isLambda()) return nullptr; | 
 |   DeclarationName Name = | 
 |     getASTContext().DeclarationNames.getCXXOperatorName(OO_Call); | 
 |   DeclContext::lookup_result Calls = lookup(Name); | 
 |  | 
 |   assert(!Calls.empty() && "Missing lambda call operator!"); | 
 |   assert(Calls.size() == 1 && "More than one lambda call operator!"); | 
 |  | 
 |   NamedDecl *CallOp = Calls.front(); | 
 |   if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp)) | 
 |     return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl()); | 
 |  | 
 |   return cast<CXXMethodDecl>(CallOp); | 
 | } | 
 |  | 
 | CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const { | 
 |   if (!isLambda()) return nullptr; | 
 |   DeclarationName Name = | 
 |     &getASTContext().Idents.get(getLambdaStaticInvokerName()); | 
 |   DeclContext::lookup_result Invoker = lookup(Name); | 
 |   if (Invoker.empty()) return nullptr; | 
 |   assert(Invoker.size() == 1 && "More than one static invoker operator!"); | 
 |   NamedDecl *InvokerFun = Invoker.front(); | 
 |   if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(InvokerFun)) | 
 |     return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl()); | 
 |  | 
 |   return cast<CXXMethodDecl>(InvokerFun); | 
 | } | 
 |  | 
 | void CXXRecordDecl::getCaptureFields( | 
 |        llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures, | 
 |        FieldDecl *&ThisCapture) const { | 
 |   Captures.clear(); | 
 |   ThisCapture = nullptr; | 
 |  | 
 |   LambdaDefinitionData &Lambda = getLambdaData(); | 
 |   RecordDecl::field_iterator Field = field_begin(); | 
 |   for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures; | 
 |        C != CEnd; ++C, ++Field) { | 
 |     if (C->capturesThis()) | 
 |       ThisCapture = *Field; | 
 |     else if (C->capturesVariable()) | 
 |       Captures[C->getCapturedVar()] = *Field; | 
 |   } | 
 |   assert(Field == field_end()); | 
 | } | 
 |  | 
 | TemplateParameterList * | 
 | CXXRecordDecl::getGenericLambdaTemplateParameterList() const { | 
 |   if (!isLambda()) return nullptr; | 
 |   CXXMethodDecl *CallOp = getLambdaCallOperator(); | 
 |   if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate()) | 
 |     return Tmpl->getTemplateParameters(); | 
 |   return nullptr; | 
 | } | 
 |  | 
 | Decl *CXXRecordDecl::getLambdaContextDecl() const { | 
 |   assert(isLambda() && "Not a lambda closure type!"); | 
 |   ExternalASTSource *Source = getParentASTContext().getExternalSource(); | 
 |   return getLambdaData().ContextDecl.get(Source); | 
 | } | 
 |  | 
 | static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) { | 
 |   QualType T = | 
 |       cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction()) | 
 |           ->getConversionType(); | 
 |   return Context.getCanonicalType(T); | 
 | } | 
 |  | 
 | /// Collect the visible conversions of a base class. | 
 | /// | 
 | /// \param Record a base class of the class we're considering | 
 | /// \param InVirtual whether this base class is a virtual base (or a base | 
 | ///   of a virtual base) | 
 | /// \param Access the access along the inheritance path to this base | 
 | /// \param ParentHiddenTypes the conversions provided by the inheritors | 
 | ///   of this base | 
 | /// \param Output the set to which to add conversions from non-virtual bases | 
 | /// \param VOutput the set to which to add conversions from virtual bases | 
 | /// \param HiddenVBaseCs the set of conversions which were hidden in a | 
 | ///   virtual base along some inheritance path | 
 | static void CollectVisibleConversions(ASTContext &Context, | 
 |                                       CXXRecordDecl *Record, | 
 |                                       bool InVirtual, | 
 |                                       AccessSpecifier Access, | 
 |                   const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes, | 
 |                                       ASTUnresolvedSet &Output, | 
 |                                       UnresolvedSetImpl &VOutput, | 
 |                            llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) { | 
 |   // The set of types which have conversions in this class or its | 
 |   // subclasses.  As an optimization, we don't copy the derived set | 
 |   // unless it might change. | 
 |   const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes; | 
 |   llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer; | 
 |  | 
 |   // Collect the direct conversions and figure out which conversions | 
 |   // will be hidden in the subclasses. | 
 |   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); | 
 |   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); | 
 |   if (ConvI != ConvE) { | 
 |     HiddenTypesBuffer = ParentHiddenTypes; | 
 |     HiddenTypes = &HiddenTypesBuffer; | 
 |  | 
 |     for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) { | 
 |       CanQualType ConvType(GetConversionType(Context, I.getDecl())); | 
 |       bool Hidden = ParentHiddenTypes.count(ConvType); | 
 |       if (!Hidden) | 
 |         HiddenTypesBuffer.insert(ConvType); | 
 |  | 
 |       // If this conversion is hidden and we're in a virtual base, | 
 |       // remember that it's hidden along some inheritance path. | 
 |       if (Hidden && InVirtual) | 
 |         HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())); | 
 |  | 
 |       // If this conversion isn't hidden, add it to the appropriate output. | 
 |       else if (!Hidden) { | 
 |         AccessSpecifier IAccess | 
 |           = CXXRecordDecl::MergeAccess(Access, I.getAccess()); | 
 |  | 
 |         if (InVirtual) | 
 |           VOutput.addDecl(I.getDecl(), IAccess); | 
 |         else | 
 |           Output.addDecl(Context, I.getDecl(), IAccess); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Collect information recursively from any base classes. | 
 |   for (const auto &I : Record->bases()) { | 
 |     const RecordType *RT = I.getType()->getAs<RecordType>(); | 
 |     if (!RT) continue; | 
 |  | 
 |     AccessSpecifier BaseAccess | 
 |       = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier()); | 
 |     bool BaseInVirtual = InVirtual || I.isVirtual(); | 
 |  | 
 |     auto *Base = cast<CXXRecordDecl>(RT->getDecl()); | 
 |     CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess, | 
 |                               *HiddenTypes, Output, VOutput, HiddenVBaseCs); | 
 |   } | 
 | } | 
 |  | 
 | /// Collect the visible conversions of a class. | 
 | /// | 
 | /// This would be extremely straightforward if it weren't for virtual | 
 | /// bases.  It might be worth special-casing that, really. | 
 | static void CollectVisibleConversions(ASTContext &Context, | 
 |                                       CXXRecordDecl *Record, | 
 |                                       ASTUnresolvedSet &Output) { | 
 |   // The collection of all conversions in virtual bases that we've | 
 |   // found.  These will be added to the output as long as they don't | 
 |   // appear in the hidden-conversions set. | 
 |   UnresolvedSet<8> VBaseCs; | 
 |  | 
 |   // The set of conversions in virtual bases that we've determined to | 
 |   // be hidden. | 
 |   llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs; | 
 |  | 
 |   // The set of types hidden by classes derived from this one. | 
 |   llvm::SmallPtrSet<CanQualType, 8> HiddenTypes; | 
 |  | 
 |   // Go ahead and collect the direct conversions and add them to the | 
 |   // hidden-types set. | 
 |   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); | 
 |   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); | 
 |   Output.append(Context, ConvI, ConvE); | 
 |   for (; ConvI != ConvE; ++ConvI) | 
 |     HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl())); | 
 |  | 
 |   // Recursively collect conversions from base classes. | 
 |   for (const auto &I : Record->bases()) { | 
 |     const RecordType *RT = I.getType()->getAs<RecordType>(); | 
 |     if (!RT) continue; | 
 |  | 
 |     CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()), | 
 |                               I.isVirtual(), I.getAccessSpecifier(), | 
 |                               HiddenTypes, Output, VBaseCs, HiddenVBaseCs); | 
 |   } | 
 |  | 
 |   // Add any unhidden conversions provided by virtual bases. | 
 |   for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end(); | 
 |          I != E; ++I) { | 
 |     if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()))) | 
 |       Output.addDecl(Context, I.getDecl(), I.getAccess()); | 
 |   } | 
 | } | 
 |  | 
 | /// getVisibleConversionFunctions - get all conversion functions visible | 
 | /// in current class; including conversion function templates. | 
 | llvm::iterator_range<CXXRecordDecl::conversion_iterator> | 
 | CXXRecordDecl::getVisibleConversionFunctions() { | 
 |   ASTContext &Ctx = getASTContext(); | 
 |  | 
 |   ASTUnresolvedSet *Set; | 
 |   if (bases_begin() == bases_end()) { | 
 |     // If root class, all conversions are visible. | 
 |     Set = &data().Conversions.get(Ctx); | 
 |   } else { | 
 |     Set = &data().VisibleConversions.get(Ctx); | 
 |     // If visible conversion list is not evaluated, evaluate it. | 
 |     if (!data().ComputedVisibleConversions) { | 
 |       CollectVisibleConversions(Ctx, this, *Set); | 
 |       data().ComputedVisibleConversions = true; | 
 |     } | 
 |   } | 
 |   return llvm::make_range(Set->begin(), Set->end()); | 
 | } | 
 |  | 
 | void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) { | 
 |   // This operation is O(N) but extremely rare.  Sema only uses it to | 
 |   // remove UsingShadowDecls in a class that were followed by a direct | 
 |   // declaration, e.g.: | 
 |   //   class A : B { | 
 |   //     using B::operator int; | 
 |   //     operator int(); | 
 |   //   }; | 
 |   // This is uncommon by itself and even more uncommon in conjunction | 
 |   // with sufficiently large numbers of directly-declared conversions | 
 |   // that asymptotic behavior matters. | 
 |  | 
 |   ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext()); | 
 |   for (unsigned I = 0, E = Convs.size(); I != E; ++I) { | 
 |     if (Convs[I].getDecl() == ConvDecl) { | 
 |       Convs.erase(I); | 
 |       assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end() | 
 |              && "conversion was found multiple times in unresolved set"); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   llvm_unreachable("conversion not found in set!"); | 
 | } | 
 |  | 
 | CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const { | 
 |   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) | 
 |     return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom()); | 
 |  | 
 |   return nullptr; | 
 | } | 
 |  | 
 | MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const { | 
 |   return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>(); | 
 | } | 
 |  | 
 | void | 
 | CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD, | 
 |                                              TemplateSpecializationKind TSK) { | 
 |   assert(TemplateOrInstantiation.isNull() && | 
 |          "Previous template or instantiation?"); | 
 |   assert(!isa<ClassTemplatePartialSpecializationDecl>(this)); | 
 |   TemplateOrInstantiation | 
 |     = new (getASTContext()) MemberSpecializationInfo(RD, TSK); | 
 | } | 
 |  | 
 | ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const { | 
 |   return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>(); | 
 | } | 
 |  | 
 | void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) { | 
 |   TemplateOrInstantiation = Template; | 
 | } | 
 |  | 
 | TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{ | 
 |   if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) | 
 |     return Spec->getSpecializationKind(); | 
 |  | 
 |   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) | 
 |     return MSInfo->getTemplateSpecializationKind(); | 
 |  | 
 |   return TSK_Undeclared; | 
 | } | 
 |  | 
 | void | 
 | CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) { | 
 |   if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) { | 
 |     Spec->setSpecializationKind(TSK); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { | 
 |     MSInfo->setTemplateSpecializationKind(TSK); | 
 |     return; | 
 |   } | 
 |  | 
 |   llvm_unreachable("Not a class template or member class specialization"); | 
 | } | 
 |  | 
 | const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const { | 
 |   auto GetDefinitionOrSelf = | 
 |       [](const CXXRecordDecl *D) -> const CXXRecordDecl * { | 
 |     if (auto *Def = D->getDefinition()) | 
 |       return Def; | 
 |     return D; | 
 |   }; | 
 |  | 
 |   // If it's a class template specialization, find the template or partial | 
 |   // specialization from which it was instantiated. | 
 |   if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) { | 
 |     auto From = TD->getInstantiatedFrom(); | 
 |     if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) { | 
 |       while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) { | 
 |         if (NewCTD->isMemberSpecialization()) | 
 |           break; | 
 |         CTD = NewCTD; | 
 |       } | 
 |       return GetDefinitionOrSelf(CTD->getTemplatedDecl()); | 
 |     } | 
 |     if (auto *CTPSD = | 
 |             From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { | 
 |       while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) { | 
 |         if (NewCTPSD->isMemberSpecialization()) | 
 |           break; | 
 |         CTPSD = NewCTPSD; | 
 |       } | 
 |       return GetDefinitionOrSelf(CTPSD); | 
 |     } | 
 |   } | 
 |  | 
 |   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { | 
 |     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { | 
 |       const CXXRecordDecl *RD = this; | 
 |       while (auto *NewRD = RD->getInstantiatedFromMemberClass()) | 
 |         RD = NewRD; | 
 |       return GetDefinitionOrSelf(RD); | 
 |     } | 
 |   } | 
 |  | 
 |   assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) && | 
 |          "couldn't find pattern for class template instantiation"); | 
 |   return nullptr; | 
 | } | 
 |  | 
 | CXXDestructorDecl *CXXRecordDecl::getDestructor() const { | 
 |   ASTContext &Context = getASTContext(); | 
 |   QualType ClassType = Context.getTypeDeclType(this); | 
 |  | 
 |   DeclarationName Name | 
 |     = Context.DeclarationNames.getCXXDestructorName( | 
 |                                           Context.getCanonicalType(ClassType)); | 
 |  | 
 |   DeclContext::lookup_result R = lookup(Name); | 
 |  | 
 |   return R.empty() ? nullptr : dyn_cast<CXXDestructorDecl>(R.front()); | 
 | } | 
 |  | 
 | bool CXXRecordDecl::isAnyDestructorNoReturn() const { | 
 |   // Destructor is noreturn. | 
 |   if (const CXXDestructorDecl *Destructor = getDestructor()) | 
 |     if (Destructor->isNoReturn()) | 
 |       return true; | 
 |  | 
 |   // Check base classes destructor for noreturn. | 
 |   for (const auto &Base : bases()) | 
 |     if (const CXXRecordDecl *RD = Base.getType()->getAsCXXRecordDecl()) | 
 |       if (RD->isAnyDestructorNoReturn()) | 
 |         return true; | 
 |  | 
 |   // Check fields for noreturn. | 
 |   for (const auto *Field : fields()) | 
 |     if (const CXXRecordDecl *RD = | 
 |             Field->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) | 
 |       if (RD->isAnyDestructorNoReturn()) | 
 |         return true; | 
 |  | 
 |   // All destructors are not noreturn. | 
 |   return false; | 
 | } | 
 |  | 
 | static bool isDeclContextInNamespace(const DeclContext *DC) { | 
 |   while (!DC->isTranslationUnit()) { | 
 |     if (DC->isNamespace()) | 
 |       return true; | 
 |     DC = DC->getParent(); | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool CXXRecordDecl::isInterfaceLike() const { | 
 |   assert(hasDefinition() && "checking for interface-like without a definition"); | 
 |   // All __interfaces are inheritently interface-like. | 
 |   if (isInterface()) | 
 |     return true; | 
 |  | 
 |   // Interface-like types cannot have a user declared constructor, destructor, | 
 |   // friends, VBases, conversion functions, or fields.  Additionally, lambdas | 
 |   // cannot be interface types. | 
 |   if (isLambda() || hasUserDeclaredConstructor() || | 
 |       hasUserDeclaredDestructor() || !field_empty() || hasFriends() || | 
 |       getNumVBases() > 0 || conversion_end() - conversion_begin() > 0) | 
 |     return false; | 
 |  | 
 |   // No interface-like type can have a method with a definition. | 
 |   for (const auto *const Method : methods()) | 
 |     if (Method->isDefined() && !Method->isImplicit()) | 
 |       return false; | 
 |  | 
 |   // Check "Special" types. | 
 |   const auto *Uuid = getAttr<UuidAttr>(); | 
 |   // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an | 
 |   // extern C++ block directly in the TU.  These are only valid if in one | 
 |   // of these two situations. | 
 |   if (Uuid && isStruct() && !getDeclContext()->isExternCContext() && | 
 |       !isDeclContextInNamespace(getDeclContext()) && | 
 |       ((getName() == "IUnknown" && | 
 |         Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") || | 
 |        (getName() == "IDispatch" && | 
 |         Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) { | 
 |     if (getNumBases() > 0) | 
 |       return false; | 
 |     return true; | 
 |   } | 
 |  | 
 |   // FIXME: Any access specifiers is supposed to make this no longer interface | 
 |   // like. | 
 |  | 
 |   // If this isn't a 'special' type, it must have a single interface-like base. | 
 |   if (getNumBases() != 1) | 
 |     return false; | 
 |  | 
 |   const auto BaseSpec = *bases_begin(); | 
 |   if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public) | 
 |     return false; | 
 |   const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl(); | 
 |   if (Base->isInterface() || !Base->isInterfaceLike()) | 
 |     return false; | 
 |   return true; | 
 | } | 
 |  | 
 | void CXXRecordDecl::completeDefinition() { | 
 |   completeDefinition(nullptr); | 
 | } | 
 |  | 
 | void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) { | 
 |   RecordDecl::completeDefinition(); | 
 |  | 
 |   // If the class may be abstract (but hasn't been marked as such), check for | 
 |   // any pure final overriders. | 
 |   if (mayBeAbstract()) { | 
 |     CXXFinalOverriderMap MyFinalOverriders; | 
 |     if (!FinalOverriders) { | 
 |       getFinalOverriders(MyFinalOverriders); | 
 |       FinalOverriders = &MyFinalOverriders; | 
 |     } | 
 |  | 
 |     bool Done = false; | 
 |     for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(), | 
 |                                      MEnd = FinalOverriders->end(); | 
 |          M != MEnd && !Done; ++M) { | 
 |       for (OverridingMethods::iterator SO = M->second.begin(), | 
 |                                     SOEnd = M->second.end(); | 
 |            SO != SOEnd && !Done; ++SO) { | 
 |         assert(SO->second.size() > 0 && | 
 |                "All virtual functions have overriding virtual functions"); | 
 |  | 
 |         // C++ [class.abstract]p4: | 
 |         //   A class is abstract if it contains or inherits at least one | 
 |         //   pure virtual function for which the final overrider is pure | 
 |         //   virtual. | 
 |         if (SO->second.front().Method->isPure()) { | 
 |           data().Abstract = true; | 
 |           Done = true; | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Set access bits correctly on the directly-declared conversions. | 
 |   for (conversion_iterator I = conversion_begin(), E = conversion_end(); | 
 |        I != E; ++I) | 
 |     I.setAccess((*I)->getAccess()); | 
 | } | 
 |  | 
 | bool CXXRecordDecl::mayBeAbstract() const { | 
 |   if (data().Abstract || isInvalidDecl() || !data().Polymorphic || | 
 |       isDependentContext()) | 
 |     return false; | 
 |  | 
 |   for (const auto &B : bases()) { | 
 |     const auto *BaseDecl = | 
 |         cast<CXXRecordDecl>(B.getType()->getAs<RecordType>()->getDecl()); | 
 |     if (BaseDecl->isAbstract()) | 
 |       return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | void CXXDeductionGuideDecl::anchor() {} | 
 |  | 
 | CXXDeductionGuideDecl *CXXDeductionGuideDecl::Create( | 
 |     ASTContext &C, DeclContext *DC, SourceLocation StartLoc, bool IsExplicit, | 
 |     const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, | 
 |     SourceLocation EndLocation) { | 
 |   return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, IsExplicit, | 
 |                                            NameInfo, T, TInfo, EndLocation); | 
 | } | 
 |  | 
 | CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C, | 
 |                                                                  unsigned ID) { | 
 |   return new (C, ID) CXXDeductionGuideDecl(C, nullptr, SourceLocation(), false, | 
 |                                            DeclarationNameInfo(), QualType(), | 
 |                                            nullptr, SourceLocation()); | 
 | } | 
 |  | 
 | void CXXMethodDecl::anchor() {} | 
 |  | 
 | bool CXXMethodDecl::isStatic() const { | 
 |   const CXXMethodDecl *MD = getCanonicalDecl(); | 
 |  | 
 |   if (MD->getStorageClass() == SC_Static) | 
 |     return true; | 
 |  | 
 |   OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator(); | 
 |   return isStaticOverloadedOperator(OOK); | 
 | } | 
 |  | 
 | static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD, | 
 |                                  const CXXMethodDecl *BaseMD) { | 
 |   for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) { | 
 |     if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl()) | 
 |       return true; | 
 |     if (recursivelyOverrides(MD, BaseMD)) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | CXXMethodDecl * | 
 | CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD, | 
 |                                              bool MayBeBase) { | 
 |   if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl()) | 
 |     return this; | 
 |  | 
 |   // Lookup doesn't work for destructors, so handle them separately. | 
 |   if (isa<CXXDestructorDecl>(this)) { | 
 |     CXXMethodDecl *MD = RD->getDestructor(); | 
 |     if (MD) { | 
 |       if (recursivelyOverrides(MD, this)) | 
 |         return MD; | 
 |       if (MayBeBase && recursivelyOverrides(this, MD)) | 
 |         return MD; | 
 |     } | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   for (auto *ND : RD->lookup(getDeclName())) { | 
 |     auto *MD = dyn_cast<CXXMethodDecl>(ND); | 
 |     if (!MD) | 
 |       continue; | 
 |     if (recursivelyOverrides(MD, this)) | 
 |       return MD; | 
 |     if (MayBeBase && recursivelyOverrides(this, MD)) | 
 |       return MD; | 
 |   } | 
 |  | 
 |   for (const auto &I : RD->bases()) { | 
 |     const RecordType *RT = I.getType()->getAs<RecordType>(); | 
 |     if (!RT) | 
 |       continue; | 
 |     const auto *Base = cast<CXXRecordDecl>(RT->getDecl()); | 
 |     CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base); | 
 |     if (T) | 
 |       return T; | 
 |   } | 
 |  | 
 |   return nullptr; | 
 | } | 
 |  | 
 | CXXMethodDecl * | 
 | CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, | 
 |                       SourceLocation StartLoc, | 
 |                       const DeclarationNameInfo &NameInfo, | 
 |                       QualType T, TypeSourceInfo *TInfo, | 
 |                       StorageClass SC, bool isInline, | 
 |                       bool isConstexpr, SourceLocation EndLocation) { | 
 |   return new (C, RD) CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo, | 
 |                                    T, TInfo, SC, isInline, isConstexpr, | 
 |                                    EndLocation); | 
 | } | 
 |  | 
 | CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   return new (C, ID) CXXMethodDecl(CXXMethod, C, nullptr, SourceLocation(), | 
 |                                    DeclarationNameInfo(), QualType(), nullptr, | 
 |                                    SC_None, false, false, SourceLocation()); | 
 | } | 
 |  | 
 | CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base, | 
 |                                                      bool IsAppleKext) { | 
 |   assert(isVirtual() && "this method is expected to be virtual"); | 
 |  | 
 |   // When building with -fapple-kext, all calls must go through the vtable since | 
 |   // the kernel linker can do runtime patching of vtables. | 
 |   if (IsAppleKext) | 
 |     return nullptr; | 
 |  | 
 |   // If the member function is marked 'final', we know that it can't be | 
 |   // overridden and can therefore devirtualize it unless it's pure virtual. | 
 |   if (hasAttr<FinalAttr>()) | 
 |     return isPure() ? nullptr : this; | 
 |  | 
 |   // If Base is unknown, we cannot devirtualize. | 
 |   if (!Base) | 
 |     return nullptr; | 
 |  | 
 |   // If the base expression (after skipping derived-to-base conversions) is a | 
 |   // class prvalue, then we can devirtualize. | 
 |   Base = Base->getBestDynamicClassTypeExpr(); | 
 |   if (Base->isRValue() && Base->getType()->isRecordType()) | 
 |     return this; | 
 |  | 
 |   // If we don't even know what we would call, we can't devirtualize. | 
 |   const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); | 
 |   if (!BestDynamicDecl) | 
 |     return nullptr; | 
 |  | 
 |   // There may be a method corresponding to MD in a derived class. | 
 |   CXXMethodDecl *DevirtualizedMethod = | 
 |       getCorrespondingMethodInClass(BestDynamicDecl); | 
 |  | 
 |   // If that method is pure virtual, we can't devirtualize. If this code is | 
 |   // reached, the result would be UB, not a direct call to the derived class | 
 |   // function, and we can't assume the derived class function is defined. | 
 |   if (DevirtualizedMethod->isPure()) | 
 |     return nullptr; | 
 |  | 
 |   // If that method is marked final, we can devirtualize it. | 
 |   if (DevirtualizedMethod->hasAttr<FinalAttr>()) | 
 |     return DevirtualizedMethod; | 
 |  | 
 |   // Similarly, if the class itself is marked 'final' it can't be overridden | 
 |   // and we can therefore devirtualize the member function call. | 
 |   if (BestDynamicDecl->hasAttr<FinalAttr>()) | 
 |     return DevirtualizedMethod; | 
 |  | 
 |   if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) { | 
 |     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) | 
 |       if (VD->getType()->isRecordType()) | 
 |         // This is a record decl. We know the type and can devirtualize it. | 
 |         return DevirtualizedMethod; | 
 |  | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   // We can devirtualize calls on an object accessed by a class member access | 
 |   // expression, since by C++11 [basic.life]p6 we know that it can't refer to | 
 |   // a derived class object constructed in the same location. | 
 |   if (const auto *ME = dyn_cast<MemberExpr>(Base)) { | 
 |     const ValueDecl *VD = ME->getMemberDecl(); | 
 |     return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr; | 
 |   } | 
 |  | 
 |   // Likewise for calls on an object accessed by a (non-reference) pointer to | 
 |   // member access. | 
 |   if (auto *BO = dyn_cast<BinaryOperator>(Base)) { | 
 |     if (BO->isPtrMemOp()) { | 
 |       auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>(); | 
 |       if (MPT->getPointeeType()->isRecordType()) | 
 |         return DevirtualizedMethod; | 
 |     } | 
 |   } | 
 |  | 
 |   // We can't devirtualize the call. | 
 |   return nullptr; | 
 | } | 
 |  | 
 | bool CXXMethodDecl::isUsualDeallocationFunction() const { | 
 |   if (getOverloadedOperator() != OO_Delete && | 
 |       getOverloadedOperator() != OO_Array_Delete) | 
 |     return false; | 
 |  | 
 |   // C++ [basic.stc.dynamic.deallocation]p2: | 
 |   //   A template instance is never a usual deallocation function, | 
 |   //   regardless of its signature. | 
 |   if (getPrimaryTemplate()) | 
 |     return false; | 
 |  | 
 |   // C++ [basic.stc.dynamic.deallocation]p2: | 
 |   //   If a class T has a member deallocation function named operator delete | 
 |   //   with exactly one parameter, then that function is a usual (non-placement) | 
 |   //   deallocation function. [...] | 
 |   if (getNumParams() == 1) | 
 |     return true; | 
 |   unsigned UsualParams = 1; | 
 |  | 
 |   // C++ P0722: | 
 |   //   A destroying operator delete is a usual deallocation function if | 
 |   //   removing the std::destroying_delete_t parameter and changing the | 
 |   //   first parameter type from T* to void* results in the signature of | 
 |   //   a usual deallocation function. | 
 |   if (isDestroyingOperatorDelete()) | 
 |     ++UsualParams; | 
 |  | 
 |   // C++ <=14 [basic.stc.dynamic.deallocation]p2: | 
 |   //   [...] If class T does not declare such an operator delete but does | 
 |   //   declare a member deallocation function named operator delete with | 
 |   //   exactly two parameters, the second of which has type std::size_t (18.1), | 
 |   //   then this function is a usual deallocation function. | 
 |   // | 
 |   // C++17 says a usual deallocation function is one with the signature | 
 |   //   (void* [, size_t] [, std::align_val_t] [, ...]) | 
 |   // and all such functions are usual deallocation functions. It's not clear | 
 |   // that allowing varargs functions was intentional. | 
 |   ASTContext &Context = getASTContext(); | 
 |   if (UsualParams < getNumParams() && | 
 |       Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(), | 
 |                                      Context.getSizeType())) | 
 |     ++UsualParams; | 
 |  | 
 |   if (UsualParams < getNumParams() && | 
 |       getParamDecl(UsualParams)->getType()->isAlignValT()) | 
 |     ++UsualParams; | 
 |  | 
 |   if (UsualParams != getNumParams()) | 
 |     return false; | 
 |  | 
 |   // In C++17 onwards, all potential usual deallocation functions are actual | 
 |   // usual deallocation functions. | 
 |   if (Context.getLangOpts().AlignedAllocation) | 
 |     return true; | 
 |  | 
 |   // This function is a usual deallocation function if there are no | 
 |   // single-parameter deallocation functions of the same kind. | 
 |   DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName()); | 
 |   for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end(); | 
 |        I != E; ++I) { | 
 |     if (const auto *FD = dyn_cast<FunctionDecl>(*I)) | 
 |       if (FD->getNumParams() == 1) | 
 |         return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool CXXMethodDecl::isCopyAssignmentOperator() const { | 
 |   // C++0x [class.copy]p17: | 
 |   //  A user-declared copy assignment operator X::operator= is a non-static | 
 |   //  non-template member function of class X with exactly one parameter of | 
 |   //  type X, X&, const X&, volatile X& or const volatile X&. | 
 |   if (/*operator=*/getOverloadedOperator() != OO_Equal || | 
 |       /*non-static*/ isStatic() || | 
 |       /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() || | 
 |       getNumParams() != 1) | 
 |     return false; | 
 |  | 
 |   QualType ParamType = getParamDecl(0)->getType(); | 
 |   if (const auto *Ref = ParamType->getAs<LValueReferenceType>()) | 
 |     ParamType = Ref->getPointeeType(); | 
 |  | 
 |   ASTContext &Context = getASTContext(); | 
 |   QualType ClassType | 
 |     = Context.getCanonicalType(Context.getTypeDeclType(getParent())); | 
 |   return Context.hasSameUnqualifiedType(ClassType, ParamType); | 
 | } | 
 |  | 
 | bool CXXMethodDecl::isMoveAssignmentOperator() const { | 
 |   // C++0x [class.copy]p19: | 
 |   //  A user-declared move assignment operator X::operator= is a non-static | 
 |   //  non-template member function of class X with exactly one parameter of type | 
 |   //  X&&, const X&&, volatile X&&, or const volatile X&&. | 
 |   if (getOverloadedOperator() != OO_Equal || isStatic() || | 
 |       getPrimaryTemplate() || getDescribedFunctionTemplate() || | 
 |       getNumParams() != 1) | 
 |     return false; | 
 |  | 
 |   QualType ParamType = getParamDecl(0)->getType(); | 
 |   if (!isa<RValueReferenceType>(ParamType)) | 
 |     return false; | 
 |   ParamType = ParamType->getPointeeType(); | 
 |  | 
 |   ASTContext &Context = getASTContext(); | 
 |   QualType ClassType | 
 |     = Context.getCanonicalType(Context.getTypeDeclType(getParent())); | 
 |   return Context.hasSameUnqualifiedType(ClassType, ParamType); | 
 | } | 
 |  | 
 | void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) { | 
 |   assert(MD->isCanonicalDecl() && "Method is not canonical!"); | 
 |   assert(!MD->getParent()->isDependentContext() && | 
 |          "Can't add an overridden method to a class template!"); | 
 |   assert(MD->isVirtual() && "Method is not virtual!"); | 
 |  | 
 |   getASTContext().addOverriddenMethod(this, MD); | 
 | } | 
 |  | 
 | CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const { | 
 |   if (isa<CXXConstructorDecl>(this)) return nullptr; | 
 |   return getASTContext().overridden_methods_begin(this); | 
 | } | 
 |  | 
 | CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const { | 
 |   if (isa<CXXConstructorDecl>(this)) return nullptr; | 
 |   return getASTContext().overridden_methods_end(this); | 
 | } | 
 |  | 
 | unsigned CXXMethodDecl::size_overridden_methods() const { | 
 |   if (isa<CXXConstructorDecl>(this)) return 0; | 
 |   return getASTContext().overridden_methods_size(this); | 
 | } | 
 |  | 
 | CXXMethodDecl::overridden_method_range | 
 | CXXMethodDecl::overridden_methods() const { | 
 |   if (isa<CXXConstructorDecl>(this)) | 
 |     return overridden_method_range(nullptr, nullptr); | 
 |   return getASTContext().overridden_methods(this); | 
 | } | 
 |  | 
 | QualType CXXMethodDecl::getThisType(ASTContext &C) const { | 
 |   // C++ 9.3.2p1: The type of this in a member function of a class X is X*. | 
 |   // If the member function is declared const, the type of this is const X*, | 
 |   // if the member function is declared volatile, the type of this is | 
 |   // volatile X*, and if the member function is declared const volatile, | 
 |   // the type of this is const volatile X*. | 
 |  | 
 |   assert(isInstance() && "No 'this' for static methods!"); | 
 |  | 
 |   QualType ClassTy = C.getTypeDeclType(getParent()); | 
 |   ClassTy = C.getQualifiedType(ClassTy, | 
 |                                Qualifiers::fromCVRUMask(getTypeQualifiers())); | 
 |   return C.getPointerType(ClassTy); | 
 | } | 
 |  | 
 | bool CXXMethodDecl::hasInlineBody() const { | 
 |   // If this function is a template instantiation, look at the template from | 
 |   // which it was instantiated. | 
 |   const FunctionDecl *CheckFn = getTemplateInstantiationPattern(); | 
 |   if (!CheckFn) | 
 |     CheckFn = this; | 
 |  | 
 |   const FunctionDecl *fn; | 
 |   return CheckFn->isDefined(fn) && !fn->isOutOfLine() && | 
 |          (fn->doesThisDeclarationHaveABody() || fn->willHaveBody()); | 
 | } | 
 |  | 
 | bool CXXMethodDecl::isLambdaStaticInvoker() const { | 
 |   const CXXRecordDecl *P = getParent(); | 
 |   if (P->isLambda()) { | 
 |     if (const CXXMethodDecl *StaticInvoker = P->getLambdaStaticInvoker()) { | 
 |       if (StaticInvoker == this) return true; | 
 |       if (P->isGenericLambda() && this->isFunctionTemplateSpecialization()) | 
 |         return StaticInvoker == this->getPrimaryTemplate()->getTemplatedDecl(); | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, | 
 |                                        TypeSourceInfo *TInfo, bool IsVirtual, | 
 |                                        SourceLocation L, Expr *Init, | 
 |                                        SourceLocation R, | 
 |                                        SourceLocation EllipsisLoc) | 
 |     : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init), | 
 |       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual), | 
 |       IsWritten(false), SourceOrder(0) {} | 
 |  | 
 | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, | 
 |                                        FieldDecl *Member, | 
 |                                        SourceLocation MemberLoc, | 
 |                                        SourceLocation L, Expr *Init, | 
 |                                        SourceLocation R) | 
 |     : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), | 
 |       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), | 
 |       IsWritten(false), SourceOrder(0) {} | 
 |  | 
 | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, | 
 |                                        IndirectFieldDecl *Member, | 
 |                                        SourceLocation MemberLoc, | 
 |                                        SourceLocation L, Expr *Init, | 
 |                                        SourceLocation R) | 
 |     : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), | 
 |       LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), | 
 |       IsWritten(false), SourceOrder(0) {} | 
 |  | 
 | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, | 
 |                                        TypeSourceInfo *TInfo, | 
 |                                        SourceLocation L, Expr *Init, | 
 |                                        SourceLocation R) | 
 |     : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R), | 
 |       IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {} | 
 |  | 
 | TypeLoc CXXCtorInitializer::getBaseClassLoc() const { | 
 |   if (isBaseInitializer()) | 
 |     return Initializee.get<TypeSourceInfo*>()->getTypeLoc(); | 
 |   else | 
 |     return {}; | 
 | } | 
 |  | 
 | const Type *CXXCtorInitializer::getBaseClass() const { | 
 |   if (isBaseInitializer()) | 
 |     return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr(); | 
 |   else | 
 |     return nullptr; | 
 | } | 
 |  | 
 | SourceLocation CXXCtorInitializer::getSourceLocation() const { | 
 |   if (isInClassMemberInitializer()) | 
 |     return getAnyMember()->getLocation(); | 
 |  | 
 |   if (isAnyMemberInitializer()) | 
 |     return getMemberLocation(); | 
 |  | 
 |   if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>()) | 
 |     return TSInfo->getTypeLoc().getLocalSourceRange().getBegin(); | 
 |  | 
 |   return {}; | 
 | } | 
 |  | 
 | SourceRange CXXCtorInitializer::getSourceRange() const { | 
 |   if (isInClassMemberInitializer()) { | 
 |     FieldDecl *D = getAnyMember(); | 
 |     if (Expr *I = D->getInClassInitializer()) | 
 |       return I->getSourceRange(); | 
 |     return {}; | 
 |   } | 
 |  | 
 |   return SourceRange(getSourceLocation(), getRParenLoc()); | 
 | } | 
 |  | 
 | void CXXConstructorDecl::anchor() {} | 
 |  | 
 | CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C, | 
 |                                                            unsigned ID, | 
 |                                                            bool Inherited) { | 
 |   unsigned Extra = additionalSizeToAlloc<InheritedConstructor>(Inherited); | 
 |   auto *Result = new (C, ID, Extra) CXXConstructorDecl( | 
 |       C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, | 
 |       false, false, false, false, InheritedConstructor()); | 
 |   Result->IsInheritingConstructor = Inherited; | 
 |   return Result; | 
 | } | 
 |  | 
 | CXXConstructorDecl * | 
 | CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD, | 
 |                            SourceLocation StartLoc, | 
 |                            const DeclarationNameInfo &NameInfo, | 
 |                            QualType T, TypeSourceInfo *TInfo, | 
 |                            bool isExplicit, bool isInline, | 
 |                            bool isImplicitlyDeclared, bool isConstexpr, | 
 |                            InheritedConstructor Inherited) { | 
 |   assert(NameInfo.getName().getNameKind() | 
 |          == DeclarationName::CXXConstructorName && | 
 |          "Name must refer to a constructor"); | 
 |   unsigned Extra = | 
 |       additionalSizeToAlloc<InheritedConstructor>(Inherited ? 1 : 0); | 
 |   return new (C, RD, Extra) CXXConstructorDecl( | 
 |       C, RD, StartLoc, NameInfo, T, TInfo, isExplicit, isInline, | 
 |       isImplicitlyDeclared, isConstexpr, Inherited); | 
 | } | 
 |  | 
 | CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const { | 
 |   return CtorInitializers.get(getASTContext().getExternalSource()); | 
 | } | 
 |  | 
 | CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const { | 
 |   assert(isDelegatingConstructor() && "Not a delegating constructor!"); | 
 |   Expr *E = (*init_begin())->getInit()->IgnoreImplicit(); | 
 |   if (const auto *Construct = dyn_cast<CXXConstructExpr>(E)) | 
 |     return Construct->getConstructor(); | 
 |  | 
 |   return nullptr; | 
 | } | 
 |  | 
 | bool CXXConstructorDecl::isDefaultConstructor() const { | 
 |   // C++ [class.ctor]p5: | 
 |   //   A default constructor for a class X is a constructor of class | 
 |   //   X that can be called without an argument. | 
 |   return (getNumParams() == 0) || | 
 |          (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg()); | 
 | } | 
 |  | 
 | bool | 
 | CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const { | 
 |   return isCopyOrMoveConstructor(TypeQuals) && | 
 |          getParamDecl(0)->getType()->isLValueReferenceType(); | 
 | } | 
 |  | 
 | bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const { | 
 |   return isCopyOrMoveConstructor(TypeQuals) && | 
 |     getParamDecl(0)->getType()->isRValueReferenceType(); | 
 | } | 
 |  | 
 | /// Determine whether this is a copy or move constructor. | 
 | bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const { | 
 |   // C++ [class.copy]p2: | 
 |   //   A non-template constructor for class X is a copy constructor | 
 |   //   if its first parameter is of type X&, const X&, volatile X& or | 
 |   //   const volatile X&, and either there are no other parameters | 
 |   //   or else all other parameters have default arguments (8.3.6). | 
 |   // C++0x [class.copy]p3: | 
 |   //   A non-template constructor for class X is a move constructor if its | 
 |   //   first parameter is of type X&&, const X&&, volatile X&&, or | 
 |   //   const volatile X&&, and either there are no other parameters or else | 
 |   //   all other parameters have default arguments. | 
 |   if ((getNumParams() < 1) || | 
 |       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) || | 
 |       (getPrimaryTemplate() != nullptr) || | 
 |       (getDescribedFunctionTemplate() != nullptr)) | 
 |     return false; | 
 |  | 
 |   const ParmVarDecl *Param = getParamDecl(0); | 
 |  | 
 |   // Do we have a reference type? | 
 |   const auto *ParamRefType = Param->getType()->getAs<ReferenceType>(); | 
 |   if (!ParamRefType) | 
 |     return false; | 
 |  | 
 |   // Is it a reference to our class type? | 
 |   ASTContext &Context = getASTContext(); | 
 |  | 
 |   CanQualType PointeeType | 
 |     = Context.getCanonicalType(ParamRefType->getPointeeType()); | 
 |   CanQualType ClassTy | 
 |     = Context.getCanonicalType(Context.getTagDeclType(getParent())); | 
 |   if (PointeeType.getUnqualifiedType() != ClassTy) | 
 |     return false; | 
 |  | 
 |   // FIXME: other qualifiers? | 
 |  | 
 |   // We have a copy or move constructor. | 
 |   TypeQuals = PointeeType.getCVRQualifiers(); | 
 |   return true; | 
 | } | 
 |  | 
 | bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const { | 
 |   // C++ [class.conv.ctor]p1: | 
 |   //   A constructor declared without the function-specifier explicit | 
 |   //   that can be called with a single parameter specifies a | 
 |   //   conversion from the type of its first parameter to the type of | 
 |   //   its class. Such a constructor is called a converting | 
 |   //   constructor. | 
 |   if (isExplicit() && !AllowExplicit) | 
 |     return false; | 
 |  | 
 |   return (getNumParams() == 0 && | 
 |           getType()->getAs<FunctionProtoType>()->isVariadic()) || | 
 |          (getNumParams() == 1) || | 
 |          (getNumParams() > 1 && | 
 |           (getParamDecl(1)->hasDefaultArg() || | 
 |            getParamDecl(1)->isParameterPack())); | 
 | } | 
 |  | 
 | bool CXXConstructorDecl::isSpecializationCopyingObject() const { | 
 |   if ((getNumParams() < 1) || | 
 |       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) || | 
 |       (getDescribedFunctionTemplate() != nullptr)) | 
 |     return false; | 
 |  | 
 |   const ParmVarDecl *Param = getParamDecl(0); | 
 |  | 
 |   ASTContext &Context = getASTContext(); | 
 |   CanQualType ParamType = Context.getCanonicalType(Param->getType()); | 
 |  | 
 |   // Is it the same as our class type? | 
 |   CanQualType ClassTy | 
 |     = Context.getCanonicalType(Context.getTagDeclType(getParent())); | 
 |   if (ParamType.getUnqualifiedType() != ClassTy) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | void CXXDestructorDecl::anchor() {} | 
 |  | 
 | CXXDestructorDecl * | 
 | CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   return new (C, ID) | 
 |       CXXDestructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(), | 
 |                         QualType(), nullptr, false, false); | 
 | } | 
 |  | 
 | CXXDestructorDecl * | 
 | CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD, | 
 |                           SourceLocation StartLoc, | 
 |                           const DeclarationNameInfo &NameInfo, | 
 |                           QualType T, TypeSourceInfo *TInfo, | 
 |                           bool isInline, bool isImplicitlyDeclared) { | 
 |   assert(NameInfo.getName().getNameKind() | 
 |          == DeclarationName::CXXDestructorName && | 
 |          "Name must refer to a destructor"); | 
 |   return new (C, RD) CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, | 
 |                                        isInline, isImplicitlyDeclared); | 
 | } | 
 |  | 
 | void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) { | 
 |   auto *First = cast<CXXDestructorDecl>(getFirstDecl()); | 
 |   if (OD && !First->OperatorDelete) { | 
 |     First->OperatorDelete = OD; | 
 |     First->OperatorDeleteThisArg = ThisArg; | 
 |     if (auto *L = getASTMutationListener()) | 
 |       L->ResolvedOperatorDelete(First, OD, ThisArg); | 
 |   } | 
 | } | 
 |  | 
 | void CXXConversionDecl::anchor() {} | 
 |  | 
 | CXXConversionDecl * | 
 | CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   return new (C, ID) CXXConversionDecl(C, nullptr, SourceLocation(), | 
 |                                        DeclarationNameInfo(), QualType(), | 
 |                                        nullptr, false, false, false, | 
 |                                        SourceLocation()); | 
 | } | 
 |  | 
 | CXXConversionDecl * | 
 | CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD, | 
 |                           SourceLocation StartLoc, | 
 |                           const DeclarationNameInfo &NameInfo, | 
 |                           QualType T, TypeSourceInfo *TInfo, | 
 |                           bool isInline, bool isExplicit, | 
 |                           bool isConstexpr, SourceLocation EndLocation) { | 
 |   assert(NameInfo.getName().getNameKind() | 
 |          == DeclarationName::CXXConversionFunctionName && | 
 |          "Name must refer to a conversion function"); | 
 |   return new (C, RD) CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo, | 
 |                                        isInline, isExplicit, isConstexpr, | 
 |                                        EndLocation); | 
 | } | 
 |  | 
 | bool CXXConversionDecl::isLambdaToBlockPointerConversion() const { | 
 |   return isImplicit() && getParent()->isLambda() && | 
 |          getConversionType()->isBlockPointerType(); | 
 | } | 
 |  | 
 | void LinkageSpecDecl::anchor() {} | 
 |  | 
 | LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, | 
 |                                          DeclContext *DC, | 
 |                                          SourceLocation ExternLoc, | 
 |                                          SourceLocation LangLoc, | 
 |                                          LanguageIDs Lang, | 
 |                                          bool HasBraces) { | 
 |   return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces); | 
 | } | 
 |  | 
 | LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, | 
 |                                                      unsigned ID) { | 
 |   return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(), | 
 |                                      SourceLocation(), lang_c, false); | 
 | } | 
 |  | 
 | void UsingDirectiveDecl::anchor() {} | 
 |  | 
 | UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC, | 
 |                                                SourceLocation L, | 
 |                                                SourceLocation NamespaceLoc, | 
 |                                            NestedNameSpecifierLoc QualifierLoc, | 
 |                                                SourceLocation IdentLoc, | 
 |                                                NamedDecl *Used, | 
 |                                                DeclContext *CommonAncestor) { | 
 |   if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Used)) | 
 |     Used = NS->getOriginalNamespace(); | 
 |   return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc, | 
 |                                         IdentLoc, Used, CommonAncestor); | 
 | } | 
 |  | 
 | UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C, | 
 |                                                            unsigned ID) { | 
 |   return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(), | 
 |                                         SourceLocation(), | 
 |                                         NestedNameSpecifierLoc(), | 
 |                                         SourceLocation(), nullptr, nullptr); | 
 | } | 
 |  | 
 | NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() { | 
 |   if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace)) | 
 |     return NA->getNamespace(); | 
 |   return cast_or_null<NamespaceDecl>(NominatedNamespace); | 
 | } | 
 |  | 
 | NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline, | 
 |                              SourceLocation StartLoc, SourceLocation IdLoc, | 
 |                              IdentifierInfo *Id, NamespaceDecl *PrevDecl) | 
 |     : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace), | 
 |       redeclarable_base(C), LocStart(StartLoc), | 
 |       AnonOrFirstNamespaceAndInline(nullptr, Inline) { | 
 |   setPreviousDecl(PrevDecl); | 
 |  | 
 |   if (PrevDecl) | 
 |     AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace()); | 
 | } | 
 |  | 
 | NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC, | 
 |                                      bool Inline, SourceLocation StartLoc, | 
 |                                      SourceLocation IdLoc, IdentifierInfo *Id, | 
 |                                      NamespaceDecl *PrevDecl) { | 
 |   return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id, | 
 |                                    PrevDecl); | 
 | } | 
 |  | 
 | NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(), | 
 |                                    SourceLocation(), nullptr, nullptr); | 
 | } | 
 |  | 
 | NamespaceDecl *NamespaceDecl::getOriginalNamespace() { | 
 |   if (isFirstDecl()) | 
 |     return this; | 
 |  | 
 |   return AnonOrFirstNamespaceAndInline.getPointer(); | 
 | } | 
 |  | 
 | const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const { | 
 |   if (isFirstDecl()) | 
 |     return this; | 
 |  | 
 |   return AnonOrFirstNamespaceAndInline.getPointer(); | 
 | } | 
 |  | 
 | bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); } | 
 |  | 
 | NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() { | 
 |   return getNextRedeclaration(); | 
 | } | 
 |  | 
 | NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() { | 
 |   return getPreviousDecl(); | 
 | } | 
 |  | 
 | NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() { | 
 |   return getMostRecentDecl(); | 
 | } | 
 |  | 
 | void NamespaceAliasDecl::anchor() {} | 
 |  | 
 | NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() { | 
 |   return getNextRedeclaration(); | 
 | } | 
 |  | 
 | NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() { | 
 |   return getPreviousDecl(); | 
 | } | 
 |  | 
 | NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() { | 
 |   return getMostRecentDecl(); | 
 | } | 
 |  | 
 | NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC, | 
 |                                                SourceLocation UsingLoc, | 
 |                                                SourceLocation AliasLoc, | 
 |                                                IdentifierInfo *Alias, | 
 |                                            NestedNameSpecifierLoc QualifierLoc, | 
 |                                                SourceLocation IdentLoc, | 
 |                                                NamedDecl *Namespace) { | 
 |   // FIXME: Preserve the aliased namespace as written. | 
 |   if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Namespace)) | 
 |     Namespace = NS->getOriginalNamespace(); | 
 |   return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias, | 
 |                                         QualifierLoc, IdentLoc, Namespace); | 
 | } | 
 |  | 
 | NamespaceAliasDecl * | 
 | NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(), | 
 |                                         SourceLocation(), nullptr, | 
 |                                         NestedNameSpecifierLoc(), | 
 |                                         SourceLocation(), nullptr); | 
 | } | 
 |  | 
 | void UsingShadowDecl::anchor() {} | 
 |  | 
 | UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, | 
 |                                  SourceLocation Loc, UsingDecl *Using, | 
 |                                  NamedDecl *Target) | 
 |     : NamedDecl(K, DC, Loc, Using ? Using->getDeclName() : DeclarationName()), | 
 |       redeclarable_base(C), UsingOrNextShadow(cast<NamedDecl>(Using)) { | 
 |   if (Target) | 
 |     setTargetDecl(Target); | 
 |   setImplicit(); | 
 | } | 
 |  | 
 | UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty) | 
 |     : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()), | 
 |       redeclarable_base(C) {} | 
 |  | 
 | UsingShadowDecl * | 
 | UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell()); | 
 | } | 
 |  | 
 | UsingDecl *UsingShadowDecl::getUsingDecl() const { | 
 |   const UsingShadowDecl *Shadow = this; | 
 |   while (const auto *NextShadow = | 
 |              dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow)) | 
 |     Shadow = NextShadow; | 
 |   return cast<UsingDecl>(Shadow->UsingOrNextShadow); | 
 | } | 
 |  | 
 | void ConstructorUsingShadowDecl::anchor() {} | 
 |  | 
 | ConstructorUsingShadowDecl * | 
 | ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC, | 
 |                                    SourceLocation Loc, UsingDecl *Using, | 
 |                                    NamedDecl *Target, bool IsVirtual) { | 
 |   return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target, | 
 |                                                 IsVirtual); | 
 | } | 
 |  | 
 | ConstructorUsingShadowDecl * | 
 | ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell()); | 
 | } | 
 |  | 
 | CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const { | 
 |   return getUsingDecl()->getQualifier()->getAsRecordDecl(); | 
 | } | 
 |  | 
 | void UsingDecl::anchor() {} | 
 |  | 
 | void UsingDecl::addShadowDecl(UsingShadowDecl *S) { | 
 |   assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() && | 
 |          "declaration already in set"); | 
 |   assert(S->getUsingDecl() == this); | 
 |  | 
 |   if (FirstUsingShadow.getPointer()) | 
 |     S->UsingOrNextShadow = FirstUsingShadow.getPointer(); | 
 |   FirstUsingShadow.setPointer(S); | 
 | } | 
 |  | 
 | void UsingDecl::removeShadowDecl(UsingShadowDecl *S) { | 
 |   assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() && | 
 |          "declaration not in set"); | 
 |   assert(S->getUsingDecl() == this); | 
 |  | 
 |   // Remove S from the shadow decl chain. This is O(n) but hopefully rare. | 
 |  | 
 |   if (FirstUsingShadow.getPointer() == S) { | 
 |     FirstUsingShadow.setPointer( | 
 |       dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow)); | 
 |     S->UsingOrNextShadow = this; | 
 |     return; | 
 |   } | 
 |  | 
 |   UsingShadowDecl *Prev = FirstUsingShadow.getPointer(); | 
 |   while (Prev->UsingOrNextShadow != S) | 
 |     Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow); | 
 |   Prev->UsingOrNextShadow = S->UsingOrNextShadow; | 
 |   S->UsingOrNextShadow = this; | 
 | } | 
 |  | 
 | UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL, | 
 |                              NestedNameSpecifierLoc QualifierLoc, | 
 |                              const DeclarationNameInfo &NameInfo, | 
 |                              bool HasTypename) { | 
 |   return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename); | 
 | } | 
 |  | 
 | UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   return new (C, ID) UsingDecl(nullptr, SourceLocation(), | 
 |                                NestedNameSpecifierLoc(), DeclarationNameInfo(), | 
 |                                false); | 
 | } | 
 |  | 
 | SourceRange UsingDecl::getSourceRange() const { | 
 |   SourceLocation Begin = isAccessDeclaration() | 
 |     ? getQualifierLoc().getBeginLoc() : UsingLocation; | 
 |   return SourceRange(Begin, getNameInfo().getEndLoc()); | 
 | } | 
 |  | 
 | void UsingPackDecl::anchor() {} | 
 |  | 
 | UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC, | 
 |                                      NamedDecl *InstantiatedFrom, | 
 |                                      ArrayRef<NamedDecl *> UsingDecls) { | 
 |   size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size()); | 
 |   return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls); | 
 | } | 
 |  | 
 | UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID, | 
 |                                                  unsigned NumExpansions) { | 
 |   size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions); | 
 |   auto *Result = new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, None); | 
 |   Result->NumExpansions = NumExpansions; | 
 |   auto *Trail = Result->getTrailingObjects<NamedDecl *>(); | 
 |   for (unsigned I = 0; I != NumExpansions; ++I) | 
 |     new (Trail + I) NamedDecl*(nullptr); | 
 |   return Result; | 
 | } | 
 |  | 
 | void UnresolvedUsingValueDecl::anchor() {} | 
 |  | 
 | UnresolvedUsingValueDecl * | 
 | UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC, | 
 |                                  SourceLocation UsingLoc, | 
 |                                  NestedNameSpecifierLoc QualifierLoc, | 
 |                                  const DeclarationNameInfo &NameInfo, | 
 |                                  SourceLocation EllipsisLoc) { | 
 |   return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc, | 
 |                                               QualifierLoc, NameInfo, | 
 |                                               EllipsisLoc); | 
 | } | 
 |  | 
 | UnresolvedUsingValueDecl * | 
 | UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(), | 
 |                                               SourceLocation(), | 
 |                                               NestedNameSpecifierLoc(), | 
 |                                               DeclarationNameInfo(), | 
 |                                               SourceLocation()); | 
 | } | 
 |  | 
 | SourceRange UnresolvedUsingValueDecl::getSourceRange() const { | 
 |   SourceLocation Begin = isAccessDeclaration() | 
 |     ? getQualifierLoc().getBeginLoc() : UsingLocation; | 
 |   return SourceRange(Begin, getNameInfo().getEndLoc()); | 
 | } | 
 |  | 
 | void UnresolvedUsingTypenameDecl::anchor() {} | 
 |  | 
 | UnresolvedUsingTypenameDecl * | 
 | UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC, | 
 |                                     SourceLocation UsingLoc, | 
 |                                     SourceLocation TypenameLoc, | 
 |                                     NestedNameSpecifierLoc QualifierLoc, | 
 |                                     SourceLocation TargetNameLoc, | 
 |                                     DeclarationName TargetName, | 
 |                                     SourceLocation EllipsisLoc) { | 
 |   return new (C, DC) UnresolvedUsingTypenameDecl( | 
 |       DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc, | 
 |       TargetName.getAsIdentifierInfo(), EllipsisLoc); | 
 | } | 
 |  | 
 | UnresolvedUsingTypenameDecl * | 
 | UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   return new (C, ID) UnresolvedUsingTypenameDecl( | 
 |       nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(), | 
 |       SourceLocation(), nullptr, SourceLocation()); | 
 | } | 
 |  | 
 | void StaticAssertDecl::anchor() {} | 
 |  | 
 | StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC, | 
 |                                            SourceLocation StaticAssertLoc, | 
 |                                            Expr *AssertExpr, | 
 |                                            StringLiteral *Message, | 
 |                                            SourceLocation RParenLoc, | 
 |                                            bool Failed) { | 
 |   return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message, | 
 |                                       RParenLoc, Failed); | 
 | } | 
 |  | 
 | StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C, | 
 |                                                        unsigned ID) { | 
 |   return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr, | 
 |                                       nullptr, SourceLocation(), false); | 
 | } | 
 |  | 
 | void BindingDecl::anchor() {} | 
 |  | 
 | BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC, | 
 |                                  SourceLocation IdLoc, IdentifierInfo *Id) { | 
 |   return new (C, DC) BindingDecl(DC, IdLoc, Id); | 
 | } | 
 |  | 
 | BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr); | 
 | } | 
 |  | 
 | VarDecl *BindingDecl::getHoldingVar() const { | 
 |   Expr *B = getBinding(); | 
 |   if (!B) | 
 |     return nullptr; | 
 |   auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit()); | 
 |   if (!DRE) | 
 |     return nullptr; | 
 |  | 
 |   auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); | 
 |   assert(VD->isImplicit() && "holding var for binding decl not implicit"); | 
 |   return VD; | 
 | } | 
 |  | 
 | void DecompositionDecl::anchor() {} | 
 |  | 
 | DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC, | 
 |                                              SourceLocation StartLoc, | 
 |                                              SourceLocation LSquareLoc, | 
 |                                              QualType T, TypeSourceInfo *TInfo, | 
 |                                              StorageClass SC, | 
 |                                              ArrayRef<BindingDecl *> Bindings) { | 
 |   size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size()); | 
 |   return new (C, DC, Extra) | 
 |       DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings); | 
 | } | 
 |  | 
 | DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C, | 
 |                                                          unsigned ID, | 
 |                                                          unsigned NumBindings) { | 
 |   size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings); | 
 |   auto *Result = new (C, ID, Extra) | 
 |       DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(), | 
 |                         QualType(), nullptr, StorageClass(), None); | 
 |   // Set up and clean out the bindings array. | 
 |   Result->NumBindings = NumBindings; | 
 |   auto *Trail = Result->getTrailingObjects<BindingDecl *>(); | 
 |   for (unsigned I = 0; I != NumBindings; ++I) | 
 |     new (Trail + I) BindingDecl*(nullptr); | 
 |   return Result; | 
 | } | 
 |  | 
 | void DecompositionDecl::printName(llvm::raw_ostream &os) const { | 
 |   os << '['; | 
 |   bool Comma = false; | 
 |   for (const auto *B : bindings()) { | 
 |     if (Comma) | 
 |       os << ", "; | 
 |     B->printName(os); | 
 |     Comma = true; | 
 |   } | 
 |   os << ']'; | 
 | } | 
 |  | 
 | MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC, | 
 |                                        SourceLocation L, DeclarationName N, | 
 |                                        QualType T, TypeSourceInfo *TInfo, | 
 |                                        SourceLocation StartL, | 
 |                                        IdentifierInfo *Getter, | 
 |                                        IdentifierInfo *Setter) { | 
 |   return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter); | 
 | } | 
 |  | 
 | MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C, | 
 |                                                    unsigned ID) { | 
 |   return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(), | 
 |                                     DeclarationName(), QualType(), nullptr, | 
 |                                     SourceLocation(), nullptr, nullptr); | 
 | } | 
 |  | 
 | static const char *getAccessName(AccessSpecifier AS) { | 
 |   switch (AS) { | 
 |     case AS_none: | 
 |       llvm_unreachable("Invalid access specifier!"); | 
 |     case AS_public: | 
 |       return "public"; | 
 |     case AS_private: | 
 |       return "private"; | 
 |     case AS_protected: | 
 |       return "protected"; | 
 |   } | 
 |   llvm_unreachable("Invalid access specifier!"); | 
 | } | 
 |  | 
 | const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB, | 
 |                                            AccessSpecifier AS) { | 
 |   return DB << getAccessName(AS); | 
 | } | 
 |  | 
 | const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB, | 
 |                                            AccessSpecifier AS) { | 
 |   return DB << getAccessName(AS); | 
 | } |