| //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This provides C++ name mangling targeting the Microsoft Visual C++ ABI. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "clang/AST/Mangle.h" | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "clang/AST/Attr.h" | 
 | #include "clang/AST/CXXInheritance.h" | 
 | #include "clang/AST/CharUnits.h" | 
 | #include "clang/AST/Decl.h" | 
 | #include "clang/AST/DeclCXX.h" | 
 | #include "clang/AST/DeclObjC.h" | 
 | #include "clang/AST/DeclOpenMP.h" | 
 | #include "clang/AST/DeclTemplate.h" | 
 | #include "clang/AST/Expr.h" | 
 | #include "clang/AST/ExprCXX.h" | 
 | #include "clang/AST/VTableBuilder.h" | 
 | #include "clang/Basic/ABI.h" | 
 | #include "clang/Basic/DiagnosticOptions.h" | 
 | #include "clang/Basic/TargetInfo.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | #include "llvm/Support/JamCRC.h" | 
 | #include "llvm/Support/xxhash.h" | 
 | #include "llvm/Support/MD5.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 |  | 
 | using namespace clang; | 
 |  | 
 | namespace { | 
 |  | 
 | struct msvc_hashing_ostream : public llvm::raw_svector_ostream { | 
 |   raw_ostream &OS; | 
 |   llvm::SmallString<64> Buffer; | 
 |  | 
 |   msvc_hashing_ostream(raw_ostream &OS) | 
 |       : llvm::raw_svector_ostream(Buffer), OS(OS) {} | 
 |   ~msvc_hashing_ostream() override { | 
 |     StringRef MangledName = str(); | 
 |     bool StartsWithEscape = MangledName.startswith("\01"); | 
 |     if (StartsWithEscape) | 
 |       MangledName = MangledName.drop_front(1); | 
 |     if (MangledName.size() <= 4096) { | 
 |       OS << str(); | 
 |       return; | 
 |     } | 
 |  | 
 |     llvm::MD5 Hasher; | 
 |     llvm::MD5::MD5Result Hash; | 
 |     Hasher.update(MangledName); | 
 |     Hasher.final(Hash); | 
 |  | 
 |     SmallString<32> HexString; | 
 |     llvm::MD5::stringifyResult(Hash, HexString); | 
 |  | 
 |     if (StartsWithEscape) | 
 |       OS << '\01'; | 
 |     OS << "??@" << HexString << '@'; | 
 |   } | 
 | }; | 
 |  | 
 | static const DeclContext * | 
 | getLambdaDefaultArgumentDeclContext(const Decl *D) { | 
 |   if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) | 
 |     if (RD->isLambda()) | 
 |       if (const auto *Parm = | 
 |               dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) | 
 |         return Parm->getDeclContext(); | 
 |   return nullptr; | 
 | } | 
 |  | 
 | /// Retrieve the declaration context that should be used when mangling | 
 | /// the given declaration. | 
 | static const DeclContext *getEffectiveDeclContext(const Decl *D) { | 
 |   // The ABI assumes that lambda closure types that occur within | 
 |   // default arguments live in the context of the function. However, due to | 
 |   // the way in which Clang parses and creates function declarations, this is | 
 |   // not the case: the lambda closure type ends up living in the context | 
 |   // where the function itself resides, because the function declaration itself | 
 |   // had not yet been created. Fix the context here. | 
 |   if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D)) | 
 |     return LDADC; | 
 |  | 
 |   // Perform the same check for block literals. | 
 |   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { | 
 |     if (ParmVarDecl *ContextParam = | 
 |             dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) | 
 |       return ContextParam->getDeclContext(); | 
 |   } | 
 |  | 
 |   const DeclContext *DC = D->getDeclContext(); | 
 |   if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC)) { | 
 |     return getEffectiveDeclContext(cast<Decl>(DC)); | 
 |   } | 
 |  | 
 |   return DC->getRedeclContext(); | 
 | } | 
 |  | 
 | static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { | 
 |   return getEffectiveDeclContext(cast<Decl>(DC)); | 
 | } | 
 |  | 
 | static const FunctionDecl *getStructor(const NamedDecl *ND) { | 
 |   if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND)) | 
 |     return FTD->getTemplatedDecl()->getCanonicalDecl(); | 
 |  | 
 |   const auto *FD = cast<FunctionDecl>(ND); | 
 |   if (const auto *FTD = FD->getPrimaryTemplate()) | 
 |     return FTD->getTemplatedDecl()->getCanonicalDecl(); | 
 |  | 
 |   return FD->getCanonicalDecl(); | 
 | } | 
 |  | 
 | /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the | 
 | /// Microsoft Visual C++ ABI. | 
 | class MicrosoftMangleContextImpl : public MicrosoftMangleContext { | 
 |   typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy; | 
 |   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; | 
 |   llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier; | 
 |   llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds; | 
 |   llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds; | 
 |   llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds; | 
 |   SmallString<16> AnonymousNamespaceHash; | 
 |  | 
 | public: | 
 |   MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags); | 
 |   bool shouldMangleCXXName(const NamedDecl *D) override; | 
 |   bool shouldMangleStringLiteral(const StringLiteral *SL) override; | 
 |   void mangleCXXName(const NamedDecl *D, raw_ostream &Out) override; | 
 |   void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, | 
 |                                 const MethodVFTableLocation &ML, | 
 |                                 raw_ostream &Out) override; | 
 |   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, | 
 |                    raw_ostream &) override; | 
 |   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, | 
 |                           const ThisAdjustment &ThisAdjustment, | 
 |                           raw_ostream &) override; | 
 |   void mangleCXXVFTable(const CXXRecordDecl *Derived, | 
 |                         ArrayRef<const CXXRecordDecl *> BasePath, | 
 |                         raw_ostream &Out) override; | 
 |   void mangleCXXVBTable(const CXXRecordDecl *Derived, | 
 |                         ArrayRef<const CXXRecordDecl *> BasePath, | 
 |                         raw_ostream &Out) override; | 
 |   void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD, | 
 |                                        const CXXRecordDecl *DstRD, | 
 |                                        raw_ostream &Out) override; | 
 |   void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile, | 
 |                           bool IsUnaligned, uint32_t NumEntries, | 
 |                           raw_ostream &Out) override; | 
 |   void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries, | 
 |                                    raw_ostream &Out) override; | 
 |   void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD, | 
 |                               CXXCtorType CT, uint32_t Size, uint32_t NVOffset, | 
 |                               int32_t VBPtrOffset, uint32_t VBIndex, | 
 |                               raw_ostream &Out) override; | 
 |   void mangleCXXRTTI(QualType T, raw_ostream &Out) override; | 
 |   void mangleCXXRTTIName(QualType T, raw_ostream &Out) override; | 
 |   void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived, | 
 |                                         uint32_t NVOffset, int32_t VBPtrOffset, | 
 |                                         uint32_t VBTableOffset, uint32_t Flags, | 
 |                                         raw_ostream &Out) override; | 
 |   void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived, | 
 |                                    raw_ostream &Out) override; | 
 |   void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived, | 
 |                                              raw_ostream &Out) override; | 
 |   void | 
 |   mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived, | 
 |                                      ArrayRef<const CXXRecordDecl *> BasePath, | 
 |                                      raw_ostream &Out) override; | 
 |   void mangleTypeName(QualType T, raw_ostream &) override; | 
 |   void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, | 
 |                      raw_ostream &) override; | 
 |   void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, | 
 |                      raw_ostream &) override; | 
 |   void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber, | 
 |                                 raw_ostream &) override; | 
 |   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override; | 
 |   void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum, | 
 |                                            raw_ostream &Out) override; | 
 |   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; | 
 |   void mangleDynamicAtExitDestructor(const VarDecl *D, | 
 |                                      raw_ostream &Out) override; | 
 |   void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl, | 
 |                                  raw_ostream &Out) override; | 
 |   void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl, | 
 |                              raw_ostream &Out) override; | 
 |   void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override; | 
 |   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { | 
 |     const DeclContext *DC = getEffectiveDeclContext(ND); | 
 |     if (!DC->isFunctionOrMethod()) | 
 |       return false; | 
 |  | 
 |     // Lambda closure types are already numbered, give out a phony number so | 
 |     // that they demangle nicely. | 
 |     if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { | 
 |       if (RD->isLambda()) { | 
 |         disc = 1; | 
 |         return true; | 
 |       } | 
 |     } | 
 |  | 
 |     // Use the canonical number for externally visible decls. | 
 |     if (ND->isExternallyVisible()) { | 
 |       disc = getASTContext().getManglingNumber(ND); | 
 |       return true; | 
 |     } | 
 |  | 
 |     // Anonymous tags are already numbered. | 
 |     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) { | 
 |       if (!Tag->hasNameForLinkage() && | 
 |           !getASTContext().getDeclaratorForUnnamedTagDecl(Tag) && | 
 |           !getASTContext().getTypedefNameForUnnamedTagDecl(Tag)) | 
 |         return false; | 
 |     } | 
 |  | 
 |     // Make up a reasonable number for internal decls. | 
 |     unsigned &discriminator = Uniquifier[ND]; | 
 |     if (!discriminator) | 
 |       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())]; | 
 |     disc = discriminator + 1; | 
 |     return true; | 
 |   } | 
 |  | 
 |   unsigned getLambdaId(const CXXRecordDecl *RD) { | 
 |     assert(RD->isLambda() && "RD must be a lambda!"); | 
 |     assert(!RD->isExternallyVisible() && "RD must not be visible!"); | 
 |     assert(RD->getLambdaManglingNumber() == 0 && | 
 |            "RD must not have a mangling number!"); | 
 |     std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool> | 
 |         Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size())); | 
 |     return Result.first->second; | 
 |   } | 
 |  | 
 |   /// Return a character sequence that is (somewhat) unique to the TU suitable | 
 |   /// for mangling anonymous namespaces. | 
 |   StringRef getAnonymousNamespaceHash() const { | 
 |     return AnonymousNamespaceHash; | 
 |   } | 
 |  | 
 | private: | 
 |   void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out); | 
 | }; | 
 |  | 
 | /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the | 
 | /// Microsoft Visual C++ ABI. | 
 | class MicrosoftCXXNameMangler { | 
 |   MicrosoftMangleContextImpl &Context; | 
 |   raw_ostream &Out; | 
 |  | 
 |   /// The "structor" is the top-level declaration being mangled, if | 
 |   /// that's not a template specialization; otherwise it's the pattern | 
 |   /// for that specialization. | 
 |   const NamedDecl *Structor; | 
 |   unsigned StructorType; | 
 |  | 
 |   typedef llvm::SmallVector<std::string, 10> BackRefVec; | 
 |   BackRefVec NameBackReferences; | 
 |  | 
 |   typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap; | 
 |   ArgBackRefMap TypeBackReferences; | 
 |  | 
 |   typedef std::set<int> PassObjectSizeArgsSet; | 
 |   PassObjectSizeArgsSet PassObjectSizeArgs; | 
 |  | 
 |   ASTContext &getASTContext() const { return Context.getASTContext(); } | 
 |  | 
 |   // FIXME: If we add support for __ptr32/64 qualifiers, then we should push | 
 |   // this check into mangleQualifiers(). | 
 |   const bool PointersAre64Bit; | 
 |  | 
 | public: | 
 |   enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result }; | 
 |  | 
 |   MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_) | 
 |       : Context(C), Out(Out_), Structor(nullptr), StructorType(-1), | 
 |         PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == | 
 |                          64) {} | 
 |  | 
 |   MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, | 
 |                           const CXXConstructorDecl *D, CXXCtorType Type) | 
 |       : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), | 
 |         PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == | 
 |                          64) {} | 
 |  | 
 |   MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, | 
 |                           const CXXDestructorDecl *D, CXXDtorType Type) | 
 |       : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), | 
 |         PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) == | 
 |                          64) {} | 
 |  | 
 |   raw_ostream &getStream() const { return Out; } | 
 |  | 
 |   void mangle(const NamedDecl *D, StringRef Prefix = "?"); | 
 |   void mangleName(const NamedDecl *ND); | 
 |   void mangleFunctionEncoding(const FunctionDecl *FD, bool ShouldMangle); | 
 |   void mangleVariableEncoding(const VarDecl *VD); | 
 |   void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD); | 
 |   void mangleMemberFunctionPointer(const CXXRecordDecl *RD, | 
 |                                    const CXXMethodDecl *MD); | 
 |   void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, | 
 |                                 const MethodVFTableLocation &ML); | 
 |   void mangleNumber(int64_t Number); | 
 |   void mangleTagTypeKind(TagTypeKind TK); | 
 |   void mangleArtificalTagType(TagTypeKind TK, StringRef UnqualifiedName, | 
 |                               ArrayRef<StringRef> NestedNames = None); | 
 |   void mangleType(QualType T, SourceRange Range, | 
 |                   QualifierMangleMode QMM = QMM_Mangle); | 
 |   void mangleFunctionType(const FunctionType *T, | 
 |                           const FunctionDecl *D = nullptr, | 
 |                           bool ForceThisQuals = false); | 
 |   void mangleNestedName(const NamedDecl *ND); | 
 |  | 
 | private: | 
 |   bool isStructorDecl(const NamedDecl *ND) const { | 
 |     return ND == Structor || getStructor(ND) == Structor; | 
 |   } | 
 |  | 
 |   void mangleUnqualifiedName(const NamedDecl *ND) { | 
 |     mangleUnqualifiedName(ND, ND->getDeclName()); | 
 |   } | 
 |   void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name); | 
 |   void mangleSourceName(StringRef Name); | 
 |   void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc); | 
 |   void mangleCXXDtorType(CXXDtorType T); | 
 |   void mangleQualifiers(Qualifiers Quals, bool IsMember); | 
 |   void mangleRefQualifier(RefQualifierKind RefQualifier); | 
 |   void manglePointerCVQualifiers(Qualifiers Quals); | 
 |   void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType); | 
 |  | 
 |   void mangleUnscopedTemplateName(const TemplateDecl *ND); | 
 |   void | 
 |   mangleTemplateInstantiationName(const TemplateDecl *TD, | 
 |                                   const TemplateArgumentList &TemplateArgs); | 
 |   void mangleObjCMethodName(const ObjCMethodDecl *MD); | 
 |  | 
 |   void mangleArgumentType(QualType T, SourceRange Range); | 
 |   void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA); | 
 |  | 
 |   bool isArtificialTagType(QualType T) const; | 
 |  | 
 |   // Declare manglers for every type class. | 
 | #define ABSTRACT_TYPE(CLASS, PARENT) | 
 | #define NON_CANONICAL_TYPE(CLASS, PARENT) | 
 | #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \ | 
 |                                             Qualifiers Quals, \ | 
 |                                             SourceRange Range); | 
 | #include "clang/AST/TypeNodes.def" | 
 | #undef ABSTRACT_TYPE | 
 | #undef NON_CANONICAL_TYPE | 
 | #undef TYPE | 
 |  | 
 |   void mangleType(const TagDecl *TD); | 
 |   void mangleDecayedArrayType(const ArrayType *T); | 
 |   void mangleArrayType(const ArrayType *T); | 
 |   void mangleFunctionClass(const FunctionDecl *FD); | 
 |   void mangleCallingConvention(CallingConv CC); | 
 |   void mangleCallingConvention(const FunctionType *T); | 
 |   void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean); | 
 |   void mangleExpression(const Expr *E); | 
 |   void mangleThrowSpecification(const FunctionProtoType *T); | 
 |  | 
 |   void mangleTemplateArgs(const TemplateDecl *TD, | 
 |                           const TemplateArgumentList &TemplateArgs); | 
 |   void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA, | 
 |                          const NamedDecl *Parm); | 
 |  | 
 |   void mangleObjCProtocol(const ObjCProtocolDecl *PD); | 
 |   void mangleObjCLifetime(const QualType T, Qualifiers Quals, | 
 |                           SourceRange Range); | 
 | }; | 
 | } | 
 |  | 
 | MicrosoftMangleContextImpl::MicrosoftMangleContextImpl(ASTContext &Context, | 
 |                                                        DiagnosticsEngine &Diags) | 
 |     : MicrosoftMangleContext(Context, Diags) { | 
 |   // To mangle anonymous namespaces, hash the path to the main source file. The | 
 |   // path should be whatever (probably relative) path was passed on the command | 
 |   // line. The goal is for the compiler to produce the same output regardless of | 
 |   // working directory, so use the uncanonicalized relative path. | 
 |   // | 
 |   // It's important to make the mangled names unique because, when CodeView | 
 |   // debug info is in use, the debugger uses mangled type names to distinguish | 
 |   // between otherwise identically named types in anonymous namespaces. | 
 |   // | 
 |   // These symbols are always internal, so there is no need for the hash to | 
 |   // match what MSVC produces. For the same reason, clang is free to change the | 
 |   // hash at any time without breaking compatibility with old versions of clang. | 
 |   // The generated names are intended to look similar to what MSVC generates, | 
 |   // which are something like "?A0x01234567@". | 
 |   SourceManager &SM = Context.getSourceManager(); | 
 |   if (const FileEntry *FE = SM.getFileEntryForID(SM.getMainFileID())) { | 
 |     // Truncate the hash so we get 8 characters of hexadecimal. | 
 |     uint32_t TruncatedHash = uint32_t(xxHash64(FE->getName())); | 
 |     AnonymousNamespaceHash = llvm::utohexstr(TruncatedHash); | 
 |   } else { | 
 |     // If we don't have a path to the main file, we'll just use 0. | 
 |     AnonymousNamespaceHash = "0"; | 
 |   } | 
 | } | 
 |  | 
 | bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { | 
 |   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
 |     LanguageLinkage L = FD->getLanguageLinkage(); | 
 |     // Overloadable functions need mangling. | 
 |     if (FD->hasAttr<OverloadableAttr>()) | 
 |       return true; | 
 |  | 
 |     // The ABI expects that we would never mangle "typical" user-defined entry | 
 |     // points regardless of visibility or freestanding-ness. | 
 |     // | 
 |     // N.B. This is distinct from asking about "main".  "main" has a lot of | 
 |     // special rules associated with it in the standard while these | 
 |     // user-defined entry points are outside of the purview of the standard. | 
 |     // For example, there can be only one definition for "main" in a standards | 
 |     // compliant program; however nothing forbids the existence of wmain and | 
 |     // WinMain in the same translation unit. | 
 |     if (FD->isMSVCRTEntryPoint()) | 
 |       return false; | 
 |  | 
 |     // C++ functions and those whose names are not a simple identifier need | 
 |     // mangling. | 
 |     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) | 
 |       return true; | 
 |  | 
 |     // C functions are not mangled. | 
 |     if (L == CLanguageLinkage) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // Otherwise, no mangling is done outside C++ mode. | 
 |   if (!getASTContext().getLangOpts().CPlusPlus) | 
 |     return false; | 
 |  | 
 |   const VarDecl *VD = dyn_cast<VarDecl>(D); | 
 |   if (VD && !isa<DecompositionDecl>(D)) { | 
 |     // C variables are not mangled. | 
 |     if (VD->isExternC()) | 
 |       return false; | 
 |  | 
 |     // Variables at global scope with non-internal linkage are not mangled. | 
 |     const DeclContext *DC = getEffectiveDeclContext(D); | 
 |     // Check for extern variable declared locally. | 
 |     if (DC->isFunctionOrMethod() && D->hasLinkage()) | 
 |       while (!DC->isNamespace() && !DC->isTranslationUnit()) | 
 |         DC = getEffectiveParentContext(DC); | 
 |  | 
 |     if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage && | 
 |         !isa<VarTemplateSpecializationDecl>(D) && | 
 |         D->getIdentifier() != nullptr) | 
 |       return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool | 
 | MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) { | 
 |   return true; | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) { | 
 |   // MSVC doesn't mangle C++ names the same way it mangles extern "C" names. | 
 |   // Therefore it's really important that we don't decorate the | 
 |   // name with leading underscores or leading/trailing at signs. So, by | 
 |   // default, we emit an asm marker at the start so we get the name right. | 
 |   // Callers can override this with a custom prefix. | 
 |  | 
 |   // <mangled-name> ::= ? <name> <type-encoding> | 
 |   Out << Prefix; | 
 |   mangleName(D); | 
 |   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) | 
 |     mangleFunctionEncoding(FD, Context.shouldMangleDeclName(FD)); | 
 |   else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) | 
 |     mangleVariableEncoding(VD); | 
 |   else if (!isa<ObjCInterfaceDecl>(D)) | 
 |     llvm_unreachable("Tried to mangle unexpected NamedDecl!"); | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD, | 
 |                                                      bool ShouldMangle) { | 
 |   // <type-encoding> ::= <function-class> <function-type> | 
 |  | 
 |   // Since MSVC operates on the type as written and not the canonical type, it | 
 |   // actually matters which decl we have here.  MSVC appears to choose the | 
 |   // first, since it is most likely to be the declaration in a header file. | 
 |   FD = FD->getFirstDecl(); | 
 |  | 
 |   // We should never ever see a FunctionNoProtoType at this point. | 
 |   // We don't even know how to mangle their types anyway :). | 
 |   const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>(); | 
 |  | 
 |   // extern "C" functions can hold entities that must be mangled. | 
 |   // As it stands, these functions still need to get expressed in the full | 
 |   // external name.  They have their class and type omitted, replaced with '9'. | 
 |   if (ShouldMangle) { | 
 |     // We would like to mangle all extern "C" functions using this additional | 
 |     // component but this would break compatibility with MSVC's behavior. | 
 |     // Instead, do this when we know that compatibility isn't important (in | 
 |     // other words, when it is an overloaded extern "C" function). | 
 |     if (FD->isExternC() && FD->hasAttr<OverloadableAttr>()) | 
 |       Out << "$$J0"; | 
 |  | 
 |     mangleFunctionClass(FD); | 
 |  | 
 |     mangleFunctionType(FT, FD); | 
 |   } else { | 
 |     Out << '9'; | 
 |   } | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) { | 
 |   // <type-encoding> ::= <storage-class> <variable-type> | 
 |   // <storage-class> ::= 0  # private static member | 
 |   //                 ::= 1  # protected static member | 
 |   //                 ::= 2  # public static member | 
 |   //                 ::= 3  # global | 
 |   //                 ::= 4  # static local | 
 |  | 
 |   // The first character in the encoding (after the name) is the storage class. | 
 |   if (VD->isStaticDataMember()) { | 
 |     // If it's a static member, it also encodes the access level. | 
 |     switch (VD->getAccess()) { | 
 |       default: | 
 |       case AS_private: Out << '0'; break; | 
 |       case AS_protected: Out << '1'; break; | 
 |       case AS_public: Out << '2'; break; | 
 |     } | 
 |   } | 
 |   else if (!VD->isStaticLocal()) | 
 |     Out << '3'; | 
 |   else | 
 |     Out << '4'; | 
 |   // Now mangle the type. | 
 |   // <variable-type> ::= <type> <cvr-qualifiers> | 
 |   //                 ::= <type> <pointee-cvr-qualifiers> # pointers, references | 
 |   // Pointers and references are odd. The type of 'int * const foo;' gets | 
 |   // mangled as 'QAHA' instead of 'PAHB', for example. | 
 |   SourceRange SR = VD->getSourceRange(); | 
 |   QualType Ty = VD->getType(); | 
 |   if (Ty->isPointerType() || Ty->isReferenceType() || | 
 |       Ty->isMemberPointerType()) { | 
 |     mangleType(Ty, SR, QMM_Drop); | 
 |     manglePointerExtQualifiers( | 
 |         Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType()); | 
 |     if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) { | 
 |       mangleQualifiers(MPT->getPointeeType().getQualifiers(), true); | 
 |       // Member pointers are suffixed with a back reference to the member | 
 |       // pointer's class name. | 
 |       mangleName(MPT->getClass()->getAsCXXRecordDecl()); | 
 |     } else | 
 |       mangleQualifiers(Ty->getPointeeType().getQualifiers(), false); | 
 |   } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) { | 
 |     // Global arrays are funny, too. | 
 |     mangleDecayedArrayType(AT); | 
 |     if (AT->getElementType()->isArrayType()) | 
 |       Out << 'A'; | 
 |     else | 
 |       mangleQualifiers(Ty.getQualifiers(), false); | 
 |   } else { | 
 |     mangleType(Ty, SR, QMM_Drop); | 
 |     mangleQualifiers(Ty.getQualifiers(), false); | 
 |   } | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD, | 
 |                                                       const ValueDecl *VD) { | 
 |   // <member-data-pointer> ::= <integer-literal> | 
 |   //                       ::= $F <number> <number> | 
 |   //                       ::= $G <number> <number> <number> | 
 |  | 
 |   int64_t FieldOffset; | 
 |   int64_t VBTableOffset; | 
 |   MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel(); | 
 |   if (VD) { | 
 |     FieldOffset = getASTContext().getFieldOffset(VD); | 
 |     assert(FieldOffset % getASTContext().getCharWidth() == 0 && | 
 |            "cannot take address of bitfield"); | 
 |     FieldOffset /= getASTContext().getCharWidth(); | 
 |  | 
 |     VBTableOffset = 0; | 
 |  | 
 |     if (IM == MSInheritanceAttr::Keyword_virtual_inheritance) | 
 |       FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); | 
 |   } else { | 
 |     FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1; | 
 |  | 
 |     VBTableOffset = -1; | 
 |   } | 
 |  | 
 |   char Code = '\0'; | 
 |   switch (IM) { | 
 |   case MSInheritanceAttr::Keyword_single_inheritance:      Code = '0'; break; | 
 |   case MSInheritanceAttr::Keyword_multiple_inheritance:    Code = '0'; break; | 
 |   case MSInheritanceAttr::Keyword_virtual_inheritance:     Code = 'F'; break; | 
 |   case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'G'; break; | 
 |   } | 
 |  | 
 |   Out << '$' << Code; | 
 |  | 
 |   mangleNumber(FieldOffset); | 
 |  | 
 |   // The C++ standard doesn't allow base-to-derived member pointer conversions | 
 |   // in template parameter contexts, so the vbptr offset of data member pointers | 
 |   // is always zero. | 
 |   if (MSInheritanceAttr::hasVBPtrOffsetField(IM)) | 
 |     mangleNumber(0); | 
 |   if (MSInheritanceAttr::hasVBTableOffsetField(IM)) | 
 |     mangleNumber(VBTableOffset); | 
 | } | 
 |  | 
 | void | 
 | MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD, | 
 |                                                      const CXXMethodDecl *MD) { | 
 |   // <member-function-pointer> ::= $1? <name> | 
 |   //                           ::= $H? <name> <number> | 
 |   //                           ::= $I? <name> <number> <number> | 
 |   //                           ::= $J? <name> <number> <number> <number> | 
 |  | 
 |   MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel(); | 
 |  | 
 |   char Code = '\0'; | 
 |   switch (IM) { | 
 |   case MSInheritanceAttr::Keyword_single_inheritance:      Code = '1'; break; | 
 |   case MSInheritanceAttr::Keyword_multiple_inheritance:    Code = 'H'; break; | 
 |   case MSInheritanceAttr::Keyword_virtual_inheritance:     Code = 'I'; break; | 
 |   case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'J'; break; | 
 |   } | 
 |  | 
 |   // If non-virtual, mangle the name.  If virtual, mangle as a virtual memptr | 
 |   // thunk. | 
 |   uint64_t NVOffset = 0; | 
 |   uint64_t VBTableOffset = 0; | 
 |   uint64_t VBPtrOffset = 0; | 
 |   if (MD) { | 
 |     Out << '$' << Code << '?'; | 
 |     if (MD->isVirtual()) { | 
 |       MicrosoftVTableContext *VTContext = | 
 |           cast<MicrosoftVTableContext>(getASTContext().getVTableContext()); | 
 |       MethodVFTableLocation ML = | 
 |           VTContext->getMethodVFTableLocation(GlobalDecl(MD)); | 
 |       mangleVirtualMemPtrThunk(MD, ML); | 
 |       NVOffset = ML.VFPtrOffset.getQuantity(); | 
 |       VBTableOffset = ML.VBTableIndex * 4; | 
 |       if (ML.VBase) { | 
 |         const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD); | 
 |         VBPtrOffset = Layout.getVBPtrOffset().getQuantity(); | 
 |       } | 
 |     } else { | 
 |       mangleName(MD); | 
 |       mangleFunctionEncoding(MD, /*ShouldMangle=*/true); | 
 |     } | 
 |  | 
 |     if (VBTableOffset == 0 && | 
 |         IM == MSInheritanceAttr::Keyword_virtual_inheritance) | 
 |       NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); | 
 |   } else { | 
 |     // Null single inheritance member functions are encoded as a simple nullptr. | 
 |     if (IM == MSInheritanceAttr::Keyword_single_inheritance) { | 
 |       Out << "$0A@"; | 
 |       return; | 
 |     } | 
 |     if (IM == MSInheritanceAttr::Keyword_unspecified_inheritance) | 
 |       VBTableOffset = -1; | 
 |     Out << '$' << Code; | 
 |   } | 
 |  | 
 |   if (MSInheritanceAttr::hasNVOffsetField(/*IsMemberFunction=*/true, IM)) | 
 |     mangleNumber(static_cast<uint32_t>(NVOffset)); | 
 |   if (MSInheritanceAttr::hasVBPtrOffsetField(IM)) | 
 |     mangleNumber(VBPtrOffset); | 
 |   if (MSInheritanceAttr::hasVBTableOffsetField(IM)) | 
 |     mangleNumber(VBTableOffset); | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk( | 
 |     const CXXMethodDecl *MD, const MethodVFTableLocation &ML) { | 
 |   // Get the vftable offset. | 
 |   CharUnits PointerWidth = getASTContext().toCharUnitsFromBits( | 
 |       getASTContext().getTargetInfo().getPointerWidth(0)); | 
 |   uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity(); | 
 |  | 
 |   Out << "?_9"; | 
 |   mangleName(MD->getParent()); | 
 |   Out << "$B"; | 
 |   mangleNumber(OffsetInVFTable); | 
 |   Out << 'A'; | 
 |   mangleCallingConvention(MD->getType()->getAs<FunctionProtoType>()); | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) { | 
 |   // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ | 
 |  | 
 |   // Always start with the unqualified name. | 
 |   mangleUnqualifiedName(ND); | 
 |  | 
 |   mangleNestedName(ND); | 
 |  | 
 |   // Terminate the whole name with an '@'. | 
 |   Out << '@'; | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) { | 
 |   // <non-negative integer> ::= A@              # when Number == 0 | 
 |   //                        ::= <decimal digit> # when 1 <= Number <= 10 | 
 |   //                        ::= <hex digit>+ @  # when Number >= 10 | 
 |   // | 
 |   // <number>               ::= [?] <non-negative integer> | 
 |  | 
 |   uint64_t Value = static_cast<uint64_t>(Number); | 
 |   if (Number < 0) { | 
 |     Value = -Value; | 
 |     Out << '?'; | 
 |   } | 
 |  | 
 |   if (Value == 0) | 
 |     Out << "A@"; | 
 |   else if (Value >= 1 && Value <= 10) | 
 |     Out << (Value - 1); | 
 |   else { | 
 |     // Numbers that are not encoded as decimal digits are represented as nibbles | 
 |     // in the range of ASCII characters 'A' to 'P'. | 
 |     // The number 0x123450 would be encoded as 'BCDEFA' | 
 |     char EncodedNumberBuffer[sizeof(uint64_t) * 2]; | 
 |     MutableArrayRef<char> BufferRef(EncodedNumberBuffer); | 
 |     MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin(); | 
 |     for (; Value != 0; Value >>= 4) | 
 |       *I++ = 'A' + (Value & 0xf); | 
 |     Out.write(I.base(), I - BufferRef.rbegin()); | 
 |     Out << '@'; | 
 |   } | 
 | } | 
 |  | 
 | static const TemplateDecl * | 
 | isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) { | 
 |   // Check if we have a function template. | 
 |   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { | 
 |     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { | 
 |       TemplateArgs = FD->getTemplateSpecializationArgs(); | 
 |       return TD; | 
 |     } | 
 |   } | 
 |  | 
 |   // Check if we have a class template. | 
 |   if (const ClassTemplateSpecializationDecl *Spec = | 
 |           dyn_cast<ClassTemplateSpecializationDecl>(ND)) { | 
 |     TemplateArgs = &Spec->getTemplateArgs(); | 
 |     return Spec->getSpecializedTemplate(); | 
 |   } | 
 |  | 
 |   // Check if we have a variable template. | 
 |   if (const VarTemplateSpecializationDecl *Spec = | 
 |           dyn_cast<VarTemplateSpecializationDecl>(ND)) { | 
 |     TemplateArgs = &Spec->getTemplateArgs(); | 
 |     return Spec->getSpecializedTemplate(); | 
 |   } | 
 |  | 
 |   return nullptr; | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND, | 
 |                                                     DeclarationName Name) { | 
 |   //  <unqualified-name> ::= <operator-name> | 
 |   //                     ::= <ctor-dtor-name> | 
 |   //                     ::= <source-name> | 
 |   //                     ::= <template-name> | 
 |  | 
 |   // Check if we have a template. | 
 |   const TemplateArgumentList *TemplateArgs = nullptr; | 
 |   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { | 
 |     // Function templates aren't considered for name back referencing.  This | 
 |     // makes sense since function templates aren't likely to occur multiple | 
 |     // times in a symbol. | 
 |     if (isa<FunctionTemplateDecl>(TD)) { | 
 |       mangleTemplateInstantiationName(TD, *TemplateArgs); | 
 |       Out << '@'; | 
 |       return; | 
 |     } | 
 |  | 
 |     // Here comes the tricky thing: if we need to mangle something like | 
 |     //   void foo(A::X<Y>, B::X<Y>), | 
 |     // the X<Y> part is aliased. However, if you need to mangle | 
 |     //   void foo(A::X<A::Y>, A::X<B::Y>), | 
 |     // the A::X<> part is not aliased. | 
 |     // That said, from the mangler's perspective we have a structure like this: | 
 |     //   namespace[s] -> type[ -> template-parameters] | 
 |     // but from the Clang perspective we have | 
 |     //   type [ -> template-parameters] | 
 |     //      \-> namespace[s] | 
 |     // What we do is we create a new mangler, mangle the same type (without | 
 |     // a namespace suffix) to a string using the extra mangler and then use | 
 |     // the mangled type name as a key to check the mangling of different types | 
 |     // for aliasing. | 
 |  | 
 |     llvm::SmallString<64> TemplateMangling; | 
 |     llvm::raw_svector_ostream Stream(TemplateMangling); | 
 |     MicrosoftCXXNameMangler Extra(Context, Stream); | 
 |     Extra.mangleTemplateInstantiationName(TD, *TemplateArgs); | 
 |  | 
 |     mangleSourceName(TemplateMangling); | 
 |     return; | 
 |   } | 
 |  | 
 |   switch (Name.getNameKind()) { | 
 |     case DeclarationName::Identifier: { | 
 |       if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { | 
 |         mangleSourceName(II->getName()); | 
 |         break; | 
 |       } | 
 |  | 
 |       // Otherwise, an anonymous entity.  We must have a declaration. | 
 |       assert(ND && "mangling empty name without declaration"); | 
 |  | 
 |       if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { | 
 |         if (NS->isAnonymousNamespace()) { | 
 |           Out << "?A0x" << Context.getAnonymousNamespaceHash() << '@'; | 
 |           break; | 
 |         } | 
 |       } | 
 |  | 
 |       if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(ND)) { | 
 |         // FIXME: Invented mangling for decomposition declarations: | 
 |         //   [X,Y,Z] | 
 |         // where X,Y,Z are the names of the bindings. | 
 |         llvm::SmallString<128> Name("["); | 
 |         for (auto *BD : DD->bindings()) { | 
 |           if (Name.size() > 1) | 
 |             Name += ','; | 
 |           Name += BD->getDeclName().getAsIdentifierInfo()->getName(); | 
 |         } | 
 |         Name += ']'; | 
 |         mangleSourceName(Name); | 
 |         break; | 
 |       } | 
 |  | 
 |       if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { | 
 |         // We must have an anonymous union or struct declaration. | 
 |         const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl(); | 
 |         assert(RD && "expected variable decl to have a record type"); | 
 |         // Anonymous types with no tag or typedef get the name of their | 
 |         // declarator mangled in.  If they have no declarator, number them with | 
 |         // a $S prefix. | 
 |         llvm::SmallString<64> Name("$S"); | 
 |         // Get a unique id for the anonymous struct. | 
 |         Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1); | 
 |         mangleSourceName(Name.str()); | 
 |         break; | 
 |       } | 
 |  | 
 |       // We must have an anonymous struct. | 
 |       const TagDecl *TD = cast<TagDecl>(ND); | 
 |       if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { | 
 |         assert(TD->getDeclContext() == D->getDeclContext() && | 
 |                "Typedef should not be in another decl context!"); | 
 |         assert(D->getDeclName().getAsIdentifierInfo() && | 
 |                "Typedef was not named!"); | 
 |         mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName()); | 
 |         break; | 
 |       } | 
 |  | 
 |       if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { | 
 |         if (Record->isLambda()) { | 
 |           llvm::SmallString<10> Name("<lambda_"); | 
 |  | 
 |           Decl *LambdaContextDecl = Record->getLambdaContextDecl(); | 
 |           unsigned LambdaManglingNumber = Record->getLambdaManglingNumber(); | 
 |           unsigned LambdaId; | 
 |           const ParmVarDecl *Parm = | 
 |               dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl); | 
 |           const FunctionDecl *Func = | 
 |               Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; | 
 |  | 
 |           if (Func) { | 
 |             unsigned DefaultArgNo = | 
 |                 Func->getNumParams() - Parm->getFunctionScopeIndex(); | 
 |             Name += llvm::utostr(DefaultArgNo); | 
 |             Name += "_"; | 
 |           } | 
 |  | 
 |           if (LambdaManglingNumber) | 
 |             LambdaId = LambdaManglingNumber; | 
 |           else | 
 |             LambdaId = Context.getLambdaId(Record); | 
 |  | 
 |           Name += llvm::utostr(LambdaId); | 
 |           Name += ">"; | 
 |  | 
 |           mangleSourceName(Name); | 
 |  | 
 |           // If the context of a closure type is an initializer for a class | 
 |           // member (static or nonstatic), it is encoded in a qualified name. | 
 |           if (LambdaManglingNumber && LambdaContextDecl) { | 
 |             if ((isa<VarDecl>(LambdaContextDecl) || | 
 |                  isa<FieldDecl>(LambdaContextDecl)) && | 
 |                 LambdaContextDecl->getDeclContext()->isRecord()) { | 
 |               mangleUnqualifiedName(cast<NamedDecl>(LambdaContextDecl)); | 
 |             } | 
 |           } | 
 |           break; | 
 |         } | 
 |       } | 
 |  | 
 |       llvm::SmallString<64> Name; | 
 |       if (DeclaratorDecl *DD = | 
 |               Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) { | 
 |         // Anonymous types without a name for linkage purposes have their | 
 |         // declarator mangled in if they have one. | 
 |         Name += "<unnamed-type-"; | 
 |         Name += DD->getName(); | 
 |       } else if (TypedefNameDecl *TND = | 
 |                      Context.getASTContext().getTypedefNameForUnnamedTagDecl( | 
 |                          TD)) { | 
 |         // Anonymous types without a name for linkage purposes have their | 
 |         // associate typedef mangled in if they have one. | 
 |         Name += "<unnamed-type-"; | 
 |         Name += TND->getName(); | 
 |       } else if (isa<EnumDecl>(TD) && | 
 |                  cast<EnumDecl>(TD)->enumerator_begin() != | 
 |                      cast<EnumDecl>(TD)->enumerator_end()) { | 
 |         // Anonymous non-empty enums mangle in the first enumerator. | 
 |         auto *ED = cast<EnumDecl>(TD); | 
 |         Name += "<unnamed-enum-"; | 
 |         Name += ED->enumerator_begin()->getName(); | 
 |       } else { | 
 |         // Otherwise, number the types using a $S prefix. | 
 |         Name += "<unnamed-type-$S"; | 
 |         Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1); | 
 |       } | 
 |       Name += ">"; | 
 |       mangleSourceName(Name.str()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case DeclarationName::ObjCZeroArgSelector: | 
 |     case DeclarationName::ObjCOneArgSelector: | 
 |     case DeclarationName::ObjCMultiArgSelector: { | 
 |       // This is reachable only when constructing an outlined SEH finally | 
 |       // block.  Nothing depends on this mangling and it's used only with | 
 |       // functinos with internal linkage. | 
 |       llvm::SmallString<64> Name; | 
 |       mangleSourceName(Name.str()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case DeclarationName::CXXConstructorName: | 
 |       if (isStructorDecl(ND)) { | 
 |         if (StructorType == Ctor_CopyingClosure) { | 
 |           Out << "?_O"; | 
 |           return; | 
 |         } | 
 |         if (StructorType == Ctor_DefaultClosure) { | 
 |           Out << "?_F"; | 
 |           return; | 
 |         } | 
 |       } | 
 |       Out << "?0"; | 
 |       return; | 
 |  | 
 |     case DeclarationName::CXXDestructorName: | 
 |       if (isStructorDecl(ND)) | 
 |         // If the named decl is the C++ destructor we're mangling, | 
 |         // use the type we were given. | 
 |         mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); | 
 |       else | 
 |         // Otherwise, use the base destructor name. This is relevant if a | 
 |         // class with a destructor is declared within a destructor. | 
 |         mangleCXXDtorType(Dtor_Base); | 
 |       break; | 
 |  | 
 |     case DeclarationName::CXXConversionFunctionName: | 
 |       // <operator-name> ::= ?B # (cast) | 
 |       // The target type is encoded as the return type. | 
 |       Out << "?B"; | 
 |       break; | 
 |  | 
 |     case DeclarationName::CXXOperatorName: | 
 |       mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation()); | 
 |       break; | 
 |  | 
 |     case DeclarationName::CXXLiteralOperatorName: { | 
 |       Out << "?__K"; | 
 |       mangleSourceName(Name.getCXXLiteralIdentifier()->getName()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case DeclarationName::CXXDeductionGuideName: | 
 |       llvm_unreachable("Can't mangle a deduction guide name!"); | 
 |  | 
 |     case DeclarationName::CXXUsingDirective: | 
 |       llvm_unreachable("Can't mangle a using directive name!"); | 
 |   } | 
 | } | 
 |  | 
 | // <postfix> ::= <unqualified-name> [<postfix>] | 
 | //           ::= <substitution> [<postfix>] | 
 | void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) { | 
 |   const DeclContext *DC = getEffectiveDeclContext(ND); | 
 |   while (!DC->isTranslationUnit()) { | 
 |     if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) { | 
 |       unsigned Disc; | 
 |       if (Context.getNextDiscriminator(ND, Disc)) { | 
 |         Out << '?'; | 
 |         mangleNumber(Disc); | 
 |         Out << '?'; | 
 |       } | 
 |     } | 
 |  | 
 |     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { | 
 |       auto Discriminate = | 
 |           [](StringRef Name, const unsigned Discriminator, | 
 |              const unsigned ParameterDiscriminator) -> std::string { | 
 |         std::string Buffer; | 
 |         llvm::raw_string_ostream Stream(Buffer); | 
 |         Stream << Name; | 
 |         if (Discriminator) | 
 |           Stream << '_' << Discriminator; | 
 |         if (ParameterDiscriminator) | 
 |           Stream << '_' << ParameterDiscriminator; | 
 |         return Stream.str(); | 
 |       }; | 
 |  | 
 |       unsigned Discriminator = BD->getBlockManglingNumber(); | 
 |       if (!Discriminator) | 
 |         Discriminator = Context.getBlockId(BD, /*Local=*/false); | 
 |  | 
 |       // Mangle the parameter position as a discriminator to deal with unnamed | 
 |       // parameters.  Rather than mangling the unqualified parameter name, | 
 |       // always use the position to give a uniform mangling. | 
 |       unsigned ParameterDiscriminator = 0; | 
 |       if (const auto *MC = BD->getBlockManglingContextDecl()) | 
 |         if (const auto *P = dyn_cast<ParmVarDecl>(MC)) | 
 |           if (const auto *F = dyn_cast<FunctionDecl>(P->getDeclContext())) | 
 |             ParameterDiscriminator = | 
 |                 F->getNumParams() - P->getFunctionScopeIndex(); | 
 |  | 
 |       DC = getEffectiveDeclContext(BD); | 
 |  | 
 |       Out << '?'; | 
 |       mangleSourceName(Discriminate("_block_invoke", Discriminator, | 
 |                                     ParameterDiscriminator)); | 
 |       // If we have a block mangling context, encode that now.  This allows us | 
 |       // to discriminate between named static data initializers in the same | 
 |       // scope.  This is handled differently from parameters, which use | 
 |       // positions to discriminate between multiple instances. | 
 |       if (const auto *MC = BD->getBlockManglingContextDecl()) | 
 |         if (!isa<ParmVarDecl>(MC)) | 
 |           if (const auto *ND = dyn_cast<NamedDecl>(MC)) | 
 |             mangleUnqualifiedName(ND); | 
 |       // MS ABI and Itanium manglings are in inverted scopes.  In the case of a | 
 |       // RecordDecl, mangle the entire scope hierarchy at this point rather than | 
 |       // just the unqualified name to get the ordering correct. | 
 |       if (const auto *RD = dyn_cast<RecordDecl>(DC)) | 
 |         mangleName(RD); | 
 |       else | 
 |         Out << '@'; | 
 |       // void __cdecl | 
 |       Out << "YAX"; | 
 |       // struct __block_literal * | 
 |       Out << 'P'; | 
 |       // __ptr64 | 
 |       if (PointersAre64Bit) | 
 |         Out << 'E'; | 
 |       Out << 'A'; | 
 |       mangleArtificalTagType(TTK_Struct, | 
 |                              Discriminate("__block_literal", Discriminator, | 
 |                                           ParameterDiscriminator)); | 
 |       Out << "@Z"; | 
 |  | 
 |       // If the effective context was a Record, we have fully mangled the | 
 |       // qualified name and do not need to continue. | 
 |       if (isa<RecordDecl>(DC)) | 
 |         break; | 
 |       continue; | 
 |     } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) { | 
 |       mangleObjCMethodName(Method); | 
 |     } else if (isa<NamedDecl>(DC)) { | 
 |       ND = cast<NamedDecl>(DC); | 
 |       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { | 
 |         mangle(FD, "?"); | 
 |         break; | 
 |       } else { | 
 |         mangleUnqualifiedName(ND); | 
 |         // Lambdas in default arguments conceptually belong to the function the | 
 |         // parameter corresponds to. | 
 |         if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(ND)) { | 
 |           DC = LDADC; | 
 |           continue; | 
 |         } | 
 |       } | 
 |     } | 
 |     DC = DC->getParent(); | 
 |   } | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) { | 
 |   // Microsoft uses the names on the case labels for these dtor variants.  Clang | 
 |   // uses the Itanium terminology internally.  Everything in this ABI delegates | 
 |   // towards the base dtor. | 
 |   switch (T) { | 
 |   // <operator-name> ::= ?1  # destructor | 
 |   case Dtor_Base: Out << "?1"; return; | 
 |   // <operator-name> ::= ?_D # vbase destructor | 
 |   case Dtor_Complete: Out << "?_D"; return; | 
 |   // <operator-name> ::= ?_G # scalar deleting destructor | 
 |   case Dtor_Deleting: Out << "?_G"; return; | 
 |   // <operator-name> ::= ?_E # vector deleting destructor | 
 |   // FIXME: Add a vector deleting dtor type.  It goes in the vtable, so we need | 
 |   // it. | 
 |   case Dtor_Comdat: | 
 |     llvm_unreachable("not expecting a COMDAT"); | 
 |   } | 
 |   llvm_unreachable("Unsupported dtor type?"); | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, | 
 |                                                  SourceLocation Loc) { | 
 |   switch (OO) { | 
 |   //                     ?0 # constructor | 
 |   //                     ?1 # destructor | 
 |   // <operator-name> ::= ?2 # new | 
 |   case OO_New: Out << "?2"; break; | 
 |   // <operator-name> ::= ?3 # delete | 
 |   case OO_Delete: Out << "?3"; break; | 
 |   // <operator-name> ::= ?4 # = | 
 |   case OO_Equal: Out << "?4"; break; | 
 |   // <operator-name> ::= ?5 # >> | 
 |   case OO_GreaterGreater: Out << "?5"; break; | 
 |   // <operator-name> ::= ?6 # << | 
 |   case OO_LessLess: Out << "?6"; break; | 
 |   // <operator-name> ::= ?7 # ! | 
 |   case OO_Exclaim: Out << "?7"; break; | 
 |   // <operator-name> ::= ?8 # == | 
 |   case OO_EqualEqual: Out << "?8"; break; | 
 |   // <operator-name> ::= ?9 # != | 
 |   case OO_ExclaimEqual: Out << "?9"; break; | 
 |   // <operator-name> ::= ?A # [] | 
 |   case OO_Subscript: Out << "?A"; break; | 
 |   //                     ?B # conversion | 
 |   // <operator-name> ::= ?C # -> | 
 |   case OO_Arrow: Out << "?C"; break; | 
 |   // <operator-name> ::= ?D # * | 
 |   case OO_Star: Out << "?D"; break; | 
 |   // <operator-name> ::= ?E # ++ | 
 |   case OO_PlusPlus: Out << "?E"; break; | 
 |   // <operator-name> ::= ?F # -- | 
 |   case OO_MinusMinus: Out << "?F"; break; | 
 |   // <operator-name> ::= ?G # - | 
 |   case OO_Minus: Out << "?G"; break; | 
 |   // <operator-name> ::= ?H # + | 
 |   case OO_Plus: Out << "?H"; break; | 
 |   // <operator-name> ::= ?I # & | 
 |   case OO_Amp: Out << "?I"; break; | 
 |   // <operator-name> ::= ?J # ->* | 
 |   case OO_ArrowStar: Out << "?J"; break; | 
 |   // <operator-name> ::= ?K # / | 
 |   case OO_Slash: Out << "?K"; break; | 
 |   // <operator-name> ::= ?L # % | 
 |   case OO_Percent: Out << "?L"; break; | 
 |   // <operator-name> ::= ?M # < | 
 |   case OO_Less: Out << "?M"; break; | 
 |   // <operator-name> ::= ?N # <= | 
 |   case OO_LessEqual: Out << "?N"; break; | 
 |   // <operator-name> ::= ?O # > | 
 |   case OO_Greater: Out << "?O"; break; | 
 |   // <operator-name> ::= ?P # >= | 
 |   case OO_GreaterEqual: Out << "?P"; break; | 
 |   // <operator-name> ::= ?Q # , | 
 |   case OO_Comma: Out << "?Q"; break; | 
 |   // <operator-name> ::= ?R # () | 
 |   case OO_Call: Out << "?R"; break; | 
 |   // <operator-name> ::= ?S # ~ | 
 |   case OO_Tilde: Out << "?S"; break; | 
 |   // <operator-name> ::= ?T # ^ | 
 |   case OO_Caret: Out << "?T"; break; | 
 |   // <operator-name> ::= ?U # | | 
 |   case OO_Pipe: Out << "?U"; break; | 
 |   // <operator-name> ::= ?V # && | 
 |   case OO_AmpAmp: Out << "?V"; break; | 
 |   // <operator-name> ::= ?W # || | 
 |   case OO_PipePipe: Out << "?W"; break; | 
 |   // <operator-name> ::= ?X # *= | 
 |   case OO_StarEqual: Out << "?X"; break; | 
 |   // <operator-name> ::= ?Y # += | 
 |   case OO_PlusEqual: Out << "?Y"; break; | 
 |   // <operator-name> ::= ?Z # -= | 
 |   case OO_MinusEqual: Out << "?Z"; break; | 
 |   // <operator-name> ::= ?_0 # /= | 
 |   case OO_SlashEqual: Out << "?_0"; break; | 
 |   // <operator-name> ::= ?_1 # %= | 
 |   case OO_PercentEqual: Out << "?_1"; break; | 
 |   // <operator-name> ::= ?_2 # >>= | 
 |   case OO_GreaterGreaterEqual: Out << "?_2"; break; | 
 |   // <operator-name> ::= ?_3 # <<= | 
 |   case OO_LessLessEqual: Out << "?_3"; break; | 
 |   // <operator-name> ::= ?_4 # &= | 
 |   case OO_AmpEqual: Out << "?_4"; break; | 
 |   // <operator-name> ::= ?_5 # |= | 
 |   case OO_PipeEqual: Out << "?_5"; break; | 
 |   // <operator-name> ::= ?_6 # ^= | 
 |   case OO_CaretEqual: Out << "?_6"; break; | 
 |   //                     ?_7 # vftable | 
 |   //                     ?_8 # vbtable | 
 |   //                     ?_9 # vcall | 
 |   //                     ?_A # typeof | 
 |   //                     ?_B # local static guard | 
 |   //                     ?_C # string | 
 |   //                     ?_D # vbase destructor | 
 |   //                     ?_E # vector deleting destructor | 
 |   //                     ?_F # default constructor closure | 
 |   //                     ?_G # scalar deleting destructor | 
 |   //                     ?_H # vector constructor iterator | 
 |   //                     ?_I # vector destructor iterator | 
 |   //                     ?_J # vector vbase constructor iterator | 
 |   //                     ?_K # virtual displacement map | 
 |   //                     ?_L # eh vector constructor iterator | 
 |   //                     ?_M # eh vector destructor iterator | 
 |   //                     ?_N # eh vector vbase constructor iterator | 
 |   //                     ?_O # copy constructor closure | 
 |   //                     ?_P<name> # udt returning <name> | 
 |   //                     ?_Q # <unknown> | 
 |   //                     ?_R0 # RTTI Type Descriptor | 
 |   //                     ?_R1 # RTTI Base Class Descriptor at (a,b,c,d) | 
 |   //                     ?_R2 # RTTI Base Class Array | 
 |   //                     ?_R3 # RTTI Class Hierarchy Descriptor | 
 |   //                     ?_R4 # RTTI Complete Object Locator | 
 |   //                     ?_S # local vftable | 
 |   //                     ?_T # local vftable constructor closure | 
 |   // <operator-name> ::= ?_U # new[] | 
 |   case OO_Array_New: Out << "?_U"; break; | 
 |   // <operator-name> ::= ?_V # delete[] | 
 |   case OO_Array_Delete: Out << "?_V"; break; | 
 |   // <operator-name> ::= ?__L # co_await | 
 |   case OO_Coawait: Out << "?__L"; break; | 
 |  | 
 |   case OO_Spaceship: { | 
 |     // FIXME: Once MS picks a mangling, use it. | 
 |     DiagnosticsEngine &Diags = Context.getDiags(); | 
 |     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, | 
 |       "cannot mangle this three-way comparison operator yet"); | 
 |     Diags.Report(Loc, DiagID); | 
 |     break; | 
 |   } | 
 |  | 
 |   case OO_Conditional: { | 
 |     DiagnosticsEngine &Diags = Context.getDiags(); | 
 |     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, | 
 |       "cannot mangle this conditional operator yet"); | 
 |     Diags.Report(Loc, DiagID); | 
 |     break; | 
 |   } | 
 |  | 
 |   case OO_None: | 
 |   case NUM_OVERLOADED_OPERATORS: | 
 |     llvm_unreachable("Not an overloaded operator"); | 
 |   } | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) { | 
 |   // <source name> ::= <identifier> @ | 
 |   BackRefVec::iterator Found = | 
 |       std::find(NameBackReferences.begin(), NameBackReferences.end(), Name); | 
 |   if (Found == NameBackReferences.end()) { | 
 |     if (NameBackReferences.size() < 10) | 
 |       NameBackReferences.push_back(Name); | 
 |     Out << Name << '@'; | 
 |   } else { | 
 |     Out << (Found - NameBackReferences.begin()); | 
 |   } | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { | 
 |   Context.mangleObjCMethodName(MD, Out); | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleTemplateInstantiationName( | 
 |     const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) { | 
 |   // <template-name> ::= <unscoped-template-name> <template-args> | 
 |   //                 ::= <substitution> | 
 |   // Always start with the unqualified name. | 
 |  | 
 |   // Templates have their own context for back references. | 
 |   ArgBackRefMap OuterArgsContext; | 
 |   BackRefVec OuterTemplateContext; | 
 |   PassObjectSizeArgsSet OuterPassObjectSizeArgs; | 
 |   NameBackReferences.swap(OuterTemplateContext); | 
 |   TypeBackReferences.swap(OuterArgsContext); | 
 |   PassObjectSizeArgs.swap(OuterPassObjectSizeArgs); | 
 |  | 
 |   mangleUnscopedTemplateName(TD); | 
 |   mangleTemplateArgs(TD, TemplateArgs); | 
 |  | 
 |   // Restore the previous back reference contexts. | 
 |   NameBackReferences.swap(OuterTemplateContext); | 
 |   TypeBackReferences.swap(OuterArgsContext); | 
 |   PassObjectSizeArgs.swap(OuterPassObjectSizeArgs); | 
 | } | 
 |  | 
 | void | 
 | MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) { | 
 |   // <unscoped-template-name> ::= ?$ <unqualified-name> | 
 |   Out << "?$"; | 
 |   mangleUnqualifiedName(TD); | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value, | 
 |                                                    bool IsBoolean) { | 
 |   // <integer-literal> ::= $0 <number> | 
 |   Out << "$0"; | 
 |   // Make sure booleans are encoded as 0/1. | 
 |   if (IsBoolean && Value.getBoolValue()) | 
 |     mangleNumber(1); | 
 |   else if (Value.isSigned()) | 
 |     mangleNumber(Value.getSExtValue()); | 
 |   else | 
 |     mangleNumber(Value.getZExtValue()); | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) { | 
 |   // See if this is a constant expression. | 
 |   llvm::APSInt Value; | 
 |   if (E->isIntegerConstantExpr(Value, Context.getASTContext())) { | 
 |     mangleIntegerLiteral(Value, E->getType()->isBooleanType()); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Look through no-op casts like template parameter substitutions. | 
 |   E = E->IgnoreParenNoopCasts(Context.getASTContext()); | 
 |  | 
 |   const CXXUuidofExpr *UE = nullptr; | 
 |   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { | 
 |     if (UO->getOpcode() == UO_AddrOf) | 
 |       UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr()); | 
 |   } else | 
 |     UE = dyn_cast<CXXUuidofExpr>(E); | 
 |  | 
 |   if (UE) { | 
 |     // If we had to peek through an address-of operator, treat this like we are | 
 |     // dealing with a pointer type.  Otherwise, treat it like a const reference. | 
 |     // | 
 |     // N.B. This matches up with the handling of TemplateArgument::Declaration | 
 |     // in mangleTemplateArg | 
 |     if (UE == E) | 
 |       Out << "$E?"; | 
 |     else | 
 |       Out << "$1?"; | 
 |  | 
 |     // This CXXUuidofExpr is mangled as-if it were actually a VarDecl from | 
 |     // const __s_GUID _GUID_{lower case UUID with underscores} | 
 |     StringRef Uuid = UE->getUuidStr(); | 
 |     std::string Name = "_GUID_" + Uuid.lower(); | 
 |     std::replace(Name.begin(), Name.end(), '-', '_'); | 
 |  | 
 |     mangleSourceName(Name); | 
 |     // Terminate the whole name with an '@'. | 
 |     Out << '@'; | 
 |     // It's a global variable. | 
 |     Out << '3'; | 
 |     // It's a struct called __s_GUID. | 
 |     mangleArtificalTagType(TTK_Struct, "__s_GUID"); | 
 |     // It's const. | 
 |     Out << 'B'; | 
 |     return; | 
 |   } | 
 |  | 
 |   // As bad as this diagnostic is, it's better than crashing. | 
 |   DiagnosticsEngine &Diags = Context.getDiags(); | 
 |   unsigned DiagID = Diags.getCustomDiagID( | 
 |       DiagnosticsEngine::Error, "cannot yet mangle expression type %0"); | 
 |   Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName() | 
 |                                         << E->getSourceRange(); | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleTemplateArgs( | 
 |     const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) { | 
 |   // <template-args> ::= <template-arg>+ | 
 |   const TemplateParameterList *TPL = TD->getTemplateParameters(); | 
 |   assert(TPL->size() == TemplateArgs.size() && | 
 |          "size mismatch between args and parms!"); | 
 |  | 
 |   unsigned Idx = 0; | 
 |   for (const TemplateArgument &TA : TemplateArgs.asArray()) | 
 |     mangleTemplateArg(TD, TA, TPL->getParam(Idx++)); | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD, | 
 |                                                 const TemplateArgument &TA, | 
 |                                                 const NamedDecl *Parm) { | 
 |   // <template-arg> ::= <type> | 
 |   //                ::= <integer-literal> | 
 |   //                ::= <member-data-pointer> | 
 |   //                ::= <member-function-pointer> | 
 |   //                ::= $E? <name> <type-encoding> | 
 |   //                ::= $1? <name> <type-encoding> | 
 |   //                ::= $0A@ | 
 |   //                ::= <template-args> | 
 |  | 
 |   switch (TA.getKind()) { | 
 |   case TemplateArgument::Null: | 
 |     llvm_unreachable("Can't mangle null template arguments!"); | 
 |   case TemplateArgument::TemplateExpansion: | 
 |     llvm_unreachable("Can't mangle template expansion arguments!"); | 
 |   case TemplateArgument::Type: { | 
 |     QualType T = TA.getAsType(); | 
 |     mangleType(T, SourceRange(), QMM_Escape); | 
 |     break; | 
 |   } | 
 |   case TemplateArgument::Declaration: { | 
 |     const NamedDecl *ND = TA.getAsDecl(); | 
 |     if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) { | 
 |       mangleMemberDataPointer(cast<CXXRecordDecl>(ND->getDeclContext()) | 
 |                                   ->getMostRecentNonInjectedDecl(), | 
 |                               cast<ValueDecl>(ND)); | 
 |     } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { | 
 |       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); | 
 |       if (MD && MD->isInstance()) { | 
 |         mangleMemberFunctionPointer( | 
 |             MD->getParent()->getMostRecentNonInjectedDecl(), MD); | 
 |       } else { | 
 |         Out << "$1?"; | 
 |         mangleName(FD); | 
 |         mangleFunctionEncoding(FD, /*ShouldMangle=*/true); | 
 |       } | 
 |     } else { | 
 |       mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?"); | 
 |     } | 
 |     break; | 
 |   } | 
 |   case TemplateArgument::Integral: | 
 |     mangleIntegerLiteral(TA.getAsIntegral(), | 
 |                          TA.getIntegralType()->isBooleanType()); | 
 |     break; | 
 |   case TemplateArgument::NullPtr: { | 
 |     QualType T = TA.getNullPtrType(); | 
 |     if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) { | 
 |       const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); | 
 |       if (MPT->isMemberFunctionPointerType() && | 
 |           !isa<FunctionTemplateDecl>(TD)) { | 
 |         mangleMemberFunctionPointer(RD, nullptr); | 
 |         return; | 
 |       } | 
 |       if (MPT->isMemberDataPointer()) { | 
 |         if (!isa<FunctionTemplateDecl>(TD)) { | 
 |           mangleMemberDataPointer(RD, nullptr); | 
 |           return; | 
 |         } | 
 |         // nullptr data pointers are always represented with a single field | 
 |         // which is initialized with either 0 or -1.  Why -1?  Well, we need to | 
 |         // distinguish the case where the data member is at offset zero in the | 
 |         // record. | 
 |         // However, we are free to use 0 *if* we would use multiple fields for | 
 |         // non-nullptr member pointers. | 
 |         if (!RD->nullFieldOffsetIsZero()) { | 
 |           mangleIntegerLiteral(llvm::APSInt::get(-1), /*IsBoolean=*/false); | 
 |           return; | 
 |         } | 
 |       } | 
 |     } | 
 |     mangleIntegerLiteral(llvm::APSInt::getUnsigned(0), /*IsBoolean=*/false); | 
 |     break; | 
 |   } | 
 |   case TemplateArgument::Expression: | 
 |     mangleExpression(TA.getAsExpr()); | 
 |     break; | 
 |   case TemplateArgument::Pack: { | 
 |     ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray(); | 
 |     if (TemplateArgs.empty()) { | 
 |       if (isa<TemplateTypeParmDecl>(Parm) || | 
 |           isa<TemplateTemplateParmDecl>(Parm)) | 
 |         // MSVC 2015 changed the mangling for empty expanded template packs, | 
 |         // use the old mangling for link compatibility for old versions. | 
 |         Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC( | 
 |                     LangOptions::MSVC2015) | 
 |                     ? "$$V" | 
 |                     : "$$$V"); | 
 |       else if (isa<NonTypeTemplateParmDecl>(Parm)) | 
 |         Out << "$S"; | 
 |       else | 
 |         llvm_unreachable("unexpected template parameter decl!"); | 
 |     } else { | 
 |       for (const TemplateArgument &PA : TemplateArgs) | 
 |         mangleTemplateArg(TD, PA, Parm); | 
 |     } | 
 |     break; | 
 |   } | 
 |   case TemplateArgument::Template: { | 
 |     const NamedDecl *ND = | 
 |         TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl(); | 
 |     if (const auto *TD = dyn_cast<TagDecl>(ND)) { | 
 |       mangleType(TD); | 
 |     } else if (isa<TypeAliasDecl>(ND)) { | 
 |       Out << "$$Y"; | 
 |       mangleName(ND); | 
 |     } else { | 
 |       llvm_unreachable("unexpected template template NamedDecl!"); | 
 |     } | 
 |     break; | 
 |   } | 
 |   } | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleObjCProtocol(const ObjCProtocolDecl *PD) { | 
 |   llvm::SmallString<64> TemplateMangling; | 
 |   llvm::raw_svector_ostream Stream(TemplateMangling); | 
 |   MicrosoftCXXNameMangler Extra(Context, Stream); | 
 |  | 
 |   Stream << "?$"; | 
 |   Extra.mangleSourceName("Protocol"); | 
 |   Extra.mangleArtificalTagType(TTK_Struct, PD->getName()); | 
 |  | 
 |   mangleArtificalTagType(TTK_Struct, TemplateMangling, {"__ObjC"}); | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleObjCLifetime(const QualType Type, | 
 |                                                  Qualifiers Quals, | 
 |                                                  SourceRange Range) { | 
 |   llvm::SmallString<64> TemplateMangling; | 
 |   llvm::raw_svector_ostream Stream(TemplateMangling); | 
 |   MicrosoftCXXNameMangler Extra(Context, Stream); | 
 |  | 
 |   Stream << "?$"; | 
 |   switch (Quals.getObjCLifetime()) { | 
 |   case Qualifiers::OCL_None: | 
 |   case Qualifiers::OCL_ExplicitNone: | 
 |     break; | 
 |   case Qualifiers::OCL_Autoreleasing: | 
 |     Extra.mangleSourceName("Autoreleasing"); | 
 |     break; | 
 |   case Qualifiers::OCL_Strong: | 
 |     Extra.mangleSourceName("Strong"); | 
 |     break; | 
 |   case Qualifiers::OCL_Weak: | 
 |     Extra.mangleSourceName("Weak"); | 
 |     break; | 
 |   } | 
 |   Extra.manglePointerCVQualifiers(Quals); | 
 |   Extra.manglePointerExtQualifiers(Quals, Type); | 
 |   Extra.mangleType(Type, Range); | 
 |  | 
 |   mangleArtificalTagType(TTK_Struct, TemplateMangling, {"__ObjC"}); | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals, | 
 |                                                bool IsMember) { | 
 |   // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers> | 
 |   // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only); | 
 |   // 'I' means __restrict (32/64-bit). | 
 |   // Note that the MSVC __restrict keyword isn't the same as the C99 restrict | 
 |   // keyword! | 
 |   // <base-cvr-qualifiers> ::= A  # near | 
 |   //                       ::= B  # near const | 
 |   //                       ::= C  # near volatile | 
 |   //                       ::= D  # near const volatile | 
 |   //                       ::= E  # far (16-bit) | 
 |   //                       ::= F  # far const (16-bit) | 
 |   //                       ::= G  # far volatile (16-bit) | 
 |   //                       ::= H  # far const volatile (16-bit) | 
 |   //                       ::= I  # huge (16-bit) | 
 |   //                       ::= J  # huge const (16-bit) | 
 |   //                       ::= K  # huge volatile (16-bit) | 
 |   //                       ::= L  # huge const volatile (16-bit) | 
 |   //                       ::= M <basis> # based | 
 |   //                       ::= N <basis> # based const | 
 |   //                       ::= O <basis> # based volatile | 
 |   //                       ::= P <basis> # based const volatile | 
 |   //                       ::= Q  # near member | 
 |   //                       ::= R  # near const member | 
 |   //                       ::= S  # near volatile member | 
 |   //                       ::= T  # near const volatile member | 
 |   //                       ::= U  # far member (16-bit) | 
 |   //                       ::= V  # far const member (16-bit) | 
 |   //                       ::= W  # far volatile member (16-bit) | 
 |   //                       ::= X  # far const volatile member (16-bit) | 
 |   //                       ::= Y  # huge member (16-bit) | 
 |   //                       ::= Z  # huge const member (16-bit) | 
 |   //                       ::= 0  # huge volatile member (16-bit) | 
 |   //                       ::= 1  # huge const volatile member (16-bit) | 
 |   //                       ::= 2 <basis> # based member | 
 |   //                       ::= 3 <basis> # based const member | 
 |   //                       ::= 4 <basis> # based volatile member | 
 |   //                       ::= 5 <basis> # based const volatile member | 
 |   //                       ::= 6  # near function (pointers only) | 
 |   //                       ::= 7  # far function (pointers only) | 
 |   //                       ::= 8  # near method (pointers only) | 
 |   //                       ::= 9  # far method (pointers only) | 
 |   //                       ::= _A <basis> # based function (pointers only) | 
 |   //                       ::= _B <basis> # based function (far?) (pointers only) | 
 |   //                       ::= _C <basis> # based method (pointers only) | 
 |   //                       ::= _D <basis> # based method (far?) (pointers only) | 
 |   //                       ::= _E # block (Clang) | 
 |   // <basis> ::= 0 # __based(void) | 
 |   //         ::= 1 # __based(segment)? | 
 |   //         ::= 2 <name> # __based(name) | 
 |   //         ::= 3 # ? | 
 |   //         ::= 4 # ? | 
 |   //         ::= 5 # not really based | 
 |   bool HasConst = Quals.hasConst(), | 
 |        HasVolatile = Quals.hasVolatile(); | 
 |  | 
 |   if (!IsMember) { | 
 |     if (HasConst && HasVolatile) { | 
 |       Out << 'D'; | 
 |     } else if (HasVolatile) { | 
 |       Out << 'C'; | 
 |     } else if (HasConst) { | 
 |       Out << 'B'; | 
 |     } else { | 
 |       Out << 'A'; | 
 |     } | 
 |   } else { | 
 |     if (HasConst && HasVolatile) { | 
 |       Out << 'T'; | 
 |     } else if (HasVolatile) { | 
 |       Out << 'S'; | 
 |     } else if (HasConst) { | 
 |       Out << 'R'; | 
 |     } else { | 
 |       Out << 'Q'; | 
 |     } | 
 |   } | 
 |  | 
 |   // FIXME: For now, just drop all extension qualifiers on the floor. | 
 | } | 
 |  | 
 | void | 
 | MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { | 
 |   // <ref-qualifier> ::= G                # lvalue reference | 
 |   //                 ::= H                # rvalue-reference | 
 |   switch (RefQualifier) { | 
 |   case RQ_None: | 
 |     break; | 
 |  | 
 |   case RQ_LValue: | 
 |     Out << 'G'; | 
 |     break; | 
 |  | 
 |   case RQ_RValue: | 
 |     Out << 'H'; | 
 |     break; | 
 |   } | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals, | 
 |                                                          QualType PointeeType) { | 
 |   if (PointersAre64Bit && | 
 |       (PointeeType.isNull() || !PointeeType->isFunctionType())) | 
 |     Out << 'E'; | 
 |  | 
 |   if (Quals.hasRestrict()) | 
 |     Out << 'I'; | 
 |  | 
 |   if (Quals.hasUnaligned() || | 
 |       (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned())) | 
 |     Out << 'F'; | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) { | 
 |   // <pointer-cv-qualifiers> ::= P  # no qualifiers | 
 |   //                         ::= Q  # const | 
 |   //                         ::= R  # volatile | 
 |   //                         ::= S  # const volatile | 
 |   bool HasConst = Quals.hasConst(), | 
 |        HasVolatile = Quals.hasVolatile(); | 
 |  | 
 |   if (HasConst && HasVolatile) { | 
 |     Out << 'S'; | 
 |   } else if (HasVolatile) { | 
 |     Out << 'R'; | 
 |   } else if (HasConst) { | 
 |     Out << 'Q'; | 
 |   } else { | 
 |     Out << 'P'; | 
 |   } | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleArgumentType(QualType T, | 
 |                                                  SourceRange Range) { | 
 |   // MSVC will backreference two canonically equivalent types that have slightly | 
 |   // different manglings when mangled alone. | 
 |  | 
 |   // Decayed types do not match up with non-decayed versions of the same type. | 
 |   // | 
 |   // e.g. | 
 |   // void (*x)(void) will not form a backreference with void x(void) | 
 |   void *TypePtr; | 
 |   if (const auto *DT = T->getAs<DecayedType>()) { | 
 |     QualType OriginalType = DT->getOriginalType(); | 
 |     // All decayed ArrayTypes should be treated identically; as-if they were | 
 |     // a decayed IncompleteArrayType. | 
 |     if (const auto *AT = getASTContext().getAsArrayType(OriginalType)) | 
 |       OriginalType = getASTContext().getIncompleteArrayType( | 
 |           AT->getElementType(), AT->getSizeModifier(), | 
 |           AT->getIndexTypeCVRQualifiers()); | 
 |  | 
 |     TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr(); | 
 |     // If the original parameter was textually written as an array, | 
 |     // instead treat the decayed parameter like it's const. | 
 |     // | 
 |     // e.g. | 
 |     // int [] -> int * const | 
 |     if (OriginalType->isArrayType()) | 
 |       T = T.withConst(); | 
 |   } else { | 
 |     TypePtr = T.getCanonicalType().getAsOpaquePtr(); | 
 |   } | 
 |  | 
 |   ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr); | 
 |  | 
 |   if (Found == TypeBackReferences.end()) { | 
 |     size_t OutSizeBefore = Out.tell(); | 
 |  | 
 |     mangleType(T, Range, QMM_Drop); | 
 |  | 
 |     // See if it's worth creating a back reference. | 
 |     // Only types longer than 1 character are considered | 
 |     // and only 10 back references slots are available: | 
 |     bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1); | 
 |     if (LongerThanOneChar && TypeBackReferences.size() < 10) { | 
 |       size_t Size = TypeBackReferences.size(); | 
 |       TypeBackReferences[TypePtr] = Size; | 
 |     } | 
 |   } else { | 
 |     Out << Found->second; | 
 |   } | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::manglePassObjectSizeArg( | 
 |     const PassObjectSizeAttr *POSA) { | 
 |   int Type = POSA->getType(); | 
 |  | 
 |   auto Iter = PassObjectSizeArgs.insert(Type).first; | 
 |   auto *TypePtr = (const void *)&*Iter; | 
 |   ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr); | 
 |  | 
 |   if (Found == TypeBackReferences.end()) { | 
 |     mangleArtificalTagType(TTK_Enum, "__pass_object_size" + llvm::utostr(Type), | 
 |                            {"__clang"}); | 
 |  | 
 |     if (TypeBackReferences.size() < 10) { | 
 |       size_t Size = TypeBackReferences.size(); | 
 |       TypeBackReferences[TypePtr] = Size; | 
 |     } | 
 |   } else { | 
 |     Out << Found->second; | 
 |   } | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range, | 
 |                                          QualifierMangleMode QMM) { | 
 |   // Don't use the canonical types.  MSVC includes things like 'const' on | 
 |   // pointer arguments to function pointers that canonicalization strips away. | 
 |   T = T.getDesugaredType(getASTContext()); | 
 |   Qualifiers Quals = T.getLocalQualifiers(); | 
 |   if (const ArrayType *AT = getASTContext().getAsArrayType(T)) { | 
 |     // If there were any Quals, getAsArrayType() pushed them onto the array | 
 |     // element type. | 
 |     if (QMM == QMM_Mangle) | 
 |       Out << 'A'; | 
 |     else if (QMM == QMM_Escape || QMM == QMM_Result) | 
 |       Out << "$$B"; | 
 |     mangleArrayType(AT); | 
 |     return; | 
 |   } | 
 |  | 
 |   bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() || | 
 |                    T->isReferenceType() || T->isBlockPointerType(); | 
 |  | 
 |   switch (QMM) { | 
 |   case QMM_Drop: | 
 |     if (Quals.hasObjCLifetime()) | 
 |       Quals = Quals.withoutObjCLifetime(); | 
 |     break; | 
 |   case QMM_Mangle: | 
 |     if (const FunctionType *FT = dyn_cast<FunctionType>(T)) { | 
 |       Out << '6'; | 
 |       mangleFunctionType(FT); | 
 |       return; | 
 |     } | 
 |     mangleQualifiers(Quals, false); | 
 |     break; | 
 |   case QMM_Escape: | 
 |     if (!IsPointer && Quals) { | 
 |       Out << "$$C"; | 
 |       mangleQualifiers(Quals, false); | 
 |     } | 
 |     break; | 
 |   case QMM_Result: | 
 |     // Presence of __unaligned qualifier shouldn't affect mangling here. | 
 |     Quals.removeUnaligned(); | 
 |     if (Quals.hasObjCLifetime()) | 
 |       Quals = Quals.withoutObjCLifetime(); | 
 |     if ((!IsPointer && Quals) || isa<TagType>(T) || isArtificialTagType(T)) { | 
 |       Out << '?'; | 
 |       mangleQualifiers(Quals, false); | 
 |     } | 
 |     break; | 
 |   } | 
 |  | 
 |   const Type *ty = T.getTypePtr(); | 
 |  | 
 |   switch (ty->getTypeClass()) { | 
 | #define ABSTRACT_TYPE(CLASS, PARENT) | 
 | #define NON_CANONICAL_TYPE(CLASS, PARENT) \ | 
 |   case Type::CLASS: \ | 
 |     llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ | 
 |     return; | 
 | #define TYPE(CLASS, PARENT) \ | 
 |   case Type::CLASS: \ | 
 |     mangleType(cast<CLASS##Type>(ty), Quals, Range); \ | 
 |     break; | 
 | #include "clang/AST/TypeNodes.def" | 
 | #undef ABSTRACT_TYPE | 
 | #undef NON_CANONICAL_TYPE | 
 | #undef TYPE | 
 |   } | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers, | 
 |                                          SourceRange Range) { | 
 |   //  <type>         ::= <builtin-type> | 
 |   //  <builtin-type> ::= X  # void | 
 |   //                 ::= C  # signed char | 
 |   //                 ::= D  # char | 
 |   //                 ::= E  # unsigned char | 
 |   //                 ::= F  # short | 
 |   //                 ::= G  # unsigned short (or wchar_t if it's not a builtin) | 
 |   //                 ::= H  # int | 
 |   //                 ::= I  # unsigned int | 
 |   //                 ::= J  # long | 
 |   //                 ::= K  # unsigned long | 
 |   //                     L  # <none> | 
 |   //                 ::= M  # float | 
 |   //                 ::= N  # double | 
 |   //                 ::= O  # long double (__float80 is mangled differently) | 
 |   //                 ::= _J # long long, __int64 | 
 |   //                 ::= _K # unsigned long long, __int64 | 
 |   //                 ::= _L # __int128 | 
 |   //                 ::= _M # unsigned __int128 | 
 |   //                 ::= _N # bool | 
 |   //                     _O # <array in parameter> | 
 |   //                 ::= _T # __float80 (Intel) | 
 |   //                 ::= _S # char16_t | 
 |   //                 ::= _U # char32_t | 
 |   //                 ::= _W # wchar_t | 
 |   //                 ::= _Z # __float80 (Digital Mars) | 
 |   switch (T->getKind()) { | 
 |   case BuiltinType::Void: | 
 |     Out << 'X'; | 
 |     break; | 
 |   case BuiltinType::SChar: | 
 |     Out << 'C'; | 
 |     break; | 
 |   case BuiltinType::Char_U: | 
 |   case BuiltinType::Char_S: | 
 |     Out << 'D'; | 
 |     break; | 
 |   case BuiltinType::UChar: | 
 |     Out << 'E'; | 
 |     break; | 
 |   case BuiltinType::Short: | 
 |     Out << 'F'; | 
 |     break; | 
 |   case BuiltinType::UShort: | 
 |     Out << 'G'; | 
 |     break; | 
 |   case BuiltinType::Int: | 
 |     Out << 'H'; | 
 |     break; | 
 |   case BuiltinType::UInt: | 
 |     Out << 'I'; | 
 |     break; | 
 |   case BuiltinType::Long: | 
 |     Out << 'J'; | 
 |     break; | 
 |   case BuiltinType::ULong: | 
 |     Out << 'K'; | 
 |     break; | 
 |   case BuiltinType::Float: | 
 |     Out << 'M'; | 
 |     break; | 
 |   case BuiltinType::Double: | 
 |     Out << 'N'; | 
 |     break; | 
 |   // TODO: Determine size and mangle accordingly | 
 |   case BuiltinType::LongDouble: | 
 |     Out << 'O'; | 
 |     break; | 
 |   case BuiltinType::LongLong: | 
 |     Out << "_J"; | 
 |     break; | 
 |   case BuiltinType::ULongLong: | 
 |     Out << "_K"; | 
 |     break; | 
 |   case BuiltinType::Int128: | 
 |     Out << "_L"; | 
 |     break; | 
 |   case BuiltinType::UInt128: | 
 |     Out << "_M"; | 
 |     break; | 
 |   case BuiltinType::Bool: | 
 |     Out << "_N"; | 
 |     break; | 
 |   case BuiltinType::Char16: | 
 |     Out << "_S"; | 
 |     break; | 
 |   case BuiltinType::Char32: | 
 |     Out << "_U"; | 
 |     break; | 
 |   case BuiltinType::WChar_S: | 
 |   case BuiltinType::WChar_U: | 
 |     Out << "_W"; | 
 |     break; | 
 |  | 
 | #define BUILTIN_TYPE(Id, SingletonId) | 
 | #define PLACEHOLDER_TYPE(Id, SingletonId) \ | 
 |   case BuiltinType::Id: | 
 | #include "clang/AST/BuiltinTypes.def" | 
 |   case BuiltinType::Dependent: | 
 |     llvm_unreachable("placeholder types shouldn't get to name mangling"); | 
 |  | 
 |   case BuiltinType::ObjCId: | 
 |     mangleArtificalTagType(TTK_Struct, ".objc_object"); | 
 |     break; | 
 |   case BuiltinType::ObjCClass: | 
 |     mangleArtificalTagType(TTK_Struct, ".objc_class"); | 
 |     break; | 
 |   case BuiltinType::ObjCSel: | 
 |     mangleArtificalTagType(TTK_Struct, ".objc_selector"); | 
 |     break; | 
 |  | 
 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | 
 |   case BuiltinType::Id: \ | 
 |     Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \ | 
 |     break; | 
 | #include "clang/Basic/OpenCLImageTypes.def" | 
 |   case BuiltinType::OCLSampler: | 
 |     Out << "PA"; | 
 |     mangleArtificalTagType(TTK_Struct, "ocl_sampler"); | 
 |     break; | 
 |   case BuiltinType::OCLEvent: | 
 |     Out << "PA"; | 
 |     mangleArtificalTagType(TTK_Struct, "ocl_event"); | 
 |     break; | 
 |   case BuiltinType::OCLClkEvent: | 
 |     Out << "PA"; | 
 |     mangleArtificalTagType(TTK_Struct, "ocl_clkevent"); | 
 |     break; | 
 |   case BuiltinType::OCLQueue: | 
 |     Out << "PA"; | 
 |     mangleArtificalTagType(TTK_Struct, "ocl_queue"); | 
 |     break; | 
 |   case BuiltinType::OCLReserveID: | 
 |     Out << "PA"; | 
 |     mangleArtificalTagType(TTK_Struct, "ocl_reserveid"); | 
 |     break; | 
 |  | 
 |   case BuiltinType::NullPtr: | 
 |     Out << "$$T"; | 
 |     break; | 
 |  | 
 |   case BuiltinType::Float16: | 
 |     mangleArtificalTagType(TTK_Struct, "_Float16", {"__clang"}); | 
 |     break; | 
 |  | 
 |   case BuiltinType::Half: | 
 |     mangleArtificalTagType(TTK_Struct, "_Half", {"__clang"}); | 
 |     break; | 
 |  | 
 |   case BuiltinType::ShortAccum: | 
 |   case BuiltinType::Accum: | 
 |   case BuiltinType::LongAccum: | 
 |   case BuiltinType::UShortAccum: | 
 |   case BuiltinType::UAccum: | 
 |   case BuiltinType::ULongAccum: | 
 |   case BuiltinType::ShortFract: | 
 |   case BuiltinType::Fract: | 
 |   case BuiltinType::LongFract: | 
 |   case BuiltinType::UShortFract: | 
 |   case BuiltinType::UFract: | 
 |   case BuiltinType::ULongFract: | 
 |   case BuiltinType::SatShortAccum: | 
 |   case BuiltinType::SatAccum: | 
 |   case BuiltinType::SatLongAccum: | 
 |   case BuiltinType::SatUShortAccum: | 
 |   case BuiltinType::SatUAccum: | 
 |   case BuiltinType::SatULongAccum: | 
 |   case BuiltinType::SatShortFract: | 
 |   case BuiltinType::SatFract: | 
 |   case BuiltinType::SatLongFract: | 
 |   case BuiltinType::SatUShortFract: | 
 |   case BuiltinType::SatUFract: | 
 |   case BuiltinType::SatULongFract: | 
 |   case BuiltinType::Char8: | 
 |   case BuiltinType::Float128: { | 
 |     DiagnosticsEngine &Diags = Context.getDiags(); | 
 |     unsigned DiagID = Diags.getCustomDiagID( | 
 |         DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet"); | 
 |     Diags.Report(Range.getBegin(), DiagID) | 
 |         << T->getName(Context.getASTContext().getPrintingPolicy()) << Range; | 
 |     break; | 
 |   } | 
 |   } | 
 | } | 
 |  | 
 | // <type>          ::= <function-type> | 
 | void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers, | 
 |                                          SourceRange) { | 
 |   // Structors only appear in decls, so at this point we know it's not a | 
 |   // structor type. | 
 |   // FIXME: This may not be lambda-friendly. | 
 |   if (T->getTypeQuals() || T->getRefQualifier() != RQ_None) { | 
 |     Out << "$$A8@@"; | 
 |     mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true); | 
 |   } else { | 
 |     Out << "$$A6"; | 
 |     mangleFunctionType(T); | 
 |   } | 
 | } | 
 | void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T, | 
 |                                          Qualifiers, SourceRange) { | 
 |   Out << "$$A6"; | 
 |   mangleFunctionType(T); | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T, | 
 |                                                  const FunctionDecl *D, | 
 |                                                  bool ForceThisQuals) { | 
 |   // <function-type> ::= <this-cvr-qualifiers> <calling-convention> | 
 |   //                     <return-type> <argument-list> <throw-spec> | 
 |   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T); | 
 |  | 
 |   SourceRange Range; | 
 |   if (D) Range = D->getSourceRange(); | 
 |  | 
 |   bool IsInLambda = false; | 
 |   bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false; | 
 |   CallingConv CC = T->getCallConv(); | 
 |   if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) { | 
 |     if (MD->getParent()->isLambda()) | 
 |       IsInLambda = true; | 
 |     if (MD->isInstance()) | 
 |       HasThisQuals = true; | 
 |     if (isa<CXXDestructorDecl>(MD)) { | 
 |       IsStructor = true; | 
 |     } else if (isa<CXXConstructorDecl>(MD)) { | 
 |       IsStructor = true; | 
 |       IsCtorClosure = (StructorType == Ctor_CopyingClosure || | 
 |                        StructorType == Ctor_DefaultClosure) && | 
 |                       isStructorDecl(MD); | 
 |       if (IsCtorClosure) | 
 |         CC = getASTContext().getDefaultCallingConvention( | 
 |             /*IsVariadic=*/false, /*IsCXXMethod=*/true); | 
 |     } | 
 |   } | 
 |  | 
 |   // If this is a C++ instance method, mangle the CVR qualifiers for the | 
 |   // this pointer. | 
 |   if (HasThisQuals) { | 
 |     Qualifiers Quals = Qualifiers::fromCVRUMask(Proto->getTypeQuals()); | 
 |     manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType()); | 
 |     mangleRefQualifier(Proto->getRefQualifier()); | 
 |     mangleQualifiers(Quals, /*IsMember=*/false); | 
 |   } | 
 |  | 
 |   mangleCallingConvention(CC); | 
 |  | 
 |   // <return-type> ::= <type> | 
 |   //               ::= @ # structors (they have no declared return type) | 
 |   if (IsStructor) { | 
 |     if (isa<CXXDestructorDecl>(D) && isStructorDecl(D)) { | 
 |       // The scalar deleting destructor takes an extra int argument which is not | 
 |       // reflected in the AST. | 
 |       if (StructorType == Dtor_Deleting) { | 
 |         Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z"); | 
 |         return; | 
 |       } | 
 |       // The vbase destructor returns void which is not reflected in the AST. | 
 |       if (StructorType == Dtor_Complete) { | 
 |         Out << "XXZ"; | 
 |         return; | 
 |       } | 
 |     } | 
 |     if (IsCtorClosure) { | 
 |       // Default constructor closure and copy constructor closure both return | 
 |       // void. | 
 |       Out << 'X'; | 
 |  | 
 |       if (StructorType == Ctor_DefaultClosure) { | 
 |         // Default constructor closure always has no arguments. | 
 |         Out << 'X'; | 
 |       } else if (StructorType == Ctor_CopyingClosure) { | 
 |         // Copy constructor closure always takes an unqualified reference. | 
 |         mangleArgumentType(getASTContext().getLValueReferenceType( | 
 |                                Proto->getParamType(0) | 
 |                                    ->getAs<LValueReferenceType>() | 
 |                                    ->getPointeeType(), | 
 |                                /*SpelledAsLValue=*/true), | 
 |                            Range); | 
 |         Out << '@'; | 
 |       } else { | 
 |         llvm_unreachable("unexpected constructor closure!"); | 
 |       } | 
 |       Out << 'Z'; | 
 |       return; | 
 |     } | 
 |     Out << '@'; | 
 |   } else { | 
 |     QualType ResultType = T->getReturnType(); | 
 |     if (const auto *AT = | 
 |             dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) { | 
 |       Out << '?'; | 
 |       mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false); | 
 |       Out << '?'; | 
 |       assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType && | 
 |              "shouldn't need to mangle __auto_type!"); | 
 |       mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>"); | 
 |       Out << '@'; | 
 |     } else if (IsInLambda) { | 
 |       Out << '@'; | 
 |     } else { | 
 |       if (ResultType->isVoidType()) | 
 |         ResultType = ResultType.getUnqualifiedType(); | 
 |       mangleType(ResultType, Range, QMM_Result); | 
 |     } | 
 |   } | 
 |  | 
 |   // <argument-list> ::= X # void | 
 |   //                 ::= <type>+ @ | 
 |   //                 ::= <type>* Z # varargs | 
 |   if (!Proto) { | 
 |     // Function types without prototypes can arise when mangling a function type | 
 |     // within an overloadable function in C. We mangle these as the absence of | 
 |     // any parameter types (not even an empty parameter list). | 
 |     Out << '@'; | 
 |   } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { | 
 |     Out << 'X'; | 
 |   } else { | 
 |     // Happens for function pointer type arguments for example. | 
 |     for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { | 
 |       mangleArgumentType(Proto->getParamType(I), Range); | 
 |       // Mangle each pass_object_size parameter as if it's a parameter of enum | 
 |       // type passed directly after the parameter with the pass_object_size | 
 |       // attribute. The aforementioned enum's name is __pass_object_size, and we | 
 |       // pretend it resides in a top-level namespace called __clang. | 
 |       // | 
 |       // FIXME: Is there a defined extension notation for the MS ABI, or is it | 
 |       // necessary to just cross our fingers and hope this type+namespace | 
 |       // combination doesn't conflict with anything? | 
 |       if (D) | 
 |         if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) | 
 |           manglePassObjectSizeArg(P); | 
 |     } | 
 |     // <builtin-type>      ::= Z  # ellipsis | 
 |     if (Proto->isVariadic()) | 
 |       Out << 'Z'; | 
 |     else | 
 |       Out << '@'; | 
 |   } | 
 |  | 
 |   mangleThrowSpecification(Proto); | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) { | 
 |   // <function-class>  ::= <member-function> E? # E designates a 64-bit 'this' | 
 |   //                                            # pointer. in 64-bit mode *all* | 
 |   //                                            # 'this' pointers are 64-bit. | 
 |   //                   ::= <global-function> | 
 |   // <member-function> ::= A # private: near | 
 |   //                   ::= B # private: far | 
 |   //                   ::= C # private: static near | 
 |   //                   ::= D # private: static far | 
 |   //                   ::= E # private: virtual near | 
 |   //                   ::= F # private: virtual far | 
 |   //                   ::= I # protected: near | 
 |   //                   ::= J # protected: far | 
 |   //                   ::= K # protected: static near | 
 |   //                   ::= L # protected: static far | 
 |   //                   ::= M # protected: virtual near | 
 |   //                   ::= N # protected: virtual far | 
 |   //                   ::= Q # public: near | 
 |   //                   ::= R # public: far | 
 |   //                   ::= S # public: static near | 
 |   //                   ::= T # public: static far | 
 |   //                   ::= U # public: virtual near | 
 |   //                   ::= V # public: virtual far | 
 |   // <global-function> ::= Y # global near | 
 |   //                   ::= Z # global far | 
 |   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
 |     bool IsVirtual = MD->isVirtual(); | 
 |     // When mangling vbase destructor variants, ignore whether or not the | 
 |     // underlying destructor was defined to be virtual. | 
 |     if (isa<CXXDestructorDecl>(MD) && isStructorDecl(MD) && | 
 |         StructorType == Dtor_Complete) { | 
 |       IsVirtual = false; | 
 |     } | 
 |     switch (MD->getAccess()) { | 
 |       case AS_none: | 
 |         llvm_unreachable("Unsupported access specifier"); | 
 |       case AS_private: | 
 |         if (MD->isStatic()) | 
 |           Out << 'C'; | 
 |         else if (IsVirtual) | 
 |           Out << 'E'; | 
 |         else | 
 |           Out << 'A'; | 
 |         break; | 
 |       case AS_protected: | 
 |         if (MD->isStatic()) | 
 |           Out << 'K'; | 
 |         else if (IsVirtual) | 
 |           Out << 'M'; | 
 |         else | 
 |           Out << 'I'; | 
 |         break; | 
 |       case AS_public: | 
 |         if (MD->isStatic()) | 
 |           Out << 'S'; | 
 |         else if (IsVirtual) | 
 |           Out << 'U'; | 
 |         else | 
 |           Out << 'Q'; | 
 |     } | 
 |   } else { | 
 |     Out << 'Y'; | 
 |   } | 
 | } | 
 | void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) { | 
 |   // <calling-convention> ::= A # __cdecl | 
 |   //                      ::= B # __export __cdecl | 
 |   //                      ::= C # __pascal | 
 |   //                      ::= D # __export __pascal | 
 |   //                      ::= E # __thiscall | 
 |   //                      ::= F # __export __thiscall | 
 |   //                      ::= G # __stdcall | 
 |   //                      ::= H # __export __stdcall | 
 |   //                      ::= I # __fastcall | 
 |   //                      ::= J # __export __fastcall | 
 |   //                      ::= Q # __vectorcall | 
 |   //                      ::= w # __regcall | 
 |   // The 'export' calling conventions are from a bygone era | 
 |   // (*cough*Win16*cough*) when functions were declared for export with | 
 |   // that keyword. (It didn't actually export them, it just made them so | 
 |   // that they could be in a DLL and somebody from another module could call | 
 |   // them.) | 
 |  | 
 |   switch (CC) { | 
 |     default: | 
 |       llvm_unreachable("Unsupported CC for mangling"); | 
 |     case CC_Win64: | 
 |     case CC_X86_64SysV: | 
 |     case CC_C: Out << 'A'; break; | 
 |     case CC_X86Pascal: Out << 'C'; break; | 
 |     case CC_X86ThisCall: Out << 'E'; break; | 
 |     case CC_X86StdCall: Out << 'G'; break; | 
 |     case CC_X86FastCall: Out << 'I'; break; | 
 |     case CC_X86VectorCall: Out << 'Q'; break; | 
 |     case CC_Swift: Out << 'S'; break; | 
 |     case CC_PreserveMost: Out << 'U'; break; | 
 |     case CC_X86RegCall: Out << 'w'; break; | 
 |   } | 
 | } | 
 | void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) { | 
 |   mangleCallingConvention(T->getCallConv()); | 
 | } | 
 | void MicrosoftCXXNameMangler::mangleThrowSpecification( | 
 |                                                 const FunctionProtoType *FT) { | 
 |   // <throw-spec> ::= Z # throw(...) (default) | 
 |   //              ::= @ # throw() or __declspec/__attribute__((nothrow)) | 
 |   //              ::= <type>+ | 
 |   // NOTE: Since the Microsoft compiler ignores throw specifications, they are | 
 |   // all actually mangled as 'Z'. (They're ignored because their associated | 
 |   // functionality isn't implemented, and probably never will be.) | 
 |   Out << 'Z'; | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T, | 
 |                                          Qualifiers, SourceRange Range) { | 
 |   // Probably should be mangled as a template instantiation; need to see what | 
 |   // VC does first. | 
 |   DiagnosticsEngine &Diags = Context.getDiags(); | 
 |   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, | 
 |     "cannot mangle this unresolved dependent type yet"); | 
 |   Diags.Report(Range.getBegin(), DiagID) | 
 |     << Range; | 
 | } | 
 |  | 
 | // <type>        ::= <union-type> | <struct-type> | <class-type> | <enum-type> | 
 | // <union-type>  ::= T <name> | 
 | // <struct-type> ::= U <name> | 
 | // <class-type>  ::= V <name> | 
 | // <enum-type>   ::= W4 <name> | 
 | void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) { | 
 |   switch (TTK) { | 
 |     case TTK_Union: | 
 |       Out << 'T'; | 
 |       break; | 
 |     case TTK_Struct: | 
 |     case TTK_Interface: | 
 |       Out << 'U'; | 
 |       break; | 
 |     case TTK_Class: | 
 |       Out << 'V'; | 
 |       break; | 
 |     case TTK_Enum: | 
 |       Out << "W4"; | 
 |       break; | 
 |   } | 
 | } | 
 | void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers, | 
 |                                          SourceRange) { | 
 |   mangleType(cast<TagType>(T)->getDecl()); | 
 | } | 
 | void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers, | 
 |                                          SourceRange) { | 
 |   mangleType(cast<TagType>(T)->getDecl()); | 
 | } | 
 | void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) { | 
 |   mangleTagTypeKind(TD->getTagKind()); | 
 |   mangleName(TD); | 
 | } | 
 |  | 
 | // If you add a call to this, consider updating isArtificialTagType() too. | 
 | void MicrosoftCXXNameMangler::mangleArtificalTagType( | 
 |     TagTypeKind TK, StringRef UnqualifiedName, | 
 |     ArrayRef<StringRef> NestedNames) { | 
 |   // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ | 
 |   mangleTagTypeKind(TK); | 
 |  | 
 |   // Always start with the unqualified name. | 
 |   mangleSourceName(UnqualifiedName); | 
 |  | 
 |   for (auto I = NestedNames.rbegin(), E = NestedNames.rend(); I != E; ++I) | 
 |     mangleSourceName(*I); | 
 |  | 
 |   // Terminate the whole name with an '@'. | 
 |   Out << '@'; | 
 | } | 
 |  | 
 | // <type>       ::= <array-type> | 
 | // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> | 
 | //                  [Y <dimension-count> <dimension>+] | 
 | //                  <element-type> # as global, E is never required | 
 | // It's supposed to be the other way around, but for some strange reason, it | 
 | // isn't. Today this behavior is retained for the sole purpose of backwards | 
 | // compatibility. | 
 | void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) { | 
 |   // This isn't a recursive mangling, so now we have to do it all in this | 
 |   // one call. | 
 |   manglePointerCVQualifiers(T->getElementType().getQualifiers()); | 
 |   mangleType(T->getElementType(), SourceRange()); | 
 | } | 
 | void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers, | 
 |                                          SourceRange) { | 
 |   llvm_unreachable("Should have been special cased"); | 
 | } | 
 | void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers, | 
 |                                          SourceRange) { | 
 |   llvm_unreachable("Should have been special cased"); | 
 | } | 
 | void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T, | 
 |                                          Qualifiers, SourceRange) { | 
 |   llvm_unreachable("Should have been special cased"); | 
 | } | 
 | void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T, | 
 |                                          Qualifiers, SourceRange) { | 
 |   llvm_unreachable("Should have been special cased"); | 
 | } | 
 | void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) { | 
 |   QualType ElementTy(T, 0); | 
 |   SmallVector<llvm::APInt, 3> Dimensions; | 
 |   for (;;) { | 
 |     if (ElementTy->isConstantArrayType()) { | 
 |       const ConstantArrayType *CAT = | 
 |           getASTContext().getAsConstantArrayType(ElementTy); | 
 |       Dimensions.push_back(CAT->getSize()); | 
 |       ElementTy = CAT->getElementType(); | 
 |     } else if (ElementTy->isIncompleteArrayType()) { | 
 |       const IncompleteArrayType *IAT = | 
 |           getASTContext().getAsIncompleteArrayType(ElementTy); | 
 |       Dimensions.push_back(llvm::APInt(32, 0)); | 
 |       ElementTy = IAT->getElementType(); | 
 |     } else if (ElementTy->isVariableArrayType()) { | 
 |       const VariableArrayType *VAT = | 
 |         getASTContext().getAsVariableArrayType(ElementTy); | 
 |       Dimensions.push_back(llvm::APInt(32, 0)); | 
 |       ElementTy = VAT->getElementType(); | 
 |     } else if (ElementTy->isDependentSizedArrayType()) { | 
 |       // The dependent expression has to be folded into a constant (TODO). | 
 |       const DependentSizedArrayType *DSAT = | 
 |         getASTContext().getAsDependentSizedArrayType(ElementTy); | 
 |       DiagnosticsEngine &Diags = Context.getDiags(); | 
 |       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, | 
 |         "cannot mangle this dependent-length array yet"); | 
 |       Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID) | 
 |         << DSAT->getBracketsRange(); | 
 |       return; | 
 |     } else { | 
 |       break; | 
 |     } | 
 |   } | 
 |   Out << 'Y'; | 
 |   // <dimension-count> ::= <number> # number of extra dimensions | 
 |   mangleNumber(Dimensions.size()); | 
 |   for (const llvm::APInt &Dimension : Dimensions) | 
 |     mangleNumber(Dimension.getLimitedValue()); | 
 |   mangleType(ElementTy, SourceRange(), QMM_Escape); | 
 | } | 
 |  | 
 | // <type>                   ::= <pointer-to-member-type> | 
 | // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> | 
 | //                                                          <class name> <type> | 
 | void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, | 
 |                                          Qualifiers Quals, SourceRange Range) { | 
 |   QualType PointeeType = T->getPointeeType(); | 
 |   manglePointerCVQualifiers(Quals); | 
 |   manglePointerExtQualifiers(Quals, PointeeType); | 
 |   if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) { | 
 |     Out << '8'; | 
 |     mangleName(T->getClass()->castAs<RecordType>()->getDecl()); | 
 |     mangleFunctionType(FPT, nullptr, true); | 
 |   } else { | 
 |     mangleQualifiers(PointeeType.getQualifiers(), true); | 
 |     mangleName(T->getClass()->castAs<RecordType>()->getDecl()); | 
 |     mangleType(PointeeType, Range, QMM_Drop); | 
 |   } | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T, | 
 |                                          Qualifiers, SourceRange Range) { | 
 |   DiagnosticsEngine &Diags = Context.getDiags(); | 
 |   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, | 
 |     "cannot mangle this template type parameter type yet"); | 
 |   Diags.Report(Range.getBegin(), DiagID) | 
 |     << Range; | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T, | 
 |                                          Qualifiers, SourceRange Range) { | 
 |   DiagnosticsEngine &Diags = Context.getDiags(); | 
 |   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, | 
 |     "cannot mangle this substituted parameter pack yet"); | 
 |   Diags.Report(Range.getBegin(), DiagID) | 
 |     << Range; | 
 | } | 
 |  | 
 | // <type> ::= <pointer-type> | 
 | // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type> | 
 | //                       # the E is required for 64-bit non-static pointers | 
 | void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals, | 
 |                                          SourceRange Range) { | 
 |   QualType PointeeType = T->getPointeeType(); | 
 |   manglePointerCVQualifiers(Quals); | 
 |   manglePointerExtQualifiers(Quals, PointeeType); | 
 |   mangleType(PointeeType, Range); | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T, | 
 |                                          Qualifiers Quals, SourceRange Range) { | 
 |   QualType PointeeType = T->getPointeeType(); | 
 |   switch (Quals.getObjCLifetime()) { | 
 |   case Qualifiers::OCL_None: | 
 |   case Qualifiers::OCL_ExplicitNone: | 
 |     break; | 
 |   case Qualifiers::OCL_Autoreleasing: | 
 |   case Qualifiers::OCL_Strong: | 
 |   case Qualifiers::OCL_Weak: | 
 |     return mangleObjCLifetime(PointeeType, Quals, Range); | 
 |   } | 
 |   manglePointerCVQualifiers(Quals); | 
 |   manglePointerExtQualifiers(Quals, PointeeType); | 
 |   mangleType(PointeeType, Range); | 
 | } | 
 |  | 
 | // <type> ::= <reference-type> | 
 | // <reference-type> ::= A E? <cvr-qualifiers> <type> | 
 | //                 # the E is required for 64-bit non-static lvalue references | 
 | void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T, | 
 |                                          Qualifiers Quals, SourceRange Range) { | 
 |   QualType PointeeType = T->getPointeeType(); | 
 |   assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!"); | 
 |   Out << 'A'; | 
 |   manglePointerExtQualifiers(Quals, PointeeType); | 
 |   mangleType(PointeeType, Range); | 
 | } | 
 |  | 
 | // <type> ::= <r-value-reference-type> | 
 | // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type> | 
 | //                 # the E is required for 64-bit non-static rvalue references | 
 | void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T, | 
 |                                          Qualifiers Quals, SourceRange Range) { | 
 |   QualType PointeeType = T->getPointeeType(); | 
 |   assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!"); | 
 |   Out << "$$Q"; | 
 |   manglePointerExtQualifiers(Quals, PointeeType); | 
 |   mangleType(PointeeType, Range); | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers, | 
 |                                          SourceRange Range) { | 
 |   QualType ElementType = T->getElementType(); | 
 |  | 
 |   llvm::SmallString<64> TemplateMangling; | 
 |   llvm::raw_svector_ostream Stream(TemplateMangling); | 
 |   MicrosoftCXXNameMangler Extra(Context, Stream); | 
 |   Stream << "?$"; | 
 |   Extra.mangleSourceName("_Complex"); | 
 |   Extra.mangleType(ElementType, Range, QMM_Escape); | 
 |  | 
 |   mangleArtificalTagType(TTK_Struct, TemplateMangling, {"__clang"}); | 
 | } | 
 |  | 
 | // Returns true for types that mangleArtificalTagType() gets called for with | 
 | // TTK_Union, TTK_Struct, TTK_Class and where compatibility with MSVC's | 
 | // mangling matters. | 
 | // (It doesn't matter for Objective-C types and the like that cl.exe doesn't | 
 | // support.) | 
 | bool MicrosoftCXXNameMangler::isArtificialTagType(QualType T) const { | 
 |   const Type *ty = T.getTypePtr(); | 
 |   switch (ty->getTypeClass()) { | 
 |   default: | 
 |     return false; | 
 |  | 
 |   case Type::Vector: { | 
 |     // For ABI compatibility only __m64, __m128(id), and __m256(id) matter, | 
 |     // but since mangleType(VectorType*) always calls mangleArtificalTagType() | 
 |     // just always return true (the other vector types are clang-only). | 
 |     return true; | 
 |   } | 
 |   } | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals, | 
 |                                          SourceRange Range) { | 
 |   const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>(); | 
 |   assert(ET && "vectors with non-builtin elements are unsupported"); | 
 |   uint64_t Width = getASTContext().getTypeSize(T); | 
 |   // Pattern match exactly the typedefs in our intrinsic headers.  Anything that | 
 |   // doesn't match the Intel types uses a custom mangling below. | 
 |   size_t OutSizeBefore = Out.tell(); | 
 |   llvm::Triple::ArchType AT = | 
 |       getASTContext().getTargetInfo().getTriple().getArch(); | 
 |   if (AT == llvm::Triple::x86 || AT == llvm::Triple::x86_64) { | 
 |     if (Width == 64 && ET->getKind() == BuiltinType::LongLong) { | 
 |       mangleArtificalTagType(TTK_Union, "__m64"); | 
 |     } else if (Width >= 128) { | 
 |       if (ET->getKind() == BuiltinType::Float) | 
 |         mangleArtificalTagType(TTK_Union, "__m" + llvm::utostr(Width)); | 
 |       else if (ET->getKind() == BuiltinType::LongLong) | 
 |         mangleArtificalTagType(TTK_Union, "__m" + llvm::utostr(Width) + 'i'); | 
 |       else if (ET->getKind() == BuiltinType::Double) | 
 |         mangleArtificalTagType(TTK_Struct, "__m" + llvm::utostr(Width) + 'd'); | 
 |     } | 
 |   } | 
 |  | 
 |   bool IsBuiltin = Out.tell() != OutSizeBefore; | 
 |   if (!IsBuiltin) { | 
 |     // The MS ABI doesn't have a special mangling for vector types, so we define | 
 |     // our own mangling to handle uses of __vector_size__ on user-specified | 
 |     // types, and for extensions like __v4sf. | 
 |  | 
 |     llvm::SmallString<64> TemplateMangling; | 
 |     llvm::raw_svector_ostream Stream(TemplateMangling); | 
 |     MicrosoftCXXNameMangler Extra(Context, Stream); | 
 |     Stream << "?$"; | 
 |     Extra.mangleSourceName("__vector"); | 
 |     Extra.mangleType(QualType(ET, 0), Range, QMM_Escape); | 
 |     Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements()), | 
 |                                /*IsBoolean=*/false); | 
 |  | 
 |     mangleArtificalTagType(TTK_Union, TemplateMangling, {"__clang"}); | 
 |   } | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T, | 
 |                                          Qualifiers Quals, SourceRange Range) { | 
 |   mangleType(static_cast<const VectorType *>(T), Quals, Range); | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const DependentVectorType *T, | 
 |                                          Qualifiers, SourceRange Range) { | 
 |   DiagnosticsEngine &Diags = Context.getDiags(); | 
 |   unsigned DiagID = Diags.getCustomDiagID( | 
 |       DiagnosticsEngine::Error, | 
 |       "cannot mangle this dependent-sized vector type yet"); | 
 |   Diags.Report(Range.getBegin(), DiagID) << Range; | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T, | 
 |                                          Qualifiers, SourceRange Range) { | 
 |   DiagnosticsEngine &Diags = Context.getDiags(); | 
 |   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, | 
 |     "cannot mangle this dependent-sized extended vector type yet"); | 
 |   Diags.Report(Range.getBegin(), DiagID) | 
 |     << Range; | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const DependentAddressSpaceType *T, | 
 |                                          Qualifiers, SourceRange Range) { | 
 |   DiagnosticsEngine &Diags = Context.getDiags(); | 
 |   unsigned DiagID = Diags.getCustomDiagID( | 
 |       DiagnosticsEngine::Error, | 
 |       "cannot mangle this dependent address space type yet"); | 
 |   Diags.Report(Range.getBegin(), DiagID) << Range; | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers, | 
 |                                          SourceRange) { | 
 |   // ObjC interfaces are mangled as if they were structs with a name that is | 
 |   // not a valid C/C++ identifier | 
 |   mangleTagTypeKind(TTK_Struct); | 
 |   mangle(T->getDecl(), ".objc_cls_"); | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, Qualifiers, | 
 |                                          SourceRange Range) { | 
 |   if (T->qual_empty()) | 
 |     return mangleType(T->getBaseType(), Range, QMM_Drop); | 
 |  | 
 |   ArgBackRefMap OuterArgsContext; | 
 |   BackRefVec OuterTemplateContext; | 
 |  | 
 |   TypeBackReferences.swap(OuterArgsContext); | 
 |   NameBackReferences.swap(OuterTemplateContext); | 
 |  | 
 |   mangleTagTypeKind(TTK_Struct); | 
 |  | 
 |   Out << "?$"; | 
 |   if (T->isObjCId()) | 
 |     mangleSourceName(".objc_object"); | 
 |   else if (T->isObjCClass()) | 
 |     mangleSourceName(".objc_class"); | 
 |   else | 
 |     mangleSourceName((".objc_cls_" + T->getInterface()->getName()).str()); | 
 |  | 
 |   for (const auto &Q : T->quals()) | 
 |     mangleObjCProtocol(Q); | 
 |   Out << '@'; | 
 |  | 
 |   Out << '@'; | 
 |  | 
 |   TypeBackReferences.swap(OuterArgsContext); | 
 |   NameBackReferences.swap(OuterTemplateContext); | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T, | 
 |                                          Qualifiers Quals, SourceRange Range) { | 
 |   QualType PointeeType = T->getPointeeType(); | 
 |   manglePointerCVQualifiers(Quals); | 
 |   manglePointerExtQualifiers(Quals, PointeeType); | 
 |  | 
 |   Out << "_E"; | 
 |  | 
 |   mangleFunctionType(PointeeType->castAs<FunctionProtoType>()); | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *, | 
 |                                          Qualifiers, SourceRange) { | 
 |   llvm_unreachable("Cannot mangle injected class name type."); | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T, | 
 |                                          Qualifiers, SourceRange Range) { | 
 |   DiagnosticsEngine &Diags = Context.getDiags(); | 
 |   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, | 
 |     "cannot mangle this template specialization type yet"); | 
 |   Diags.Report(Range.getBegin(), DiagID) | 
 |     << Range; | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers, | 
 |                                          SourceRange Range) { | 
 |   DiagnosticsEngine &Diags = Context.getDiags(); | 
 |   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, | 
 |     "cannot mangle this dependent name type yet"); | 
 |   Diags.Report(Range.getBegin(), DiagID) | 
 |     << Range; | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType( | 
 |     const DependentTemplateSpecializationType *T, Qualifiers, | 
 |     SourceRange Range) { | 
 |   DiagnosticsEngine &Diags = Context.getDiags(); | 
 |   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, | 
 |     "cannot mangle this dependent template specialization type yet"); | 
 |   Diags.Report(Range.getBegin(), DiagID) | 
 |     << Range; | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers, | 
 |                                          SourceRange Range) { | 
 |   DiagnosticsEngine &Diags = Context.getDiags(); | 
 |   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, | 
 |     "cannot mangle this pack expansion yet"); | 
 |   Diags.Report(Range.getBegin(), DiagID) | 
 |     << Range; | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers, | 
 |                                          SourceRange Range) { | 
 |   DiagnosticsEngine &Diags = Context.getDiags(); | 
 |   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, | 
 |     "cannot mangle this typeof(type) yet"); | 
 |   Diags.Report(Range.getBegin(), DiagID) | 
 |     << Range; | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers, | 
 |                                          SourceRange Range) { | 
 |   DiagnosticsEngine &Diags = Context.getDiags(); | 
 |   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, | 
 |     "cannot mangle this typeof(expression) yet"); | 
 |   Diags.Report(Range.getBegin(), DiagID) | 
 |     << Range; | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers, | 
 |                                          SourceRange Range) { | 
 |   DiagnosticsEngine &Diags = Context.getDiags(); | 
 |   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, | 
 |     "cannot mangle this decltype() yet"); | 
 |   Diags.Report(Range.getBegin(), DiagID) | 
 |     << Range; | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T, | 
 |                                          Qualifiers, SourceRange Range) { | 
 |   DiagnosticsEngine &Diags = Context.getDiags(); | 
 |   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, | 
 |     "cannot mangle this unary transform type yet"); | 
 |   Diags.Report(Range.getBegin(), DiagID) | 
 |     << Range; | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers, | 
 |                                          SourceRange Range) { | 
 |   assert(T->getDeducedType().isNull() && "expecting a dependent type!"); | 
 |  | 
 |   DiagnosticsEngine &Diags = Context.getDiags(); | 
 |   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, | 
 |     "cannot mangle this 'auto' type yet"); | 
 |   Diags.Report(Range.getBegin(), DiagID) | 
 |     << Range; | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType( | 
 |     const DeducedTemplateSpecializationType *T, Qualifiers, SourceRange Range) { | 
 |   assert(T->getDeducedType().isNull() && "expecting a dependent type!"); | 
 |  | 
 |   DiagnosticsEngine &Diags = Context.getDiags(); | 
 |   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, | 
 |     "cannot mangle this deduced class template specialization type yet"); | 
 |   Diags.Report(Range.getBegin(), DiagID) | 
 |     << Range; | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers, | 
 |                                          SourceRange Range) { | 
 |   QualType ValueType = T->getValueType(); | 
 |  | 
 |   llvm::SmallString<64> TemplateMangling; | 
 |   llvm::raw_svector_ostream Stream(TemplateMangling); | 
 |   MicrosoftCXXNameMangler Extra(Context, Stream); | 
 |   Stream << "?$"; | 
 |   Extra.mangleSourceName("_Atomic"); | 
 |   Extra.mangleType(ValueType, Range, QMM_Escape); | 
 |  | 
 |   mangleArtificalTagType(TTK_Struct, TemplateMangling, {"__clang"}); | 
 | } | 
 |  | 
 | void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers, | 
 |                                          SourceRange Range) { | 
 |   DiagnosticsEngine &Diags = Context.getDiags(); | 
 |   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, | 
 |     "cannot mangle this OpenCL pipe type yet"); | 
 |   Diags.Report(Range.getBegin(), DiagID) | 
 |     << Range; | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D, | 
 |                                                raw_ostream &Out) { | 
 |   assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) && | 
 |          "Invalid mangleName() call, argument is not a variable or function!"); | 
 |   assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) && | 
 |          "Invalid mangleName() call on 'structor decl!"); | 
 |  | 
 |   PrettyStackTraceDecl CrashInfo(D, SourceLocation(), | 
 |                                  getASTContext().getSourceManager(), | 
 |                                  "Mangling declaration"); | 
 |  | 
 |   msvc_hashing_ostream MHO(Out); | 
 |   MicrosoftCXXNameMangler Mangler(*this, MHO); | 
 |   return Mangler.mangle(D); | 
 | } | 
 |  | 
 | // <this-adjustment> ::= <no-adjustment> | <static-adjustment> | | 
 | //                       <virtual-adjustment> | 
 | // <no-adjustment>      ::= A # private near | 
 | //                      ::= B # private far | 
 | //                      ::= I # protected near | 
 | //                      ::= J # protected far | 
 | //                      ::= Q # public near | 
 | //                      ::= R # public far | 
 | // <static-adjustment>  ::= G <static-offset> # private near | 
 | //                      ::= H <static-offset> # private far | 
 | //                      ::= O <static-offset> # protected near | 
 | //                      ::= P <static-offset> # protected far | 
 | //                      ::= W <static-offset> # public near | 
 | //                      ::= X <static-offset> # public far | 
 | // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near | 
 | //                      ::= $1 <virtual-shift> <static-offset> # private far | 
 | //                      ::= $2 <virtual-shift> <static-offset> # protected near | 
 | //                      ::= $3 <virtual-shift> <static-offset> # protected far | 
 | //                      ::= $4 <virtual-shift> <static-offset> # public near | 
 | //                      ::= $5 <virtual-shift> <static-offset> # public far | 
 | // <virtual-shift>      ::= <vtordisp-shift> | <vtordispex-shift> | 
 | // <vtordisp-shift>     ::= <offset-to-vtordisp> | 
 | // <vtordispex-shift>   ::= <offset-to-vbptr> <vbase-offset-offset> | 
 | //                          <offset-to-vtordisp> | 
 | static void mangleThunkThisAdjustment(const CXXMethodDecl *MD, | 
 |                                       const ThisAdjustment &Adjustment, | 
 |                                       MicrosoftCXXNameMangler &Mangler, | 
 |                                       raw_ostream &Out) { | 
 |   if (!Adjustment.Virtual.isEmpty()) { | 
 |     Out << '$'; | 
 |     char AccessSpec; | 
 |     switch (MD->getAccess()) { | 
 |     case AS_none: | 
 |       llvm_unreachable("Unsupported access specifier"); | 
 |     case AS_private: | 
 |       AccessSpec = '0'; | 
 |       break; | 
 |     case AS_protected: | 
 |       AccessSpec = '2'; | 
 |       break; | 
 |     case AS_public: | 
 |       AccessSpec = '4'; | 
 |     } | 
 |     if (Adjustment.Virtual.Microsoft.VBPtrOffset) { | 
 |       Out << 'R' << AccessSpec; | 
 |       Mangler.mangleNumber( | 
 |           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset)); | 
 |       Mangler.mangleNumber( | 
 |           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset)); | 
 |       Mangler.mangleNumber( | 
 |           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); | 
 |       Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual)); | 
 |     } else { | 
 |       Out << AccessSpec; | 
 |       Mangler.mangleNumber( | 
 |           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); | 
 |       Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); | 
 |     } | 
 |   } else if (Adjustment.NonVirtual != 0) { | 
 |     switch (MD->getAccess()) { | 
 |     case AS_none: | 
 |       llvm_unreachable("Unsupported access specifier"); | 
 |     case AS_private: | 
 |       Out << 'G'; | 
 |       break; | 
 |     case AS_protected: | 
 |       Out << 'O'; | 
 |       break; | 
 |     case AS_public: | 
 |       Out << 'W'; | 
 |     } | 
 |     Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual)); | 
 |   } else { | 
 |     switch (MD->getAccess()) { | 
 |     case AS_none: | 
 |       llvm_unreachable("Unsupported access specifier"); | 
 |     case AS_private: | 
 |       Out << 'A'; | 
 |       break; | 
 |     case AS_protected: | 
 |       Out << 'I'; | 
 |       break; | 
 |     case AS_public: | 
 |       Out << 'Q'; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk( | 
 |     const CXXMethodDecl *MD, const MethodVFTableLocation &ML, | 
 |     raw_ostream &Out) { | 
 |   msvc_hashing_ostream MHO(Out); | 
 |   MicrosoftCXXNameMangler Mangler(*this, MHO); | 
 |   Mangler.getStream() << '?'; | 
 |   Mangler.mangleVirtualMemPtrThunk(MD, ML); | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, | 
 |                                              const ThunkInfo &Thunk, | 
 |                                              raw_ostream &Out) { | 
 |   msvc_hashing_ostream MHO(Out); | 
 |   MicrosoftCXXNameMangler Mangler(*this, MHO); | 
 |   Mangler.getStream() << '?'; | 
 |   Mangler.mangleName(MD); | 
 |   mangleThunkThisAdjustment(MD, Thunk.This, Mangler, MHO); | 
 |   if (!Thunk.Return.isEmpty()) | 
 |     assert(Thunk.Method != nullptr && | 
 |            "Thunk info should hold the overridee decl"); | 
 |  | 
 |   const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD; | 
 |   Mangler.mangleFunctionType( | 
 |       DeclForFPT->getType()->castAs<FunctionProtoType>(), MD); | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleCXXDtorThunk( | 
 |     const CXXDestructorDecl *DD, CXXDtorType Type, | 
 |     const ThisAdjustment &Adjustment, raw_ostream &Out) { | 
 |   // FIXME: Actually, the dtor thunk should be emitted for vector deleting | 
 |   // dtors rather than scalar deleting dtors. Just use the vector deleting dtor | 
 |   // mangling manually until we support both deleting dtor types. | 
 |   assert(Type == Dtor_Deleting); | 
 |   msvc_hashing_ostream MHO(Out); | 
 |   MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type); | 
 |   Mangler.getStream() << "??_E"; | 
 |   Mangler.mangleName(DD->getParent()); | 
 |   mangleThunkThisAdjustment(DD, Adjustment, Mangler, MHO); | 
 |   Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD); | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleCXXVFTable( | 
 |     const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, | 
 |     raw_ostream &Out) { | 
 |   // <mangled-name> ::= ?_7 <class-name> <storage-class> | 
 |   //                    <cvr-qualifiers> [<name>] @ | 
 |   // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> | 
 |   // is always '6' for vftables. | 
 |   msvc_hashing_ostream MHO(Out); | 
 |   MicrosoftCXXNameMangler Mangler(*this, MHO); | 
 |   if (Derived->hasAttr<DLLImportAttr>()) | 
 |     Mangler.getStream() << "??_S"; | 
 |   else | 
 |     Mangler.getStream() << "??_7"; | 
 |   Mangler.mangleName(Derived); | 
 |   Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const. | 
 |   for (const CXXRecordDecl *RD : BasePath) | 
 |     Mangler.mangleName(RD); | 
 |   Mangler.getStream() << '@'; | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleCXXVBTable( | 
 |     const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, | 
 |     raw_ostream &Out) { | 
 |   // <mangled-name> ::= ?_8 <class-name> <storage-class> | 
 |   //                    <cvr-qualifiers> [<name>] @ | 
 |   // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> | 
 |   // is always '7' for vbtables. | 
 |   msvc_hashing_ostream MHO(Out); | 
 |   MicrosoftCXXNameMangler Mangler(*this, MHO); | 
 |   Mangler.getStream() << "??_8"; | 
 |   Mangler.mangleName(Derived); | 
 |   Mangler.getStream() << "7B";  // '7' for vbtable, 'B' for const. | 
 |   for (const CXXRecordDecl *RD : BasePath) | 
 |     Mangler.mangleName(RD); | 
 |   Mangler.getStream() << '@'; | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) { | 
 |   msvc_hashing_ostream MHO(Out); | 
 |   MicrosoftCXXNameMangler Mangler(*this, MHO); | 
 |   Mangler.getStream() << "??_R0"; | 
 |   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); | 
 |   Mangler.getStream() << "@8"; | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T, | 
 |                                                    raw_ostream &Out) { | 
 |   MicrosoftCXXNameMangler Mangler(*this, Out); | 
 |   Mangler.getStream() << '.'; | 
 |   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap( | 
 |     const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) { | 
 |   msvc_hashing_ostream MHO(Out); | 
 |   MicrosoftCXXNameMangler Mangler(*this, MHO); | 
 |   Mangler.getStream() << "??_K"; | 
 |   Mangler.mangleName(SrcRD); | 
 |   Mangler.getStream() << "$C"; | 
 |   Mangler.mangleName(DstRD); | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst, | 
 |                                                     bool IsVolatile, | 
 |                                                     bool IsUnaligned, | 
 |                                                     uint32_t NumEntries, | 
 |                                                     raw_ostream &Out) { | 
 |   msvc_hashing_ostream MHO(Out); | 
 |   MicrosoftCXXNameMangler Mangler(*this, MHO); | 
 |   Mangler.getStream() << "_TI"; | 
 |   if (IsConst) | 
 |     Mangler.getStream() << 'C'; | 
 |   if (IsVolatile) | 
 |     Mangler.getStream() << 'V'; | 
 |   if (IsUnaligned) | 
 |     Mangler.getStream() << 'U'; | 
 |   Mangler.getStream() << NumEntries; | 
 |   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray( | 
 |     QualType T, uint32_t NumEntries, raw_ostream &Out) { | 
 |   msvc_hashing_ostream MHO(Out); | 
 |   MicrosoftCXXNameMangler Mangler(*this, MHO); | 
 |   Mangler.getStream() << "_CTA"; | 
 |   Mangler.getStream() << NumEntries; | 
 |   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result); | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleCXXCatchableType( | 
 |     QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size, | 
 |     uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex, | 
 |     raw_ostream &Out) { | 
 |   MicrosoftCXXNameMangler Mangler(*this, Out); | 
 |   Mangler.getStream() << "_CT"; | 
 |  | 
 |   llvm::SmallString<64> RTTIMangling; | 
 |   { | 
 |     llvm::raw_svector_ostream Stream(RTTIMangling); | 
 |     msvc_hashing_ostream MHO(Stream); | 
 |     mangleCXXRTTI(T, MHO); | 
 |   } | 
 |   Mangler.getStream() << RTTIMangling; | 
 |  | 
 |   // VS2015 CTP6 omits the copy-constructor in the mangled name.  This name is, | 
 |   // in fact, superfluous but I'm not sure the change was made consciously. | 
 |   llvm::SmallString<64> CopyCtorMangling; | 
 |   if (!getASTContext().getLangOpts().isCompatibleWithMSVC( | 
 |           LangOptions::MSVC2015) && | 
 |       CD) { | 
 |     llvm::raw_svector_ostream Stream(CopyCtorMangling); | 
 |     msvc_hashing_ostream MHO(Stream); | 
 |     mangleCXXCtor(CD, CT, MHO); | 
 |   } | 
 |   Mangler.getStream() << CopyCtorMangling; | 
 |  | 
 |   Mangler.getStream() << Size; | 
 |   if (VBPtrOffset == -1) { | 
 |     if (NVOffset) { | 
 |       Mangler.getStream() << NVOffset; | 
 |     } | 
 |   } else { | 
 |     Mangler.getStream() << NVOffset; | 
 |     Mangler.getStream() << VBPtrOffset; | 
 |     Mangler.getStream() << VBIndex; | 
 |   } | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor( | 
 |     const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset, | 
 |     uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) { | 
 |   msvc_hashing_ostream MHO(Out); | 
 |   MicrosoftCXXNameMangler Mangler(*this, MHO); | 
 |   Mangler.getStream() << "??_R1"; | 
 |   Mangler.mangleNumber(NVOffset); | 
 |   Mangler.mangleNumber(VBPtrOffset); | 
 |   Mangler.mangleNumber(VBTableOffset); | 
 |   Mangler.mangleNumber(Flags); | 
 |   Mangler.mangleName(Derived); | 
 |   Mangler.getStream() << "8"; | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray( | 
 |     const CXXRecordDecl *Derived, raw_ostream &Out) { | 
 |   msvc_hashing_ostream MHO(Out); | 
 |   MicrosoftCXXNameMangler Mangler(*this, MHO); | 
 |   Mangler.getStream() << "??_R2"; | 
 |   Mangler.mangleName(Derived); | 
 |   Mangler.getStream() << "8"; | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor( | 
 |     const CXXRecordDecl *Derived, raw_ostream &Out) { | 
 |   msvc_hashing_ostream MHO(Out); | 
 |   MicrosoftCXXNameMangler Mangler(*this, MHO); | 
 |   Mangler.getStream() << "??_R3"; | 
 |   Mangler.mangleName(Derived); | 
 |   Mangler.getStream() << "8"; | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator( | 
 |     const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, | 
 |     raw_ostream &Out) { | 
 |   // <mangled-name> ::= ?_R4 <class-name> <storage-class> | 
 |   //                    <cvr-qualifiers> [<name>] @ | 
 |   // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> | 
 |   // is always '6' for vftables. | 
 |   llvm::SmallString<64> VFTableMangling; | 
 |   llvm::raw_svector_ostream Stream(VFTableMangling); | 
 |   mangleCXXVFTable(Derived, BasePath, Stream); | 
 |  | 
 |   if (VFTableMangling.startswith("??@")) { | 
 |     assert(VFTableMangling.endswith("@")); | 
 |     Out << VFTableMangling << "??_R4@"; | 
 |     return; | 
 |   } | 
 |  | 
 |   assert(VFTableMangling.startswith("??_7") || | 
 |          VFTableMangling.startswith("??_S")); | 
 |  | 
 |   Out << "??_R4" << StringRef(VFTableMangling).drop_front(4); | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleSEHFilterExpression( | 
 |     const NamedDecl *EnclosingDecl, raw_ostream &Out) { | 
 |   msvc_hashing_ostream MHO(Out); | 
 |   MicrosoftCXXNameMangler Mangler(*this, MHO); | 
 |   // The function body is in the same comdat as the function with the handler, | 
 |   // so the numbering here doesn't have to be the same across TUs. | 
 |   // | 
 |   // <mangled-name> ::= ?filt$ <filter-number> @0 | 
 |   Mangler.getStream() << "?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@"; | 
 |   Mangler.mangleName(EnclosingDecl); | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleSEHFinallyBlock( | 
 |     const NamedDecl *EnclosingDecl, raw_ostream &Out) { | 
 |   msvc_hashing_ostream MHO(Out); | 
 |   MicrosoftCXXNameMangler Mangler(*this, MHO); | 
 |   // The function body is in the same comdat as the function with the handler, | 
 |   // so the numbering here doesn't have to be the same across TUs. | 
 |   // | 
 |   // <mangled-name> ::= ?fin$ <filter-number> @0 | 
 |   Mangler.getStream() << "?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@"; | 
 |   Mangler.mangleName(EnclosingDecl); | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) { | 
 |   // This is just a made up unique string for the purposes of tbaa.  undname | 
 |   // does *not* know how to demangle it. | 
 |   MicrosoftCXXNameMangler Mangler(*this, Out); | 
 |   Mangler.getStream() << '?'; | 
 |   Mangler.mangleType(T, SourceRange()); | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D, | 
 |                                                CXXCtorType Type, | 
 |                                                raw_ostream &Out) { | 
 |   msvc_hashing_ostream MHO(Out); | 
 |   MicrosoftCXXNameMangler mangler(*this, MHO, D, Type); | 
 |   mangler.mangle(D); | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D, | 
 |                                                CXXDtorType Type, | 
 |                                                raw_ostream &Out) { | 
 |   msvc_hashing_ostream MHO(Out); | 
 |   MicrosoftCXXNameMangler mangler(*this, MHO, D, Type); | 
 |   mangler.mangle(D); | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleReferenceTemporary( | 
 |     const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) { | 
 |   msvc_hashing_ostream MHO(Out); | 
 |   MicrosoftCXXNameMangler Mangler(*this, MHO); | 
 |  | 
 |   Mangler.getStream() << "?$RT" << ManglingNumber << '@'; | 
 |   Mangler.mangle(VD, ""); | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable( | 
 |     const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) { | 
 |   msvc_hashing_ostream MHO(Out); | 
 |   MicrosoftCXXNameMangler Mangler(*this, MHO); | 
 |  | 
 |   Mangler.getStream() << "?$TSS" << GuardNum << '@'; | 
 |   Mangler.mangleNestedName(VD); | 
 |   Mangler.getStream() << "@4HA"; | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD, | 
 |                                                            raw_ostream &Out) { | 
 |   // <guard-name> ::= ?_B <postfix> @5 <scope-depth> | 
 |   //              ::= ?__J <postfix> @5 <scope-depth> | 
 |   //              ::= ?$S <guard-num> @ <postfix> @4IA | 
 |  | 
 |   // The first mangling is what MSVC uses to guard static locals in inline | 
 |   // functions.  It uses a different mangling in external functions to support | 
 |   // guarding more than 32 variables.  MSVC rejects inline functions with more | 
 |   // than 32 static locals.  We don't fully implement the second mangling | 
 |   // because those guards are not externally visible, and instead use LLVM's | 
 |   // default renaming when creating a new guard variable. | 
 |   msvc_hashing_ostream MHO(Out); | 
 |   MicrosoftCXXNameMangler Mangler(*this, MHO); | 
 |  | 
 |   bool Visible = VD->isExternallyVisible(); | 
 |   if (Visible) { | 
 |     Mangler.getStream() << (VD->getTLSKind() ? "??__J" : "??_B"); | 
 |   } else { | 
 |     Mangler.getStream() << "?$S1@"; | 
 |   } | 
 |   unsigned ScopeDepth = 0; | 
 |   if (Visible && !getNextDiscriminator(VD, ScopeDepth)) | 
 |     // If we do not have a discriminator and are emitting a guard variable for | 
 |     // use at global scope, then mangling the nested name will not be enough to | 
 |     // remove ambiguities. | 
 |     Mangler.mangle(VD, ""); | 
 |   else | 
 |     Mangler.mangleNestedName(VD); | 
 |   Mangler.getStream() << (Visible ? "@5" : "@4IA"); | 
 |   if (ScopeDepth) | 
 |     Mangler.mangleNumber(ScopeDepth); | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D, | 
 |                                                     char CharCode, | 
 |                                                     raw_ostream &Out) { | 
 |   msvc_hashing_ostream MHO(Out); | 
 |   MicrosoftCXXNameMangler Mangler(*this, MHO); | 
 |   Mangler.getStream() << "??__" << CharCode; | 
 |   Mangler.mangleName(D); | 
 |   if (D->isStaticDataMember()) { | 
 |     Mangler.mangleVariableEncoding(D); | 
 |     Mangler.getStream() << '@'; | 
 |   } | 
 |   // This is the function class mangling.  These stubs are global, non-variadic, | 
 |   // cdecl functions that return void and take no args. | 
 |   Mangler.getStream() << "YAXXZ"; | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D, | 
 |                                                           raw_ostream &Out) { | 
 |   // <initializer-name> ::= ?__E <name> YAXXZ | 
 |   mangleInitFiniStub(D, 'E', Out); | 
 | } | 
 |  | 
 | void | 
 | MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, | 
 |                                                           raw_ostream &Out) { | 
 |   // <destructor-name> ::= ?__F <name> YAXXZ | 
 |   mangleInitFiniStub(D, 'F', Out); | 
 | } | 
 |  | 
 | void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL, | 
 |                                                      raw_ostream &Out) { | 
 |   // <char-type> ::= 0   # char, char16_t, char32_t | 
 |   //                     # (little endian char data in mangling) | 
 |   //             ::= 1   # wchar_t (big endian char data in mangling) | 
 |   // | 
 |   // <literal-length> ::= <non-negative integer>  # the length of the literal | 
 |   // | 
 |   // <encoded-crc>    ::= <hex digit>+ @          # crc of the literal including | 
 |   //                                              # trailing null bytes | 
 |   // | 
 |   // <encoded-string> ::= <simple character>           # uninteresting character | 
 |   //                  ::= '?$' <hex digit> <hex digit> # these two nibbles | 
 |   //                                                   # encode the byte for the | 
 |   //                                                   # character | 
 |   //                  ::= '?' [a-z]                    # \xe1 - \xfa | 
 |   //                  ::= '?' [A-Z]                    # \xc1 - \xda | 
 |   //                  ::= '?' [0-9]                    # [,/\:. \n\t'-] | 
 |   // | 
 |   // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc> | 
 |   //               <encoded-string> '@' | 
 |   MicrosoftCXXNameMangler Mangler(*this, Out); | 
 |   Mangler.getStream() << "??_C@_"; | 
 |  | 
 |   // The actual string length might be different from that of the string literal | 
 |   // in cases like: | 
 |   // char foo[3] = "foobar"; | 
 |   // char bar[42] = "foobar"; | 
 |   // Where it is truncated or zero-padded to fit the array. This is the length | 
 |   // used for mangling, and any trailing null-bytes also need to be mangled. | 
 |   unsigned StringLength = getASTContext() | 
 |                               .getAsConstantArrayType(SL->getType()) | 
 |                               ->getSize() | 
 |                               .getZExtValue(); | 
 |   unsigned StringByteLength = StringLength * SL->getCharByteWidth(); | 
 |  | 
 |   // <char-type>: The "kind" of string literal is encoded into the mangled name. | 
 |   if (SL->isWide()) | 
 |     Mangler.getStream() << '1'; | 
 |   else | 
 |     Mangler.getStream() << '0'; | 
 |  | 
 |   // <literal-length>: The next part of the mangled name consists of the length | 
 |   // of the string in bytes. | 
 |   Mangler.mangleNumber(StringByteLength); | 
 |  | 
 |   auto GetLittleEndianByte = [&SL](unsigned Index) { | 
 |     unsigned CharByteWidth = SL->getCharByteWidth(); | 
 |     if (Index / CharByteWidth >= SL->getLength()) | 
 |       return static_cast<char>(0); | 
 |     uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth); | 
 |     unsigned OffsetInCodeUnit = Index % CharByteWidth; | 
 |     return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); | 
 |   }; | 
 |  | 
 |   auto GetBigEndianByte = [&SL](unsigned Index) { | 
 |     unsigned CharByteWidth = SL->getCharByteWidth(); | 
 |     if (Index / CharByteWidth >= SL->getLength()) | 
 |       return static_cast<char>(0); | 
 |     uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth); | 
 |     unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth); | 
 |     return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); | 
 |   }; | 
 |  | 
 |   // CRC all the bytes of the StringLiteral. | 
 |   llvm::JamCRC JC; | 
 |   for (unsigned I = 0, E = StringByteLength; I != E; ++I) | 
 |     JC.update(GetLittleEndianByte(I)); | 
 |  | 
 |   // <encoded-crc>: The CRC is encoded utilizing the standard number mangling | 
 |   // scheme. | 
 |   Mangler.mangleNumber(JC.getCRC()); | 
 |  | 
 |   // <encoded-string>: The mangled name also contains the first 32 bytes | 
 |   // (including null-terminator bytes) of the encoded StringLiteral. | 
 |   // Each character is encoded by splitting them into bytes and then encoding | 
 |   // the constituent bytes. | 
 |   auto MangleByte = [&Mangler](char Byte) { | 
 |     // There are five different manglings for characters: | 
 |     // - [a-zA-Z0-9_$]: A one-to-one mapping. | 
 |     // - ?[a-z]: The range from \xe1 to \xfa. | 
 |     // - ?[A-Z]: The range from \xc1 to \xda. | 
 |     // - ?[0-9]: The set of [,/\:. \n\t'-]. | 
 |     // - ?$XX: A fallback which maps nibbles. | 
 |     if (isIdentifierBody(Byte, /*AllowDollar=*/true)) { | 
 |       Mangler.getStream() << Byte; | 
 |     } else if (isLetter(Byte & 0x7f)) { | 
 |       Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f); | 
 |     } else { | 
 |       const char SpecialChars[] = {',', '/',  '\\', ':',  '.', | 
 |                                    ' ', '\n', '\t', '\'', '-'}; | 
 |       const char *Pos = | 
 |           std::find(std::begin(SpecialChars), std::end(SpecialChars), Byte); | 
 |       if (Pos != std::end(SpecialChars)) { | 
 |         Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars)); | 
 |       } else { | 
 |         Mangler.getStream() << "?$"; | 
 |         Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf)); | 
 |         Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf)); | 
 |       } | 
 |     } | 
 |   }; | 
 |  | 
 |   // Enforce our 32 bytes max, except wchar_t which gets 32 chars instead. | 
 |   unsigned MaxBytesToMangle = SL->isWide() ? 64U : 32U; | 
 |   unsigned NumBytesToMangle = std::min(MaxBytesToMangle, StringByteLength); | 
 |   for (unsigned I = 0; I != NumBytesToMangle; ++I) { | 
 |     if (SL->isWide()) | 
 |       MangleByte(GetBigEndianByte(I)); | 
 |     else | 
 |       MangleByte(GetLittleEndianByte(I)); | 
 |   } | 
 |  | 
 |   Mangler.getStream() << '@'; | 
 | } | 
 |  | 
 | MicrosoftMangleContext * | 
 | MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) { | 
 |   return new MicrosoftMangleContextImpl(Context, Diags); | 
 | } |