| //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for C++ templates. |
| //===----------------------------------------------------------------------===// |
| |
| #include "TreeTransform.h" |
| #include "clang/AST/ASTConsumer.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclFriend.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/RecursiveASTVisitor.h" |
| #include "clang/AST/TypeVisitor.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Sema/DeclSpec.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/ParsedTemplate.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/Sema/Template.h" |
| #include "clang/Sema/TemplateDeduction.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/StringExtras.h" |
| |
| #include <iterator> |
| using namespace clang; |
| using namespace sema; |
| |
| // Exported for use by Parser. |
| SourceRange |
| clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, |
| unsigned N) { |
| if (!N) return SourceRange(); |
| return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); |
| } |
| |
| namespace clang { |
| /// [temp.constr.decl]p2: A template's associated constraints are |
| /// defined as a single constraint-expression derived from the introduced |
| /// constraint-expressions [ ... ]. |
| /// |
| /// \param Params The template parameter list and optional requires-clause. |
| /// |
| /// \param FD The underlying templated function declaration for a function |
| /// template. |
| static Expr *formAssociatedConstraints(TemplateParameterList *Params, |
| FunctionDecl *FD); |
| } |
| |
| static Expr *clang::formAssociatedConstraints(TemplateParameterList *Params, |
| FunctionDecl *FD) { |
| // FIXME: Concepts: collect additional introduced constraint-expressions |
| assert(!FD && "Cannot collect constraints from function declaration yet."); |
| return Params->getRequiresClause(); |
| } |
| |
| /// Determine whether the declaration found is acceptable as the name |
| /// of a template and, if so, return that template declaration. Otherwise, |
| /// returns NULL. |
| static NamedDecl *isAcceptableTemplateName(ASTContext &Context, |
| NamedDecl *Orig, |
| bool AllowFunctionTemplates) { |
| NamedDecl *D = Orig->getUnderlyingDecl(); |
| |
| if (isa<TemplateDecl>(D)) { |
| if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) |
| return nullptr; |
| |
| return Orig; |
| } |
| |
| if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { |
| // C++ [temp.local]p1: |
| // Like normal (non-template) classes, class templates have an |
| // injected-class-name (Clause 9). The injected-class-name |
| // can be used with or without a template-argument-list. When |
| // it is used without a template-argument-list, it is |
| // equivalent to the injected-class-name followed by the |
| // template-parameters of the class template enclosed in |
| // <>. When it is used with a template-argument-list, it |
| // refers to the specified class template specialization, |
| // which could be the current specialization or another |
| // specialization. |
| if (Record->isInjectedClassName()) { |
| Record = cast<CXXRecordDecl>(Record->getDeclContext()); |
| if (Record->getDescribedClassTemplate()) |
| return Record->getDescribedClassTemplate(); |
| |
| if (ClassTemplateSpecializationDecl *Spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(Record)) |
| return Spec->getSpecializedTemplate(); |
| } |
| |
| return nullptr; |
| } |
| |
| // 'using Dependent::foo;' can resolve to a template name. |
| // 'using typename Dependent::foo;' cannot (not even if 'foo' is an |
| // injected-class-name). |
| if (isa<UnresolvedUsingValueDecl>(D)) |
| return D; |
| |
| return nullptr; |
| } |
| |
| void Sema::FilterAcceptableTemplateNames(LookupResult &R, |
| bool AllowFunctionTemplates) { |
| // The set of class templates we've already seen. |
| llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; |
| LookupResult::Filter filter = R.makeFilter(); |
| while (filter.hasNext()) { |
| NamedDecl *Orig = filter.next(); |
| NamedDecl *Repl = isAcceptableTemplateName(Context, Orig, |
| AllowFunctionTemplates); |
| if (!Repl) |
| filter.erase(); |
| else if (Repl != Orig) { |
| |
| // C++ [temp.local]p3: |
| // A lookup that finds an injected-class-name (10.2) can result in an |
| // ambiguity in certain cases (for example, if it is found in more than |
| // one base class). If all of the injected-class-names that are found |
| // refer to specializations of the same class template, and if the name |
| // is used as a template-name, the reference refers to the class |
| // template itself and not a specialization thereof, and is not |
| // ambiguous. |
| if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) |
| if (!ClassTemplates.insert(ClassTmpl).second) { |
| filter.erase(); |
| continue; |
| } |
| |
| // FIXME: we promote access to public here as a workaround to |
| // the fact that LookupResult doesn't let us remember that we |
| // found this template through a particular injected class name, |
| // which means we end up doing nasty things to the invariants. |
| // Pretending that access is public is *much* safer. |
| filter.replace(Repl, AS_public); |
| } |
| } |
| filter.done(); |
| } |
| |
| bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, |
| bool AllowFunctionTemplates) { |
| for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) |
| if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates)) |
| return true; |
| |
| return false; |
| } |
| |
| TemplateNameKind Sema::isTemplateName(Scope *S, |
| CXXScopeSpec &SS, |
| bool hasTemplateKeyword, |
| const UnqualifiedId &Name, |
| ParsedType ObjectTypePtr, |
| bool EnteringContext, |
| TemplateTy &TemplateResult, |
| bool &MemberOfUnknownSpecialization) { |
| assert(getLangOpts().CPlusPlus && "No template names in C!"); |
| |
| DeclarationName TName; |
| MemberOfUnknownSpecialization = false; |
| |
| switch (Name.getKind()) { |
| case UnqualifiedIdKind::IK_Identifier: |
| TName = DeclarationName(Name.Identifier); |
| break; |
| |
| case UnqualifiedIdKind::IK_OperatorFunctionId: |
| TName = Context.DeclarationNames.getCXXOperatorName( |
| Name.OperatorFunctionId.Operator); |
| break; |
| |
| case UnqualifiedIdKind::IK_LiteralOperatorId: |
| TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); |
| break; |
| |
| default: |
| return TNK_Non_template; |
| } |
| |
| QualType ObjectType = ObjectTypePtr.get(); |
| |
| LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName); |
| if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext, |
| MemberOfUnknownSpecialization)) |
| return TNK_Non_template; |
| if (R.empty()) return TNK_Non_template; |
| if (R.isAmbiguous()) { |
| // Suppress diagnostics; we'll redo this lookup later. |
| R.suppressDiagnostics(); |
| |
| // FIXME: we might have ambiguous templates, in which case we |
| // should at least parse them properly! |
| return TNK_Non_template; |
| } |
| |
| TemplateName Template; |
| TemplateNameKind TemplateKind; |
| |
| unsigned ResultCount = R.end() - R.begin(); |
| if (ResultCount > 1) { |
| // We assume that we'll preserve the qualifier from a function |
| // template name in other ways. |
| Template = Context.getOverloadedTemplateName(R.begin(), R.end()); |
| TemplateKind = TNK_Function_template; |
| |
| // We'll do this lookup again later. |
| R.suppressDiagnostics(); |
| } else if (isa<UnresolvedUsingValueDecl>((*R.begin())->getUnderlyingDecl())) { |
| // We don't yet know whether this is a template-name or not. |
| MemberOfUnknownSpecialization = true; |
| return TNK_Non_template; |
| } else { |
| TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); |
| |
| if (SS.isSet() && !SS.isInvalid()) { |
| NestedNameSpecifier *Qualifier = SS.getScopeRep(); |
| Template = Context.getQualifiedTemplateName(Qualifier, |
| hasTemplateKeyword, TD); |
| } else { |
| Template = TemplateName(TD); |
| } |
| |
| if (isa<FunctionTemplateDecl>(TD)) { |
| TemplateKind = TNK_Function_template; |
| |
| // We'll do this lookup again later. |
| R.suppressDiagnostics(); |
| } else { |
| assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || |
| isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || |
| isa<BuiltinTemplateDecl>(TD)); |
| TemplateKind = |
| isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template; |
| } |
| } |
| |
| TemplateResult = TemplateTy::make(Template); |
| return TemplateKind; |
| } |
| |
| bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name, |
| SourceLocation NameLoc, |
| ParsedTemplateTy *Template) { |
| CXXScopeSpec SS; |
| bool MemberOfUnknownSpecialization = false; |
| |
| // We could use redeclaration lookup here, but we don't need to: the |
| // syntactic form of a deduction guide is enough to identify it even |
| // if we can't look up the template name at all. |
| LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName); |
| if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(), |
| /*EnteringContext*/ false, |
| MemberOfUnknownSpecialization)) |
| return false; |
| |
| if (R.empty()) return false; |
| if (R.isAmbiguous()) { |
| // FIXME: Diagnose an ambiguity if we find at least one template. |
| R.suppressDiagnostics(); |
| return false; |
| } |
| |
| // We only treat template-names that name type templates as valid deduction |
| // guide names. |
| TemplateDecl *TD = R.getAsSingle<TemplateDecl>(); |
| if (!TD || !getAsTypeTemplateDecl(TD)) |
| return false; |
| |
| if (Template) |
| *Template = TemplateTy::make(TemplateName(TD)); |
| return true; |
| } |
| |
| bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, |
| SourceLocation IILoc, |
| Scope *S, |
| const CXXScopeSpec *SS, |
| TemplateTy &SuggestedTemplate, |
| TemplateNameKind &SuggestedKind) { |
| // We can't recover unless there's a dependent scope specifier preceding the |
| // template name. |
| // FIXME: Typo correction? |
| if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || |
| computeDeclContext(*SS)) |
| return false; |
| |
| // The code is missing a 'template' keyword prior to the dependent template |
| // name. |
| NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); |
| Diag(IILoc, diag::err_template_kw_missing) |
| << Qualifier << II.getName() |
| << FixItHint::CreateInsertion(IILoc, "template "); |
| SuggestedTemplate |
| = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); |
| SuggestedKind = TNK_Dependent_template_name; |
| return true; |
| } |
| |
| bool Sema::LookupTemplateName(LookupResult &Found, |
| Scope *S, CXXScopeSpec &SS, |
| QualType ObjectType, |
| bool EnteringContext, |
| bool &MemberOfUnknownSpecialization, |
| SourceLocation TemplateKWLoc) { |
| // Determine where to perform name lookup |
| MemberOfUnknownSpecialization = false; |
| DeclContext *LookupCtx = nullptr; |
| bool IsDependent = false; |
| if (!ObjectType.isNull()) { |
| // This nested-name-specifier occurs in a member access expression, e.g., |
| // x->B::f, and we are looking into the type of the object. |
| assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); |
| LookupCtx = computeDeclContext(ObjectType); |
| IsDependent = !LookupCtx; |
| assert((IsDependent || !ObjectType->isIncompleteType() || |
| ObjectType->castAs<TagType>()->isBeingDefined()) && |
| "Caller should have completed object type"); |
| |
| // Template names cannot appear inside an Objective-C class or object type. |
| if (ObjectType->isObjCObjectOrInterfaceType()) { |
| Found.clear(); |
| return false; |
| } |
| } else if (SS.isSet()) { |
| // This nested-name-specifier occurs after another nested-name-specifier, |
| // so long into the context associated with the prior nested-name-specifier. |
| LookupCtx = computeDeclContext(SS, EnteringContext); |
| IsDependent = !LookupCtx; |
| |
| // The declaration context must be complete. |
| if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) |
| return true; |
| } |
| |
| bool ObjectTypeSearchedInScope = false; |
| bool AllowFunctionTemplatesInLookup = true; |
| if (LookupCtx) { |
| // Perform "qualified" name lookup into the declaration context we |
| // computed, which is either the type of the base of a member access |
| // expression or the declaration context associated with a prior |
| // nested-name-specifier. |
| LookupQualifiedName(Found, LookupCtx); |
| |
| // FIXME: The C++ standard does not clearly specify what happens in the |
| // case where the object type is dependent, and implementations vary. In |
| // Clang, we treat a name after a . or -> as a template-name if lookup |
| // finds a non-dependent member or member of the current instantiation that |
| // is a type template, or finds no such members and lookup in the context |
| // of the postfix-expression finds a type template. In the latter case, the |
| // name is nonetheless dependent, and we may resolve it to a member of an |
| // unknown specialization when we come to instantiate the template. |
| IsDependent |= Found.wasNotFoundInCurrentInstantiation(); |
| } |
| |
| if (!SS.isSet() && (ObjectType.isNull() || Found.empty())) { |
| // C++ [basic.lookup.classref]p1: |
| // In a class member access expression (5.2.5), if the . or -> token is |
| // immediately followed by an identifier followed by a <, the |
| // identifier must be looked up to determine whether the < is the |
| // beginning of a template argument list (14.2) or a less-than operator. |
| // The identifier is first looked up in the class of the object |
| // expression. If the identifier is not found, it is then looked up in |
| // the context of the entire postfix-expression and shall name a class |
| // template. |
| if (S) |
| LookupName(Found, S); |
| |
| if (!ObjectType.isNull()) { |
| // FIXME: We should filter out all non-type templates here, particularly |
| // variable templates and concepts. But the exclusion of alias templates |
| // and template template parameters is a wording defect. |
| AllowFunctionTemplatesInLookup = false; |
| ObjectTypeSearchedInScope = true; |
| } |
| |
| IsDependent |= Found.wasNotFoundInCurrentInstantiation(); |
| } |
| |
| if (Found.empty() && !IsDependent) { |
| // If we did not find any names, attempt to correct any typos. |
| DeclarationName Name = Found.getLookupName(); |
| Found.clear(); |
| // Simple filter callback that, for keywords, only accepts the C++ *_cast |
| auto FilterCCC = llvm::make_unique<CorrectionCandidateCallback>(); |
| FilterCCC->WantTypeSpecifiers = false; |
| FilterCCC->WantExpressionKeywords = false; |
| FilterCCC->WantRemainingKeywords = false; |
| FilterCCC->WantCXXNamedCasts = true; |
| if (TypoCorrection Corrected = CorrectTypo( |
| Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS, |
| std::move(FilterCCC), CTK_ErrorRecovery, LookupCtx)) { |
| Found.setLookupName(Corrected.getCorrection()); |
| if (auto *ND = Corrected.getFoundDecl()) |
| Found.addDecl(ND); |
| FilterAcceptableTemplateNames(Found); |
| if (!Found.empty()) { |
| if (LookupCtx) { |
| std::string CorrectedStr(Corrected.getAsString(getLangOpts())); |
| bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && |
| Name.getAsString() == CorrectedStr; |
| diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest) |
| << Name << LookupCtx << DroppedSpecifier |
| << SS.getRange()); |
| } else { |
| diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name); |
| } |
| } |
| } else { |
| Found.setLookupName(Name); |
| } |
| } |
| |
| NamedDecl *ExampleLookupResult = |
| Found.empty() ? nullptr : Found.getRepresentativeDecl(); |
| FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); |
| if (Found.empty()) { |
| if (IsDependent) { |
| MemberOfUnknownSpecialization = true; |
| return false; |
| } |
| |
| // If a 'template' keyword was used, a lookup that finds only non-template |
| // names is an error. |
| if (ExampleLookupResult && TemplateKWLoc.isValid()) { |
| Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template) |
| << Found.getLookupName() << SS.getRange(); |
| Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(), |
| diag::note_template_kw_refers_to_non_template) |
| << Found.getLookupName(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && |
| !getLangOpts().CPlusPlus11) { |
| // C++03 [basic.lookup.classref]p1: |
| // [...] If the lookup in the class of the object expression finds a |
| // template, the name is also looked up in the context of the entire |
| // postfix-expression and [...] |
| // |
| // Note: C++11 does not perform this second lookup. |
| LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), |
| LookupOrdinaryName); |
| LookupName(FoundOuter, S); |
| FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); |
| |
| if (FoundOuter.empty()) { |
| // - if the name is not found, the name found in the class of the |
| // object expression is used, otherwise |
| } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() || |
| FoundOuter.isAmbiguous()) { |
| // - if the name is found in the context of the entire |
| // postfix-expression and does not name a class template, the name |
| // found in the class of the object expression is used, otherwise |
| FoundOuter.clear(); |
| } else if (!Found.isSuppressingDiagnostics()) { |
| // - if the name found is a class template, it must refer to the same |
| // entity as the one found in the class of the object expression, |
| // otherwise the program is ill-formed. |
| if (!Found.isSingleResult() || |
| Found.getFoundDecl()->getCanonicalDecl() |
| != FoundOuter.getFoundDecl()->getCanonicalDecl()) { |
| Diag(Found.getNameLoc(), |
| diag::ext_nested_name_member_ref_lookup_ambiguous) |
| << Found.getLookupName() |
| << ObjectType; |
| Diag(Found.getRepresentativeDecl()->getLocation(), |
| diag::note_ambig_member_ref_object_type) |
| << ObjectType; |
| Diag(FoundOuter.getFoundDecl()->getLocation(), |
| diag::note_ambig_member_ref_scope); |
| |
| // Recover by taking the template that we found in the object |
| // expression's type. |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName, |
| SourceLocation Less, |
| SourceLocation Greater) { |
| if (TemplateName.isInvalid()) |
| return; |
| |
| DeclarationNameInfo NameInfo; |
| CXXScopeSpec SS; |
| LookupNameKind LookupKind; |
| |
| DeclContext *LookupCtx = nullptr; |
| NamedDecl *Found = nullptr; |
| bool MissingTemplateKeyword = false; |
| |
| // Figure out what name we looked up. |
| if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) { |
| NameInfo = DRE->getNameInfo(); |
| SS.Adopt(DRE->getQualifierLoc()); |
| LookupKind = LookupOrdinaryName; |
| Found = DRE->getFoundDecl(); |
| } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) { |
| NameInfo = ME->getMemberNameInfo(); |
| SS.Adopt(ME->getQualifierLoc()); |
| LookupKind = LookupMemberName; |
| LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl(); |
| Found = ME->getMemberDecl(); |
| } else if (auto *DSDRE = |
| dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) { |
| NameInfo = DSDRE->getNameInfo(); |
| SS.Adopt(DSDRE->getQualifierLoc()); |
| MissingTemplateKeyword = true; |
| } else if (auto *DSME = |
| dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) { |
| NameInfo = DSME->getMemberNameInfo(); |
| SS.Adopt(DSME->getQualifierLoc()); |
| MissingTemplateKeyword = true; |
| } else { |
| llvm_unreachable("unexpected kind of potential template name"); |
| } |
| |
| // If this is a dependent-scope lookup, diagnose that the 'template' keyword |
| // was missing. |
| if (MissingTemplateKeyword) { |
| Diag(NameInfo.getLocStart(), diag::err_template_kw_missing) |
| << "" << NameInfo.getName().getAsString() |
| << SourceRange(Less, Greater); |
| return; |
| } |
| |
| // Try to correct the name by looking for templates and C++ named casts. |
| struct TemplateCandidateFilter : CorrectionCandidateCallback { |
| TemplateCandidateFilter() { |
| WantTypeSpecifiers = false; |
| WantExpressionKeywords = false; |
| WantRemainingKeywords = false; |
| WantCXXNamedCasts = true; |
| }; |
| bool ValidateCandidate(const TypoCorrection &Candidate) override { |
| if (auto *ND = Candidate.getCorrectionDecl()) |
| return isAcceptableTemplateName(ND->getASTContext(), ND, true); |
| return Candidate.isKeyword(); |
| } |
| }; |
| |
| DeclarationName Name = NameInfo.getName(); |
| if (TypoCorrection Corrected = |
| CorrectTypo(NameInfo, LookupKind, S, &SS, |
| llvm::make_unique<TemplateCandidateFilter>(), |
| CTK_ErrorRecovery, LookupCtx)) { |
| auto *ND = Corrected.getFoundDecl(); |
| if (ND) |
| ND = isAcceptableTemplateName(Context, ND, |
| /*AllowFunctionTemplates*/ true); |
| if (ND || Corrected.isKeyword()) { |
| if (LookupCtx) { |
| std::string CorrectedStr(Corrected.getAsString(getLangOpts())); |
| bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && |
| Name.getAsString() == CorrectedStr; |
| diagnoseTypo(Corrected, |
| PDiag(diag::err_non_template_in_member_template_id_suggest) |
| << Name << LookupCtx << DroppedSpecifier |
| << SS.getRange(), false); |
| } else { |
| diagnoseTypo(Corrected, |
| PDiag(diag::err_non_template_in_template_id_suggest) |
| << Name, false); |
| } |
| if (Found) |
| Diag(Found->getLocation(), |
| diag::note_non_template_in_template_id_found); |
| return; |
| } |
| } |
| |
| Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id) |
| << Name << SourceRange(Less, Greater); |
| if (Found) |
| Diag(Found->getLocation(), diag::note_non_template_in_template_id_found); |
| } |
| |
| /// ActOnDependentIdExpression - Handle a dependent id-expression that |
| /// was just parsed. This is only possible with an explicit scope |
| /// specifier naming a dependent type. |
| ExprResult |
| Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, |
| const DeclarationNameInfo &NameInfo, |
| bool isAddressOfOperand, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| DeclContext *DC = getFunctionLevelDeclContext(); |
| |
| // C++11 [expr.prim.general]p12: |
| // An id-expression that denotes a non-static data member or non-static |
| // member function of a class can only be used: |
| // (...) |
| // - if that id-expression denotes a non-static data member and it |
| // appears in an unevaluated operand. |
| // |
| // If this might be the case, form a DependentScopeDeclRefExpr instead of a |
| // CXXDependentScopeMemberExpr. The former can instantiate to either |
| // DeclRefExpr or MemberExpr depending on lookup results, while the latter is |
| // always a MemberExpr. |
| bool MightBeCxx11UnevalField = |
| getLangOpts().CPlusPlus11 && isUnevaluatedContext(); |
| |
| // Check if the nested name specifier is an enum type. |
| bool IsEnum = false; |
| if (NestedNameSpecifier *NNS = SS.getScopeRep()) |
| IsEnum = dyn_cast_or_null<EnumType>(NNS->getAsType()); |
| |
| if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum && |
| isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) { |
| QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); |
| |
| // Since the 'this' expression is synthesized, we don't need to |
| // perform the double-lookup check. |
| NamedDecl *FirstQualifierInScope = nullptr; |
| |
| return CXXDependentScopeMemberExpr::Create( |
| Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true, |
| /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc, |
| FirstQualifierInScope, NameInfo, TemplateArgs); |
| } |
| |
| return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); |
| } |
| |
| ExprResult |
| Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, |
| const DeclarationNameInfo &NameInfo, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| return DependentScopeDeclRefExpr::Create( |
| Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, |
| TemplateArgs); |
| } |
| |
| |
| /// Determine whether we would be unable to instantiate this template (because |
| /// it either has no definition, or is in the process of being instantiated). |
| bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation, |
| NamedDecl *Instantiation, |
| bool InstantiatedFromMember, |
| const NamedDecl *Pattern, |
| const NamedDecl *PatternDef, |
| TemplateSpecializationKind TSK, |
| bool Complain /*= true*/) { |
| assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || |
| isa<VarDecl>(Instantiation)); |
| |
| bool IsEntityBeingDefined = false; |
| if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef)) |
| IsEntityBeingDefined = TD->isBeingDefined(); |
| |
| if (PatternDef && !IsEntityBeingDefined) { |
| NamedDecl *SuggestedDef = nullptr; |
| if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef, |
| /*OnlyNeedComplete*/false)) { |
| // If we're allowed to diagnose this and recover, do so. |
| bool Recover = Complain && !isSFINAEContext(); |
| if (Complain) |
| diagnoseMissingImport(PointOfInstantiation, SuggestedDef, |
| Sema::MissingImportKind::Definition, Recover); |
| return !Recover; |
| } |
| return false; |
| } |
| |
| if (!Complain || (PatternDef && PatternDef->isInvalidDecl())) |
| return true; |
| |
| llvm::Optional<unsigned> Note; |
| QualType InstantiationTy; |
| if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation)) |
| InstantiationTy = Context.getTypeDeclType(TD); |
| if (PatternDef) { |
| Diag(PointOfInstantiation, |
| diag::err_template_instantiate_within_definition) |
| << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation) |
| << InstantiationTy; |
| // Not much point in noting the template declaration here, since |
| // we're lexically inside it. |
| Instantiation->setInvalidDecl(); |
| } else if (InstantiatedFromMember) { |
| if (isa<FunctionDecl>(Instantiation)) { |
| Diag(PointOfInstantiation, |
| diag::err_explicit_instantiation_undefined_member) |
| << /*member function*/ 1 << Instantiation->getDeclName() |
| << Instantiation->getDeclContext(); |
| Note = diag::note_explicit_instantiation_here; |
| } else { |
| assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!"); |
| Diag(PointOfInstantiation, |
| diag::err_implicit_instantiate_member_undefined) |
| << InstantiationTy; |
| Note = diag::note_member_declared_at; |
| } |
| } else { |
| if (isa<FunctionDecl>(Instantiation)) { |
| Diag(PointOfInstantiation, |
| diag::err_explicit_instantiation_undefined_func_template) |
| << Pattern; |
| Note = diag::note_explicit_instantiation_here; |
| } else if (isa<TagDecl>(Instantiation)) { |
| Diag(PointOfInstantiation, diag::err_template_instantiate_undefined) |
| << (TSK != TSK_ImplicitInstantiation) |
| << InstantiationTy; |
| Note = diag::note_template_decl_here; |
| } else { |
| assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!"); |
| if (isa<VarTemplateSpecializationDecl>(Instantiation)) { |
| Diag(PointOfInstantiation, |
| diag::err_explicit_instantiation_undefined_var_template) |
| << Instantiation; |
| Instantiation->setInvalidDecl(); |
| } else |
| Diag(PointOfInstantiation, |
| diag::err_explicit_instantiation_undefined_member) |
| << /*static data member*/ 2 << Instantiation->getDeclName() |
| << Instantiation->getDeclContext(); |
| Note = diag::note_explicit_instantiation_here; |
| } |
| } |
| if (Note) // Diagnostics were emitted. |
| Diag(Pattern->getLocation(), Note.getValue()); |
| |
| // In general, Instantiation isn't marked invalid to get more than one |
| // error for multiple undefined instantiations. But the code that does |
| // explicit declaration -> explicit definition conversion can't handle |
| // invalid declarations, so mark as invalid in that case. |
| if (TSK == TSK_ExplicitInstantiationDeclaration) |
| Instantiation->setInvalidDecl(); |
| return true; |
| } |
| |
| /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining |
| /// that the template parameter 'PrevDecl' is being shadowed by a new |
| /// declaration at location Loc. Returns true to indicate that this is |
| /// an error, and false otherwise. |
| void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { |
| assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); |
| |
| // Microsoft Visual C++ permits template parameters to be shadowed. |
| if (getLangOpts().MicrosoftExt) |
| return; |
| |
| // C++ [temp.local]p4: |
| // A template-parameter shall not be redeclared within its |
| // scope (including nested scopes). |
| Diag(Loc, diag::err_template_param_shadow) |
| << cast<NamedDecl>(PrevDecl)->getDeclName(); |
| Diag(PrevDecl->getLocation(), diag::note_template_param_here); |
| } |
| |
| /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset |
| /// the parameter D to reference the templated declaration and return a pointer |
| /// to the template declaration. Otherwise, do nothing to D and return null. |
| TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { |
| if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { |
| D = Temp->getTemplatedDecl(); |
| return Temp; |
| } |
| return nullptr; |
| } |
| |
| ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( |
| SourceLocation EllipsisLoc) const { |
| assert(Kind == Template && |
| "Only template template arguments can be pack expansions here"); |
| assert(getAsTemplate().get().containsUnexpandedParameterPack() && |
| "Template template argument pack expansion without packs"); |
| ParsedTemplateArgument Result(*this); |
| Result.EllipsisLoc = EllipsisLoc; |
| return Result; |
| } |
| |
| static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, |
| const ParsedTemplateArgument &Arg) { |
| |
| switch (Arg.getKind()) { |
| case ParsedTemplateArgument::Type: { |
| TypeSourceInfo *DI; |
| QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); |
| if (!DI) |
| DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); |
| return TemplateArgumentLoc(TemplateArgument(T), DI); |
| } |
| |
| case ParsedTemplateArgument::NonType: { |
| Expr *E = static_cast<Expr *>(Arg.getAsExpr()); |
| return TemplateArgumentLoc(TemplateArgument(E), E); |
| } |
| |
| case ParsedTemplateArgument::Template: { |
| TemplateName Template = Arg.getAsTemplate().get(); |
| TemplateArgument TArg; |
| if (Arg.getEllipsisLoc().isValid()) |
| TArg = TemplateArgument(Template, Optional<unsigned int>()); |
| else |
| TArg = Template; |
| return TemplateArgumentLoc(TArg, |
| Arg.getScopeSpec().getWithLocInContext( |
| SemaRef.Context), |
| Arg.getLocation(), |
| Arg.getEllipsisLoc()); |
| } |
| } |
| |
| llvm_unreachable("Unhandled parsed template argument"); |
| } |
| |
| /// Translates template arguments as provided by the parser |
| /// into template arguments used by semantic analysis. |
| void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, |
| TemplateArgumentListInfo &TemplateArgs) { |
| for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) |
| TemplateArgs.addArgument(translateTemplateArgument(*this, |
| TemplateArgsIn[I])); |
| } |
| |
| static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, |
| SourceLocation Loc, |
| IdentifierInfo *Name) { |
| NamedDecl *PrevDecl = SemaRef.LookupSingleName( |
| S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); |
| if (PrevDecl && PrevDecl->isTemplateParameter()) |
| SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); |
| } |
| |
| /// Convert a parsed type into a parsed template argument. This is mostly |
| /// trivial, except that we may have parsed a C++17 deduced class template |
| /// specialization type, in which case we should form a template template |
| /// argument instead of a type template argument. |
| ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) { |
| TypeSourceInfo *TInfo; |
| QualType T = GetTypeFromParser(ParsedType.get(), &TInfo); |
| if (T.isNull()) |
| return ParsedTemplateArgument(); |
| assert(TInfo && "template argument with no location"); |
| |
| // If we might have formed a deduced template specialization type, convert |
| // it to a template template argument. |
| if (getLangOpts().CPlusPlus17) { |
| TypeLoc TL = TInfo->getTypeLoc(); |
| SourceLocation EllipsisLoc; |
| if (auto PET = TL.getAs<PackExpansionTypeLoc>()) { |
| EllipsisLoc = PET.getEllipsisLoc(); |
| TL = PET.getPatternLoc(); |
| } |
| |
| CXXScopeSpec SS; |
| if (auto ET = TL.getAs<ElaboratedTypeLoc>()) { |
| SS.Adopt(ET.getQualifierLoc()); |
| TL = ET.getNamedTypeLoc(); |
| } |
| |
| if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) { |
| TemplateName Name = DTST.getTypePtr()->getTemplateName(); |
| if (SS.isSet()) |
| Name = Context.getQualifiedTemplateName(SS.getScopeRep(), |
| /*HasTemplateKeyword*/ false, |
| Name.getAsTemplateDecl()); |
| ParsedTemplateArgument Result(SS, TemplateTy::make(Name), |
| DTST.getTemplateNameLoc()); |
| if (EllipsisLoc.isValid()) |
| Result = Result.getTemplatePackExpansion(EllipsisLoc); |
| return Result; |
| } |
| } |
| |
| // This is a normal type template argument. Note, if the type template |
| // argument is an injected-class-name for a template, it has a dual nature |
| // and can be used as either a type or a template. We handle that in |
| // convertTypeTemplateArgumentToTemplate. |
| return ParsedTemplateArgument(ParsedTemplateArgument::Type, |
| ParsedType.get().getAsOpaquePtr(), |
| TInfo->getTypeLoc().getLocStart()); |
| } |
| |
| /// ActOnTypeParameter - Called when a C++ template type parameter |
| /// (e.g., "typename T") has been parsed. Typename specifies whether |
| /// the keyword "typename" was used to declare the type parameter |
| /// (otherwise, "class" was used), and KeyLoc is the location of the |
| /// "class" or "typename" keyword. ParamName is the name of the |
| /// parameter (NULL indicates an unnamed template parameter) and |
| /// ParamNameLoc is the location of the parameter name (if any). |
| /// If the type parameter has a default argument, it will be added |
| /// later via ActOnTypeParameterDefault. |
| NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename, |
| SourceLocation EllipsisLoc, |
| SourceLocation KeyLoc, |
| IdentifierInfo *ParamName, |
| SourceLocation ParamNameLoc, |
| unsigned Depth, unsigned Position, |
| SourceLocation EqualLoc, |
| ParsedType DefaultArg) { |
| assert(S->isTemplateParamScope() && |
| "Template type parameter not in template parameter scope!"); |
| |
| SourceLocation Loc = ParamNameLoc; |
| if (!ParamName) |
| Loc = KeyLoc; |
| |
| bool IsParameterPack = EllipsisLoc.isValid(); |
| TemplateTypeParmDecl *Param |
| = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), |
| KeyLoc, Loc, Depth, Position, ParamName, |
| Typename, IsParameterPack); |
| Param->setAccess(AS_public); |
| |
| if (ParamName) { |
| maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName); |
| |
| // Add the template parameter into the current scope. |
| S->AddDecl(Param); |
| IdResolver.AddDecl(Param); |
| } |
| |
| // C++0x [temp.param]p9: |
| // A default template-argument may be specified for any kind of |
| // template-parameter that is not a template parameter pack. |
| if (DefaultArg && IsParameterPack) { |
| Diag(EqualLoc, diag::err_template_param_pack_default_arg); |
| DefaultArg = nullptr; |
| } |
| |
| // Handle the default argument, if provided. |
| if (DefaultArg) { |
| TypeSourceInfo *DefaultTInfo; |
| GetTypeFromParser(DefaultArg, &DefaultTInfo); |
| |
| assert(DefaultTInfo && "expected source information for type"); |
| |
| // Check for unexpanded parameter packs. |
| if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, |
| UPPC_DefaultArgument)) |
| return Param; |
| |
| // Check the template argument itself. |
| if (CheckTemplateArgument(Param, DefaultTInfo)) { |
| Param->setInvalidDecl(); |
| return Param; |
| } |
| |
| Param->setDefaultArgument(DefaultTInfo); |
| } |
| |
| return Param; |
| } |
| |
| /// Check that the type of a non-type template parameter is |
| /// well-formed. |
| /// |
| /// \returns the (possibly-promoted) parameter type if valid; |
| /// otherwise, produces a diagnostic and returns a NULL type. |
| QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI, |
| SourceLocation Loc) { |
| if (TSI->getType()->isUndeducedType()) { |
| // C++1z [temp.dep.expr]p3: |
| // An id-expression is type-dependent if it contains |
| // - an identifier associated by name lookup with a non-type |
| // template-parameter declared with a type that contains a |
| // placeholder type (7.1.7.4), |
| TSI = SubstAutoTypeSourceInfo(TSI, Context.DependentTy); |
| } |
| |
| return CheckNonTypeTemplateParameterType(TSI->getType(), Loc); |
| } |
| |
| QualType Sema::CheckNonTypeTemplateParameterType(QualType T, |
| SourceLocation Loc) { |
| // We don't allow variably-modified types as the type of non-type template |
| // parameters. |
| if (T->isVariablyModifiedType()) { |
| Diag(Loc, diag::err_variably_modified_nontype_template_param) |
| << T; |
| return QualType(); |
| } |
| |
| // C++ [temp.param]p4: |
| // |
| // A non-type template-parameter shall have one of the following |
| // (optionally cv-qualified) types: |
| // |
| // -- integral or enumeration type, |
| if (T->isIntegralOrEnumerationType() || |
| // -- pointer to object or pointer to function, |
| T->isPointerType() || |
| // -- reference to object or reference to function, |
| T->isReferenceType() || |
| // -- pointer to member, |
| T->isMemberPointerType() || |
| // -- std::nullptr_t. |
| T->isNullPtrType() || |
| // If T is a dependent type, we can't do the check now, so we |
| // assume that it is well-formed. |
| T->isDependentType() || |
| // Allow use of auto in template parameter declarations. |
| T->isUndeducedType()) { |
| // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter |
| // are ignored when determining its type. |
| return T.getUnqualifiedType(); |
| } |
| |
| // C++ [temp.param]p8: |
| // |
| // A non-type template-parameter of type "array of T" or |
| // "function returning T" is adjusted to be of type "pointer to |
| // T" or "pointer to function returning T", respectively. |
| else if (T->isArrayType() || T->isFunctionType()) |
| return Context.getDecayedType(T); |
| |
| Diag(Loc, diag::err_template_nontype_parm_bad_type) |
| << T; |
| |
| return QualType(); |
| } |
| |
| NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, |
| unsigned Depth, |
| unsigned Position, |
| SourceLocation EqualLoc, |
| Expr *Default) { |
| TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); |
| |
| // Check that we have valid decl-specifiers specified. |
| auto CheckValidDeclSpecifiers = [this, &D] { |
| // C++ [temp.param] |
| // p1 |
| // template-parameter: |
| // ... |
| // parameter-declaration |
| // p2 |
| // ... A storage class shall not be specified in a template-parameter |
| // declaration. |
| // [dcl.typedef]p1: |
| // The typedef specifier [...] shall not be used in the decl-specifier-seq |
| // of a parameter-declaration |
| const DeclSpec &DS = D.getDeclSpec(); |
| auto EmitDiag = [this](SourceLocation Loc) { |
| Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm) |
| << FixItHint::CreateRemoval(Loc); |
| }; |
| if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) |
| EmitDiag(DS.getStorageClassSpecLoc()); |
| |
| if (DS.getThreadStorageClassSpec() != TSCS_unspecified) |
| EmitDiag(DS.getThreadStorageClassSpecLoc()); |
| |
| // [dcl.inline]p1: |
| // The inline specifier can be applied only to the declaration or |
| // definition of a variable or function. |
| |
| if (DS.isInlineSpecified()) |
| EmitDiag(DS.getInlineSpecLoc()); |
| |
| // [dcl.constexpr]p1: |
| // The constexpr specifier shall be applied only to the definition of a |
| // variable or variable template or the declaration of a function or |
| // function template. |
| |
| if (DS.isConstexprSpecified()) |
| EmitDiag(DS.getConstexprSpecLoc()); |
| |
| // [dcl.fct.spec]p1: |
| // Function-specifiers can be used only in function declarations. |
| |
| if (DS.isVirtualSpecified()) |
| EmitDiag(DS.getVirtualSpecLoc()); |
| |
| if (DS.isExplicitSpecified()) |
| EmitDiag(DS.getExplicitSpecLoc()); |
| |
| if (DS.isNoreturnSpecified()) |
| EmitDiag(DS.getNoreturnSpecLoc()); |
| }; |
| |
| CheckValidDeclSpecifiers(); |
| |
| if (TInfo->getType()->isUndeducedType()) { |
| Diag(D.getIdentifierLoc(), |
| diag::warn_cxx14_compat_template_nontype_parm_auto_type) |
| << QualType(TInfo->getType()->getContainedAutoType(), 0); |
| } |
| |
| assert(S->isTemplateParamScope() && |
| "Non-type template parameter not in template parameter scope!"); |
| bool Invalid = false; |
| |
| QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc()); |
| if (T.isNull()) { |
| T = Context.IntTy; // Recover with an 'int' type. |
| Invalid = true; |
| } |
| |
| IdentifierInfo *ParamName = D.getIdentifier(); |
| bool IsParameterPack = D.hasEllipsis(); |
| NonTypeTemplateParmDecl *Param |
| = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), |
| D.getLocStart(), |
| D.getIdentifierLoc(), |
| Depth, Position, ParamName, T, |
| IsParameterPack, TInfo); |
| Param->setAccess(AS_public); |
| |
| if (Invalid) |
| Param->setInvalidDecl(); |
| |
| if (ParamName) { |
| maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(), |
| ParamName); |
| |
| // Add the template parameter into the current scope. |
| S->AddDecl(Param); |
| IdResolver.AddDecl(Param); |
| } |
| |
| // C++0x [temp.param]p9: |
| // A default template-argument may be specified for any kind of |
| // template-parameter that is not a template parameter pack. |
| if (Default && IsParameterPack) { |
| Diag(EqualLoc, diag::err_template_param_pack_default_arg); |
| Default = nullptr; |
| } |
| |
| // Check the well-formedness of the default template argument, if provided. |
| if (Default) { |
| // Check for unexpanded parameter packs. |
| if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) |
| return Param; |
| |
| TemplateArgument Converted; |
| ExprResult DefaultRes = |
| CheckTemplateArgument(Param, Param->getType(), Default, Converted); |
| if (DefaultRes.isInvalid()) { |
| Param->setInvalidDecl(); |
| return Param; |
| } |
| Default = DefaultRes.get(); |
| |
| Param->setDefaultArgument(Default); |
| } |
| |
| return Param; |
| } |
| |
| /// ActOnTemplateTemplateParameter - Called when a C++ template template |
| /// parameter (e.g. T in template <template \<typename> class T> class array) |
| /// has been parsed. S is the current scope. |
| NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S, |
| SourceLocation TmpLoc, |
| TemplateParameterList *Params, |
| SourceLocation EllipsisLoc, |
| IdentifierInfo *Name, |
| SourceLocation NameLoc, |
| unsigned Depth, |
| unsigned Position, |
| SourceLocation EqualLoc, |
| ParsedTemplateArgument Default) { |
| assert(S->isTemplateParamScope() && |
| "Template template parameter not in template parameter scope!"); |
| |
| // Construct the parameter object. |
| bool IsParameterPack = EllipsisLoc.isValid(); |
| TemplateTemplateParmDecl *Param = |
| TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), |
| NameLoc.isInvalid()? TmpLoc : NameLoc, |
| Depth, Position, IsParameterPack, |
| Name, Params); |
| Param->setAccess(AS_public); |
| |
| // If the template template parameter has a name, then link the identifier |
| // into the scope and lookup mechanisms. |
| if (Name) { |
| maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name); |
| |
| S->AddDecl(Param); |
| IdResolver.AddDecl(Param); |
| } |
| |
| if (Params->size() == 0) { |
| Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) |
| << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); |
| Param->setInvalidDecl(); |
| } |
| |
| // C++0x [temp.param]p9: |
| // A default template-argument may be specified for any kind of |
| // template-parameter that is not a template parameter pack. |
| if (IsParameterPack && !Default.isInvalid()) { |
| Diag(EqualLoc, diag::err_template_param_pack_default_arg); |
| Default = ParsedTemplateArgument(); |
| } |
| |
| if (!Default.isInvalid()) { |
| // Check only that we have a template template argument. We don't want to |
| // try to check well-formedness now, because our template template parameter |
| // might have dependent types in its template parameters, which we wouldn't |
| // be able to match now. |
| // |
| // If none of the template template parameter's template arguments mention |
| // other template parameters, we could actually perform more checking here. |
| // However, it isn't worth doing. |
| TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); |
| if (DefaultArg.getArgument().getAsTemplate().isNull()) { |
| Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template) |
| << DefaultArg.getSourceRange(); |
| return Param; |
| } |
| |
| // Check for unexpanded parameter packs. |
| if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), |
| DefaultArg.getArgument().getAsTemplate(), |
| UPPC_DefaultArgument)) |
| return Param; |
| |
| Param->setDefaultArgument(Context, DefaultArg); |
| } |
| |
| return Param; |
| } |
| |
| /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally |
| /// constrained by RequiresClause, that contains the template parameters in |
| /// Params. |
| TemplateParameterList * |
| Sema::ActOnTemplateParameterList(unsigned Depth, |
| SourceLocation ExportLoc, |
| SourceLocation TemplateLoc, |
| SourceLocation LAngleLoc, |
| ArrayRef<NamedDecl *> Params, |
| SourceLocation RAngleLoc, |
| Expr *RequiresClause) { |
| if (ExportLoc.isValid()) |
| Diag(ExportLoc, diag::warn_template_export_unsupported); |
| |
| return TemplateParameterList::Create( |
| Context, TemplateLoc, LAngleLoc, |
| llvm::makeArrayRef(Params.data(), Params.size()), |
| RAngleLoc, RequiresClause); |
| } |
| |
| static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { |
| if (SS.isSet()) |
| T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); |
| } |
| |
| DeclResult Sema::CheckClassTemplate( |
| Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, |
| CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, |
| const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams, |
| AccessSpecifier AS, SourceLocation ModulePrivateLoc, |
| SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists, |
| TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) { |
| assert(TemplateParams && TemplateParams->size() > 0 && |
| "No template parameters"); |
| assert(TUK != TUK_Reference && "Can only declare or define class templates"); |
| bool Invalid = false; |
| |
| // Check that we can declare a template here. |
| if (CheckTemplateDeclScope(S, TemplateParams)) |
| return true; |
| |
| TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); |
| assert(Kind != TTK_Enum && "can't build template of enumerated type"); |
| |
| // There is no such thing as an unnamed class template. |
| if (!Name) { |
| Diag(KWLoc, diag::err_template_unnamed_class); |
| return true; |
| } |
| |
| // Find any previous declaration with this name. For a friend with no |
| // scope explicitly specified, we only look for tag declarations (per |
| // C++11 [basic.lookup.elab]p2). |
| DeclContext *SemanticContext; |
| LookupResult Previous(*this, Name, NameLoc, |
| (SS.isEmpty() && TUK == TUK_Friend) |
| ? LookupTagName : LookupOrdinaryName, |
| forRedeclarationInCurContext()); |
| if (SS.isNotEmpty() && !SS.isInvalid()) { |
| SemanticContext = computeDeclContext(SS, true); |
| if (!SemanticContext) { |
| // FIXME: Horrible, horrible hack! We can't currently represent this |
| // in the AST, and historically we have just ignored such friend |
| // class templates, so don't complain here. |
| Diag(NameLoc, TUK == TUK_Friend |
| ? diag::warn_template_qualified_friend_ignored |
| : diag::err_template_qualified_declarator_no_match) |
| << SS.getScopeRep() << SS.getRange(); |
| return TUK != TUK_Friend; |
| } |
| |
| if (RequireCompleteDeclContext(SS, SemanticContext)) |
| return true; |
| |
| // If we're adding a template to a dependent context, we may need to |
| // rebuilding some of the types used within the template parameter list, |
| // now that we know what the current instantiation is. |
| if (SemanticContext->isDependentContext()) { |
| ContextRAII SavedContext(*this, SemanticContext); |
| if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) |
| Invalid = true; |
| } else if (TUK != TUK_Friend && TUK != TUK_Reference) |
| diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false); |
| |
| LookupQualifiedName(Previous, SemanticContext); |
| } else { |
| SemanticContext = CurContext; |
| |
| // C++14 [class.mem]p14: |
| // If T is the name of a class, then each of the following shall have a |
| // name different from T: |
| // -- every member template of class T |
| if (TUK != TUK_Friend && |
| DiagnoseClassNameShadow(SemanticContext, |
| DeclarationNameInfo(Name, NameLoc))) |
| return true; |
| |
| LookupName(Previous, S); |
| } |
| |
| if (Previous.isAmbiguous()) |
| return true; |
| |
| NamedDecl *PrevDecl = nullptr; |
| if (Previous.begin() != Previous.end()) |
| PrevDecl = (*Previous.begin())->getUnderlyingDecl(); |
| |
| if (PrevDecl && PrevDecl->isTemplateParameter()) { |
| // Maybe we will complain about the shadowed template parameter. |
| DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); |
| // Just pretend that we didn't see the previous declaration. |
| PrevDecl = nullptr; |
| } |
| |
| // If there is a previous declaration with the same name, check |
| // whether this is a valid redeclaration. |
| ClassTemplateDecl *PrevClassTemplate = |
| dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); |
| |
| // We may have found the injected-class-name of a class template, |
| // class template partial specialization, or class template specialization. |
| // In these cases, grab the template that is being defined or specialized. |
| if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && |
| cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { |
| PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); |
| PrevClassTemplate |
| = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); |
| if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { |
| PrevClassTemplate |
| = cast<ClassTemplateSpecializationDecl>(PrevDecl) |
| ->getSpecializedTemplate(); |
| } |
| } |
| |
| if (TUK == TUK_Friend) { |
| // C++ [namespace.memdef]p3: |
| // [...] When looking for a prior declaration of a class or a function |
| // declared as a friend, and when the name of the friend class or |
| // function is neither a qualified name nor a template-id, scopes outside |
| // the innermost enclosing namespace scope are not considered. |
| if (!SS.isSet()) { |
| DeclContext *OutermostContext = CurContext; |
| while (!OutermostContext->isFileContext()) |
| OutermostContext = OutermostContext->getLookupParent(); |
| |
| if (PrevDecl && |
| (OutermostContext->Equals(PrevDecl->getDeclContext()) || |
| OutermostContext->Encloses(PrevDecl->getDeclContext()))) { |
| SemanticContext = PrevDecl->getDeclContext(); |
| } else { |
| // Declarations in outer scopes don't matter. However, the outermost |
| // context we computed is the semantic context for our new |
| // declaration. |
| PrevDecl = PrevClassTemplate = nullptr; |
| SemanticContext = OutermostContext; |
| |
| // Check that the chosen semantic context doesn't already contain a |
| // declaration of this name as a non-tag type. |
| Previous.clear(LookupOrdinaryName); |
| DeclContext *LookupContext = SemanticContext; |
| while (LookupContext->isTransparentContext()) |
| LookupContext = LookupContext->getLookupParent(); |
| LookupQualifiedName(Previous, LookupContext); |
| |
| if (Previous.isAmbiguous()) |
| return true; |
| |
| if (Previous.begin() != Previous.end()) |
| PrevDecl = (*Previous.begin())->getUnderlyingDecl(); |
| } |
| } |
| } else if (PrevDecl && |
| !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext, |
| S, SS.isValid())) |
| PrevDecl = PrevClassTemplate = nullptr; |
| |
| if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>( |
| PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) { |
| if (SS.isEmpty() && |
| !(PrevClassTemplate && |
| PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals( |
| SemanticContext->getRedeclContext()))) { |
| Diag(KWLoc, diag::err_using_decl_conflict_reverse); |
| Diag(Shadow->getTargetDecl()->getLocation(), |
| diag::note_using_decl_target); |
| Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0; |
| // Recover by ignoring the old declaration. |
| PrevDecl = PrevClassTemplate = nullptr; |
| } |
| } |
| |
| // TODO Memory management; associated constraints are not always stored. |
| Expr *const CurAC = formAssociatedConstraints(TemplateParams, nullptr); |
| |
| if (PrevClassTemplate) { |
| // Ensure that the template parameter lists are compatible. Skip this check |
| // for a friend in a dependent context: the template parameter list itself |
| // could be dependent. |
| if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && |
| !TemplateParameterListsAreEqual(TemplateParams, |
| PrevClassTemplate->getTemplateParameters(), |
| /*Complain=*/true, |
| TPL_TemplateMatch)) |
| return true; |
| |
| // Check for matching associated constraints on redeclarations. |
| const Expr *const PrevAC = PrevClassTemplate->getAssociatedConstraints(); |
| const bool RedeclACMismatch = [&] { |
| if (!(CurAC || PrevAC)) |
| return false; // Nothing to check; no mismatch. |
| if (CurAC && PrevAC) { |
| llvm::FoldingSetNodeID CurACInfo, PrevACInfo; |
| CurAC->Profile(CurACInfo, Context, /*Canonical=*/true); |
| PrevAC->Profile(PrevACInfo, Context, /*Canonical=*/true); |
| if (CurACInfo == PrevACInfo) |
| return false; // All good; no mismatch. |
| } |
| return true; |
| }(); |
| |
| if (RedeclACMismatch) { |
| Diag(CurAC ? CurAC->getLocStart() : NameLoc, |
| diag::err_template_different_associated_constraints); |
| Diag(PrevAC ? PrevAC->getLocStart() : PrevClassTemplate->getLocation(), |
| diag::note_template_prev_declaration) << /*declaration*/0; |
| return true; |
| } |
| |
| // C++ [temp.class]p4: |
| // In a redeclaration, partial specialization, explicit |
| // specialization or explicit instantiation of a class template, |
| // the class-key shall agree in kind with the original class |
| // template declaration (7.1.5.3). |
| RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); |
| if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, |
| TUK == TUK_Definition, KWLoc, Name)) { |
| Diag(KWLoc, diag::err_use_with_wrong_tag) |
| << Name |
| << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); |
| Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); |
| Kind = PrevRecordDecl->getTagKind(); |
| } |
| |
| // Check for redefinition of this class template. |
| if (TUK == TUK_Definition) { |
| if (TagDecl *Def = PrevRecordDecl->getDefinition()) { |
| // If we have a prior definition that is not visible, treat this as |
| // simply making that previous definition visible. |
| NamedDecl *Hidden = nullptr; |
| if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { |
| SkipBody->ShouldSkip = true; |
| auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate(); |
| assert(Tmpl && "original definition of a class template is not a " |
| "class template?"); |
| makeMergedDefinitionVisible(Hidden); |
| makeMergedDefinitionVisible(Tmpl); |
| return Def; |
| } |
| |
| Diag(NameLoc, diag::err_redefinition) << Name; |
| Diag(Def->getLocation(), diag::note_previous_definition); |
| // FIXME: Would it make sense to try to "forget" the previous |
| // definition, as part of error recovery? |
| return true; |
| } |
| } |
| } else if (PrevDecl) { |
| // C++ [temp]p5: |
| // A class template shall not have the same name as any other |
| // template, class, function, object, enumeration, enumerator, |
| // namespace, or type in the same scope (3.3), except as specified |
| // in (14.5.4). |
| Diag(NameLoc, diag::err_redefinition_different_kind) << Name; |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| return true; |
| } |
| |
| // Check the template parameter list of this declaration, possibly |
| // merging in the template parameter list from the previous class |
| // template declaration. Skip this check for a friend in a dependent |
| // context, because the template parameter list might be dependent. |
| if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && |
| CheckTemplateParameterList( |
| TemplateParams, |
| PrevClassTemplate ? PrevClassTemplate->getTemplateParameters() |
| : nullptr, |
| (SS.isSet() && SemanticContext && SemanticContext->isRecord() && |
| SemanticContext->isDependentContext()) |
| ? TPC_ClassTemplateMember |
| : TUK == TUK_Friend ? TPC_FriendClassTemplate |
| : TPC_ClassTemplate)) |
| Invalid = true; |
| |
| if (SS.isSet()) { |
| // If the name of the template was qualified, we must be defining the |
| // template out-of-line. |
| if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { |
| Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match |
| : diag::err_member_decl_does_not_match) |
| << Name << SemanticContext << /*IsDefinition*/true << SS.getRange(); |
| Invalid = true; |
| } |
| } |
| |
| // If this is a templated friend in a dependent context we should not put it |
| // on the redecl chain. In some cases, the templated friend can be the most |
| // recent declaration tricking the template instantiator to make substitutions |
| // there. |
| // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious |
| bool ShouldAddRedecl |
| = !(TUK == TUK_Friend && CurContext->isDependentContext()); |
| |
| CXXRecordDecl *NewClass = |
| CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, |
| PrevClassTemplate && ShouldAddRedecl ? |
| PrevClassTemplate->getTemplatedDecl() : nullptr, |
| /*DelayTypeCreation=*/true); |
| SetNestedNameSpecifier(NewClass, SS); |
| if (NumOuterTemplateParamLists > 0) |
| NewClass->setTemplateParameterListsInfo( |
| Context, llvm::makeArrayRef(OuterTemplateParamLists, |
| NumOuterTemplateParamLists)); |
| |
| // Add alignment attributes if necessary; these attributes are checked when |
| // the ASTContext lays out the structure. |
| if (TUK == TUK_Definition) { |
| AddAlignmentAttributesForRecord(NewClass); |
| AddMsStructLayoutForRecord(NewClass); |
| } |
| |
| // Attach the associated constraints when the declaration will not be part of |
| // a decl chain. |
| Expr *const ACtoAttach = |
| PrevClassTemplate && ShouldAddRedecl ? nullptr : CurAC; |
| |
| ClassTemplateDecl *NewTemplate |
| = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, |
| DeclarationName(Name), TemplateParams, |
| NewClass, ACtoAttach); |
| |
| if (ShouldAddRedecl) |
| NewTemplate->setPreviousDecl(PrevClassTemplate); |
| |
| NewClass->setDescribedClassTemplate(NewTemplate); |
| |
| if (ModulePrivateLoc.isValid()) |
| NewTemplate->setModulePrivate(); |
| |
| // Build the type for the class template declaration now. |
| QualType T = NewTemplate->getInjectedClassNameSpecialization(); |
| T = Context.getInjectedClassNameType(NewClass, T); |
| assert(T->isDependentType() && "Class template type is not dependent?"); |
| (void)T; |
| |
| // If we are providing an explicit specialization of a member that is a |
| // class template, make a note of that. |
| if (PrevClassTemplate && |
| PrevClassTemplate->getInstantiatedFromMemberTemplate()) |
| PrevClassTemplate->setMemberSpecialization(); |
| |
| // Set the access specifier. |
| if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) |
| SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); |
| |
| // Set the lexical context of these templates |
| NewClass->setLexicalDeclContext(CurContext); |
| NewTemplate->setLexicalDeclContext(CurContext); |
| |
| if (TUK == TUK_Definition) |
| NewClass->startDefinition(); |
| |
| ProcessDeclAttributeList(S, NewClass, Attr); |
| |
| if (PrevClassTemplate) |
| mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); |
| |
| AddPushedVisibilityAttribute(NewClass); |
| |
| if (TUK != TUK_Friend) { |
| // Per C++ [basic.scope.temp]p2, skip the template parameter scopes. |
| Scope *Outer = S; |
| while ((Outer->getFlags() & Scope::TemplateParamScope) != 0) |
| Outer = Outer->getParent(); |
| PushOnScopeChains(NewTemplate, Outer); |
| } else { |
| if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { |
| NewTemplate->setAccess(PrevClassTemplate->getAccess()); |
| NewClass->setAccess(PrevClassTemplate->getAccess()); |
| } |
| |
| NewTemplate->setObjectOfFriendDecl(); |
| |
| // Friend templates are visible in fairly strange ways. |
| if (!CurContext->isDependentContext()) { |
| DeclContext *DC = SemanticContext->getRedeclContext(); |
| DC->makeDeclVisibleInContext(NewTemplate); |
| if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) |
| PushOnScopeChains(NewTemplate, EnclosingScope, |
| /* AddToContext = */ false); |
| } |
| |
| FriendDecl *Friend = FriendDecl::Create( |
| Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc); |
| Friend->setAccess(AS_public); |
| CurContext->addDecl(Friend); |
| } |
| |
| if (PrevClassTemplate) |
| CheckRedeclarationModuleOwnership(NewTemplate, PrevClassTemplate); |
| |
| if (Invalid) { |
| NewTemplate->setInvalidDecl(); |
| NewClass->setInvalidDecl(); |
| } |
| |
| ActOnDocumentableDecl(NewTemplate); |
| |
| return NewTemplate; |
| } |
| |
| namespace { |
| /// Tree transform to "extract" a transformed type from a class template's |
| /// constructor to a deduction guide. |
| class ExtractTypeForDeductionGuide |
| : public TreeTransform<ExtractTypeForDeductionGuide> { |
| public: |
| typedef TreeTransform<ExtractTypeForDeductionGuide> Base; |
| ExtractTypeForDeductionGuide(Sema &SemaRef) : Base(SemaRef) {} |
| |
| TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); } |
| |
| QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) { |
| return TransformType( |
| TLB, |
| TL.getTypedefNameDecl()->getTypeSourceInfo()->getTypeLoc()); |
| } |
| }; |
| |
| /// Transform to convert portions of a constructor declaration into the |
| /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1. |
| struct ConvertConstructorToDeductionGuideTransform { |
| ConvertConstructorToDeductionGuideTransform(Sema &S, |
| ClassTemplateDecl *Template) |
| : SemaRef(S), Template(Template) {} |
| |
| Sema &SemaRef; |
| ClassTemplateDecl *Template; |
| |
| DeclContext *DC = Template->getDeclContext(); |
| CXXRecordDecl *Primary = Template->getTemplatedDecl(); |
| DeclarationName DeductionGuideName = |
| SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template); |
| |
| QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary); |
| |
| // Index adjustment to apply to convert depth-1 template parameters into |
| // depth-0 template parameters. |
| unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size(); |
| |
| /// Transform a constructor declaration into a deduction guide. |
| NamedDecl *transformConstructor(FunctionTemplateDecl *FTD, |
| CXXConstructorDecl *CD) { |
| SmallVector<TemplateArgument, 16> SubstArgs; |
| |
| LocalInstantiationScope Scope(SemaRef); |
| |
| // C++ [over.match.class.deduct]p1: |
| // -- For each constructor of the class template designated by the |
| // template-name, a function template with the following properties: |
| |
| // -- The template parameters are the template parameters of the class |
| // template followed by the template parameters (including default |
| // template arguments) of the constructor, if any. |
| TemplateParameterList *TemplateParams = Template->getTemplateParameters(); |
| if (FTD) { |
| TemplateParameterList *InnerParams = FTD->getTemplateParameters(); |
| SmallVector<NamedDecl *, 16> AllParams; |
| AllParams.reserve(TemplateParams->size() + InnerParams->size()); |
| AllParams.insert(AllParams.begin(), |
| TemplateParams->begin(), TemplateParams->end()); |
| SubstArgs.reserve(InnerParams->size()); |
| |
| // Later template parameters could refer to earlier ones, so build up |
| // a list of substituted template arguments as we go. |
| for (NamedDecl *Param : *InnerParams) { |
| MultiLevelTemplateArgumentList Args; |
| Args.addOuterTemplateArguments(SubstArgs); |
| Args.addOuterRetainedLevel(); |
| NamedDecl *NewParam = transformTemplateParameter(Param, Args); |
| if (!NewParam) |
| return nullptr; |
| AllParams.push_back(NewParam); |
| SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument( |
| SemaRef.Context.getInjectedTemplateArg(NewParam))); |
| } |
| TemplateParams = TemplateParameterList::Create( |
| SemaRef.Context, InnerParams->getTemplateLoc(), |
| InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(), |
| /*FIXME: RequiresClause*/ nullptr); |
| } |
| |
| // If we built a new template-parameter-list, track that we need to |
| // substitute references to the old parameters into references to the |
| // new ones. |
| MultiLevelTemplateArgumentList Args; |
| if (FTD) { |
| Args.addOuterTemplateArguments(SubstArgs); |
| Args.addOuterRetainedLevel(); |
| } |
| |
| FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc() |
| .getAsAdjusted<FunctionProtoTypeLoc>(); |
| assert(FPTL && "no prototype for constructor declaration"); |
| |
| // Transform the type of the function, adjusting the return type and |
| // replacing references to the old parameters with references to the |
| // new ones. |
| TypeLocBuilder TLB; |
| SmallVector<ParmVarDecl*, 8> Params; |
| QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args); |
| if (NewType.isNull()) |
| return nullptr; |
| TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType); |
| |
| return buildDeductionGuide(TemplateParams, CD->isExplicit(), NewTInfo, |
| CD->getLocStart(), CD->getLocation(), |
| CD->getLocEnd()); |
| } |
| |
| /// Build a deduction guide with the specified parameter types. |
| NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) { |
| SourceLocation Loc = Template->getLocation(); |
| |
| // Build the requested type. |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.HasTrailingReturn = true; |
| QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc, |
| DeductionGuideName, EPI); |
| TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc); |
| |
| FunctionProtoTypeLoc FPTL = |
| TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>(); |
| |
| // Build the parameters, needed during deduction / substitution. |
| SmallVector<ParmVarDecl*, 4> Params; |
| for (auto T : ParamTypes) { |
| ParmVarDecl *NewParam = ParmVarDecl::Create( |
| SemaRef.Context, DC, Loc, Loc, nullptr, T, |
| SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr); |
| NewParam->setScopeInfo(0, Params.size()); |
| FPTL.setParam(Params.size(), NewParam); |
| Params.push_back(NewParam); |
| } |
| |
| return buildDeductionGuide(Template->getTemplateParameters(), false, TSI, |
| Loc, Loc, Loc); |
| } |
| |
| private: |
| /// Transform a constructor template parameter into a deduction guide template |
| /// parameter, rebuilding any internal references to earlier parameters and |
| /// renumbering as we go. |
| NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam, |
| MultiLevelTemplateArgumentList &Args) { |
| if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) { |
| // TemplateTypeParmDecl's index cannot be changed after creation, so |
| // substitute it directly. |
| auto *NewTTP = TemplateTypeParmDecl::Create( |
| SemaRef.Context, DC, TTP->getLocStart(), TTP->getLocation(), |
| /*Depth*/0, Depth1IndexAdjustment + TTP->getIndex(), |
| TTP->getIdentifier(), TTP->wasDeclaredWithTypename(), |
| TTP->isParameterPack()); |
| if (TTP->hasDefaultArgument()) { |
| TypeSourceInfo *InstantiatedDefaultArg = |
| SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args, |
| TTP->getDefaultArgumentLoc(), TTP->getDeclName()); |
| if (InstantiatedDefaultArg) |
| NewTTP->setDefaultArgument(InstantiatedDefaultArg); |
| } |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam, |
| NewTTP); |
| return NewTTP; |
| } |
| |
| if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam)) |
| return transformTemplateParameterImpl(TTP, Args); |
| |
| return transformTemplateParameterImpl( |
| cast<NonTypeTemplateParmDecl>(TemplateParam), Args); |
| } |
| template<typename TemplateParmDecl> |
| TemplateParmDecl * |
| transformTemplateParameterImpl(TemplateParmDecl *OldParam, |
| MultiLevelTemplateArgumentList &Args) { |
| // Ask the template instantiator to do the heavy lifting for us, then adjust |
| // the index of the parameter once it's done. |
| auto *NewParam = |
| cast_or_null<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args)); |
| assert(NewParam->getDepth() == 0 && "unexpected template param depth"); |
| NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment); |
| return NewParam; |
| } |
| |
| QualType transformFunctionProtoType(TypeLocBuilder &TLB, |
| FunctionProtoTypeLoc TL, |
| SmallVectorImpl<ParmVarDecl*> &Params, |
| MultiLevelTemplateArgumentList &Args) { |
| SmallVector<QualType, 4> ParamTypes; |
| const FunctionProtoType *T = TL.getTypePtr(); |
| |
| // -- The types of the function parameters are those of the constructor. |
| for (auto *OldParam : TL.getParams()) { |
| ParmVarDecl *NewParam = transformFunctionTypeParam(OldParam, Args); |
| if (!NewParam) |
| return QualType(); |
| ParamTypes.push_back(NewParam->getType()); |
| Params.push_back(NewParam); |
| } |
| |
| // -- The return type is the class template specialization designated by |
| // the template-name and template arguments corresponding to the |
| // template parameters obtained from the class template. |
| // |
| // We use the injected-class-name type of the primary template instead. |
| // This has the convenient property that it is different from any type that |
| // the user can write in a deduction-guide (because they cannot enter the |
| // context of the template), so implicit deduction guides can never collide |
| // with explicit ones. |
| QualType ReturnType = DeducedType; |
| TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation()); |
| |
| // Resolving a wording defect, we also inherit the variadicness of the |
| // constructor. |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.Variadic = T->isVariadic(); |
| EPI.HasTrailingReturn = true; |
| |
| QualType Result = SemaRef.BuildFunctionType( |
| ReturnType, ParamTypes, TL.getLocStart(), DeductionGuideName, EPI); |
| if (Result.isNull()) |
| return QualType(); |
| |
| FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result); |
| NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); |
| NewTL.setLParenLoc(TL.getLParenLoc()); |
| NewTL.setRParenLoc(TL.getRParenLoc()); |
| NewTL.setExceptionSpecRange(SourceRange()); |
| NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); |
| for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I) |
| NewTL.setParam(I, Params[I]); |
| |
| return Result; |
| } |
| |
| ParmVarDecl * |
| transformFunctionTypeParam(ParmVarDecl *OldParam, |
| MultiLevelTemplateArgumentList &Args) { |
| TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo(); |
| TypeSourceInfo *NewDI; |
| if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) { |
| // Expand out the one and only element in each inner pack. |
| Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0); |
| NewDI = |
| SemaRef.SubstType(PackTL.getPatternLoc(), Args, |
| OldParam->getLocation(), OldParam->getDeclName()); |
| if (!NewDI) return nullptr; |
| NewDI = |
| SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(), |
| PackTL.getTypePtr()->getNumExpansions()); |
| } else |
| NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(), |
| OldParam->getDeclName()); |
| if (!NewDI) |
| return nullptr; |
| |
| // Extract the type. This (for instance) replaces references to typedef |
| // members of the current instantiations with the definitions of those |
| // typedefs, avoiding triggering instantiation of the deduced type during |
| // deduction. |
| NewDI = ExtractTypeForDeductionGuide(SemaRef).transform(NewDI); |
| |
| // Resolving a wording defect, we also inherit default arguments from the |
| // constructor. |
| ExprResult NewDefArg; |
| if (OldParam->hasDefaultArg()) { |
| NewDefArg = SemaRef.SubstExpr(OldParam->getDefaultArg(), Args); |
| if (NewDefArg.isInvalid()) |
| return nullptr; |
| } |
| |
| ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC, |
| OldParam->getInnerLocStart(), |
| OldParam->getLocation(), |
| OldParam->getIdentifier(), |
| NewDI->getType(), |
| NewDI, |
| OldParam->getStorageClass(), |
| NewDefArg.get()); |
| NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(), |
| OldParam->getFunctionScopeIndex()); |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam); |
| return NewParam; |
| } |
| |
| NamedDecl *buildDeductionGuide(TemplateParameterList *TemplateParams, |
| bool Explicit, TypeSourceInfo *TInfo, |
| SourceLocation LocStart, SourceLocation Loc, |
| SourceLocation LocEnd) { |
| DeclarationNameInfo Name(DeductionGuideName, Loc); |
| ArrayRef<ParmVarDecl *> Params = |
| TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams(); |
| |
| // Build the implicit deduction guide template. |
| auto *Guide = |
| CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, Explicit, |
| Name, TInfo->getType(), TInfo, LocEnd); |
| Guide->setImplicit(); |
| Guide->setParams(Params); |
| |
| for (auto *Param : Params) |
| Param->setDeclContext(Guide); |
| |
| auto *GuideTemplate = FunctionTemplateDecl::Create( |
| SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide); |
| GuideTemplate->setImplicit(); |
| Guide->setDescribedFunctionTemplate(GuideTemplate); |
| |
| if (isa<CXXRecordDecl>(DC)) { |
| Guide->setAccess(AS_public); |
| GuideTemplate->setAccess(AS_public); |
| } |
| |
| DC->addDecl(GuideTemplate); |
| return GuideTemplate; |
| } |
| }; |
| } |
| |
| void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template, |
| SourceLocation Loc) { |
| DeclContext *DC = Template->getDeclContext(); |
| if (DC->isDependentContext()) |
| return; |
| |
| ConvertConstructorToDeductionGuideTransform Transform( |
| *this, cast<ClassTemplateDecl>(Template)); |
| if (!isCompleteType(Loc, Transform.DeducedType)) |
| return; |
| |
| // Check whether we've already declared deduction guides for this template. |
| // FIXME: Consider storing a flag on the template to indicate this. |
| auto Existing = DC->lookup(Transform.DeductionGuideName); |
| for (auto *D : Existing) |
| if (D->isImplicit()) |
| return; |
| |
| // In case we were expanding a pack when we attempted to declare deduction |
| // guides, turn off pack expansion for everything we're about to do. |
| ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1); |
| // Create a template instantiation record to track the "instantiation" of |
| // constructors into deduction guides. |
| // FIXME: Add a kind for this to give more meaningful diagnostics. But can |
| // this substitution process actually fail? |
| InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template); |
| if (BuildingDeductionGuides.isInvalid()) |
| return; |
| |
| // Convert declared constructors into deduction guide templates. |
| // FIXME: Skip constructors for which deduction must necessarily fail (those |
| // for which some class template parameter without a default argument never |
| // appears in a deduced context). |
| bool AddedAny = false; |
| for (NamedDecl *D : LookupConstructors(Transform.Primary)) { |
| D = D->getUnderlyingDecl(); |
| if (D->isInvalidDecl() || D->isImplicit()) |
| continue; |
| D = cast<NamedDecl>(D->getCanonicalDecl()); |
| |
| auto *FTD = dyn_cast<FunctionTemplateDecl>(D); |
| auto *CD = |
| dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D); |
| // Class-scope explicit specializations (MS extension) do not result in |
| // deduction guides. |
| if (!CD || (!FTD && CD->isFunctionTemplateSpecialization())) |
| continue; |
| |
| Transform.transformConstructor(FTD, CD); |
| AddedAny = true; |
| } |
| |
| // C++17 [over.match.class.deduct] |
| // -- If C is not defined or does not declare any constructors, an |
| // additional function template derived as above from a hypothetical |
| // constructor C(). |
| if (!AddedAny) |
| Transform.buildSimpleDeductionGuide(None); |
| |
| // -- An additional function template derived as above from a hypothetical |
| // constructor C(C), called the copy deduction candidate. |
| cast<CXXDeductionGuideDecl>( |
| cast<FunctionTemplateDecl>( |
| Transform.buildSimpleDeductionGuide(Transform.DeducedType)) |
| ->getTemplatedDecl()) |
| ->setIsCopyDeductionCandidate(); |
| } |
| |
| /// Diagnose the presence of a default template argument on a |
| /// template parameter, which is ill-formed in certain contexts. |
| /// |
| /// \returns true if the default template argument should be dropped. |
| static bool DiagnoseDefaultTemplateArgument(Sema &S, |
| Sema::TemplateParamListContext TPC, |
| SourceLocation ParamLoc, |
| SourceRange DefArgRange) { |
| switch (TPC) { |
| case Sema::TPC_ClassTemplate: |
| case Sema::TPC_VarTemplate: |
| case Sema::TPC_TypeAliasTemplate: |
| return false; |
| |
| case Sema::TPC_FunctionTemplate: |
| case Sema::TPC_FriendFunctionTemplateDefinition: |
| // C++ [temp.param]p9: |
| // A default template-argument shall not be specified in a |
| // function template declaration or a function template |
| // definition [...] |
| // If a friend function template declaration specifies a default |
| // template-argument, that declaration shall be a definition and shall be |
| // the only declaration of the function template in the translation unit. |
| // (C++98/03 doesn't have this wording; see DR226). |
| S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ? |
| diag::warn_cxx98_compat_template_parameter_default_in_function_template |
| : diag::ext_template_parameter_default_in_function_template) |
| << DefArgRange; |
| return false; |
| |
| case Sema::TPC_ClassTemplateMember: |
| // C++0x [temp.param]p9: |
| // A default template-argument shall not be specified in the |
| // template-parameter-lists of the definition of a member of a |
| // class template that appears outside of the member's class. |
| S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) |
| << DefArgRange; |
| return true; |
| |
| case Sema::TPC_FriendClassTemplate: |
| case Sema::TPC_FriendFunctionTemplate: |
| // C++ [temp.param]p9: |
| // A default template-argument shall not be specified in a |
| // friend template declaration. |
| S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) |
| << DefArgRange; |
| return true; |
| |
| // FIXME: C++0x [temp.param]p9 allows default template-arguments |
| // for friend function templates if there is only a single |
| // declaration (and it is a definition). Strange! |
| } |
| |
| llvm_unreachable("Invalid TemplateParamListContext!"); |
| } |
| |
| /// Check for unexpanded parameter packs within the template parameters |
| /// of a template template parameter, recursively. |
| static bool DiagnoseUnexpandedParameterPacks(Sema &S, |
| TemplateTemplateParmDecl *TTP) { |
| // A template template parameter which is a parameter pack is also a pack |
| // expansion. |
| if (TTP->isParameterPack()) |
| return false; |
| |
| TemplateParameterList *Params = TTP->getTemplateParameters(); |
| for (unsigned I = 0, N = Params->size(); I != N; ++I) { |
| NamedDecl *P = Params->getParam(I); |
| if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { |
| if (!NTTP->isParameterPack() && |
| S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), |
| NTTP->getTypeSourceInfo(), |
| Sema::UPPC_NonTypeTemplateParameterType)) |
| return true; |
| |
| continue; |
| } |
| |
| if (TemplateTemplateParmDecl *InnerTTP |
| = dyn_cast<TemplateTemplateParmDecl>(P)) |
| if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Checks the validity of a template parameter list, possibly |
| /// considering the template parameter list from a previous |
| /// declaration. |
| /// |
| /// If an "old" template parameter list is provided, it must be |
| /// equivalent (per TemplateParameterListsAreEqual) to the "new" |
| /// template parameter list. |
| /// |
| /// \param NewParams Template parameter list for a new template |
| /// declaration. This template parameter list will be updated with any |
| /// default arguments that are carried through from the previous |
| /// template parameter list. |
| /// |
| /// \param OldParams If provided, template parameter list from a |
| /// previous declaration of the same template. Default template |
| /// arguments will be merged from the old template parameter list to |
| /// the new template parameter list. |
| /// |
| /// \param TPC Describes the context in which we are checking the given |
| /// template parameter list. |
| /// |
| /// \returns true if an error occurred, false otherwise. |
| bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, |
| TemplateParameterList *OldParams, |
| TemplateParamListContext TPC) { |
| bool Invalid = false; |
| |
| // C++ [temp.param]p10: |
| // The set of default template-arguments available for use with a |
| // template declaration or definition is obtained by merging the |
| // default arguments from the definition (if in scope) and all |
| // declarations in scope in the same way default function |
| // arguments are (8.3.6). |
| bool SawDefaultArgument = false; |
| SourceLocation PreviousDefaultArgLoc; |
| |
| // Dummy initialization to avoid warnings. |
| TemplateParameterList::iterator OldParam = NewParams->end(); |
| if (OldParams) |
| OldParam = OldParams->begin(); |
| |
| bool RemoveDefaultArguments = false; |
| for (TemplateParameterList::iterator NewParam = NewParams->begin(), |
| NewParamEnd = NewParams->end(); |
| NewParam != NewParamEnd; ++NewParam) { |
| // Variables used to diagnose redundant default arguments |
| bool RedundantDefaultArg = false; |
| SourceLocation OldDefaultLoc; |
| SourceLocation NewDefaultLoc; |
| |
| // Variable used to diagnose missing default arguments |
| bool MissingDefaultArg = false; |
| |
| // Variable used to diagnose non-final parameter packs |
| bool SawParameterPack = false; |
| |
| if (TemplateTypeParmDecl *NewTypeParm |
| = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { |
| // Check the presence of a default argument here. |
| if (NewTypeParm->hasDefaultArgument() && |
| DiagnoseDefaultTemplateArgument(*this, TPC, |
| NewTypeParm->getLocation(), |
| NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() |
| .getSourceRange())) |
| NewTypeParm->removeDefaultArgument(); |
| |
| // Merge default arguments for template type parameters. |
| TemplateTypeParmDecl *OldTypeParm |
| = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr; |
| if (NewTypeParm->isParameterPack()) { |
| assert(!NewTypeParm->hasDefaultArgument() && |
| "Parameter packs can't have a default argument!"); |
| SawParameterPack = true; |
| } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) && |
| NewTypeParm->hasDefaultArgument()) { |
| OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); |
| NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); |
| SawDefaultArgument = true; |
| RedundantDefaultArg = true; |
| PreviousDefaultArgLoc = NewDefaultLoc; |
| } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { |
| // Merge the default argument from the old declaration to the |
| // new declaration. |
| NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm); |
| PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); |
| } else if (NewTypeParm->hasDefaultArgument()) { |
| SawDefaultArgument = true; |
| PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); |
| } else if (SawDefaultArgument) |
| MissingDefaultArg = true; |
| } else if (NonTypeTemplateParmDecl *NewNonTypeParm |
| = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { |
| // Check for unexpanded parameter packs. |
| if (!NewNonTypeParm->isParameterPack() && |
| DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), |
| NewNonTypeParm->getTypeSourceInfo(), |
| UPPC_NonTypeTemplateParameterType)) { |
| Invalid = true; |
| continue; |
| } |
| |
| // Check the presence of a default argument here. |
| if (NewNonTypeParm->hasDefaultArgument() && |
| DiagnoseDefaultTemplateArgument(*this, TPC, |
| NewNonTypeParm->getLocation(), |
| NewNonTypeParm->getDefaultArgument()->getSourceRange())) { |
| NewNonTypeParm->removeDefaultArgument(); |
| } |
| |
| // Merge default arguments for non-type template parameters |
| NonTypeTemplateParmDecl *OldNonTypeParm |
| = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr; |
| if (NewNonTypeParm->isParameterPack()) { |
| assert(!NewNonTypeParm->hasDefaultArgument() && |
| "Parameter packs can't have a default argument!"); |
| if (!NewNonTypeParm->isPackExpansion()) |
| SawParameterPack = true; |
| } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) && |
| NewNonTypeParm->hasDefaultArgument()) { |
| OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); |
| NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); |
| SawDefaultArgument = true; |
| RedundantDefaultArg = true; |
| PreviousDefaultArgLoc = NewDefaultLoc; |
| } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { |
| // Merge the default argument from the old declaration to the |
| // new declaration. |
| NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm); |
| PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); |
| } else if (NewNonTypeParm->hasDefaultArgument()) { |
| SawDefaultArgument = true; |
| PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); |
| } else if (SawDefaultArgument) |
| MissingDefaultArg = true; |
| } else { |
| TemplateTemplateParmDecl *NewTemplateParm |
| = cast<TemplateTemplateParmDecl>(*NewParam); |
| |
| // Check for unexpanded parameter packs, recursively. |
| if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { |
| Invalid = true; |
| continue; |
| } |
| |
| // Check the presence of a default argument here. |
| if (NewTemplateParm->hasDefaultArgument() && |
| DiagnoseDefaultTemplateArgument(*this, TPC, |
| NewTemplateParm->getLocation(), |
| NewTemplateParm->getDefaultArgument().getSourceRange())) |
| NewTemplateParm->removeDefaultArgument(); |
| |
| // Merge default arguments for template template parameters |
| TemplateTemplateParmDecl *OldTemplateParm |
| = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr; |
| if (NewTemplateParm->isParameterPack()) { |
| assert(!NewTemplateParm->hasDefaultArgument() && |
| "Parameter packs can't have a default argument!"); |
| if (!NewTemplateParm->isPackExpansion()) |
| SawParameterPack = true; |
| } else if (OldTemplateParm && |
| hasVisibleDefaultArgument(OldTemplateParm) && |
| NewTemplateParm->hasDefaultArgument()) { |
| OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); |
| NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); |
| SawDefaultArgument = true; |
| RedundantDefaultArg = true; |
| PreviousDefaultArgLoc = NewDefaultLoc; |
| } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { |
| // Merge the default argument from the old declaration to the |
| // new declaration. |
| NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm); |
| PreviousDefaultArgLoc |
| = OldTemplateParm->getDefaultArgument().getLocation(); |
| } else if (NewTemplateParm->hasDefaultArgument()) { |
| SawDefaultArgument = true; |
| PreviousDefaultArgLoc |
| = NewTemplateParm->getDefaultArgument().getLocation(); |
| } else if (SawDefaultArgument) |
| MissingDefaultArg = true; |
| } |
| |
| // C++11 [temp.param]p11: |
| // If a template parameter of a primary class template or alias template |
| // is a template parameter pack, it shall be the last template parameter. |
| if (SawParameterPack && (NewParam + 1) != NewParamEnd && |
| (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate || |
| TPC == TPC_TypeAliasTemplate)) { |
| Diag((*NewParam)->getLocation(), |
| diag::err_template_param_pack_must_be_last_template_parameter); |
| Invalid = true; |
| } |
| |
| if (RedundantDefaultArg) { |
| // C++ [temp.param]p12: |
| // A template-parameter shall not be given default arguments |
| // by two different declarations in the same scope. |
| Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); |
| Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); |
| Invalid = true; |
| } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { |
| // C++ [temp.param]p11: |
| // If a template-parameter of a class template has a default |
| // template-argument, each subsequent template-parameter shall either |
| // have a default template-argument supplied or be a template parameter |
| // pack. |
| Diag((*NewParam)->getLocation(), |
| diag::err_template_param_default_arg_missing); |
| Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); |
| Invalid = true; |
| RemoveDefaultArguments = true; |
| } |
| |
| // If we have an old template parameter list that we're merging |
| // in, move on to the next parameter. |
| if (OldParams) |
| ++OldParam; |
| } |
| |
| // We were missing some default arguments at the end of the list, so remove |
| // all of the default arguments. |
| if (RemoveDefaultArguments) { |
| for (TemplateParameterList::iterator NewParam = NewParams->begin(), |
| NewParamEnd = NewParams->end(); |
| NewParam != NewParamEnd; ++NewParam) { |
| if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) |
| TTP->removeDefaultArgument(); |
| else if (NonTypeTemplateParmDecl *NTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) |
| NTTP->removeDefaultArgument(); |
| else |
| cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); |
| } |
| } |
| |
| return Invalid; |
| } |
| |
| namespace { |
| |
| /// A class which looks for a use of a certain level of template |
| /// parameter. |
| struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { |
| typedef RecursiveASTVisitor<DependencyChecker> super; |
| |
| unsigned Depth; |
| |
| // Whether we're looking for a use of a template parameter that makes the |
| // overall construct type-dependent / a dependent type. This is strictly |
| // best-effort for now; we may fail to match at all for a dependent type |
| // in some cases if this is set. |
| bool IgnoreNonTypeDependent; |
| |
| bool Match; |
| SourceLocation MatchLoc; |
| |
| DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent) |
| : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent), |
| Match(false) {} |
| |
| DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent) |
| : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) { |
| NamedDecl *ND = Params->getParam(0); |
| if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { |
| Depth = PD->getDepth(); |
| } else if (NonTypeTemplateParmDecl *PD = |
| dyn_cast<NonTypeTemplateParmDecl>(ND)) { |
| Depth = PD->getDepth(); |
| } else { |
| Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); |
| } |
| } |
| |
| bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) { |
| if (ParmDepth >= Depth) { |
| Match = true; |
| MatchLoc = Loc; |
| return true; |
| } |
| return false; |
| } |
| |
| bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) { |
| // Prune out non-type-dependent expressions if requested. This can |
| // sometimes result in us failing to find a template parameter reference |
| // (if a value-dependent expression creates a dependent type), but this |
| // mode is best-effort only. |
| if (auto *E = dyn_cast_or_null<Expr>(S)) |
| if (IgnoreNonTypeDependent && !E->isTypeDependent()) |
| return true; |
| return super::TraverseStmt(S, Q); |
| } |
| |
| bool TraverseTypeLoc(TypeLoc TL) { |
| if (IgnoreNonTypeDependent && !TL.isNull() && |
| !TL.getType()->isDependentType()) |
| return true; |
| return super::TraverseTypeLoc(TL); |
| } |
| |
| bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { |
| return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc()); |
| } |
| |
| bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { |
| // For a best-effort search, keep looking until we find a location. |
| return IgnoreNonTypeDependent || !Matches(T->getDepth()); |
| } |
| |
| bool TraverseTemplateName(TemplateName N) { |
| if (TemplateTemplateParmDecl *PD = |
| dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) |
| if (Matches(PD->getDepth())) |
| return false; |
| return super::TraverseTemplateName(N); |
| } |
| |
| bool VisitDeclRefExpr(DeclRefExpr *E) { |
| if (NonTypeTemplateParmDecl *PD = |
| dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) |
| if (Matches(PD->getDepth(), E->getExprLoc())) |
| return false; |
| return super::VisitDeclRefExpr(E); |
| } |
| |
| bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { |
| return TraverseType(T->getReplacementType()); |
| } |
| |
| bool |
| VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) { |
| return TraverseTemplateArgument(T->getArgumentPack()); |
| } |
| |
| bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { |
| return TraverseType(T->getInjectedSpecializationType()); |
| } |
| }; |
| } // end anonymous namespace |
| |
| /// Determines whether a given type depends on the given parameter |
| /// list. |
| static bool |
| DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { |
| DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false); |
| Checker.TraverseType(T); |
| return Checker.Match; |
| } |
| |
| // Find the source range corresponding to the named type in the given |
| // nested-name-specifier, if any. |
| static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, |
| QualType T, |
| const CXXScopeSpec &SS) { |
| NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); |
| while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { |
| if (const Type *CurType = NNS->getAsType()) { |
| if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) |
| return NNSLoc.getTypeLoc().getSourceRange(); |
| } else |
| break; |
| |
| NNSLoc = NNSLoc.getPrefix(); |
| } |
| |
| return SourceRange(); |
| } |
| |
| /// Match the given template parameter lists to the given scope |
| /// specifier, returning the template parameter list that applies to the |
| /// name. |
| /// |
| /// \param DeclStartLoc the start of the declaration that has a scope |
| /// specifier or a template parameter list. |
| /// |
| /// \param DeclLoc The location of the declaration itself. |
| /// |
| /// \param SS the scope specifier that will be matched to the given template |
| /// parameter lists. This scope specifier precedes a qualified name that is |
| /// being declared. |
| /// |
| /// \param TemplateId The template-id following the scope specifier, if there |
| /// is one. Used to check for a missing 'template<>'. |
| /// |
| /// \param ParamLists the template parameter lists, from the outermost to the |
| /// innermost template parameter lists. |
| /// |
| /// \param IsFriend Whether to apply the slightly different rules for |
| /// matching template parameters to scope specifiers in friend |
| /// declarations. |
| /// |
| /// \param IsMemberSpecialization will be set true if the scope specifier |
| /// denotes a fully-specialized type, and therefore this is a declaration of |
| /// a member specialization. |
| /// |
| /// \returns the template parameter list, if any, that corresponds to the |
| /// name that is preceded by the scope specifier @p SS. This template |
| /// parameter list may have template parameters (if we're declaring a |
| /// template) or may have no template parameters (if we're declaring a |
| /// template specialization), or may be NULL (if what we're declaring isn't |
| /// itself a template). |
| TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier( |
| SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, |
| TemplateIdAnnotation *TemplateId, |
| ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend, |
| bool &IsMemberSpecialization, bool &Invalid) { |
| IsMemberSpecialization = false; |
| Invalid = false; |
| |
| // The sequence of nested types to which we will match up the template |
| // parameter lists. We first build this list by starting with the type named |
| // by the nested-name-specifier and walking out until we run out of types. |
| SmallVector<QualType, 4> NestedTypes; |
| QualType T; |
| if (SS.getScopeRep()) { |
| if (CXXRecordDecl *Record |
| = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) |
| T = Context.getTypeDeclType(Record); |
| else |
| T = QualType(SS.getScopeRep()->getAsType(), 0); |
| } |
| |
| // If we found an explicit specialization that prevents us from needing |
| // 'template<>' headers, this will be set to the location of that |
| // explicit specialization. |
| SourceLocation ExplicitSpecLoc; |
| |
| while (!T.isNull()) { |
| NestedTypes.push_back(T); |
| |
| // Retrieve the parent of a record type. |
| if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { |
| // If this type is an explicit specialization, we're done. |
| if (ClassTemplateSpecializationDecl *Spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { |
| if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && |
| Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { |
| ExplicitSpecLoc = Spec->getLocation(); |
| break; |
| } |
| } else if (Record->getTemplateSpecializationKind() |
| == TSK_ExplicitSpecialization) { |
| ExplicitSpecLoc = Record->getLocation(); |
| break; |
| } |
| |
| if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) |
| T = Context.getTypeDeclType(Parent); |
| else |
| T = QualType(); |
| continue; |
| } |
| |
| if (const TemplateSpecializationType *TST |
| = T->getAs<TemplateSpecializationType>()) { |
| if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { |
| if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) |
| T = Context.getTypeDeclType(Parent); |
| else |
| T = QualType(); |
| continue; |
| } |
| } |
| |
| // Look one step prior in a dependent template specialization type. |
| if (const DependentTemplateSpecializationType *DependentTST |
| = T->getAs<DependentTemplateSpecializationType>()) { |
| if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) |
| T = QualType(NNS->getAsType(), 0); |
| else |
| T = QualType(); |
| continue; |
| } |
| |
| // Look one step prior in a dependent name type. |
| if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ |
| if (NestedNameSpecifier *NNS = DependentName->getQualifier()) |
| T = QualType(NNS->getAsType(), 0); |
| else |
| T = QualType(); |
| continue; |
| } |
| |
| // Retrieve the parent of an enumeration type. |
| if (const EnumType *EnumT = T->getAs<EnumType>()) { |
| // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization |
| // check here. |
| EnumDecl *Enum = EnumT->getDecl(); |
| |
| // Get to the parent type. |
| if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) |
| T = Context.getTypeDeclType(Parent); |
| else |
| T = QualType(); |
| continue; |
| } |
| |
| T = QualType(); |
| } |
| // Reverse the nested types list, since we want to traverse from the outermost |
| // to the innermost while checking template-parameter-lists. |
| std::reverse(NestedTypes.begin(), NestedTypes.end()); |
| |
| // C++0x [temp.expl.spec]p17: |
| // A member or a member template may be nested within many |
| // enclosing class templates. In an explicit specialization for |
| // such a member, the member declaration shall be preceded by a |
| // template<> for each enclosing class template that is |
| // explicitly specialized. |
| bool SawNonEmptyTemplateParameterList = false; |
| |
| auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) { |
| if (SawNonEmptyTemplateParameterList) { |
| Diag(DeclLoc, diag::err_specialize_member_of_template) |
| << !Recovery << Range; |
| Invalid = true; |
| IsMemberSpecialization = false; |
| return true; |
| } |
| |
| return false; |
| }; |
| |
| auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) { |
| // Check that we can have an explicit specialization here. |
| if (CheckExplicitSpecialization(Range, true)) |
| return true; |
| |
| // We don't have a template header, but we should. |
| SourceLocation ExpectedTemplateLoc; |
| if (!ParamLists.empty()) |
| ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); |
| else |
| ExpectedTemplateLoc = DeclStartLoc; |
| |
| Diag(DeclLoc, diag::err_template_spec_needs_header) |
| << Range |
| << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); |
| return false; |
| }; |
| |
| unsigned ParamIdx = 0; |
| for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; |
| ++TypeIdx) { |
| T = NestedTypes[TypeIdx]; |
| |
| // Whether we expect a 'template<>' header. |
| bool NeedEmptyTemplateHeader = false; |
| |
| // Whether we expect a template header with parameters. |
| bool NeedNonemptyTemplateHeader = false; |
| |
| // For a dependent type, the set of template parameters that we |
| // expect to see. |
| TemplateParameterList *ExpectedTemplateParams = nullptr; |
| |
| // C++0x [temp.expl.spec]p15: |
| // A member or a member template may be nested within many enclosing |
| // class templates. In an explicit specialization for such a member, the |
| // member declaration shall be preceded by a template<> for each |
| // enclosing class template that is explicitly specialized. |
| if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { |
| if (ClassTemplatePartialSpecializationDecl *Partial |
| = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { |
| ExpectedTemplateParams = Partial->getTemplateParameters(); |
| NeedNonemptyTemplateHeader = true; |
| } else if (Record->isDependentType()) { |
| if (Record->getDescribedClassTemplate()) { |
| ExpectedTemplateParams = Record->getDescribedClassTemplate() |
| ->getTemplateParameters(); |
| NeedNonemptyTemplateHeader = true; |
| } |
| } else if (ClassTemplateSpecializationDecl *Spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { |
| // C++0x [temp.expl.spec]p4: |
| // Members of an explicitly specialized class template are defined |
| // in the same manner as members of normal classes, and not using |
| // the template<> syntax. |
| if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) |
| NeedEmptyTemplateHeader = true; |
| else |
| continue; |
| } else if (Record->getTemplateSpecializationKind()) { |
| if (Record->getTemplateSpecializationKind() |
| != TSK_ExplicitSpecialization && |
| TypeIdx == NumTypes - 1) |
| IsMemberSpecialization = true; |
| |
| continue; |
| } |
| } else if (const TemplateSpecializationType *TST |
| = T->getAs<TemplateSpecializationType>()) { |
| if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { |
| ExpectedTemplateParams = Template->getTemplateParameters(); |
| NeedNonemptyTemplateHeader = true; |
| } |
| } else if (T->getAs<DependentTemplateSpecializationType>()) { |
| // FIXME: We actually could/should check the template arguments here |
| // against the corresponding template parameter list. |
| NeedNonemptyTemplateHeader = false; |
| } |
| |
| // C++ [temp.expl.spec]p16: |
| // In an explicit specialization declaration for a member of a class |
| // template or a member template that ap- pears in namespace scope, the |
| // member template and some of its enclosing class templates may remain |
| // unspecialized, except that the declaration shall not explicitly |
| // specialize a class member template if its en- closing class templates |
| // are not explicitly specialized as well. |
| if (ParamIdx < ParamLists.size()) { |
| if (ParamLists[ParamIdx]->size() == 0) { |
| if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), |
| false)) |
| return nullptr; |
| } else |
| SawNonEmptyTemplateParameterList = true; |
| } |
| |
| if (NeedEmptyTemplateHeader) { |
| // If we're on the last of the types, and we need a 'template<>' header |
| // here, then it's a member specialization. |
| if (TypeIdx == NumTypes - 1) |
| IsMemberSpecialization = true; |
| |
| if (ParamIdx < ParamLists.size()) { |
| if (ParamLists[ParamIdx]->size() > 0) { |
| // The header has template parameters when it shouldn't. Complain. |
| Diag(ParamLists[ParamIdx]->getTemplateLoc(), |
| diag::err_template_param_list_matches_nontemplate) |
| << T |
| << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), |
| ParamLists[ParamIdx]->getRAngleLoc()) |
| << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); |
| Invalid = true; |
| return nullptr; |
| } |
| |
| // Consume this template header. |
| ++ParamIdx; |
| continue; |
| } |
| |
| if (!IsFriend) |
| if (DiagnoseMissingExplicitSpecialization( |
| getRangeOfTypeInNestedNameSpecifier(Context, T, SS))) |
| return nullptr; |
| |
| continue; |
| } |
| |
| if (NeedNonemptyTemplateHeader) { |
| // In friend declarations we can have template-ids which don't |
| // depend on the corresponding template parameter lists. But |
| // assume that empty parameter lists are supposed to match this |
| // template-id. |
| if (IsFriend && T->isDependentType()) { |
| if (ParamIdx < ParamLists.size() && |
| DependsOnTemplateParameters(T, ParamLists[ParamIdx])) |
| ExpectedTemplateParams = nullptr; |
| else |
| continue; |
| } |
| |
| if (ParamIdx < ParamLists.size()) { |
| // Check the template parameter list, if we can. |
| if (ExpectedTemplateParams && |
| !TemplateParameterListsAreEqual(ParamLists[ParamIdx], |
| ExpectedTemplateParams, |
| true, TPL_TemplateMatch)) |
| Invalid = true; |
| |
| if (!Invalid && |
| CheckTemplateParameterList(ParamLists[ParamIdx], nullptr, |
| TPC_ClassTemplateMember)) |
| Invalid = true; |
| |
| ++ParamIdx; |
| continue; |
| } |
| |
| Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) |
| << T |
| << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); |
| Invalid = true; |
| continue; |
| } |
| } |
| |
| // If there were at least as many template-ids as there were template |
| // parameter lists, then there are no template parameter lists remaining for |
| // the declaration itself. |
| if (ParamIdx >= ParamLists.size()) { |
| if (TemplateId && !IsFriend) { |
| // We don't have a template header for the declaration itself, but we |
| // should. |
| DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc, |
| TemplateId->RAngleLoc)); |
| |
| // Fabricate an empty template parameter list for the invented header. |
| return TemplateParameterList::Create(Context, SourceLocation(), |
| SourceLocation(), None, |
| SourceLocation(), nullptr); |
| } |
| |
| return nullptr; |
| } |
| |
| // If there were too many template parameter lists, complain about that now. |
| if (ParamIdx < ParamLists.size() - 1) { |
| bool HasAnyExplicitSpecHeader = false; |
| bool AllExplicitSpecHeaders = true; |
| for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) { |
| if (ParamLists[I]->size() == 0) |
| HasAnyExplicitSpecHeader = true; |
| else |
| AllExplicitSpecHeaders = false; |
| } |
| |
| Diag(ParamLists[ParamIdx]->getTemplateLoc(), |
| AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers |
| : diag::err_template_spec_extra_headers) |
| << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), |
| ParamLists[ParamLists.size() - 2]->getRAngleLoc()); |
| |
| // If there was a specialization somewhere, such that 'template<>' is |
| // not required, and there were any 'template<>' headers, note where the |
| // specialization occurred. |
| if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) |
| Diag(ExplicitSpecLoc, |
| diag::note_explicit_template_spec_does_not_need_header) |
| << NestedTypes.back(); |
| |
| // We have a template parameter list with no corresponding scope, which |
| // means that the resulting template declaration can't be instantiated |
| // properly (we'll end up with dependent nodes when we shouldn't). |
| if (!AllExplicitSpecHeaders) |
| Invalid = true; |
| } |
| |
| // C++ [temp.expl.spec]p16: |
| // In an explicit specialization declaration for a member of a class |
| // template or a member template that ap- pears in namespace scope, the |
| // member template and some of its enclosing class templates may remain |
| // unspecialized, except that the declaration shall not explicitly |
| // specialize a class member template if its en- closing class templates |
| // are not explicitly specialized as well. |
| if (ParamLists.back()->size() == 0 && |
| CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), |
| false)) |
| return nullptr; |
| |
| // Return the last template parameter list, which corresponds to the |
| // entity being declared. |
| return ParamLists.back(); |
| } |
| |
| void Sema::NoteAllFoundTemplates(TemplateName Name) { |
| if (TemplateDecl *Template = Name.getAsTemplateDecl()) { |
| Diag(Template->getLocation(), diag::note_template_declared_here) |
| << (isa<FunctionTemplateDecl>(Template) |
| ? 0 |
| : isa<ClassTemplateDecl>(Template) |
| ? 1 |
| : isa<VarTemplateDecl>(Template) |
| ? 2 |
| : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4) |
| << Template->getDeclName(); |
| return; |
| } |
| |
| if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { |
| for (OverloadedTemplateStorage::iterator I = OST->begin(), |
| IEnd = OST->end(); |
| I != IEnd; ++I) |
| Diag((*I)->getLocation(), diag::note_template_declared_here) |
| << 0 << (*I)->getDeclName(); |
| |
| return; |
| } |
| } |
| |
| static QualType |
| checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD, |
| const SmallVectorImpl<TemplateArgument> &Converted, |
| SourceLocation TemplateLoc, |
| TemplateArgumentListInfo &TemplateArgs) { |
| ASTContext &Context = SemaRef.getASTContext(); |
| switch (BTD->getBuiltinTemplateKind()) { |
| case BTK__make_integer_seq: { |
| // Specializations of __make_integer_seq<S, T, N> are treated like |
| // S<T, 0, ..., N-1>. |
| |
| // C++14 [inteseq.intseq]p1: |
| // T shall be an integer type. |
| if (!Converted[1].getAsType()->isIntegralType(Context)) { |
| SemaRef.Diag(TemplateArgs[1].getLocation(), |
| diag::err_integer_sequence_integral_element_type); |
| return QualType(); |
| } |
| |
| // C++14 [inteseq.make]p1: |
| // If N is negative the program is ill-formed. |
| TemplateArgument NumArgsArg = Converted[2]; |
| llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); |
| if (NumArgs < 0) { |
| SemaRef.Diag(TemplateArgs[2].getLocation(), |
| diag::err_integer_sequence_negative_length); |
| return QualType(); |
| } |
| |
| QualType ArgTy = NumArgsArg.getIntegralType(); |
| TemplateArgumentListInfo SyntheticTemplateArgs; |
| // The type argument gets reused as the first template argument in the |
| // synthetic template argument list. |
| SyntheticTemplateArgs.addArgument(TemplateArgs[1]); |
| // Expand N into 0 ... N-1. |
| for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned()); |
| I < NumArgs; ++I) { |
| TemplateArgument TA(Context, I, ArgTy); |
| SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc( |
| TA, ArgTy, TemplateArgs[2].getLocation())); |
| } |
| // The first template argument will be reused as the template decl that |
| // our synthetic template arguments will be applied to. |
| return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(), |
| TemplateLoc, SyntheticTemplateArgs); |
| } |
| |
| case BTK__type_pack_element: |
| // Specializations of |
| // __type_pack_element<Index, T_1, ..., T_N> |
| // are treated like T_Index. |
| assert(Converted.size() == 2 && |
| "__type_pack_element should be given an index and a parameter pack"); |
| |
| // If the Index is out of bounds, the program is ill-formed. |
| TemplateArgument IndexArg = Converted[0], Ts = Converted[1]; |
| llvm::APSInt Index = IndexArg.getAsIntegral(); |
| assert(Index >= 0 && "the index used with __type_pack_element should be of " |
| "type std::size_t, and hence be non-negative"); |
| if (Index >= Ts.pack_size()) { |
| SemaRef.Diag(TemplateArgs[0].getLocation(), |
| diag::err_type_pack_element_out_of_bounds); |
| return QualType(); |
| } |
| |
| // We simply return the type at index `Index`. |
| auto Nth = std::next(Ts.pack_begin(), Index.getExtValue()); |
| return Nth->getAsType(); |
| } |
| llvm_unreachable("unexpected BuiltinTemplateDecl!"); |
| } |
| |
| /// Determine whether this alias template is "enable_if_t". |
| static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) { |
| return AliasTemplate->getName().equals("enable_if_t"); |
| } |
| |
| /// Collect all of the separable terms in the given condition, which |
| /// might be a conjunction. |
| /// |
| /// FIXME: The right answer is to convert the logical expression into |
| /// disjunctive normal form, so we can find the first failed term |
| /// within each possible clause. |
| static void collectConjunctionTerms(Expr *Clause, |
| SmallVectorImpl<Expr *> &Terms) { |
| if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) { |
| if (BinOp->getOpcode() == BO_LAnd) { |
| collectConjunctionTerms(BinOp->getLHS(), Terms); |
| collectConjunctionTerms(BinOp->getRHS(), Terms); |
| } |
| |
| return; |
| } |
| |
| Terms.push_back(Clause); |
| } |
| |
| // The ranges-v3 library uses an odd pattern of a top-level "||" with |
| // a left-hand side that is value-dependent but never true. Identify |
| // the idiom and ignore that term. |
| static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) { |
| // Top-level '||'. |
| auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts()); |
| if (!BinOp) return Cond; |
| |
| if (BinOp->getOpcode() != BO_LOr) return Cond; |
| |
| // With an inner '==' that has a literal on the right-hand side. |
| Expr *LHS = BinOp->getLHS(); |
| auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts()); |
| if (!InnerBinOp) return Cond; |
| |
| if (InnerBinOp->getOpcode() != BO_EQ || |
| !isa<IntegerLiteral>(InnerBinOp->getRHS())) |
| return Cond; |
| |
| // If the inner binary operation came from a macro expansion named |
| // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side |
| // of the '||', which is the real, user-provided condition. |
| SourceLocation Loc = InnerBinOp->getExprLoc(); |
| if (!Loc.isMacroID()) return Cond; |
| |
| StringRef MacroName = PP.getImmediateMacroName(Loc); |
| if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_") |
| return BinOp->getRHS(); |
| |
| return Cond; |
| } |
| |
| std::pair<Expr *, std::string> |
| Sema::findFailedBooleanCondition(Expr *Cond, bool AllowTopLevelCond) { |
| Cond = lookThroughRangesV3Condition(PP, Cond); |
| |
| // Separate out all of the terms in a conjunction. |
| SmallVector<Expr *, 4> Terms; |
| collectConjunctionTerms(Cond, Terms); |
| |
| // Determine which term failed. |
| Expr *FailedCond = nullptr; |
| for (Expr *Term : Terms) { |
| Expr *TermAsWritten = Term->IgnoreParenImpCasts(); |
| |
| // Literals are uninteresting. |
| if (isa<CXXBoolLiteralExpr>(TermAsWritten) || |
| isa<IntegerLiteral>(TermAsWritten)) |
| continue; |
| |
| // The initialization of the parameter from the argument is |
| // a constant-evaluated context. |
| EnterExpressionEvaluationContext ConstantEvaluated( |
| *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| |
| bool Succeeded; |
| if (Term->EvaluateAsBooleanCondition(Succeeded, Context) && |
| !Succeeded) { |
| FailedCond = TermAsWritten; |
| break; |
| } |
| } |
| |
| if (!FailedCond) { |
| if (!AllowTopLevelCond) |
| return { nullptr, "" }; |
| |
| FailedCond = Cond->IgnoreParenImpCasts(); |
| } |
| |
| std::string Description; |
| { |
| llvm::raw_string_ostream Out(Description); |
| FailedCond->printPretty(Out, nullptr, getPrintingPolicy()); |
| } |
| return { FailedCond, Description }; |
| } |
| |
| QualType Sema::CheckTemplateIdType(TemplateName Name, |
| SourceLocation TemplateLoc, |
| TemplateArgumentListInfo &TemplateArgs) { |
| DependentTemplateName *DTN |
| = Name.getUnderlying().getAsDependentTemplateName(); |
| if (DTN && DTN->isIdentifier()) |
| // When building a template-id where the template-name is dependent, |
| // assume the template is a type template. Either our assumption is |
| // correct, or the code is ill-formed and will be diagnosed when the |
| // dependent name is substituted. |
| return Context.getDependentTemplateSpecializationType(ETK_None, |
| DTN->getQualifier(), |
| DTN->getIdentifier(), |
| TemplateArgs); |
| |
| TemplateDecl *Template = Name.getAsTemplateDecl(); |
| if (!Template || isa<FunctionTemplateDecl>(Template) || |
| isa<VarTemplateDecl>(Template)) { |
| // We might have a substituted template template parameter pack. If so, |
| // build a template specialization type for it. |
| if (Name.getAsSubstTemplateTemplateParmPack()) |
| return Context.getTemplateSpecializationType(Name, TemplateArgs); |
| |
| Diag(TemplateLoc, diag::err_template_id_not_a_type) |
| << Name; |
| NoteAllFoundTemplates(Name); |
| return QualType(); |
| } |
| |
| // Check that the template argument list is well-formed for this |
| // template. |
| SmallVector<TemplateArgument, 4> Converted; |
| if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, |
| false, Converted)) |
| return QualType(); |
| |
| QualType CanonType; |
| |
| bool InstantiationDependent = false; |
| if (TypeAliasTemplateDecl *AliasTemplate = |
| dyn_cast<TypeAliasTemplateDecl>(Template)) { |
| // Find the canonical type for this type alias template specialization. |
| TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); |
| if (Pattern->isInvalidDecl()) |
| return QualType(); |
| |
| TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack, |
| Converted); |
| |
| // Only substitute for the innermost template argument list. |
| MultiLevelTemplateArgumentList TemplateArgLists; |
| TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs); |
| unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); |
| for (unsigned I = 0; I < Depth; ++I) |
| TemplateArgLists.addOuterTemplateArguments(None); |
| |
| LocalInstantiationScope Scope(*this); |
| InstantiatingTemplate Inst(*this, TemplateLoc, Template); |
| if (Inst.isInvalid()) |
| return QualType(); |
| |
| CanonType = SubstType(Pattern->getUnderlyingType(), |
| TemplateArgLists, AliasTemplate->getLocation(), |
| AliasTemplate->getDeclName()); |
| if (CanonType.isNull()) { |
| // If this was enable_if and we failed to find the nested type |
| // within enable_if in a SFINAE context, dig out the specific |
| // enable_if condition that failed and present that instead. |
| if (isEnableIfAliasTemplate(AliasTemplate)) { |
| if (auto DeductionInfo = isSFINAEContext()) { |
| if (*DeductionInfo && |
| (*DeductionInfo)->hasSFINAEDiagnostic() && |
| (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() == |
| diag::err_typename_nested_not_found_enable_if && |
| TemplateArgs[0].getArgument().getKind() |
| == TemplateArgument::Expression) { |
| Expr *FailedCond; |
| std::string FailedDescription; |
| std::tie(FailedCond, FailedDescription) = |
| findFailedBooleanCondition( |
| TemplateArgs[0].getSourceExpression(), |
| /*AllowTopLevelCond=*/true); |
| |
| // Remove the old SFINAE diagnostic. |
| PartialDiagnosticAt OldDiag = |
| {SourceLocation(), PartialDiagnostic::NullDiagnostic()}; |
| (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag); |
| |
| // Add a new SFINAE diagnostic specifying which condition |
| // failed. |
| (*DeductionInfo)->addSFINAEDiagnostic( |
| OldDiag.first, |
| PDiag(diag::err_typename_nested_not_found_requirement) |
| << FailedDescription |
| << FailedCond->getSourceRange()); |
| } |
| } |
| } |
| |
| return QualType(); |
| } |
| } else if (Name.isDependent() || |
| TemplateSpecializationType::anyDependentTemplateArguments( |
| TemplateArgs, InstantiationDependent)) { |
| // This class template specialization is a dependent |
| // type. Therefore, its canonical type is another class template |
| // specialization type that contains all of the converted |
| // arguments in canonical form. This ensures that, e.g., A<T> and |
| // A<T, T> have identical types when A is declared as: |
| // |
| // template<typename T, typename U = T> struct A; |
| CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted); |
| |
| // This might work out to be a current instantiation, in which |
| // case the canonical type needs to be the InjectedClassNameType. |
| // |
| // TODO: in theory this could be a simple hashtable lookup; most |
| // changes to CurContext don't change the set of current |
| // instantiations. |
| if (isa<ClassTemplateDecl>(Template)) { |
| for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { |
| // If we get out to a namespace, we're done. |
| if (Ctx->isFileContext()) break; |
| |
| // If this isn't a record, keep looking. |
| CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); |
| if (!Record) continue; |
| |
| // Look for one of the two cases with InjectedClassNameTypes |
| // and check whether it's the same template. |
| if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && |
| !Record->getDescribedClassTemplate()) |
| continue; |
| |
| // Fetch the injected class name type and check whether its |
| // injected type is equal to the type we just built. |
| QualType ICNT = Context.getTypeDeclType(Record); |
| QualType Injected = cast<InjectedClassNameType>(ICNT) |
| ->getInjectedSpecializationType(); |
| |
| if (CanonType != Injected->getCanonicalTypeInternal()) |
| continue; |
| |
| // If so, the canonical type of this TST is the injected |
| // class name type of the record we just found. |
| assert(ICNT.isCanonical()); |
| CanonType = ICNT; |
| break; |
| } |
| } |
| } else if (ClassTemplateDecl *ClassTemplate |
| = dyn_cast<ClassTemplateDecl>(Template)) { |
| // Find the class template specialization declaration that |
| // corresponds to these arguments. |
| void *InsertPos = nullptr; |
| ClassTemplateSpecializationDecl *Decl |
| = ClassTemplate->findSpecialization(Converted, InsertPos); |
| if (!Decl) { |
| // This is the first time we have referenced this class template |
| // specialization. Create the canonical declaration and add it to |
| // the set of specializations. |
| Decl = ClassTemplateSpecializationDecl::Create(Context, |
| ClassTemplate->getTemplatedDecl()->getTagKind(), |
| ClassTemplate->getDeclContext(), |
| ClassTemplate->getTemplatedDecl()->getLocStart(), |
| ClassTemplate->getLocation(), |
| ClassTemplate, |
| Converted, nullptr); |
| ClassTemplate->AddSpecialization(Decl, InsertPos); |
| if (ClassTemplate->isOutOfLine()) |
| Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); |
| } |
| |
| if (Decl->getSpecializationKind() == TSK_Undeclared) { |
| MultiLevelTemplateArgumentList TemplateArgLists; |
| TemplateArgLists.addOuterTemplateArguments(Converted); |
| InstantiateAttrsForDecl(TemplateArgLists, ClassTemplate->getTemplatedDecl(), |
| Decl); |
| } |
| |
| // Diagnose uses of this specialization. |
| (void)DiagnoseUseOfDecl(Decl, TemplateLoc); |
| |
| CanonType = Context.getTypeDeclType(Decl); |
| assert(isa<RecordType>(CanonType) && |
| "type of non-dependent specialization is not a RecordType"); |
| } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) { |
| CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc, |
| TemplateArgs); |
| } |
| |
| // Build the fully-sugared type for this class template |
| // specialization, which refers back to the class template |
| // specialization we created or found. |
| return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); |
| } |
| |
| TypeResult |
| Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, |
| TemplateTy TemplateD, IdentifierInfo *TemplateII, |
| SourceLocation TemplateIILoc, |
| SourceLocation LAngleLoc, |
| ASTTemplateArgsPtr TemplateArgsIn, |
| SourceLocation RAngleLoc, |
| bool IsCtorOrDtorName, bool IsClassName) { |
| if (SS.isInvalid()) |
| return true; |
| |
| if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) { |
| DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false); |
| |
| // C++ [temp.res]p3: |
| // A qualified-id that refers to a type and in which the |
| // nested-name-specifier depends on a template-parameter (14.6.2) |
| // shall be prefixed by the keyword typename to indicate that the |
| // qualified-id denotes a type, forming an |
| // elaborated-type-specifier (7.1.5.3). |
| if (!LookupCtx && isDependentScopeSpecifier(SS)) { |
| Diag(SS.getBeginLoc(), diag::err_typename_missing_template) |
| << SS.getScopeRep() << TemplateII->getName(); |
| // Recover as if 'typename' were specified. |
| // FIXME: This is not quite correct recovery as we don't transform SS |
| // into the corresponding dependent form (and we don't diagnose missing |
| // 'template' keywords within SS as a result). |
| return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc, |
| TemplateD, TemplateII, TemplateIILoc, LAngleLoc, |
| TemplateArgsIn, RAngleLoc); |
| } |
| |
| // Per C++ [class.qual]p2, if the template-id was an injected-class-name, |
| // it's not actually allowed to be used as a type in most cases. Because |
| // we annotate it before we know whether it's valid, we have to check for |
| // this case here. |
| auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); |
| if (LookupRD && LookupRD->getIdentifier() == TemplateII) { |
| Diag(TemplateIILoc, |
| TemplateKWLoc.isInvalid() |
| ? diag::err_out_of_line_qualified_id_type_names_constructor |
| : diag::ext_out_of_line_qualified_id_type_names_constructor) |
| << TemplateII << 0 /*injected-class-name used as template name*/ |
| << 1 /*if any keyword was present, it was 'template'*/; |
| } |
| } |
| |
| TemplateName Template = TemplateD.get(); |
| |
| // Translate the parser's template argument list in our AST format. |
| TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); |
| translateTemplateArguments(TemplateArgsIn, TemplateArgs); |
| |
| if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { |
| QualType T |
| = Context.getDependentTemplateSpecializationType(ETK_None, |
| DTN->getQualifier(), |
| DTN->getIdentifier(), |
| TemplateArgs); |
| // Build type-source information. |
| TypeLocBuilder TLB; |
| DependentTemplateSpecializationTypeLoc SpecTL |
| = TLB.push<DependentTemplateSpecializationTypeLoc>(T); |
| SpecTL.setElaboratedKeywordLoc(SourceLocation()); |
| SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
| SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
| SpecTL.setTemplateNameLoc(TemplateIILoc); |
| SpecTL.setLAngleLoc(LAngleLoc); |
| SpecTL.setRAngleLoc(RAngleLoc); |
| for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) |
| SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); |
| return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); |
| } |
| |
| QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); |
| if (Result.isNull()) |
| return true; |
| |
| // Build type-source information. |
| TypeLocBuilder TLB; |
| TemplateSpecializationTypeLoc SpecTL |
| = TLB.push<TemplateSpecializationTypeLoc>(Result); |
| SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
| SpecTL.setTemplateNameLoc(TemplateIILoc); |
| SpecTL.setLAngleLoc(LAngleLoc); |
| SpecTL.setRAngleLoc(RAngleLoc); |
| for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) |
| SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); |
| |
| // NOTE: avoid constructing an ElaboratedTypeLoc if this is a |
| // constructor or destructor name (in such a case, the scope specifier |
| // will be attached to the enclosing Decl or Expr node). |
| if (SS.isNotEmpty() && !IsCtorOrDtorName) { |
| // Create an elaborated-type-specifier containing the nested-name-specifier. |
| Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); |
| ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); |
| ElabTL.setElaboratedKeywordLoc(SourceLocation()); |
| ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
| } |
| |
| return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); |
| } |
| |
| TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, |
| TypeSpecifierType TagSpec, |
| SourceLocation TagLoc, |
| CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, |
| TemplateTy TemplateD, |
| SourceLocation TemplateLoc, |
| SourceLocation LAngleLoc, |
| ASTTemplateArgsPtr TemplateArgsIn, |
| SourceLocation RAngleLoc) { |
| TemplateName Template = TemplateD.get(); |
| |
| // Translate the parser's template argument list in our AST format. |
| TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); |
| translateTemplateArguments(TemplateArgsIn, TemplateArgs); |
| |
| // Determine the tag kind |
| TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); |
| ElaboratedTypeKeyword Keyword |
| = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); |
| |
| if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { |
| QualType T = Context.getDependentTemplateSpecializationType(Keyword, |
| DTN->getQualifier(), |
| DTN->getIdentifier(), |
| TemplateArgs); |
| |
| // Build type-source information. |
| TypeLocBuilder TLB; |
| DependentTemplateSpecializationTypeLoc SpecTL |
| = TLB.push<DependentTemplateSpecializationTypeLoc>(T); |
| SpecTL.setElaboratedKeywordLoc(TagLoc); |
| SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
| SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
| SpecTL.setTemplateNameLoc(TemplateLoc); |
| SpecTL.setLAngleLoc(LAngleLoc); |
| SpecTL.setRAngleLoc(RAngleLoc); |
| for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) |
| SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); |
| return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); |
| } |
| |
| if (TypeAliasTemplateDecl *TAT = |
| dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { |
| // C++0x [dcl.type.elab]p2: |
| // If the identifier resolves to a typedef-name or the simple-template-id |
| // resolves to an alias template specialization, the |
| // elaborated-type-specifier is ill-formed. |
| Diag(TemplateLoc, diag::err_tag_reference_non_tag) |
| << TAT << NTK_TypeAliasTemplate << TagKind; |
| Diag(TAT->getLocation(), diag::note_declared_at); |
| } |
| |
| QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); |
| if (Result.isNull()) |
| return TypeResult(true); |
| |
| // Check the tag kind |
| if (const RecordType *RT = Result->getAs<RecordType>()) { |
| RecordDecl *D = RT->getDecl(); |
| |
| IdentifierInfo *Id = D->getIdentifier(); |
| assert(Id && "templated class must have an identifier"); |
| |
| if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, |
| TagLoc, Id)) { |
| Diag(TagLoc, diag::err_use_with_wrong_tag) |
| << Result |
| << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); |
| Diag(D->getLocation(), diag::note_previous_use); |
| } |
| } |
| |
| // Provide source-location information for the template specialization. |
| TypeLocBuilder TLB; |
| TemplateSpecializationTypeLoc SpecTL |
| = TLB.push<TemplateSpecializationTypeLoc>(Result); |
| SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
| SpecTL.setTemplateNameLoc(TemplateLoc); |
| SpecTL.setLAngleLoc(LAngleLoc); |
| SpecTL.setRAngleLoc(RAngleLoc); |
| for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) |
| SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); |
| |
| // Construct an elaborated type containing the nested-name-specifier (if any) |
| // and tag keyword. |
| Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); |
| ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); |
| ElabTL.setElaboratedKeywordLoc(TagLoc); |
| ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
| return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); |
| } |
| |
| static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized, |
| NamedDecl *PrevDecl, |
| SourceLocation Loc, |
| bool IsPartialSpecialization); |
| |
| static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D); |
| |
| static bool isTemplateArgumentTemplateParameter( |
| const TemplateArgument &Arg, unsigned Depth, unsigned Index) { |
| switch (Arg.getKind()) { |
| case TemplateArgument::Null: |
| case TemplateArgument::NullPtr: |
| case TemplateArgument::Integral: |
| case TemplateArgument::Declaration: |
| case TemplateArgument::Pack: |
| case TemplateArgument::TemplateExpansion: |
| return false; |
| |
| case TemplateArgument::Type: { |
| QualType Type = Arg.getAsType(); |
| const TemplateTypeParmType *TPT = |
| Arg.getAsType()->getAs<TemplateTypeParmType>(); |
| return TPT && !Type.hasQualifiers() && |
| TPT->getDepth() == Depth && TPT->getIndex() == Index; |
| } |
| |
| case TemplateArgument::Expression: { |
| DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr()); |
| if (!DRE || !DRE->getDecl()) |
| return false; |
| const NonTypeTemplateParmDecl *NTTP = |
| dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); |
| return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index; |
| } |
| |
| case TemplateArgument::Template: |
| const TemplateTemplateParmDecl *TTP = |
| dyn_cast_or_null<TemplateTemplateParmDecl>( |
| Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()); |
| return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index; |
| } |
| llvm_unreachable("unexpected kind of template argument"); |
| } |
| |
| static bool isSameAsPrimaryTemplate(TemplateParameterList *Params, |
| ArrayRef<TemplateArgument> Args) { |
| if (Params->size() != Args.size()) |
| return false; |
| |
| unsigned Depth = Params->getDepth(); |
| |
| for (unsigned I = 0, N = Args.size(); I != N; ++I) { |
| TemplateArgument Arg = Args[I]; |
| |
| // If the parameter is a pack expansion, the argument must be a pack |
| // whose only element is a pack expansion. |
| if (Params->getParam(I)->isParameterPack()) { |
| if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 || |
| !Arg.pack_begin()->isPackExpansion()) |
| return false; |
| Arg = Arg.pack_begin()->getPackExpansionPattern(); |
| } |
| |
| if (!isTemplateArgumentTemplateParameter(Arg, Depth, I)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Convert the parser's template argument list representation into our form. |
| static TemplateArgumentListInfo |
| makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) { |
| TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc, |
| TemplateId.RAngleLoc); |
| ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(), |
| TemplateId.NumArgs); |
| S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs); |
| return TemplateArgs; |
| } |
| |
| template<typename PartialSpecDecl> |
| static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) { |
| if (Partial->getDeclContext()->isDependentContext()) |
| return; |
| |
| // FIXME: Get the TDK from deduction in order to provide better diagnostics |
| // for non-substitution-failure issues? |
| TemplateDeductionInfo Info(Partial->getLocation()); |
| if (S.isMoreSpecializedThanPrimary(Partial, Info)) |
| return; |
| |
| auto *Template = Partial->getSpecializedTemplate(); |
| S.Diag(Partial->getLocation(), |
| diag::ext_partial_spec_not_more_specialized_than_primary) |
| << isa<VarTemplateDecl>(Template); |
| |
| if (Info.hasSFINAEDiagnostic()) { |
| PartialDiagnosticAt Diag = {SourceLocation(), |
| PartialDiagnostic::NullDiagnostic()}; |
| Info.takeSFINAEDiagnostic(Diag); |
| SmallString<128> SFINAEArgString; |
| Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString); |
| S.Diag(Diag.first, |
| diag::note_partial_spec_not_more_specialized_than_primary) |
| << SFINAEArgString; |
| } |
| |
| S.Diag(Template->getLocation(), diag::note_template_decl_here); |
| } |
| |
| static void |
| noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams, |
| const llvm::SmallBitVector &DeducibleParams) { |
| for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { |
| if (!DeducibleParams[I]) { |
| NamedDecl *Param = TemplateParams->getParam(I); |
| if (Param->getDeclName()) |
| S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) |
| << Param->getDeclName(); |
| else |
| S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) |
| << "(anonymous)"; |
| } |
| } |
| } |
| |
| |
| template<typename PartialSpecDecl> |
| static void checkTemplatePartialSpecialization(Sema &S, |
| PartialSpecDecl *Partial) { |
| // C++1z [temp.class.spec]p8: (DR1495) |
| // - The specialization shall be more specialized than the primary |
| // template (14.5.5.2). |
| checkMoreSpecializedThanPrimary(S, Partial); |
| |
| // C++ [temp.class.spec]p8: (DR1315) |
| // - Each template-parameter shall appear at least once in the |
| // template-id outside a non-deduced context. |
| // C++1z [temp.class.spec.match]p3 (P0127R2) |
| // If the template arguments of a partial specialization cannot be |
| // deduced because of the structure of its template-parameter-list |
| // and the template-id, the program is ill-formed. |
| auto *TemplateParams = Partial->getTemplateParameters(); |
| llvm::SmallBitVector DeducibleParams(TemplateParams->size()); |
| S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, |
| TemplateParams->getDepth(), DeducibleParams); |
| |
| if (!DeducibleParams.all()) { |
| unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); |
| S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible) |
| << isa<VarTemplatePartialSpecializationDecl>(Partial) |
| << (NumNonDeducible > 1) |
| << SourceRange(Partial->getLocation(), |
| Partial->getTemplateArgsAsWritten()->RAngleLoc); |
| noteNonDeducibleParameters(S, TemplateParams, DeducibleParams); |
| } |
| } |
| |
| void Sema::CheckTemplatePartialSpecialization( |
| ClassTemplatePartialSpecializationDecl *Partial) { |
| checkTemplatePartialSpecialization(*this, Partial); |
| } |
| |
| void Sema::CheckTemplatePartialSpecialization( |
| VarTemplatePartialSpecializationDecl *Partial) { |
| checkTemplatePartialSpecialization(*this, Partial); |
| } |
| |
| void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) { |
| // C++1z [temp.param]p11: |
| // A template parameter of a deduction guide template that does not have a |
| // default-argument shall be deducible from the parameter-type-list of the |
| // deduction guide template. |
| auto *TemplateParams = TD->getTemplateParameters(); |
| llvm::SmallBitVector DeducibleParams(TemplateParams->size()); |
| MarkDeducedTemplateParameters(TD, DeducibleParams); |
| for (unsigned I = 0; I != TemplateParams->size(); ++I) { |
| // A parameter pack is deducible (to an empty pack). |
| auto *Param = TemplateParams->getParam(I); |
| if (Param->isParameterPack() || hasVisibleDefaultArgument(Param)) |
| DeducibleParams[I] = true; |
| } |
| |
| if (!DeducibleParams.all()) { |
| unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); |
| Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible) |
| << (NumNonDeducible > 1); |
| noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams); |
| } |
| } |
| |
| DeclResult Sema::ActOnVarTemplateSpecialization( |
| Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc, |
| TemplateParameterList *TemplateParams, StorageClass SC, |
| bool IsPartialSpecialization) { |
| // D must be variable template id. |
| assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && |
| "Variable template specialization is declared with a template it."); |
| |
| TemplateIdAnnotation *TemplateId = D.getName().TemplateId; |
| TemplateArgumentListInfo TemplateArgs = |
| makeTemplateArgumentListInfo(*this, *TemplateId); |
| SourceLocation TemplateNameLoc = D.getIdentifierLoc(); |
| SourceLocation LAngleLoc = TemplateId->LAngleLoc; |
| SourceLocation RAngleLoc = TemplateId->RAngleLoc; |
| |
| TemplateName Name = TemplateId->Template.get(); |
| |
| // The template-id must name a variable template. |
| VarTemplateDecl *VarTemplate = |
| dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl()); |
| if (!VarTemplate) { |
| NamedDecl *FnTemplate; |
| if (auto *OTS = Name.getAsOverloadedTemplate()) |
| FnTemplate = *OTS->begin(); |
| else |
| FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl()); |
| if (FnTemplate) |
| return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method) |
| << FnTemplate->getDeclName(); |
| return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template) |
| << IsPartialSpecialization; |
| } |
| |
| // Check for unexpanded parameter packs in any of the template arguments. |
| for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
| if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], |
| UPPC_PartialSpecialization)) |
| return true; |
| |
| // Check that the template argument list is well-formed for this |
| // template. |
| SmallVector<TemplateArgument, 4> Converted; |
| if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs, |
| false, Converted)) |
| return true; |
| |
| // Find the variable template (partial) specialization declaration that |
| // corresponds to these arguments. |
| if (IsPartialSpecialization) { |
| if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate, |
| TemplateArgs.size(), Converted)) |
| return true; |
| |
| // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we |
| // also do them during instantiation. |
| bool InstantiationDependent; |
| if (!Name.isDependent() && |
| !TemplateSpecializationType::anyDependentTemplateArguments( |
| TemplateArgs.arguments(), |
| InstantiationDependent)) { |
| Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) |
| << VarTemplate->getDeclName(); |
| IsPartialSpecialization = false; |
| } |
| |
| if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(), |
| Converted)) { |
| // C++ [temp.class.spec]p9b3: |
| // |
| // -- The argument list of the specialization shall not be identical |
| // to the implicit argument list of the primary template. |
| Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) |
| << /*variable template*/ 1 |
| << /*is definition*/(SC != SC_Extern && !CurContext->isRecord()) |
| << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); |
| // FIXME: Recover from this by treating the declaration as a redeclaration |
| // of the primary template. |
| return true; |
| } |
| } |
| |
| void *InsertPos = nullptr; |
| VarTemplateSpecializationDecl *PrevDecl = nullptr; |
| |
| if (IsPartialSpecialization) |
| // FIXME: Template parameter list matters too |
| PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos); |
| else |
| PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos); |
| |
| VarTemplateSpecializationDecl *Specialization = nullptr; |
| |
| // Check whether we can declare a variable template specialization in |
| // the current scope. |
| if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl, |
| TemplateNameLoc, |
| IsPartialSpecialization)) |
| return true; |
| |
| if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { |
| // Since the only prior variable template specialization with these |
| // arguments was referenced but not declared, reuse that |
| // declaration node as our own, updating its source location and |
| // the list of outer template parameters to reflect our new declaration. |
| Specialization = PrevDecl; |
| Specialization->setLocation(TemplateNameLoc); |
| PrevDecl = nullptr; |
| } else if (IsPartialSpecialization) { |
| // Create a new class template partial specialization declaration node. |
| VarTemplatePartialSpecializationDecl *PrevPartial = |
| cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl); |
| VarTemplatePartialSpecializationDecl *Partial = |
| VarTemplatePartialSpecializationDecl::Create( |
| Context, VarTemplate->getDeclContext(), TemplateKWLoc, |
| TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC, |
| Converted, TemplateArgs); |
| |
| if (!PrevPartial) |
| VarTemplate->AddPartialSpecialization(Partial, InsertPos); |
| Specialization = Partial; |
| |
| // If we are providing an explicit specialization of a member variable |
| // template specialization, make a note of that. |
| if (PrevPartial && PrevPartial->getInstantiatedFromMember()) |
| PrevPartial->setMemberSpecialization(); |
| |
| CheckTemplatePartialSpecialization(Partial); |
| } else { |
| // Create a new class template specialization declaration node for |
| // this explicit specialization or friend declaration. |
| Specialization = VarTemplateSpecializationDecl::Create( |
| Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc, |
| VarTemplate, DI->getType(), DI, SC, Converted); |
| Specialization->setTemplateArgsInfo(TemplateArgs); |
| |
| if (!PrevDecl) |
| VarTemplate->AddSpecialization(Specialization, InsertPos); |
| } |
| |
| // C++ [temp.expl.spec]p6: |
| // If a template, a member template or the member of a class template is |
| // explicitly specialized then that specialization shall be declared |
| // before the first use of that specialization that would cause an implicit |
| // instantiation to take place, in every translation unit in which such a |
| // use occurs; no diagnostic is required. |
| if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { |
| bool Okay = false; |
| for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { |
| // Is there any previous explicit specialization declaration? |
| if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { |
| Okay = true; |
| break; |
| } |
| } |
| |
| if (!Okay) { |
| SourceRange Range(TemplateNameLoc, RAngleLoc); |
| Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) |
| << Name << Range; |
| |
| Diag(PrevDecl->getPointOfInstantiation(), |
| diag::note_instantiation_required_here) |
| << (PrevDecl->getTemplateSpecializationKind() != |
| TSK_ImplicitInstantiation); |
| return true; |
| } |
| } |
| |
| Specialization->setTemplateKeywordLoc(TemplateKWLoc); |
| Specialization->setLexicalDeclContext(CurContext); |
| |
| // Add the specialization into its lexical context, so that it can |
| // be seen when iterating through the list of declarations in that |
| // context. However, specializations are not found by name lookup. |
| CurContext->addDecl(Specialization); |
| |
| // Note that this is an explicit specialization. |
| Specialization->setSpecializationKind(TSK_ExplicitSpecialization); |
| |
| if (PrevDecl) { |
| // Check that this isn't a redefinition of this specialization, |
| // merging with previous declarations. |
| LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName, |
| forRedeclarationInCurContext()); |
| PrevSpec.addDecl(PrevDecl); |
| D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec)); |
| } else if (Specialization->isStaticDataMember() && |
| Specialization->isOutOfLine()) { |
| Specialization->setAccess(VarTemplate->getAccess()); |
| } |
| |
| // Link instantiations of static data members back to the template from |
| // which they were instantiated. |
| if (Specialization->isStaticDataMember()) |
| Specialization->setInstantiationOfStaticDataMember( |
| VarTemplate->getTemplatedDecl(), |
| Specialization->getSpecializationKind()); |
| |
| return Specialization; |
| } |
| |
| namespace { |
| /// A partial specialization whose template arguments have matched |
| /// a given template-id. |
| struct PartialSpecMatchResult { |
| VarTemplatePartialSpecializationDecl *Partial; |
| TemplateArgumentList *Args; |
| }; |
| } // end anonymous namespace |
| |
| DeclResult |
| Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, |
| SourceLocation TemplateNameLoc, |
| const TemplateArgumentListInfo &TemplateArgs) { |
| assert(Template && "A variable template id without template?"); |
| |
| // Check that the template argument list is well-formed for this template. |
| SmallVector<TemplateArgument, 4> Converted; |
| if (CheckTemplateArgumentList( |
| Template, TemplateNameLoc, |
| const_cast<TemplateArgumentListInfo &>(TemplateArgs), false, |
| Converted)) |
| return true; |
| |
| // Find the variable template specialization declaration that |
| // corresponds to these arguments. |
| void *InsertPos = nullptr; |
| if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization( |
| Converted, InsertPos)) { |
| checkSpecializationVisibility(TemplateNameLoc, Spec); |
| // If we already have a variable template specialization, return it. |
| return Spec; |
| } |
| |
| // This is the first time we have referenced this variable template |
| // specialization. Create the canonical declaration and add it to |
| // the set of specializations, based on the closest partial specialization |
| // that it represents. That is, |
| VarDecl *InstantiationPattern = Template->getTemplatedDecl(); |
| TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack, |
| Converted); |
| TemplateArgumentList *InstantiationArgs = &TemplateArgList; |
| bool AmbiguousPartialSpec = false; |
| typedef PartialSpecMatchResult MatchResult; |
| SmallVector<MatchResult, 4> Matched; |
| SourceLocation PointOfInstantiation = TemplateNameLoc; |
| TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation, |
| /*ForTakingAddress=*/false); |
| |
| // 1. Attempt to find the closest partial specialization that this |
| // specializes, if any. |
| // If any of the template arguments is dependent, then this is probably |
| // a placeholder for an incomplete declarative context; which must be |
| // complete by instantiation time. Thus, do not search through the partial |
| // specializations yet. |
| // TODO: Unify with InstantiateClassTemplateSpecialization()? |
| // Perhaps better after unification of DeduceTemplateArguments() and |
| // getMoreSpecializedPartialSpecialization(). |
| bool InstantiationDependent = false; |
| if (!TemplateSpecializationType::anyDependentTemplateArguments( |
| TemplateArgs, InstantiationDependent)) { |
| |
| SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; |
| Template->getPartialSpecializations(PartialSpecs); |
| |
| for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) { |
| VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I]; |
| TemplateDeductionInfo Info(FailedCandidates.getLocation()); |
| |
| if (TemplateDeductionResult Result = |
| DeduceTemplateArguments(Partial, TemplateArgList, Info)) { |
| // Store the failed-deduction information for use in diagnostics, later. |
| // TODO: Actually use the failed-deduction info? |
| FailedCandidates.addCandidate().set( |
| DeclAccessPair::make(Template, AS_public), Partial, |
| MakeDeductionFailureInfo(Context, Result, Info)); |
| (void)Result; |
| } else { |
| Matched.push_back(PartialSpecMatchResult()); |
| Matched.back().Partial = Partial; |
| Matched.back().Args = Info.take(); |
| } |
| } |
| |
| if (Matched.size() >= 1) { |
| SmallVector<MatchResult, 4>::iterator Best = Matched.begin(); |
| if (Matched.size() == 1) { |
| // -- If exactly one matching specialization is found, the |
| // instantiation is generated from that specialization. |
| // We don't need to do anything for this. |
| } else { |
| // -- If more than one matching specialization is found, the |
| // partial order rules (14.5.4.2) are used to determine |
| // whether one of the specializations is more specialized |
| // than the others. If none of the specializations is more |
| // specialized than all of the other matching |
| // specializations, then the use of the variable template is |
| // ambiguous and the program is ill-formed. |
| for (SmallVector<MatchResult, 4>::iterator P = Best + 1, |
| PEnd = Matched.end(); |
| P != PEnd; ++P) { |
| if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial, |
| PointOfInstantiation) == |
| P->Partial) |
| Best = P; |
| } |
| |
| // Determine if the best partial specialization is more specialized than |
| // the others. |
| for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), |
| PEnd = Matched.end(); |
| P != PEnd; ++P) { |
| if (P != Best && getMoreSpecializedPartialSpecialization( |
| P->Partial, Best->Partial, |
| PointOfInstantiation) != Best->Partial) { |
| AmbiguousPartialSpec = true; |
| break; |
| } |
| } |
| } |
| |
| // Instantiate using the best variable template partial specialization. |
| InstantiationPattern = Best->Partial; |
| InstantiationArgs = Best->Args; |
| } else { |
| // -- If no match is found, the instantiation is generated |
| // from the primary template. |
| // InstantiationPattern = Template->getTemplatedDecl(); |
| } |
| } |
| |
| // 2. Create the canonical declaration. |
| // Note that we do not instantiate a definition until we see an odr-use |
| // in DoMarkVarDeclReferenced(). |
| // FIXME: LateAttrs et al.? |
| VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation( |
| Template, InstantiationPattern, *InstantiationArgs, TemplateArgs, |
| Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/); |
| if (!Decl) |
| return true; |
| |
| if (AmbiguousPartialSpec) { |
| // Partial ordering did not produce a clear winner. Complain. |
| Decl->setInvalidDecl(); |
| Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous) |
| << Decl; |
| |
| // Print the matching partial specializations. |
| for (MatchResult P : Matched) |
| Diag(P.Partial->getLocation(), diag::note_partial_spec_match) |
| << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(), |
| *P.Args); |
| return true; |
| } |
| |
| if (VarTemplatePartialSpecializationDecl *D = |
| dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern)) |
| Decl->setInstantiationOf(D, InstantiationArgs); |
| |
| checkSpecializationVisibility(TemplateNameLoc, Decl); |
| |
| assert(Decl && "No variable template specialization?"); |
| return Decl; |
| } |
| |
| ExprResult |
| Sema::CheckVarTemplateId(const CXXScopeSpec &SS, |
| const DeclarationNameInfo &NameInfo, |
| VarTemplateDecl *Template, SourceLocation TemplateLoc, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| |
| DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(), |
| *TemplateArgs); |
| if (Decl.isInvalid()) |
| return ExprError(); |
| |
| VarDecl *Var = cast<VarDecl>(Decl.get()); |
| if (!Var->getTemplateSpecializationKind()) |
| Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, |
| NameInfo.getLoc()); |
| |
| // Build an ordinary singleton decl ref. |
| return BuildDeclarationNameExpr(SS, NameInfo, Var, |
| /*FoundD=*/nullptr, TemplateArgs); |
| } |
| |
| void Sema::diagnoseMissingTemplateArguments(TemplateName Name, |
| SourceLocation Loc) { |
| Diag(Loc, diag::err_template_missing_args) |
| << (int)getTemplateNameKindForDiagnostics(Name) << Name; |
| if (TemplateDecl *TD = Name.getAsTemplateDecl()) { |
| Diag(TD->getLocation(), diag::note_template_decl_here) |
| << TD->getTemplateParameters()->getSourceRange(); |
| } |
| } |
| |
| ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, |
| LookupResult &R, |
| bool RequiresADL, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| // FIXME: Can we do any checking at this point? I guess we could check the |
| // template arguments that we have against the template name, if the template |
| // name refers to a single template. That's not a terribly common case, |
| // though. |
| // foo<int> could identify a single function unambiguously |
| // This approach does NOT work, since f<int>(1); |
| // gets resolved prior to resorting to overload resolution |
| // i.e., template<class T> void f(double); |
| // vs template<class T, class U> void f(U); |
| |
| // These should be filtered out by our callers. |
| assert(!R.empty() && "empty lookup results when building templateid"); |
| assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); |
| |
| // Non-function templates require a template argument list. |
| if (auto *TD = R.getAsSingle<TemplateDecl>()) { |
| if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) { |
| diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc()); |
| return ExprError(); |
| } |
| } |
| |
| auto AnyDependentArguments = [&]() -> bool { |
| bool InstantiationDependent; |
| return TemplateArgs && |
| TemplateSpecializationType::anyDependentTemplateArguments( |
| *TemplateArgs, InstantiationDependent); |
| }; |
| |
| // In C++1y, check variable template ids. |
| if (R.getAsSingle<VarTemplateDecl>() && !AnyDependentArguments()) { |
| return CheckVarTemplateId(SS, R.getLookupNameInfo(), |
| R.getAsSingle<VarTemplateDecl>(), |
| TemplateKWLoc, TemplateArgs); |
| } |
| |
| // We don't want lookup warnings at this point. |
| R.suppressDiagnostics(); |
| |
| UnresolvedLookupExpr *ULE |
| = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), |
| SS.getWithLocInContext(Context), |
| TemplateKWLoc, |
| R.getLookupNameInfo(), |
| RequiresADL, TemplateArgs, |
| R.begin(), R.end()); |
| |
| return ULE; |
| } |
| |
| // We actually only call this from template instantiation. |
| ExprResult |
| Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, |
| const DeclarationNameInfo &NameInfo, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| |
| assert(TemplateArgs || TemplateKWLoc.isValid()); |
| DeclContext *DC; |
| if (!(DC = computeDeclContext(SS, false)) || |
| DC->isDependentContext() || |
| RequireCompleteDeclContext(SS, DC)) |
| return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); |
| |
| bool MemberOfUnknownSpecialization; |
| LookupResult R(*this, NameInfo, LookupOrdinaryName); |
| if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(), |
| /*Entering*/false, MemberOfUnknownSpecialization, |
| TemplateKWLoc)) |
| return ExprError(); |
| |
| if (R.isAmbiguous()) |
| return ExprError(); |
| |
| if (R.empty()) { |
| Diag(NameInfo.getLoc(), diag::err_no_member) |
| << NameInfo.getName() << DC << SS.getRange(); |
| return ExprError(); |
| } |
| |
| if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { |
| Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) |
| << SS.getScopeRep() |
| << NameInfo.getName().getAsString() << SS.getRange(); |
| Diag(Temp->getLocation(), diag::note_referenced_class_template); |
| return ExprError(); |
| } |
| |
| return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); |
| } |
| |
| /// Form a dependent template name. |
| /// |
| /// This action forms a dependent template name given the template |
| /// name and its (presumably dependent) scope specifier. For |
| /// example, given "MetaFun::template apply", the scope specifier \p |
| /// SS will be "MetaFun::", \p TemplateKWLoc contains the location |
| /// of the "template" keyword, and "apply" is the \p Name. |
| TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, |
| CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, |
| const UnqualifiedId &Name, |
| ParsedType ObjectType, |
| bool EnteringContext, |
| TemplateTy &Result, |
| bool AllowInjectedClassName) { |
| if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) |
| Diag(TemplateKWLoc, |
| getLangOpts().CPlusPlus11 ? |
| diag::warn_cxx98_compat_template_outside_of_template : |
| diag::ext_template_outside_of_template) |
| << FixItHint::CreateRemoval(TemplateKWLoc); |
| |
| DeclContext *LookupCtx = nullptr; |
| if (SS.isSet()) |
| LookupCtx = computeDeclContext(SS, EnteringContext); |
| if (!LookupCtx && ObjectType) |
| LookupCtx = computeDeclContext(ObjectType.get()); |
| if (LookupCtx) { |
| // C++0x [temp.names]p5: |
| // If a name prefixed by the keyword template is not the name of |
| // a template, the program is ill-formed. [Note: the keyword |
| // template may not be applied to non-template members of class |
| // templates. -end note ] [ Note: as is the case with the |
| // typename prefix, the template prefix is allowed in cases |
| // where it is not strictly necessary; i.e., when the |
| // nested-name-specifier or the expression on the left of the -> |
| // or . is not dependent on a template-parameter, or the use |
| // does not appear in the scope of a template. -end note] |
| // |
| // Note: C++03 was more strict here, because it banned the use of |
| // the "template" keyword prior to a template-name that was not a |
| // dependent name. C++ DR468 relaxed this requirement (the |
| // "template" keyword is now permitted). We follow the C++0x |
| // rules, even in C++03 mode with a warning, retroactively applying the DR. |
| bool MemberOfUnknownSpecialization; |
| TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name, |
| ObjectType, EnteringContext, Result, |
| MemberOfUnknownSpecialization); |
| if (TNK == TNK_Non_template && MemberOfUnknownSpecialization) { |
| // This is a dependent template. Handle it below. |
| } else if (TNK == TNK_Non_template) { |
| // Do the lookup again to determine if this is a "nothing found" case or |
| // a "not a template" case. FIXME: Refactor isTemplateName so we don't |
| // need to do this. |
| DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name); |
| LookupResult R(*this, DNI.getName(), Name.getLocStart(), |
| LookupOrdinaryName); |
| bool MOUS; |
| if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, |
| MOUS, TemplateKWLoc)) |
| Diag(Name.getLocStart(), diag::err_no_member) |
| << DNI.getName() << LookupCtx << SS.getRange(); |
| return TNK_Non_template; |
| } else { |
| // We found something; return it. |
| auto *LookupRD = dyn_cast<CXXRecordDecl>(LookupCtx); |
| if (!AllowInjectedClassName && SS.isSet() && LookupRD && |
| Name.getKind() == UnqualifiedIdKind::IK_Identifier && |
| Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) { |
| // C++14 [class.qual]p2: |
| // In a lookup in which function names are not ignored and the |
| // nested-name-specifier nominates a class C, if the name specified |
| // [...] is the injected-class-name of C, [...] the name is instead |
| // considered to name the constructor |
| // |
| // We don't get here if naming the constructor would be valid, so we |
| // just reject immediately and recover by treating the |
| // injected-class-name as naming the template. |
| Diag(Name.getLocStart(), |
| diag::ext_out_of_line_qualified_id_type_names_constructor) |
| << Name.Identifier << 0 /*injected-class-name used as template name*/ |
| << 1 /*'template' keyword was used*/; |
| } |
| return TNK; |
| } |
| } |
| |
| NestedNameSpecifier *Qualifier = SS.getScopeRep(); |
| |
| switch (Name.getKind()) { |
| case UnqualifiedIdKind::IK_Identifier: |
| Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, |
| Name.Identifier)); |
| return TNK_Dependent_template_name; |
| |
| case UnqualifiedIdKind::IK_OperatorFunctionId: |
| Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, |
| Name.OperatorFunctionId.Operator)); |
| return TNK_Function_template; |
| |
| case UnqualifiedIdKind::IK_LiteralOperatorId: |
| llvm_unreachable("literal operator id cannot have a dependent scope"); |
| |
| default: |
| break; |
| } |
| |
| Diag(Name.getLocStart(), |
| diag::err_template_kw_refers_to_non_template) |
| << GetNameFromUnqualifiedId(Name).getName() |
| << Name.getSourceRange() |
| << TemplateKWLoc; |
| return TNK_Non_template; |
| } |
| |
| bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, |
| TemplateArgumentLoc &AL, |
| SmallVectorImpl<TemplateArgument> &Converted) { |
| const TemplateArgument &Arg = AL.getArgument(); |
| QualType ArgType; |
| TypeSourceInfo *TSI = nullptr; |
| |
| // Check template type parameter. |
| switch(Arg.getKind()) { |
| case TemplateArgument::Type: |
| // C++ [temp.arg.type]p1: |
| // A template-argument for a template-parameter which is a |
| // type shall be a type-id. |
| ArgType = Arg.getAsType(); |
| TSI = AL.getTypeSourceInfo(); |
| break; |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: { |
| // We have a template type parameter but the template argument |
| // is a template without any arguments. |
| SourceRange SR = AL.getSourceRange(); |
| TemplateName Name = Arg.getAsTemplateOrTemplatePattern(); |
| diagnoseMissingTemplateArguments(Name, SR.getEnd()); |
| return true; |
| } |
| case TemplateArgument::Expression: { |
| // We have a template type parameter but the template argument is an |
| // expression; see if maybe it is missing the "typename" keyword. |
| CXXScopeSpec SS; |
| DeclarationNameInfo NameInfo; |
| |
| if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) { |
| SS.Adopt(ArgExpr->getQualifierLoc()); |
| NameInfo = ArgExpr->getNameInfo(); |
| } else if (DependentScopeDeclRefExpr *ArgExpr = |
| dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { |
| SS.Adopt(ArgExpr->getQualifierLoc()); |
| NameInfo = ArgExpr->getNameInfo(); |
| } else if (CXXDependentScopeMemberExpr *ArgExpr = |
| dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { |
| if (ArgExpr->isImplicitAccess()) { |
| SS.Adopt(ArgExpr->getQualifierLoc()); |
| NameInfo = ArgExpr->getMemberNameInfo(); |
| } |
| } |
| |
| if (auto *II = NameInfo.getName().getAsIdentifierInfo()) { |
| LookupResult Result(*this, NameInfo, LookupOrdinaryName); |
| LookupParsedName(Result, CurScope, &SS); |
| |
| if (Result.getAsSingle<TypeDecl>() || |
| Result.getResultKind() == |
| LookupResult::NotFoundInCurrentInstantiation) { |
| // Suggest that the user add 'typename' before the NNS. |
| SourceLocation Loc = AL.getSourceRange().getBegin(); |
| Diag(Loc, getLangOpts().MSVCCompat |
| ? diag::ext_ms_template_type_arg_missing_typename |
| : diag::err_template_arg_must_be_type_suggest) |
| << FixItHint::CreateInsertion(Loc, "typename "); |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| |
| // Recover by synthesizing a type using the location information that we |
| // already have. |
| ArgType = |
| Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II); |
| TypeLocBuilder TLB; |
| DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType); |
| TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/)); |
| TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
| TL.setNameLoc(NameInfo.getLoc()); |
| TSI = TLB.getTypeSourceInfo(Context, ArgType); |
| |
| // Overwrite our input TemplateArgumentLoc so that we can recover |
| // properly. |
| AL = TemplateArgumentLoc(TemplateArgument(ArgType), |
| TemplateArgumentLocInfo(TSI)); |
| |
| break; |
| } |
| } |
| // fallthrough |
| LLVM_FALLTHROUGH; |
| } |
| default: { |
| // We have a template type parameter but the template argument |
| // is not a type. |
| SourceRange SR = AL.getSourceRange(); |
| Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| |
| return true; |
| } |
| } |
| |
| if (CheckTemplateArgument(Param, TSI)) |
| return true; |
| |
| // Add the converted template type argument. |
| ArgType = Context.getCanonicalType(ArgType); |
| |
| // Objective-C ARC: |
| // If an explicitly-specified template argument type is a lifetime type |
| // with no lifetime qualifier, the __strong lifetime qualifier is inferred. |
| if (getLangOpts().ObjCAutoRefCount && |
| ArgType->isObjCLifetimeType() && |
| !ArgType.getObjCLifetime()) { |
| Qualifiers Qs; |
| Qs.setObjCLifetime(Qualifiers::OCL_Strong); |
| ArgType = Context.getQualifiedType(ArgType, Qs); |
| } |
| |
| Converted.push_back(TemplateArgument(ArgType)); |
| return false; |
| } |
| |
| /// Substitute template arguments into the default template argument for |
| /// the given template type parameter. |
| /// |
| /// \param SemaRef the semantic analysis object for which we are performing |
| /// the substitution. |
| /// |
| /// \param Template the template that we are synthesizing template arguments |
| /// for. |
| /// |
| /// \param TemplateLoc the location of the template name that started the |
| /// template-id we are checking. |
| /// |
| /// \param RAngleLoc the location of the right angle bracket ('>') that |
| /// terminates the template-id. |
| /// |
| /// \param Param the template template parameter whose default we are |
| /// substituting into. |
| /// |
| /// \param Converted the list of template arguments provided for template |
| /// parameters that precede \p Param in the template parameter list. |
| /// \returns the substituted template argument, or NULL if an error occurred. |
| static TypeSourceInfo * |
| SubstDefaultTemplateArgument(Sema &SemaRef, |
| TemplateDecl *Template, |
| SourceLocation TemplateLoc, |
| SourceLocation RAngleLoc, |
| TemplateTypeParmDecl *Param, |
| SmallVectorImpl<TemplateArgument> &Converted) { |
| TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); |
| |
| // If the argument type is dependent, instantiate it now based |
| // on the previously-computed template arguments. |
| if (ArgType->getType()->isDependentType()) { |
| Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, |
| Param, Template, Converted, |
| SourceRange(TemplateLoc, RAngleLoc)); |
| if (Inst.isInvalid()) |
| return nullptr; |
| |
| TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); |
| |
| // Only substitute for the innermost template argument list. |
| MultiLevelTemplateArgumentList TemplateArgLists; |
| TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); |
| for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) |
| TemplateArgLists.addOuterTemplateArguments(None); |
| |
| Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); |
| ArgType = |
| SemaRef.SubstType(ArgType, TemplateArgLists, |
| Param->getDefaultArgumentLoc(), Param->getDeclName()); |
| } |
| |
| return ArgType; |
| } |
| |
| /// Substitute template arguments into the default template argument for |
| /// the given non-type template parameter. |
| /// |
| /// \param SemaRef the semantic analysis object for which we are performing |
| /// the substitution. |
| /// |
| /// \param Template the template that we are synthesizing template arguments |
| /// for. |
| /// |
| /// \param TemplateLoc the location of the template name that started the |
| /// template-id we are checking. |
| /// |
| /// \param RAngleLoc the location of the right angle bracket ('>') that |
| /// terminates the template-id. |
| /// |
| /// \param Param the non-type template parameter whose default we are |
| /// substituting into. |
| /// |
| /// \param Converted the list of template arguments provided for template |
| /// parameters that precede \p Param in the template parameter list. |
| /// |
| /// \returns the substituted template argument, or NULL if an error occurred. |
| static ExprResult |
| SubstDefaultTemplateArgument(Sema &SemaRef, |
| TemplateDecl *Template, |
| SourceLocation TemplateLoc, |
| SourceLocation RAngleLoc, |
| NonTypeTemplateParmDecl *Param, |
| SmallVectorImpl<TemplateArgument> &Converted) { |
| Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, |
| Param, Template, Converted, |
| SourceRange(TemplateLoc, RAngleLoc)); |
| if (Inst.isInvalid()) |
| return ExprError(); |
| |
| TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); |
| |
| // Only substitute for the innermost template argument list. |
| MultiLevelTemplateArgumentList TemplateArgLists; |
| TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); |
| for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) |
| TemplateArgLists.addOuterTemplateArguments(None); |
| |
| EnterExpressionEvaluationContext ConstantEvaluated( |
| SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists); |
| } |
| |
| /// Substitute template arguments into the default template argument for |
| /// the given template template parameter. |
| /// |
| /// \param SemaRef the semantic analysis object for which we are performing |
| /// the substitution. |
| /// |
| /// \param Template the template that we are synthesizing template arguments |
| /// for. |
| /// |
| /// \param TemplateLoc the location of the template name that started the |
| /// template-id we are checking. |
| /// |
| /// \param RAngleLoc the location of the right angle bracket ('>') that |
| /// terminates the template-id. |
| /// |
| /// \param Param the template template parameter whose default we are |
| /// substituting into. |
| /// |
| /// \param Converted the list of template arguments provided for template |
| /// parameters that precede \p Param in the template parameter list. |
| /// |
| /// \param QualifierLoc Will be set to the nested-name-specifier (with |
| /// source-location information) that precedes the template name. |
| /// |
| /// \returns the substituted template argument, or NULL if an error occurred. |
| static TemplateName |
| SubstDefaultTemplateArgument(Sema &SemaRef, |
| TemplateDecl *Template, |
| SourceLocation TemplateLoc, |
| SourceLocation RAngleLoc, |
| TemplateTemplateParmDecl *Param, |
| SmallVectorImpl<TemplateArgument> &Converted, |
| NestedNameSpecifierLoc &QualifierLoc) { |
| Sema::InstantiatingTemplate Inst( |
| SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted, |
| SourceRange(TemplateLoc, RAngleLoc)); |
| if (Inst.isInvalid()) |
| return TemplateName(); |
| |
| TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); |
| |
| // Only substitute for the innermost template argument list. |
| MultiLevelTemplateArgumentList TemplateArgLists; |
| TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); |
| for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) |
| TemplateArgLists.addOuterTemplateArguments(None); |
| |
| Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); |
| // Substitute into the nested-name-specifier first, |
| QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); |
| if (QualifierLoc) { |
| QualifierLoc = |
| SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists); |
| if (!QualifierLoc) |
| return TemplateName(); |
| } |
| |
| return SemaRef.SubstTemplateName( |
| QualifierLoc, |
| Param->getDefaultArgument().getArgument().getAsTemplate(), |
| Param->getDefaultArgument().getTemplateNameLoc(), |
| TemplateArgLists); |
| } |
| |
| /// If the given template parameter has a default template |
| /// argument, substitute into that default template argument and |
| /// return the corresponding template argument. |
| TemplateArgumentLoc |
| Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, |
| SourceLocation TemplateLoc, |
| SourceLocation RAngleLoc, |
| Decl *Param, |
| SmallVectorImpl<TemplateArgument> |
| &Converted, |
| bool &HasDefaultArg) { |
| HasDefaultArg = false; |
| |
| if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { |
| if (!hasVisibleDefaultArgument(TypeParm)) |
| return TemplateArgumentLoc(); |
| |
| HasDefaultArg = true; |
| TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, |
| TemplateLoc, |
| RAngleLoc, |
| TypeParm, |
| Converted); |
| if (DI) |
| return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); |
| |
| return TemplateArgumentLoc(); |
| } |
| |
| if (NonTypeTemplateParmDecl *NonTypeParm |
| = dyn_cast<NonTypeTemplateParmDecl>(Param)) { |
| if (!hasVisibleDefaultArgument(NonTypeParm)) |
| return TemplateArgumentLoc(); |
| |
| HasDefaultArg = true; |
| ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, |
| TemplateLoc, |
| RAngleLoc, |
| NonTypeParm, |
| Converted); |
| if (Arg.isInvalid()) |
| return TemplateArgumentLoc(); |
| |
| Expr *ArgE = Arg.getAs<Expr>(); |
| return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); |
| } |
| |
| TemplateTemplateParmDecl *TempTempParm |
| = cast<TemplateTemplateParmDecl>(Param); |
| if (!hasVisibleDefaultArgument(TempTempParm)) |
| return TemplateArgumentLoc(); |
| |
| HasDefaultArg = true; |
| NestedNameSpecifierLoc QualifierLoc; |
| TemplateName TName = SubstDefaultTemplateArgument(*this, Template, |
| TemplateLoc, |
| RAngleLoc, |
| TempTempParm, |
| Converted, |
| QualifierLoc); |
| if (TName.isNull()) |
| return TemplateArgumentLoc(); |
| |
| return TemplateArgumentLoc(TemplateArgument(TName), |
| TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), |
| TempTempParm->getDefaultArgument().getTemplateNameLoc()); |
| } |
| |
| /// Convert a template-argument that we parsed as a type into a template, if |
| /// possible. C++ permits injected-class-names to perform dual service as |
| /// template template arguments and as template type arguments. |
| static TemplateArgumentLoc convertTypeTemplateArgumentToTemplate(TypeLoc TLoc) { |
| // Extract and step over any surrounding nested-name-specifier. |
| NestedNameSpecifierLoc QualLoc; |
| if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) { |
| if (ETLoc.getTypePtr()->getKeyword() != ETK_None) |
| return TemplateArgumentLoc(); |
| |
| QualLoc = ETLoc.getQualifierLoc(); |
| TLoc = ETLoc.getNamedTypeLoc(); |
| } |
| |
| // If this type was written as an injected-class-name, it can be used as a |
| // template template argument. |
| if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>()) |
| return TemplateArgumentLoc(InjLoc.getTypePtr()->getTemplateName(), |
| QualLoc, InjLoc.getNameLoc()); |
| |
| // If this type was written as an injected-class-name, it may have been |
| // converted to a RecordType during instantiation. If the RecordType is |
| // *not* wrapped in a TemplateSpecializationType and denotes a class |
| // template specialization, it must have come from an injected-class-name. |
| if (auto RecLoc = TLoc.getAs<RecordTypeLoc>()) |
| if (auto *CTSD = |
| dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl())) |
| return TemplateArgumentLoc(TemplateName(CTSD->getSpecializedTemplate()), |
| QualLoc, RecLoc.getNameLoc()); |
| |
| return TemplateArgumentLoc(); |
| } |
| |
| /// Check that the given template argument corresponds to the given |
| /// template parameter. |
| /// |
| /// \param Param The template parameter against which the argument will be |
| /// checked. |
| /// |
| /// \param Arg The template argument, which may be updated due to conversions. |
| /// |
| /// \param Template The template in which the template argument resides. |
| /// |
| /// \param TemplateLoc The location of the template name for the template |
| /// whose argument list we're matching. |
| /// |
| /// \param RAngleLoc The location of the right angle bracket ('>') that closes |
| /// the template argument list. |
| /// |
| /// \param ArgumentPackIndex The index into the argument pack where this |
| /// argument will be placed. Only valid if the parameter is a parameter pack. |
| /// |
| /// \param Converted The checked, converted argument will be added to the |
| /// end of this small vector. |
| /// |
| /// \param CTAK Describes how we arrived at this particular template argument: |
| /// explicitly written, deduced, etc. |
| /// |
| /// \returns true on error, false otherwise. |
| bool Sema::CheckTemplateArgument(NamedDecl *Param, |
| TemplateArgumentLoc &Arg, |
| NamedDecl *Template, |
| SourceLocation TemplateLoc, |
| SourceLocation RAngleLoc, |
| unsigned ArgumentPackIndex, |
| SmallVectorImpl<TemplateArgument> &Converted, |
| CheckTemplateArgumentKind CTAK) { |
| // Check template type parameters. |
| if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) |
| return CheckTemplateTypeArgument(TTP, Arg, Converted); |
| |
| // Check non-type template parameters. |
| if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { |
| // Do substitution on the type of the non-type template parameter |
| // with the template arguments we've seen thus far. But if the |
| // template has a dependent context then we cannot substitute yet. |
| QualType NTTPType = NTTP->getType(); |
| if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) |
| NTTPType = NTTP->getExpansionType(ArgumentPackIndex); |
| |
| // FIXME: Do we need to substitute into parameters here if they're |
| // instantiation-dependent but not dependent? |
| if (NTTPType->isDependentType() && |
| !isa<TemplateTemplateParmDecl>(Template) && |
| !Template->getDeclContext()->isDependentContext()) { |
| // Do substitution on the type of the non-type template parameter. |
| InstantiatingTemplate Inst(*this, TemplateLoc, Template, |
| NTTP, Converted, |
| SourceRange(TemplateLoc, RAngleLoc)); |
| if (Inst.isInvalid()) |
| return true; |
| |
| TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, |
| Converted); |
| NTTPType = SubstType(NTTPType, |
| MultiLevelTemplateArgumentList(TemplateArgs), |
| NTTP->getLocation(), |
| NTTP->getDeclName()); |
| // If that worked, check the non-type template parameter type |
| // for validity. |
| if (!NTTPType.isNull()) |
| NTTPType = CheckNonTypeTemplateParameterType(NTTPType, |
| NTTP->getLocation()); |
| if (NTTPType.isNull()) |
| return true; |
| } |
| |
| switch (Arg.getArgument().getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Should never see a NULL template argument here"); |
| |
| case TemplateArgument::Expression: { |
| TemplateArgument Result; |
| unsigned CurSFINAEErrors = NumSFINAEErrors; |
| ExprResult Res = |
| CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), |
| Result, CTAK); |
| if (Res.isInvalid()) |
| return true; |
| // If the current template argument causes an error, give up now. |
| if (CurSFINAEErrors < NumSFINAEErrors) |
| return true; |
| |
| // If the resulting expression is new, then use it in place of the |
| // old expression in the template argument. |
| if (Res.get() != Arg.getArgument().getAsExpr()) { |
| TemplateArgument TA(Res.get()); |
| Arg = TemplateArgumentLoc(TA, Res.get()); |
| } |
| |
| Converted.push_back(Result); |
| break; |
| } |
| |
| case TemplateArgument::Declaration: |
| case TemplateArgument::Integral: |
| case TemplateArgument::NullPtr: |
| // We've already checked this template argument, so just copy |
| // it to the list of converted arguments. |
| Converted.push_back(Arg.getArgument()); |
| break; |
| |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: |
| // We were given a template template argument. It may not be ill-formed; |
| // see below. |
| if (DependentTemplateName *DTN |
| = Arg.getArgument().getAsTemplateOrTemplatePattern() |
| .getAsDependentTemplateName()) { |
| // We have a template argument such as \c T::template X, which we |
| // parsed as a template template argument. However, since we now |
| // know that we need a non-type template argument, convert this |
| // template name into an expression. |
| |
| DeclarationNameInfo NameInfo(DTN->getIdentifier(), |
| Arg.getTemplateNameLoc()); |
| |
| CXXScopeSpec SS; |
| SS.Adopt(Arg.getTemplateQualifierLoc()); |
| // FIXME: the template-template arg was a DependentTemplateName, |
| // so it was provided with a template keyword. However, its source |
| // location is not stored in the template argument structure. |
| SourceLocation TemplateKWLoc; |
| ExprResult E = DependentScopeDeclRefExpr::Create( |
| Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, |
| nullptr); |
| |
| // If we parsed the template argument as a pack expansion, create a |
| // pack expansion expression. |
| if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ |
| E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc()); |
| if (E.isInvalid()) |
| return true; |
| } |
| |
| TemplateArgument Result; |
| E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result); |
| if (E.isInvalid()) |
| return true; |
| |
| Converted.push_back(Result); |
| break; |
| } |
| |
| // We have a template argument that actually does refer to a class |
| // template, alias template, or template template parameter, and |
| // therefore cannot be a non-type template argument. |
| Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) |
| << Arg.getSourceRange(); |
| |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| |
| case TemplateArgument::Type: { |
| // We have a non-type template parameter but the template |
| // argument is a type. |
| |
| // C++ [temp.arg]p2: |
| // In a template-argument, an ambiguity between a type-id and |
| // an expression is resolved to a type-id, regardless of the |
| // form of the corresponding template-parameter. |
| // |
| // We warn specifically about this case, since it can be rather |
| // confusing for users. |
| QualType T = Arg.getArgument().getAsType(); |
| SourceRange SR = Arg.getSourceRange(); |
| if (T->isFunctionType()) |
| Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; |
| else |
| Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| |
| case TemplateArgument::Pack: |
| llvm_unreachable("Caller must expand template argument packs"); |
| } |
| |
| return false; |
| } |
| |
| |
| // Check template template parameters. |
| TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); |
| |
| TemplateParameterList *Params = TempParm->getTemplateParameters(); |
| if (TempParm->isExpandedParameterPack()) |
| Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex); |
| |
| // Substitute into the template parameter list of the template |
| // template parameter, since previously-supplied template arguments |
| // may appear within the template template parameter. |
| // |
| // FIXME: Skip this if the parameters aren't instantiation-dependent. |
| { |
| // Set up a template instantiation context. |
| LocalInstantiationScope Scope(*this); |
| InstantiatingTemplate Inst(*this, TemplateLoc, Template, |
| TempParm, Converted, |
| SourceRange(TemplateLoc, RAngleLoc)); |
| if (Inst.isInvalid()) |
| return true; |
| |
| TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); |
| Params = SubstTemplateParams(Params, CurContext, |
| MultiLevelTemplateArgumentList(TemplateArgs)); |
| if (!Params) |
| return true; |
| } |
| |
| // C++1z [temp.local]p1: (DR1004) |
| // When [the injected-class-name] is used [...] as a template-argument for |
| // a template template-parameter [...] it refers to the class template |
| // itself. |
| if (Arg.getArgument().getKind() == TemplateArgument::Type) { |
| TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate( |
| Arg.getTypeSourceInfo()->getTypeLoc()); |
| if (!ConvertedArg.getArgument().isNull()) |
| Arg = ConvertedArg; |
| } |
| |
| switch (Arg.getArgument().getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Should never see a NULL template argument here"); |
| |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: |
| if (CheckTemplateTemplateArgument(Params, Arg)) |
| return true; |
| |
| Converted.push_back(Arg.getArgument()); |
| break; |
| |
| case TemplateArgument::Expression: |
| case TemplateArgument::Type: |
| // We have a template template parameter but the template |
| // argument does not refer to a template. |
| Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) |
| << getLangOpts().CPlusPlus11; |
| return true; |
| |
| case TemplateArgument::Declaration: |
| llvm_unreachable("Declaration argument with template template parameter"); |
| case TemplateArgument::Integral: |
| llvm_unreachable("Integral argument with template template parameter"); |
| case TemplateArgument::NullPtr: |
| llvm_unreachable("Null pointer argument with template template parameter"); |
| |
| case TemplateArgument::Pack: |
| llvm_unreachable("Caller must expand template argument packs"); |
| } |
| |
| return false; |
| } |
| |
| /// Check whether the template parameter is a pack expansion, and if so, |
| /// determine the number of parameters produced by that expansion. For instance: |
| /// |
| /// \code |
| /// template<typename ...Ts> struct A { |
| /// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B; |
| /// }; |
| /// \endcode |
| /// |
| /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us |
| /// is not a pack expansion, so returns an empty Optional. |
| static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) { |
| if (NonTypeTemplateParmDecl *NTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(Param)) { |
| if (NTTP->isExpandedParameterPack()) |
| return NTTP->getNumExpansionTypes(); |
| } |
| |
| if (TemplateTemplateParmDecl *TTP |
| = dyn_cast<TemplateTemplateParmDecl>(Param)) { |
| if (TTP->isExpandedParameterPack()) |
| return TTP->getNumExpansionTemplateParameters(); |
| } |
| |
| return None; |
| } |
| |
| /// Diagnose a missing template argument. |
| template<typename TemplateParmDecl> |
| static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc, |
| TemplateDecl *TD, |
| const TemplateParmDecl *D, |
| TemplateArgumentListInfo &Args) { |
| // Dig out the most recent declaration of the template parameter; there may be |
| // declarations of the template that are more recent than TD. |
| D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl()) |
| ->getTemplateParameters() |
| ->getParam(D->getIndex())); |
| |
| // If there's a default argument that's not visible, diagnose that we're |
| // missing a module import. |
| llvm::SmallVector<Module*, 8> Modules; |
| if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) { |
| S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD), |
| D->getDefaultArgumentLoc(), Modules, |
| Sema::MissingImportKind::DefaultArgument, |
| /*Recover*/true); |
| return true; |
| } |
| |
| // FIXME: If there's a more recent default argument that *is* visible, |
| // diagnose that it was declared too late. |
| |
| TemplateParameterList *Params = TD->getTemplateParameters(); |
| |
| S.Diag(Loc, diag::err_template_arg_list_different_arity) |
| << /*not enough args*/0 |
| << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD)) |
| << TD; |
| S.Diag(TD->getLocation(), diag::note_template_decl_here) |
| << Params->getSourceRange(); |
| return true; |
| } |
| |
| /// Check that the given template argument list is well-formed |
| /// for specializing the given template. |
| bool Sema::CheckTemplateArgumentList( |
| TemplateDecl *Template, SourceLocation TemplateLoc, |
| TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs, |
| SmallVectorImpl<TemplateArgument> &Converted, |
| bool UpdateArgsWithConversions) { |
| // Make a copy of the template arguments for processing. Only make the |
| // changes at the end when successful in matching the arguments to the |
| // template. |
| TemplateArgumentListInfo NewArgs = TemplateArgs; |
| |
| // Make sure we get the template parameter list from the most |
| // recentdeclaration, since that is the only one that has is guaranteed to |
| // have all the default template argument information. |
| TemplateParameterList *Params = |
| cast<TemplateDecl>(Template->getMostRecentDecl()) |
| ->getTemplateParameters(); |
| |
| SourceLocation RAngleLoc = NewArgs.getRAngleLoc(); |
| |
| // C++ [temp.arg]p1: |
| // [...] The type and form of each template-argument specified in |
| // a template-id shall match the type and form specified for the |
| // corresponding parameter declared by the template in its |
| // template-parameter-list. |
| bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); |
| SmallVector<TemplateArgument, 2> ArgumentPack; |
| unsigned ArgIdx = 0, NumArgs = NewArgs.size(); |
| LocalInstantiationScope InstScope(*this, true); |
| for (TemplateParameterList::iterator Param = Params->begin(), |
| ParamEnd = Params->end(); |
| Param != ParamEnd; /* increment in loop */) { |
| // If we have an expanded parameter pack, make sure we don't have too |
| // many arguments. |
| if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) { |
| if (*Expansions == ArgumentPack.size()) { |
| // We're done with this parameter pack. Pack up its arguments and add |
| // them to the list. |
| Converted.push_back( |
| TemplateArgument::CreatePackCopy(Context, ArgumentPack)); |
| ArgumentPack.clear(); |
| |
| // This argument is assigned to the next parameter. |
| ++Param; |
| continue; |
| } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { |
| // Not enough arguments for this parameter pack. |
| Diag(TemplateLoc, diag::err_template_arg_list_different_arity) |
| << /*not enough args*/0 |
| << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) |
| << Template; |
| Diag(Template->getLocation(), diag::note_template_decl_here) |
| << Params->getSourceRange(); |
| return true; |
| } |
| } |
| |
| if (ArgIdx < NumArgs) { |
| // Check the template argument we were given. |
| if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, |
| TemplateLoc, RAngleLoc, |
| ArgumentPack.size(), Converted)) |
| return true; |
| |
| bool PackExpansionIntoNonPack = |
| NewArgs[ArgIdx].getArgument().isPackExpansion() && |
| (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param)); |
| if (PackExpansionIntoNonPack && isa<TypeAliasTemplateDecl>(Template)) { |
| // Core issue 1430: we have a pack expansion as an argument to an |
| // alias template, and it's not part of a parameter pack. This |
| // can't be canonicalized, so reject it now. |
| Diag(NewArgs[ArgIdx].getLocation(), |
| diag::err_alias_template_expansion_into_fixed_list) |
| << NewArgs[ArgIdx].getSourceRange(); |
| Diag((*Param)->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| |
| // We're now done with this argument. |
| ++ArgIdx; |
| |
| if ((*Param)->isTemplateParameterPack()) { |
| // The template parameter was a template parameter pack, so take the |
| // deduced argument and place it on the argument pack. Note that we |
| // stay on the same template parameter so that we can deduce more |
| // arguments. |
| ArgumentPack.push_back(Converted.pop_back_val()); |
| } else { |
| // Move to the next template parameter. |
| ++Param; |
| } |
| |
| // If we just saw a pack expansion into a non-pack, then directly convert |
| // the remaining arguments, because we don't know what parameters they'll |
| // match up with. |
| if (PackExpansionIntoNonPack) { |
| if (!ArgumentPack.empty()) { |
| // If we were part way through filling in an expanded parameter pack, |
| // fall back to just producing individual arguments. |
| Converted.insert(Converted.end(), |
| ArgumentPack.begin(), ArgumentPack.end()); |
| ArgumentPack.clear(); |
| } |
| |
| while (ArgIdx < NumArgs) { |
| Converted.push_back(NewArgs[ArgIdx].getArgument()); |
| ++ArgIdx; |
| } |
| |
| return false; |
| } |
| |
| continue; |
| } |
| |
| // If we're checking a partial template argument list, we're done. |
| if (PartialTemplateArgs) { |
| if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) |
| Converted.push_back( |
| TemplateArgument::CreatePackCopy(Context, ArgumentPack)); |
| |
| return false; |
| } |
| |
| // If we have a template parameter pack with no more corresponding |
| // arguments, just break out now and we'll fill in the argument pack below. |
| if ((*Param)->isTemplateParameterPack()) { |
| assert(!getExpandedPackSize(*Param) && |
| "Should have dealt with this already"); |
| |
| // A non-expanded parameter pack before the end of the parameter list |
| // only occurs for an ill-formed template parameter list, unless we've |
| // got a partial argument list for a function template, so just bail out. |
| if (Param + 1 != ParamEnd) |
| return true; |
| |
| Converted.push_back( |
| TemplateArgument::CreatePackCopy(Context, ArgumentPack)); |
| ArgumentPack.clear(); |
| |
| ++Param; |
| continue; |
| } |
| |
| // Check whether we have a default argument. |
| TemplateArgumentLoc Arg; |
| |
| // Retrieve the default template argument from the template |
| // parameter. For each kind of template parameter, we substitute the |
| // template arguments provided thus far and any "outer" template arguments |
| // (when the template parameter was part of a nested template) into |
| // the default argument. |
| if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { |
| if (!hasVisibleDefaultArgument(TTP)) |
| return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP, |
| NewArgs); |
| |
| TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, |
| Template, |
| TemplateLoc, |
| RAngleLoc, |
| TTP, |
| Converted); |
| if (!ArgType) |
| return true; |
| |
| Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), |
| ArgType); |
| } else if (NonTypeTemplateParmDecl *NTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { |
| if (!hasVisibleDefaultArgument(NTTP)) |
| return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP, |
| NewArgs); |
| |
| ExprResult E = SubstDefaultTemplateArgument(*this, Template, |
| TemplateLoc, |
| RAngleLoc, |
| NTTP, |
| Converted); |
| if (E.isInvalid()) |
| return true; |
| |
| Expr *Ex = E.getAs<Expr>(); |
| Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); |
| } else { |
| TemplateTemplateParmDecl *TempParm |
| = cast<TemplateTemplateParmDecl>(*Param); |
| |
| if (!hasVisibleDefaultArgument(TempParm)) |
| return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm, |
| NewArgs); |
| |
| NestedNameSpecifierLoc QualifierLoc; |
| TemplateName Name = SubstDefaultTemplateArgument(*this, Template, |
| TemplateLoc, |
| RAngleLoc, |
| TempParm, |
| Converted, |
| QualifierLoc); |
| if (Name.isNull()) |
| return true; |
| |
| Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, |
| TempParm->getDefaultArgument().getTemplateNameLoc()); |
| } |
| |
| // Introduce an instantiation record that describes where we are using |
| // the default template argument. We're not actually instantiating a |
| // template here, we just create this object to put a note into the |
| // context stack. |
| InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted, |
| SourceRange(TemplateLoc, RAngleLoc)); |
| if (Inst.isInvalid()) |
| return true; |
| |
| // Check the default template argument. |
| if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, |
| RAngleLoc, 0, Converted)) |
| return true; |
| |
| // Core issue 150 (assumed resolution): if this is a template template |
| // parameter, keep track of the default template arguments from the |
| // template definition. |
| if (isTemplateTemplateParameter) |
| NewArgs.addArgument(Arg); |
| |
| // Move to the next template parameter and argument. |
| ++Param; |
| ++ArgIdx; |
| } |
| |
| // If we're performing a partial argument substitution, allow any trailing |
| // pack expansions; they might be empty. This can happen even if |
| // PartialTemplateArgs is false (the list of arguments is complete but |
| // still dependent). |
| if (ArgIdx < NumArgs && CurrentInstantiationScope && |
| CurrentInstantiationScope->getPartiallySubstitutedPack()) { |
| while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion()) |
| Converted.push_back(NewArgs[ArgIdx++].getArgument()); |
| } |
| |
| // If we have any leftover arguments, then there were too many arguments. |
| // Complain and fail. |
| if (ArgIdx < NumArgs) { |
| Diag(TemplateLoc, diag::err_template_arg_list_different_arity) |
| << /*too many args*/1 |
| << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) |
| << Template |
| << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc()); |
| Diag(Template->getLocation(), diag::note_template_decl_here) |
| << Params->getSourceRange(); |
| return true; |
| } |
| |
| // No problems found with the new argument list, propagate changes back |
| // to caller. |
| if (UpdateArgsWithConversions) |
| TemplateArgs = std::move(NewArgs); |
| |
| return false; |
| } |
| |
| namespace { |
| class UnnamedLocalNoLinkageFinder |
| : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> |
| { |
| Sema &S; |
| SourceRange SR; |
| |
| typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; |
| |
| public: |
| UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } |
| |
| bool Visit(QualType T) { |
| return T.isNull() ? false : inherited::Visit(T.getTypePtr()); |
| } |
| |
| #define TYPE(Class, Parent) \ |
| bool Visit##Class##Type(const Class##Type *); |
| #define ABSTRACT_TYPE(Class, Parent) \ |
| bool Visit##Class##Type(const Class##Type *) { return false; } |
| #define NON_CANONICAL_TYPE(Class, Parent) \ |
| bool Visit##Class##Type(const Class##Type *) { return false; } |
| #include "clang/AST/TypeNodes.def" |
| |
| bool VisitTagDecl(const TagDecl *Tag); |
| bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); |
| }; |
| } // end anonymous namespace |
| |
| bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { |
| return false; |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { |
| return Visit(T->getElementType()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { |
| return Visit(T->getPointeeType()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( |
| const BlockPointerType* T) { |
| return Visit(T->getPointeeType()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( |
| const LValueReferenceType* T) { |
| return Visit(T->getPointeeType()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( |
| const RValueReferenceType* T) { |
| return Visit(T->getPointeeType()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( |
| const MemberPointerType* T) { |
| return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( |
| const ConstantArrayType* T) { |
| return Visit(T->getElementType()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( |
| const IncompleteArrayType* T) { |
| return Visit(T->getElementType()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( |
| const VariableArrayType* T) { |
| return Visit(T->getElementType()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( |
| const DependentSizedArrayType* T) { |
| return Visit(T->getElementType()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( |
| const DependentSizedExtVectorType* T) { |
| return Visit(T->getElementType()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType( |
| const DependentAddressSpaceType *T) { |
| return Visit(T->getPointeeType()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { |
| return Visit(T->getElementType()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType( |
| const DependentVectorType *T) { |
| return Visit(T->getElementType()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { |
| return Visit(T->getElementType()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( |
| const FunctionProtoType* T) { |
| for (const auto &A : T->param_types()) { |
| if (Visit(A)) |
| return true; |
| } |
| |
| return Visit(T->getReturnType()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( |
| const FunctionNoProtoType* T) { |
| return Visit(T->getReturnType()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( |
| const UnresolvedUsingType*) { |
| return false; |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { |
| return false; |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { |
| return Visit(T->getUnderlyingType()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { |
| return false; |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( |
| const UnaryTransformType*) { |
| return false; |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { |
| return Visit(T->getDeducedType()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType( |
| const DeducedTemplateSpecializationType *T) { |
| return Visit(T->getDeducedType()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { |
| return VisitTagDecl(T->getDecl()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { |
| return VisitTagDecl(T->getDecl()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( |
| const TemplateTypeParmType*) { |
| return false; |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( |
| const SubstTemplateTypeParmPackType *) { |
| return false; |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( |
| const TemplateSpecializationType*) { |
| return false; |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( |
| const InjectedClassNameType* T) { |
| return VisitTagDecl(T->getDecl()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( |
| const DependentNameType* T) { |
| return VisitNestedNameSpecifier(T->getQualifier()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( |
| const DependentTemplateSpecializationType* T) { |
| return VisitNestedNameSpecifier(T->getQualifier()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( |
| const PackExpansionType* T) { |
| return Visit(T->getPattern()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { |
| return false; |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( |
| const ObjCInterfaceType *) { |
| return false; |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( |
| const ObjCObjectPointerType *) { |
| return false; |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { |
| return Visit(T->getValueType()); |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) { |
| return false; |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { |
| if (Tag->getDeclContext()->isFunctionOrMethod()) { |
| S.Diag(SR.getBegin(), |
| S.getLangOpts().CPlusPlus11 ? |
| diag::warn_cxx98_compat_template_arg_local_type : |
| diag::ext_template_arg_local_type) |
| << S.Context.getTypeDeclType(Tag) << SR; |
| return true; |
| } |
| |
| if (!Tag->hasNameForLinkage()) { |
| S.Diag(SR.getBegin(), |
| S.getLangOpts().CPlusPlus11 ? |
| diag::warn_cxx98_compat_template_arg_unnamed_type : |
| diag::ext_template_arg_unnamed_type) << SR; |
| S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( |
| NestedNameSpecifier *NNS) { |
| if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) |
| return true; |
| |
| switch (NNS->getKind()) { |
| case NestedNameSpecifier::Identifier: |
| case NestedNameSpecifier::Namespace: |
| case NestedNameSpecifier::NamespaceAlias: |
| case NestedNameSpecifier::Global: |
| case NestedNameSpecifier::Super: |
| return false; |
| |
| case NestedNameSpecifier::TypeSpec: |
| case NestedNameSpecifier::TypeSpecWithTemplate: |
| return Visit(QualType(NNS->getAsType(), 0)); |
| } |
| llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); |
| } |
| |
| /// Check a template argument against its corresponding |
| /// template type parameter. |
| /// |
| /// This routine implements the semantics of C++ [temp.arg.type]. It |
| /// returns true if an error occurred, and false otherwise. |
| bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, |
| TypeSourceInfo *ArgInfo) { |
| assert(ArgInfo && "invalid TypeSourceInfo"); |
| QualType Arg = ArgInfo->getType(); |
| SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); |
| |
| if (Arg->isVariablyModifiedType()) { |
| return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; |
| } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { |
| return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; |
| } |
| |
| // C++03 [temp.arg.type]p2: |
| // A local type, a type with no linkage, an unnamed type or a type |
| // compounded from any of these types shall not be used as a |
| // template-argument for a template type-parameter. |
| // |
| // C++11 allows these, and even in C++03 we allow them as an extension with |
| // a warning. |
| if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) { |
| UnnamedLocalNoLinkageFinder Finder(*this, SR); |
| (void)Finder.Visit(Context.getCanonicalType(Arg)); |
| } |
| |
| return false; |
| } |
| |
| enum NullPointerValueKind { |
| NPV_NotNullPointer, |
| NPV_NullPointer, |
| NPV_Error |
| }; |
| |
| /// Determine whether the given template argument is a null pointer |
| /// value of the appropriate type. |
| static NullPointerValueKind |
| isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, |
| QualType ParamType, Expr *Arg, |
| Decl *Entity = nullptr) { |
| if (Arg->isValueDependent() || Arg->isTypeDependent()) |
| return NPV_NotNullPointer; |
| |
| // dllimport'd entities aren't constant but are available inside of template |
| // arguments. |
| if (Entity && Entity->hasAttr<DLLImportAttr>()) |
| return NPV_NotNullPointer; |
| |
| if (!S.isCompleteType(Arg->getExprLoc(), ParamType)) |
| llvm_unreachable( |
| "Incomplete parameter type in isNullPointerValueTemplateArgument!"); |
| |
| if (!S.getLangOpts().CPlusPlus11) |
| return NPV_NotNullPointer; |
| |
| // Determine whether we have a constant expression. |
| ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); |
| if (ArgRV.isInvalid()) |
| return NPV_Error; |
| Arg = ArgRV.get(); |
| |
| Expr::EvalResult EvalResult; |
| SmallVector<PartialDiagnosticAt, 8> Notes; |
| EvalResult.Diag = &Notes; |
| if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || |
| EvalResult.HasSideEffects) { |
| SourceLocation DiagLoc = Arg->getExprLoc(); |
| |
| // If our only note is the usual "invalid subexpression" note, just point |
| // the caret at its location rather than producing an essentially |
| // redundant note. |
| if (Notes.size() == 1 && Notes[0].second.getDiagID() == |
| diag::note_invalid_subexpr_in_const_expr) { |
| DiagLoc = Notes[0].first; |
| Notes.clear(); |
| } |
| |
| S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) |
| << Arg->getType() << Arg->getSourceRange(); |
| for (unsigned I = 0, N = Notes.size(); I != N; ++I) |
| S.Diag(Notes[I].first, Notes[I].second); |
| |
| S.Diag(Param->getLocation(), diag::note_template_param_here); |
| return NPV_Error; |
| } |
| |
| // C++11 [temp.arg.nontype]p1: |
| // - an address constant expression of type std::nullptr_t |
| if (Arg->getType()->isNullPtrType()) |
| return NPV_NullPointer; |
| |
| // - a constant expression that evaluates to a null pointer value (4.10); or |
| // - a constant expression that evaluates to a null member pointer value |
| // (4.11); or |
| if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) || |
| (EvalResult.Val.isMemberPointer() && |
| !EvalResult.Val.getMemberPointerDecl())) { |
| // If our expression has an appropriate type, we've succeeded. |
| bool ObjCLifetimeConversion; |
| if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || |
| S.IsQualificationConversion(Arg->getType(), ParamType, false, |
| ObjCLifetimeConversion)) |
| return NPV_NullPointer; |
| |
| // The types didn't match, but we know we got a null pointer; complain, |
| // then recover as if the types were correct. |
| S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) |
| << Arg->getType() << ParamType << Arg->getSourceRange(); |
| S.Diag(Param->getLocation(), diag::note_template_param_here); |
| return NPV_NullPointer; |
| } |
| |
| // If we don't have a null pointer value, but we do have a NULL pointer |
| // constant, suggest a cast to the appropriate type. |
| if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { |
| std::string Code = "static_cast<" + ParamType.getAsString() + ">("; |
| S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) |
| << ParamType << FixItHint::CreateInsertion(Arg->getLocStart(), Code) |
| << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getLocEnd()), |
| ")"); |
| S.Diag(Param->getLocation(), diag::note_template_param_here); |
| return NPV_NullPointer; |
| } |
| |
| // FIXME: If we ever want to support general, address-constant expressions |
| // as non-type template arguments, we should return the ExprResult here to |
| // be interpreted by the caller. |
| return NPV_NotNullPointer; |
| } |
| |
| /// Checks whether the given template argument is compatible with its |
| /// template parameter. |
| static bool CheckTemplateArgumentIsCompatibleWithParameter( |
| Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, |
| Expr *Arg, QualType ArgType) { |
| bool ObjCLifetimeConversion; |
| if (ParamType->isPointerType() && |
| !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && |
| S.IsQualificationConversion(ArgType, ParamType, false, |
| ObjCLifetimeConversion)) { |
| // For pointer-to-object types, qualification conversions are |
| // permitted. |
| } else { |
| if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { |
| if (!ParamRef->getPointeeType()->isFunctionType()) { |
| // C++ [temp.arg.nontype]p5b3: |
| // For a non-type template-parameter of type reference to |
| // object, no conversions apply. The type referred to by the |
| // reference may be more cv-qualified than the (otherwise |
| // identical) type of the template- argument. The |
| // template-parameter is bound directly to the |
| // template-argument, which shall be an lvalue. |
| |
| // FIXME: Other qualifiers? |
| unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); |
| unsigned ArgQuals = ArgType.getCVRQualifiers(); |
| |
| if ((ParamQuals | ArgQuals) != ParamQuals) { |
| S.Diag(Arg->getLocStart(), |
| diag::err_template_arg_ref_bind_ignores_quals) |
| << ParamType << Arg->getType() << Arg->getSourceRange(); |
| S.Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| } |
| } |
| |
| // At this point, the template argument refers to an object or |
| // function with external linkage. We now need to check whether the |
| // argument and parameter types are compatible. |
| if (!S.Context.hasSameUnqualifiedType(ArgType, |
| ParamType.getNonReferenceType())) { |
| // We can't perform this conversion or binding. |
| if (ParamType->isReferenceType()) |
| S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) |
| << ParamType << ArgIn->getType() << Arg->getSourceRange(); |
| else |
| S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) |
| << ArgIn->getType() << ParamType << Arg->getSourceRange(); |
| S.Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Checks whether the given template argument is the address |
| /// of an object or function according to C++ [temp.arg.nontype]p1. |
| static bool |
| CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, |
| NonTypeTemplateParmDecl *Param, |
| QualType ParamType, |
| Expr *ArgIn, |
| TemplateArgument &Converted) { |
| bool Invalid = false; |
| Expr *Arg = ArgIn; |
| QualType ArgType = Arg->getType(); |
| |
| bool AddressTaken = false; |
| SourceLocation AddrOpLoc; |
| if (S.getLangOpts().MicrosoftExt) { |
| // Microsoft Visual C++ strips all casts, allows an arbitrary number of |
| // dereference and address-of operators. |
| Arg = Arg->IgnoreParenCasts(); |
| |
| bool ExtWarnMSTemplateArg = false; |
| UnaryOperatorKind FirstOpKind; |
| SourceLocation FirstOpLoc; |
| while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { |
| UnaryOperatorKind UnOpKind = UnOp->getOpcode(); |
| if (UnOpKind == UO_Deref) |
| ExtWarnMSTemplateArg = true; |
| if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) { |
| Arg = UnOp->getSubExpr()->IgnoreParenCasts(); |
| if (!AddrOpLoc.isValid()) { |
| FirstOpKind = UnOpKind; |
| FirstOpLoc = UnOp->getOperatorLoc(); |
| } |
| } else |
| break; |
| } |
| if (FirstOpLoc.isValid()) { |
| if (ExtWarnMSTemplateArg) |
| S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument) |
| << ArgIn->getSourceRange(); |
| |
| if (FirstOpKind == UO_AddrOf) |
| AddressTaken = true; |
| else if (Arg->getType()->isPointerType()) { |
| // We cannot let pointers get dereferenced here, that is obviously not a |
| // constant expression. |
| assert(FirstOpKind == UO_Deref); |
| S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) |
| << Arg->getSourceRange(); |
| } |
| } |
| } else { |
| // See through any implicit casts we added to fix the type. |
| Arg = Arg->IgnoreImpCasts(); |
| |
| // C++ [temp.arg.nontype]p1: |
| // |
| // A template-argument for a non-type, non-template |
| // template-parameter shall be one of: [...] |
| // |
| // -- the address of an object or function with external |
| // linkage, including function templates and function |
| // template-ids but excluding non-static class members, |
| // expressed as & id-expression where the & is optional if |
| // the name refers to a function or array, or if the |
| // corresponding template-parameter is a reference; or |
| |
| // In C++98/03 mode, give an extension warning on any extra parentheses. |
| // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 |
| bool ExtraParens = false; |
| while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { |
| if (!Invalid && !ExtraParens) { |
| S.Diag(Arg->getLocStart(), |
| S.getLangOpts().CPlusPlus11 |
| ? diag::warn_cxx98_compat_template_arg_extra_parens |
| : diag::ext_template_arg_extra_parens) |
| << Arg->getSourceRange(); |
| ExtraParens = true; |
| } |
| |
| Arg = Parens->getSubExpr(); |
| } |
| |
| while (SubstNonTypeTemplateParmExpr *subst = |
| dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) |
| Arg = subst->getReplacement()->IgnoreImpCasts(); |
| |
| if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { |
| if (UnOp->getOpcode() == UO_AddrOf) { |
| Arg = UnOp->getSubExpr(); |
| AddressTaken = true; |
| AddrOpLoc = UnOp->getOperatorLoc(); |
| } |
| } |
| |
| while (SubstNonTypeTemplateParmExpr *subst = |
| dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) |
| Arg = subst->getReplacement()->IgnoreImpCasts(); |
| } |
| |
| DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg); |
| ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; |
| |
| // If our parameter has pointer type, check for a null template value. |
| if (ParamType->isPointerType() || ParamType->isNullPtrType()) { |
| switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn, |
| Entity)) { |
| case NPV_NullPointer: |
| S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); |
| Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), |
| /*isNullPtr=*/true); |
| return false; |
| |
| case NPV_Error: |
| return true; |
| |
| case NPV_NotNullPointer: |
| break; |
| } |
| } |
| |
| // Stop checking the precise nature of the argument if it is value dependent, |
| // it should be checked when instantiated. |
| if (Arg->isValueDependent()) { |
| Converted = TemplateArgument(ArgIn); |
| return false; |
| } |
| |
| if (isa<CXXUuidofExpr>(Arg)) { |
| if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, |
| ArgIn, Arg, ArgType)) |
| return true; |
| |
| Converted = TemplateArgument(ArgIn); |
| return false; |
| } |
| |
| if (!DRE) { |
| S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) |
| << Arg->getSourceRange(); |
| S.Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| |
| // Cannot refer to non-static data members |
| if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) { |
| S.Diag(Arg->getLocStart(), diag::err_template_arg_field) |
| << Entity << Arg->getSourceRange(); |
| S.Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| |
| // Cannot refer to non-static member functions |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { |
| if (!Method->isStatic()) { |
| S.Diag(Arg->getLocStart(), diag::err_template_arg_method) |
| << Method << Arg->getSourceRange(); |
| S.Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| } |
| |
| FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); |
| VarDecl *Var = dyn_cast<VarDecl>(Entity); |
| |
| // A non-type template argument must refer to an object or function. |
| if (!Func && !Var) { |
| // We found something, but we don't know specifically what it is. |
| S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func) |
| << Arg->getSourceRange(); |
| S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); |
| return true; |
| } |
| |
| // Address / reference template args must have external linkage in C++98. |
| if (Entity->getFormalLinkage() == InternalLinkage) { |
| S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ? |
| diag::warn_cxx98_compat_template_arg_object_internal : |
| diag::ext_template_arg_object_internal) |
| << !Func << Entity << Arg->getSourceRange(); |
| S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) |
| << !Func; |
| } else if (!Entity->hasLinkage()) { |
| S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage) |
| << !Func << Entity << Arg->getSourceRange(); |
| S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) |
| << !Func; |
| return true; |
| } |
| |
| if (Func) { |
| // If the template parameter has pointer type, the function decays. |
| if (ParamType->isPointerType() && !AddressTaken) |
| ArgType = S.Context.getPointerType(Func->getType()); |
| else if (AddressTaken && ParamType->isReferenceType()) { |
| // If we originally had an address-of operator, but the |
| // parameter has reference type, complain and (if things look |
| // like they will work) drop the address-of operator. |
| if (!S.Context.hasSameUnqualifiedType(Func->getType(), |
| ParamType.getNonReferenceType())) { |
| S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) |
| << ParamType; |
| S.Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| |
| S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) |
| << ParamType |
| << FixItHint::CreateRemoval(AddrOpLoc); |
| S.Diag(Param->getLocation(), diag::note_template_param_here); |
| |
| ArgType = Func->getType(); |
| } |
| } else { |
| // A value of reference type is not an object. |
| if (Var->getType()->isReferenceType()) { |
| S.Diag(Arg->getLocStart(), |
| diag::err_template_arg_reference_var) |
| << Var->getType() << Arg->getSourceRange(); |
| S.Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| |
| // A template argument must have static storage duration. |
| if (Var->getTLSKind()) { |
| S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local) |
| << Arg->getSourceRange(); |
| S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); |
| return true; |
| } |
| |
| // If the template parameter has pointer type, we must have taken |
| // the address of this object. |
| if (ParamType->isReferenceType()) { |
| if (AddressTaken) { |
| // If we originally had an address-of operator, but the |
| // parameter has reference type, complain and (if things look |
| // like they will work) drop the address-of operator. |
| if (!S.Context.hasSameUnqualifiedType(Var->getType(), |
| ParamType.getNonReferenceType())) { |
| S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) |
| << ParamType; |
| S.Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| |
| S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) |
| << ParamType |
| << FixItHint::CreateRemoval(AddrOpLoc); |
| S.Diag(Param->getLocation(), diag::note_template_param_here); |
| |
| ArgType = Var->getType(); |
| } |
| } else if (!AddressTaken && ParamType->isPointerType()) { |
| if (Var->getType()->isArrayType()) { |
| // Array-to-pointer decay. |
| ArgType = S.Context.getArrayDecayedType(Var->getType()); |
| } else { |
| // If the template parameter has pointer type but the address of |
| // this object was not taken, complain and (possibly) recover by |
| // taking the address of the entity. |
| ArgType = S.Context.getPointerType(Var->getType()); |
| if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { |
| S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) |
| << ParamType; |
| S.Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| |
| S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) |
| << ParamType |
| << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); |
| |
| S.Diag(Param->getLocation(), diag::note_template_param_here); |
| } |
| } |
| } |
| |
| if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn, |
| Arg, ArgType)) |
| return true; |
| |
| // Create the template argument. |
| Converted = |
| TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType); |
| S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false); |
| return false; |
| } |
| |
| /// Checks whether the given template argument is a pointer to |
| /// member constant according to C++ [temp.arg.nontype]p1. |
| static bool CheckTemplateArgumentPointerToMember(Sema &S, |
| NonTypeTemplateParmDecl *Param, |
| QualType ParamType, |
| Expr *&ResultArg, |
| TemplateArgument &Converted) { |
| bool Invalid = false; |
| |
| Expr *Arg = ResultArg; |
| bool ObjCLifetimeConversion; |
| |
| // C++ [temp.arg.nontype]p1: |
| // |
| // A template-argument for a non-type, non-template |
| // template-parameter shall be one of: [...] |
| // |
| // -- a pointer to member expressed as described in 5.3.1. |
| DeclRefExpr *DRE = nullptr; |
| |
| // In C++98/03 mode, give an extension warning on any extra parentheses. |
| // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 |
| bool ExtraParens = false; |
| while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { |
| if (!Invalid && !ExtraParens) { |
| S.Diag(Arg->getLocStart(), |
| S.getLangOpts().CPlusPlus11 ? |
| diag::warn_cxx98_compat_template_arg_extra_parens : |
| diag::ext_template_arg_extra_parens) |
| << Arg->getSourceRange(); |
| ExtraParens = true; |
| } |
| |
| Arg = Parens->getSubExpr(); |
| } |
| |
| while (SubstNonTypeTemplateParmExpr *subst = |
| dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) |
| Arg = subst->getReplacement()->IgnoreImpCasts(); |
| |
| // A pointer-to-member constant written &Class::member. |
| if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { |
| if (UnOp->getOpcode() == UO_AddrOf) { |
| DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); |
| if (DRE && !DRE->getQualifier()) |
| DRE = nullptr; |
| } |
| } |
| // A constant of pointer-to-member type. |
| else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { |
| ValueDecl *VD = DRE->getDecl(); |
| if (VD->getType()->isMemberPointerType()) { |
| if (isa<NonTypeTemplateParmDecl>(VD)) { |
| if (Arg->isTypeDependent() || Arg->isValueDependent()) { |
| Converted = TemplateArgument(Arg); |
| } else { |
| VD = cast<ValueDecl>(VD->getCanonicalDecl()); |
| Converted = TemplateArgument(VD, ParamType); |
| } |
| return Invalid; |
| } |
| } |
| |
| DRE = nullptr; |
| } |
| |
| ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; |
| |
| // Check for a null pointer value. |
| switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg, |
| Entity)) { |
| case NPV_Error: |
| return true; |
| case NPV_NullPointer: |
| S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); |
| Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), |
| /*isNullPtr*/true); |
| return false; |
| case NPV_NotNullPointer: |
| break; |
| } |
| |
| if (S.IsQualificationConversion(ResultArg->getType(), |
| ParamType.getNonReferenceType(), false, |
| ObjCLifetimeConversion)) { |
| ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp, |
| ResultArg->getValueKind()) |
| .get(); |
| } else if (!S.Context.hasSameUnqualifiedType( |
| ResultArg->getType(), ParamType.getNonReferenceType())) { |
| // We can't perform this conversion. |
| S.Diag(ResultArg->getLocStart(), diag::err_template_arg_not_convertible) |
| << ResultArg->getType() << ParamType << ResultArg->getSourceRange(); |
| S.Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| |
| if (!DRE) |
| return S.Diag(Arg->getLocStart(), |
| diag::err_template_arg_not_pointer_to_member_form) |
| << Arg->getSourceRange(); |
| |
| if (isa<FieldDecl>(DRE->getDecl()) || |
| isa<IndirectFieldDecl>(DRE->getDecl()) || |
| isa<CXXMethodDecl>(DRE->getDecl())) { |
| assert((isa<FieldDecl>(DRE->getDecl()) || |
| isa<IndirectFieldDecl>(DRE->getDecl()) || |
| !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && |
| "Only non-static member pointers can make it here"); |
| |
| // Okay: this is the address of a non-static member, and therefore |
| // a member pointer constant. |
| if (Arg->isTypeDependent() || Arg->isValueDependent()) { |
| Converted = TemplateArgument(Arg); |
| } else { |
| ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); |
| Converted = TemplateArgument(D, ParamType); |
| } |
| return Invalid; |
| } |
| |
| // We found something else, but we don't know specifically what it is. |
| S.Diag(Arg->getLocStart(), |
| diag::err_template_arg_not_pointer_to_member_form) |
| << Arg->getSourceRange(); |
| S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); |
| return true; |
| } |
| |
| /// Check a template argument against its corresponding |
| /// non-type template parameter. |
| /// |
| /// This routine implements the semantics of C++ [temp.arg.nontype]. |
| /// If an error occurred, it returns ExprError(); otherwise, it |
| /// returns the converted template argument. \p ParamType is the |
| /// type of the non-type template parameter after it has been instantiated. |
| ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, |
| QualType ParamType, Expr *Arg, |
| TemplateArgument &Converted, |
| CheckTemplateArgumentKind CTAK) { |
| SourceLocation StartLoc = Arg->getLocStart(); |
| |
| // If the parameter type somehow involves auto, deduce the type now. |
| if (getLangOpts().CPlusPlus17 && ParamType->isUndeducedType()) { |
| // During template argument deduction, we allow 'decltype(auto)' to |
| // match an arbitrary dependent argument. |
| // FIXME: The language rules don't say what happens in this case. |
| // FIXME: We get an opaque dependent type out of decltype(auto) if the |
| // expression is merely instantiation-dependent; is this enough? |
| if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) { |
| auto *AT = dyn_cast<AutoType>(ParamType); |
| if (AT && AT->isDecltypeAuto()) { |
| Converted = TemplateArgument(Arg); |
| return Arg; |
| } |
| } |
| |
| // When checking a deduced template argument, deduce from its type even if |
| // the type is dependent, in order to check the types of non-type template |
| // arguments line up properly in partial ordering. |
| Optional<unsigned> Depth; |
| if (CTAK != CTAK_Specified) |
| Depth = Param->getDepth() + 1; |
| if (DeduceAutoType( |
| Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()), |
| Arg, ParamType, Depth) == DAR_Failed) { |
| Diag(Arg->getExprLoc(), |
| diag::err_non_type_template_parm_type_deduction_failure) |
| << Param->getDeclName() << Param->getType() << Arg->getType() |
| << Arg->getSourceRange(); |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| return ExprError(); |
| } |
| // CheckNonTypeTemplateParameterType will produce a diagnostic if there's |
| // an error. The error message normally references the parameter |
| // declaration, but here we'll pass the argument location because that's |
| // where the parameter type is deduced. |
| ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc()); |
| if (ParamType.isNull()) { |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| return ExprError(); |
| } |
| } |
| |
| // We should have already dropped all cv-qualifiers by now. |
| assert(!ParamType.hasQualifiers() && |
| "non-type template parameter type cannot be qualified"); |
| |
| if (CTAK == CTAK_Deduced && |
| !Context.hasSameType(ParamType.getNonLValueExprType(Context), |
| Arg->getType())) { |
| // FIXME: If either type is dependent, we skip the check. This isn't |
| // correct, since during deduction we're supposed to have replaced each |
| // template parameter with some unique (non-dependent) placeholder. |
| // FIXME: If the argument type contains 'auto', we carry on and fail the |
| // type check in order to force specific types to be more specialized than |
| // 'auto'. It's not clear how partial ordering with 'auto' is supposed to |
| // work. |
| if ((ParamType->isDependentType() || Arg->isTypeDependent()) && |
| !Arg->getType()->getContainedAutoType()) { |
| Converted = TemplateArgument(Arg); |
| return Arg; |
| } |
| // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770, |
| // we should actually be checking the type of the template argument in P, |
| // not the type of the template argument deduced from A, against the |
| // template parameter type. |
| Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) |
| << Arg->getType() |
| << ParamType.getUnqualifiedType(); |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| return ExprError(); |
| } |
| |
| // If either the parameter has a dependent type or the argument is |
| // type-dependent, there's nothing we can check now. |
| if (ParamType->isDependentType() || Arg->isTypeDependent()) { |
| // FIXME: Produce a cloned, canonical expression? |
| Converted = TemplateArgument(Arg); |
| return Arg; |
| } |
| |
| // The initialization of the parameter from the argument is |
| // a constant-evaluated context. |
| EnterExpressionEvaluationContext ConstantEvaluated( |
| *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| |
| if (getLangOpts().CPlusPlus17) { |
| // C++17 [temp.arg.nontype]p1: |
| // A template-argument for a non-type template parameter shall be |
| // a converted constant expression of the type of the template-parameter. |
| APValue Value; |
| ExprResult ArgResult = CheckConvertedConstantExpression( |
| Arg, ParamType, Value, CCEK_TemplateArg); |
| if (ArgResult.isInvalid()) |
| return ExprError(); |
| |
| // For a value-dependent argument, CheckConvertedConstantExpression is |
| // permitted (and expected) to be unable to determine a value. |
| if (ArgResult.get()->isValueDependent()) { |
| Converted = TemplateArgument(ArgResult.get()); |
| return ArgResult; |
| } |
| |
| QualType CanonParamType = Context.getCanonicalType(ParamType); |
| |
| // Convert the APValue to a TemplateArgument. |
| switch (Value.getKind()) { |
| case APValue::Uninitialized: |
| assert(ParamType->isNullPtrType()); |
| Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true); |
| break; |
| case APValue::Int: |
| assert(ParamType->isIntegralOrEnumerationType()); |
| Converted = TemplateArgument(Context, Value.getInt(), CanonParamType); |
| break; |
| case APValue::MemberPointer: { |
| assert(ParamType->isMemberPointerType()); |
| |
| // FIXME: We need TemplateArgument representation and mangling for these. |
| if (!Value.getMemberPointerPath().empty()) { |
| Diag(Arg->getLocStart(), |
| diag::err_template_arg_member_ptr_base_derived_not_supported) |
| << Value.getMemberPointerDecl() << ParamType |
| << Arg->getSourceRange(); |
| return ExprError(); |
| } |
| |
| auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl()); |
| Converted = VD ? TemplateArgument(VD, CanonParamType) |
| : TemplateArgument(CanonParamType, /*isNullPtr*/true); |
| break; |
| } |
| case APValue::LValue: { |
| // For a non-type template-parameter of pointer or reference type, |
| // the value of the constant expression shall not refer to |
| assert(ParamType->isPointerType() || ParamType->isReferenceType() || |
| ParamType->isNullPtrType()); |
| // -- a temporary object |
| // -- a string literal |
| // -- the result of a typeid expression, or |
| // -- a predefined __func__ variable |
| if (auto *E = Value.getLValueBase().dyn_cast<const Expr*>()) { |
| if (isa<CXXUuidofExpr>(E)) { |
| Converted = TemplateArgument(ArgResult.get()); |
| break; |
| } |
| Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) |
| << Arg->getSourceRange(); |
| return ExprError(); |
| } |
| auto *VD = const_cast<ValueDecl *>( |
| Value.getLValueBase().dyn_cast<const ValueDecl *>()); |
| // -- a subobject |
| if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 && |
| VD && VD->getType()->isArrayType() && |
| Value.getLValuePath()[0].ArrayIndex == 0 && |
| !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) { |
| // Per defect report (no number yet): |
| // ... other than a pointer to the first element of a complete array |
| // object. |
| } else if (!Value.hasLValuePath() || Value.getLValuePath().size() || |
| Value.isLValueOnePastTheEnd()) { |
| Diag(StartLoc, diag::err_non_type_template_arg_subobject) |
| << Value.getAsString(Context, ParamType); |
| return ExprError(); |
| } |
| assert((VD || !ParamType->isReferenceType()) && |
| "null reference should not be a constant expression"); |
| assert((!VD || !ParamType->isNullPtrType()) && |
| "non-null value of type nullptr_t?"); |
| Converted = VD ? TemplateArgument(VD, CanonParamType) |
| : TemplateArgument(CanonParamType, /*isNullPtr*/true); |
| break; |
| } |
| case APValue::AddrLabelDiff: |
| return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff); |
| case APValue::Float: |
| case APValue::ComplexInt: |
| case APValue::ComplexFloat: |
| case APValue::Vector: |
| case APValue::Array: |
| case APValue::Struct: |
| case APValue::Union: |
| llvm_unreachable("invalid kind for template argument"); |
| } |
| |
| return ArgResult.get(); |
| } |
| |
| // C++ [temp.arg.nontype]p5: |
| // The following conversions are performed on each expression used |
| // as a non-type template-argument. If a non-type |
| // template-argument cannot be converted to the type of the |
| // corresponding template-parameter then the program is |
| // ill-formed. |
| if (ParamType->isIntegralOrEnumerationType()) { |
| // C++11: |
| // -- for a non-type template-parameter of integral or |
| // enumeration type, conversions permitted in a converted |
| // constant expression are applied. |
| // |
| // C++98: |
| // -- for a non-type template-parameter of integral or |
| // enumeration type, integral promotions (4.5) and integral |
| // conversions (4.7) are applied. |
| |
| if (getLangOpts().CPlusPlus11) { |
| // C++ [temp.arg.nontype]p1: |
| // A template-argument for a non-type, non-template template-parameter |
| // shall be one of: |
| // |
| // -- for a non-type template-parameter of integral or enumeration |
| // type, a converted constant expression of the type of the |
| // template-parameter; or |
| llvm::APSInt Value; |
| ExprResult ArgResult = |
| CheckConvertedConstantExpression(Arg, ParamType, Value, |
| CCEK_TemplateArg); |
| if (ArgResult.isInvalid()) |
| return ExprError(); |
| |
| // We can't check arbitrary value-dependent arguments. |
| if (ArgResult.get()->isValueDependent()) { |
| Converted = TemplateArgument(ArgResult.get()); |
| return ArgResult; |
| } |
| |
| // Widen the argument value to sizeof(parameter type). This is almost |
| // always a no-op, except when the parameter type is bool. In |
| // that case, this may extend the argument from 1 bit to 8 bits. |
| QualType IntegerType = ParamType; |
| if (const EnumType *Enum = IntegerType->getAs<EnumType>()) |
| IntegerType = Enum->getDecl()->getIntegerType(); |
| Value = Value.extOrTrunc(Context.getTypeSize(IntegerType)); |
| |
| Converted = TemplateArgument(Context, Value, |
| Context.getCanonicalType(ParamType)); |
| return ArgResult; |
| } |
| |
| ExprResult ArgResult = DefaultLvalueConversion(Arg); |
| if (ArgResult.isInvalid()) |
| return ExprError(); |
| Arg = ArgResult.get(); |
| |
| QualType ArgType = Arg->getType(); |
| |
| // C++ [temp.arg.nontype]p1: |
| // A template-argument for a non-type, non-template |
| // template-parameter shall be one of: |
| // |
| // -- an integral constant-expression of integral or enumeration |
| // type; or |
| // -- the name of a non-type template-parameter; or |
| llvm::APSInt Value; |
| if (!ArgType->isIntegralOrEnumerationType()) { |
| Diag(Arg->getLocStart(), |
| diag::err_template_arg_not_integral_or_enumeral) |
| << ArgType << Arg->getSourceRange(); |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| return ExprError(); |
| } else if (!Arg->isValueDependent()) { |
| class TmplArgICEDiagnoser : public VerifyICEDiagnoser { |
| QualType T; |
| |
| public: |
| TmplArgICEDiagnoser(QualType T) : T(T) { } |
| |
| void diagnoseNotICE(Sema &S, SourceLocation Loc, |
| SourceRange SR) override { |
| S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR; |
| } |
| } Diagnoser(ArgType); |
| |
| Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser, |
| false).get(); |
| if (!Arg) |
| return ExprError(); |
| } |
| |
| // From here on out, all we care about is the unqualified form |
| // of the argument type. |
| ArgType = ArgType.getUnqualifiedType(); |
| |
| // Try to convert the argument to the parameter's type. |
| if (Context.hasSameType(ParamType, ArgType)) { |
| // Okay: no conversion necessary |
| } else if (ParamType->isBooleanType()) { |
| // This is an integral-to-boolean conversion. |
| Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get(); |
| } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || |
| !ParamType->isEnumeralType()) { |
| // This is an integral promotion or conversion. |
| Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get(); |
| } else { |
| // We can't perform this conversion. |
| Diag(Arg->getLocStart(), |
| diag::err_template_arg_not_convertible) |
| << Arg->getType() << ParamType << Arg->getSourceRange(); |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| return ExprError(); |
| } |
| |
| // Add the value of this argument to the list of converted |
| // arguments. We use the bitwidth and signedness of the template |
| // parameter. |
| if (Arg->isValueDependent()) { |
| // The argument is value-dependent. Create a new |
| // TemplateArgument with the converted expression. |
| Converted = TemplateArgument(Arg); |
| return Arg; |
| } |
| |
| QualType IntegerType = Context.getCanonicalType(ParamType); |
| if (const EnumType *Enum = IntegerType->getAs<EnumType>()) |
| IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); |
| |
| if (ParamType->isBooleanType()) { |
| // Value must be zero or one. |
| Value = Value != 0; |
| unsigned AllowedBits = Context.getTypeSize(IntegerType); |
| if (Value.getBitWidth() != AllowedBits) |
| Value = Value.extOrTrunc(AllowedBits); |
| Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); |
| } else { |
| llvm::APSInt OldValue = Value; |
| |
| // Coerce the template argument's value to the value it will have |
| // based on the template parameter's type. |
| unsigned AllowedBits = Context.getTypeSize(IntegerType); |
| if (Value.getBitWidth() != AllowedBits) |
| Value = Value.extOrTrunc(AllowedBits); |
| Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); |
| |
| // Complain if an unsigned parameter received a negative value. |
| if (IntegerType->isUnsignedIntegerOrEnumerationType() |
| && (OldValue.isSigned() && OldValue.isNegative())) { |
| Diag(Arg->getLocStart(), diag::warn_template_arg_negative) |
| << OldValue.toString(10) << Value.toString(10) << Param->getType() |
| << Arg->getSourceRange(); |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| } |
| |
| // Complain if we overflowed the template parameter's type. |
| unsigned RequiredBits; |
| if (IntegerType->isUnsignedIntegerOrEnumerationType()) |
| RequiredBits = OldValue.getActiveBits(); |
| else if (OldValue.isUnsigned()) |
| RequiredBits = OldValue.getActiveBits() + 1; |
| else |
| RequiredBits = OldValue.getMinSignedBits(); |
| if (RequiredBits > AllowedBits) { |
| Diag(Arg->getLocStart(), |
| diag::warn_template_arg_too_large) |
| << OldValue.toString(10) << Value.toString(10) << Param->getType() |
| << Arg->getSourceRange(); |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| } |
| } |
| |
| Converted = TemplateArgument(Context, Value, |
| ParamType->isEnumeralType() |
| ? Context.getCanonicalType(ParamType) |
| : IntegerType); |
| return Arg; |
| } |
| |
| QualType ArgType = Arg->getType(); |
| DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction |
| |
| // Handle pointer-to-function, reference-to-function, and |
| // pointer-to-member-function all in (roughly) the same way. |
| if (// -- For a non-type template-parameter of type pointer to |
| // function, only the function-to-pointer conversion (4.3) is |
| // applied. If the template-argument represents a set of |
| // overloaded functions (or a pointer to such), the matching |
| // function is selected from the set (13.4). |
| (ParamType->isPointerType() && |
| ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || |
| // -- For a non-type template-parameter of type reference to |
| // function, no conversions apply. If the template-argument |
| // represents a set of overloaded functions, the matching |
| // function is selected from the set (13.4). |
| (ParamType->isReferenceType() && |
| ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || |
| // -- For a non-type template-parameter of type pointer to |
| // member function, no conversions apply. If the |
| // template-argument represents a set of overloaded member |
| // functions, the matching member function is selected from |
| // the set (13.4). |
| (ParamType->isMemberPointerType() && |
| ParamType->getAs<MemberPointerType>()->getPointeeType() |
| ->isFunctionType())) { |
| |
| if (Arg->getType() == Context.OverloadTy) { |
| if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, |
| true, |
| FoundResult)) { |
| if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) |
| return ExprError(); |
| |
| Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); |
| ArgType = Arg->getType(); |
| } else |
| return ExprError(); |
| } |
| |
| if (!ParamType->isMemberPointerType()) { |
| if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, |
| ParamType, |
| Arg, Converted)) |
| return ExprError(); |
| return Arg; |
| } |
| |
| if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, |
| Converted)) |
| return ExprError(); |
| return Arg; |
| } |
| |
| if (ParamType->isPointerType()) { |
| // -- for a non-type template-parameter of type pointer to |
| // object, qualification conversions (4.4) and the |
| // array-to-pointer conversion (4.2) are applied. |
| // C++0x also allows a value of std::nullptr_t. |
| assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && |
| "Only object pointers allowed here"); |
| |
| if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, |
| ParamType, |
| Arg, Converted)) |
| return ExprError(); |
| return Arg; |
| } |
| |
| if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { |
| // -- For a non-type template-parameter of type reference to |
| // object, no conversions apply. The type referred to by the |
| // reference may be more cv-qualified than the (otherwise |
| // identical) type of the template-argument. The |
| // template-parameter is bound directly to the |
| // template-argument, which must be an lvalue. |
| assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && |
| "Only object references allowed here"); |
| |
| if (Arg->getType() == Context.OverloadTy) { |
| if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, |
| ParamRefType->getPointeeType(), |
| true, |
| FoundResult)) { |
| if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) |
| return ExprError(); |
| |
| Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); |
| ArgType = Arg->getType(); |
| } else |
| return ExprError(); |
| } |
| |
| if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, |
| ParamType, |
| Arg, Converted)) |
| return ExprError(); |
| return Arg; |
| } |
| |
| // Deal with parameters of type std::nullptr_t. |
| if (ParamType->isNullPtrType()) { |
| if (Arg->isTypeDependent() || Arg->isValueDependent()) { |
| Converted = TemplateArgument(Arg); |
| return Arg; |
| } |
| |
| switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { |
| case NPV_NotNullPointer: |
| Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) |
| << Arg->getType() << ParamType; |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| return ExprError(); |
| |
| case NPV_Error: |
| return ExprError(); |
| |
| case NPV_NullPointer: |
| Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); |
| Converted = TemplateArgument(Context.getCanonicalType(ParamType), |
| /*isNullPtr*/true); |
| return Arg; |
| } |
| } |
| |
| // -- For a non-type template-parameter of type pointer to data |
| // member, qualification conversions (4.4) are applied. |
| assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); |
| |
| if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, |
| Converted)) |
| return ExprError(); |
| return Arg; |
| } |
| |
| static void DiagnoseTemplateParameterListArityMismatch( |
| Sema &S, TemplateParameterList *New, TemplateParameterList *Old, |
| Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc); |
| |
| /// Check a template argument against its corresponding |
| /// template template parameter. |
| /// |
| /// This routine implements the semantics of C++ [temp.arg.template]. |
| /// It returns true if an error occurred, and false otherwise. |
| bool Sema::CheckTemplateTemplateArgument(TemplateParameterList *Params, |
| TemplateArgumentLoc &Arg) { |
| TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); |
| TemplateDecl *Template = Name.getAsTemplateDecl(); |
| if (!Template) { |
| // Any dependent template name is fine. |
| assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); |
| return false; |
| } |
| |
| if (Template->isInvalidDecl()) |
| return true; |
| |
| // C++0x [temp.arg.template]p1: |
| // A template-argument for a template template-parameter shall be |
| // the name of a class template or an alias template, expressed as an |
| // id-expression. When the template-argument names a class template, only |
| // primary class templates are considered when matching the |
| // template template argument with the corresponding parameter; |
| // partial specializations are not considered even if their |
| // parameter lists match that of the template template parameter. |
| // |
| // Note that we also allow template template parameters here, which |
| // will happen when we are dealing with, e.g., class template |
| // partial specializations. |
| if (!isa<ClassTemplateDecl>(Template) && |
| !isa<TemplateTemplateParmDecl>(Template) && |
| !isa<TypeAliasTemplateDecl>(Template) && |
| !isa<BuiltinTemplateDecl>(Template)) { |
| assert(isa<FunctionTemplateDecl>(Template) && |
| "Only function templates are possible here"); |
| Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template); |
| Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) |
| << Template; |
| } |
| |
| // C++1z [temp.arg.template]p3: (DR 150) |
| // A template-argument matches a template template-parameter P when P |
| // is at least as specialized as the template-argument A. |
| if (getLangOpts().RelaxedTemplateTemplateArgs) { |
| // Quick check for the common case: |
| // If P contains a parameter pack, then A [...] matches P if each of A's |
| // template parameters matches the corresponding template parameter in |
| // the template-parameter-list of P. |
| if (TemplateParameterListsAreEqual( |
| Template->getTemplateParameters(), Params, false, |
| TPL_TemplateTemplateArgumentMatch, Arg.getLocation())) |
| return false; |
| |
| if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template, |
| Arg.getLocation())) |
| return false; |
| // FIXME: Produce better diagnostics for deduction failures. |
| } |
| |
| return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), |
| Params, |
| true, |
| TPL_TemplateTemplateArgumentMatch, |
| Arg.getLocation()); |
| } |
| |
| /// Given a non-type template argument that refers to a |
| /// declaration and the type of its corresponding non-type template |
| /// parameter, produce an expression that properly refers to that |
| /// declaration. |
| ExprResult |
| Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, |
| QualType ParamType, |
| SourceLocation Loc) { |
| // C++ [temp.param]p8: |
| // |
| // A non-type template-parameter of type "array of T" or |
| // "function returning T" is adjusted to be of type "pointer to |
| // T" or "pointer to function returning T", respectively. |
| if (ParamType->isArrayType()) |
| ParamType = Context.getArrayDecayedType(ParamType); |
| else if (ParamType->isFunctionType()) |
| ParamType = Context.getPointerType(ParamType); |
| |
| // For a NULL non-type template argument, return nullptr casted to the |
| // parameter's type. |
| if (Arg.getKind() == TemplateArgument::NullPtr) { |
| return ImpCastExprToType( |
| new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), |
| ParamType, |
| ParamType->getAs<MemberPointerType>() |
| ? CK_NullToMemberPointer |
| : CK_NullToPointer); |
| } |
| assert(Arg.getKind() == TemplateArgument::Declaration && |
| "Only declaration template arguments permitted here"); |
| |
| ValueDecl *VD = Arg.getAsDecl(); |
| |
| if (VD->getDeclContext()->isRecord() && |
| (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || |
| isa<IndirectFieldDecl>(VD))) { |
| // If the value is a class member, we might have a pointer-to-member. |
| // Determine whether the non-type template template parameter is of |
| // pointer-to-member type. If so, we need to build an appropriate |
| // expression for a pointer-to-member, since a "normal" DeclRefExpr |
| // would refer to the member itself. |
| if (ParamType->isMemberPointerType()) { |
| QualType ClassType |
| = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); |
| NestedNameSpecifier *Qualifier |
| = NestedNameSpecifier::Create(Context, nullptr, false, |
| ClassType.getTypePtr()); |
| CXXScopeSpec SS; |
| SS.MakeTrivial(Context, Qualifier, Loc); |
| |
| // The actual value-ness of this is unimportant, but for |
| // internal consistency's sake, references to instance methods |
| // are r-values. |
| ExprValueKind VK = VK_LValue; |
| if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) |
| VK = VK_RValue; |
| |
| ExprResult RefExpr = BuildDeclRefExpr(VD, |
| VD->getType().getNonReferenceType(), |
| VK, |
| Loc, |
| &SS); |
| if (RefExpr.isInvalid()) |
| return ExprError(); |
| |
| RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); |
| |
| // We might need to perform a trailing qualification conversion, since |
| // the element type on the parameter could be more qualified than the |
| // element type in the expression we constructed. |
| bool ObjCLifetimeConversion; |
| if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), |
| ParamType.getUnqualifiedType(), false, |
| ObjCLifetimeConversion)) |
| RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp); |
| |
| assert(!RefExpr.isInvalid() && |
| Context.hasSameType(((Expr*) RefExpr.get())->getType(), |
| ParamType.getUnqualifiedType())); |
| return RefExpr; |
| } |
| } |
| |
| QualType T = VD->getType().getNonReferenceType(); |
| |
| if (ParamType->isPointerType()) { |
| // When the non-type template parameter is a pointer, take the |
| // address of the declaration. |
| ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); |
| if (RefExpr.isInvalid()) |
| return ExprError(); |
| |
| if (!Context.hasSameUnqualifiedType(ParamType->getPointeeType(), T) && |
| (T->isFunctionType() || T->isArrayType())) { |
| // Decay functions and arrays unless we're forming a pointer to array. |
| RefExpr = DefaultFunctionArrayConversion(RefExpr.get()); |
| if (RefExpr.isInvalid()) |
| return ExprError(); |
| |
| return RefExpr; |
| } |
| |
| // Take the address of everything else |
| return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); |
| } |
| |
| ExprValueKind VK = VK_RValue; |
| |
| // If the non-type template parameter has reference type, qualify the |
| // resulting declaration reference with the extra qualifiers on the |
| // type that the reference refers to. |
| if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { |
| VK = VK_LValue; |
| T = Context.getQualifiedType(T, |
| TargetRef->getPointeeType().getQualifiers()); |
| } else if (isa<FunctionDecl>(VD)) { |
| // References to functions are always lvalues. |
| VK = VK_LValue; |
| } |
| |
| return BuildDeclRefExpr(VD, T, VK, Loc); |
| } |
| |
| /// Construct a new expression that refers to the given |
| /// integral template argument with the given source-location |
| /// information. |
| /// |
| /// This routine takes care of the mapping from an integral template |
| /// argument (which may have any integral type) to the appropriate |
| /// literal value. |
| ExprResult |
| Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, |
| SourceLocation Loc) { |
| assert(Arg.getKind() == TemplateArgument::Integral && |
| "Operation is only valid for integral template arguments"); |
| QualType OrigT = Arg.getIntegralType(); |
| |
| // If this is an enum type that we're instantiating, we need to use an integer |
| // type the same size as the enumerator. We don't want to build an |
| // IntegerLiteral with enum type. The integer type of an enum type can be of |
| // any integral type with C++11 enum classes, make sure we create the right |
| // type of literal for it. |
| QualType T = OrigT; |
| if (const EnumType *ET = OrigT->getAs<EnumType>()) |
| T = ET->getDecl()->getIntegerType(); |
| |
| Expr *E; |
| if (T->isAnyCharacterType()) { |
| CharacterLiteral::CharacterKind Kind; |
| if (T->isWideCharType()) |
| Kind = CharacterLiteral::Wide; |
| else if (T->isChar8Type() && getLangOpts().Char8) |
| Kind = CharacterLiteral::UTF8; |
| else if (T->isChar16Type()) |
| Kind = CharacterLiteral::UTF16; |
| else if (T->isChar32Type()) |
| Kind = CharacterLiteral::UTF32; |
| else |
| Kind = CharacterLiteral::Ascii; |
| |
| E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(), |
| Kind, T, Loc); |
| } else if (T->isBooleanType()) { |
| E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(), |
| T, Loc); |
| } else if (T->isNullPtrType()) { |
| E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); |
| } else { |
| E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc); |
| } |
| |
| if (OrigT->isEnumeralType()) { |
| // FIXME: This is a hack. We need a better way to handle substituted |
| // non-type template parameters. |
| E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E, |
| nullptr, |
| Context.getTrivialTypeSourceInfo(OrigT, Loc), |
| Loc, Loc); |
| } |
| |
| return E; |
| } |
| |
| /// Match two template parameters within template parameter lists. |
| static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, |
| bool Complain, |
| Sema::TemplateParameterListEqualKind Kind, |
| SourceLocation TemplateArgLoc) { |
| // Check the actual kind (type, non-type, template). |
| if (Old->getKind() != New->getKind()) { |
| if (Complain) { |
| unsigned NextDiag = diag::err_template_param_different_kind; |
| if (TemplateArgLoc.isValid()) { |
| S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); |
| NextDiag = diag::note_template_param_different_kind; |
| } |
| S.Diag(New->getLocation(), NextDiag) |
| << (Kind != Sema::TPL_TemplateMatch); |
| S.Diag(Old->getLocation(), diag::note_template_prev_declaration) |
| << (Kind != Sema::TPL_TemplateMatch); |
| } |
| |
| return false; |
| } |
| |
| // Check that both are parameter packs or neither are parameter packs. |
| // However, if we are matching a template template argument to a |
| // template template parameter, the template template parameter can have |
| // a parameter pack where the template template argument does not. |
| if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && |
| !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && |
| Old->isTemplateParameterPack())) { |
| if (Complain) { |
| unsigned NextDiag = diag::err_template_parameter_pack_non_pack; |
| if (TemplateArgLoc.isValid()) { |
| S.Diag(TemplateArgLoc, |
| diag::err_template_arg_template_params_mismatch); |
| NextDiag = diag::note_template_parameter_pack_non_pack; |
| } |
| |
| unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 |
| : isa<NonTypeTemplateParmDecl>(New)? 1 |
| : 2; |
| S.Diag(New->getLocation(), NextDiag) |
| << ParamKind << New->isParameterPack(); |
| S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) |
| << ParamKind << Old->isParameterPack(); |
| } |
| |
| return false; |
| } |
| |
| // For non-type template parameters, check the type of the parameter. |
| if (NonTypeTemplateParmDecl *OldNTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(Old)) { |
| NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); |
| |
| // If we are matching a template template argument to a template |
| // template parameter and one of the non-type template parameter types |
| // is dependent, then we must wait until template instantiation time |
| // to actually compare the arguments. |
| if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && |
| (OldNTTP->getType()->isDependentType() || |
| NewNTTP->getType()->isDependentType())) |
| return true; |
| |
| if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { |
| if (Complain) { |
| unsigned NextDiag = diag::err_template_nontype_parm_different_type; |
| if (TemplateArgLoc.isValid()) { |
| S.Diag(TemplateArgLoc, |
| diag::err_template_arg_template_params_mismatch); |
| NextDiag = diag::note_template_nontype_parm_different_type; |
| } |
| S.Diag(NewNTTP->getLocation(), NextDiag) |
| << NewNTTP->getType() |
| << (Kind != Sema::TPL_TemplateMatch); |
| S.Diag(OldNTTP->getLocation(), |
| diag::note_template_nontype_parm_prev_declaration) |
| << OldNTTP->getType(); |
| } |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // For template template parameters, check the template parameter types. |
| // The template parameter lists of template template |
| // parameters must agree. |
| if (TemplateTemplateParmDecl *OldTTP |
| = dyn_cast<TemplateTemplateParmDecl>(Old)) { |
| TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); |
| return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), |
| OldTTP->getTemplateParameters(), |
| Complain, |
| (Kind == Sema::TPL_TemplateMatch |
| ? Sema::TPL_TemplateTemplateParmMatch |
| : Kind), |
| TemplateArgLoc); |
| } |
| |
| return true; |
| } |
| |
| /// Diagnose a known arity mismatch when comparing template argument |
| /// lists. |
| static |
| void DiagnoseTemplateParameterListArityMismatch(Sema &S, |
| TemplateParameterList *New, |
| TemplateParameterList *Old, |
| Sema::TemplateParameterListEqualKind Kind, |
| SourceLocation TemplateArgLoc) { |
| unsigned NextDiag = diag::err_template_param_list_different_arity; |
| if (TemplateArgLoc.isValid()) { |
| S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); |
| NextDiag = diag::note_template_param_list_different_arity; |
| } |
| S.Diag(New->getTemplateLoc(), NextDiag) |
| << (New->size() > Old->size()) |
| << (Kind != Sema::TPL_TemplateMatch) |
| << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); |
| S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) |
| << (Kind != Sema::TPL_TemplateMatch) |
| << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); |
| } |
| |
| /// Determine whether the given template parameter lists are |
| /// equivalent. |
| /// |
| /// \param New The new template parameter list, typically written in the |
| /// source code as part of a new template declaration. |
| /// |
| /// \param Old The old template parameter list, typically found via |
| /// name lookup of the template declared with this template parameter |
| /// list. |
| /// |
| /// \param Complain If true, this routine will produce a diagnostic if |
| /// the template parameter lists are not equivalent. |
| /// |
| /// \param Kind describes how we are to match the template parameter lists. |
| /// |
| /// \param TemplateArgLoc If this source location is valid, then we |
| /// are actually checking the template parameter list of a template |
| /// argument (New) against the template parameter list of its |
| /// corresponding template template parameter (Old). We produce |
| /// slightly different diagnostics in this scenario. |
| /// |
| /// \returns True if the template parameter lists are equal, false |
| /// otherwise. |
| bool |
| Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, |
| TemplateParameterList *Old, |
| bool Complain, |
| TemplateParameterListEqualKind Kind, |
| SourceLocation TemplateArgLoc) { |
| if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { |
| if (Complain) |
| DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, |
| TemplateArgLoc); |
| |
| return false; |
| } |
| |
| // C++0x [temp.arg.template]p3: |
| // A template-argument matches a template template-parameter (call it P) |
| // when each of the template parameters in the template-parameter-list of |
| // the template-argument's corresponding class template or alias template |
| // (call it A) matches the corresponding template parameter in the |
| // template-parameter-list of P. [...] |
| TemplateParameterList::iterator NewParm = New->begin(); |
| TemplateParameterList::iterator NewParmEnd = New->end(); |
| for (TemplateParameterList::iterator OldParm = Old->begin(), |
| OldParmEnd = Old->end(); |
| OldParm != OldParmEnd; ++OldParm) { |
| if (Kind != TPL_TemplateTemplateArgumentMatch || |
| !(*OldParm)->isTemplateParameterPack()) { |
| if (NewParm == NewParmEnd) { |
| if (Complain) |
| DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, |
| TemplateArgLoc); |
| |
| return false; |
| } |
| |
| if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, |
| Kind, TemplateArgLoc)) |
| return false; |
| |
| ++NewParm; |
| continue; |
| } |
| |
| // C++0x [temp.arg.template]p3: |
| // [...] When P's template- parameter-list contains a template parameter |
| // pack (14.5.3), the template parameter pack will match zero or more |
| // template parameters or template parameter packs in the |
| // template-parameter-list of A with the same type and form as the |
| // template parameter pack in P (ignoring whether those template |
| // parameters are template parameter packs). |
| for (; NewParm != NewParmEnd; ++NewParm) { |
| if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, |
| Kind, TemplateArgLoc)) |
| return false; |
| } |
| } |
| |
| // Make sure we exhausted all of the arguments. |
| if (NewParm != NewParmEnd) { |
| if (Complain) |
| DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, |
| TemplateArgLoc); |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Check whether a template can be declared within this scope. |
| /// |
| /// If the template declaration is valid in this scope, returns |
| /// false. Otherwise, issues a diagnostic and returns true. |
| bool |
| Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { |
| if (!S) |
| return false; |
| |
| // Find the nearest enclosing declaration scope. |
| while ((S->getFlags() & Scope::DeclScope) == 0 || |
| (S->getFlags() & Scope::TemplateParamScope) != 0) |
| S = S->getParent(); |
| |
| // C++ [temp]p4: |
| // A template [...] shall not have C linkage. |
| DeclContext *Ctx = S->getEntity(); |
| if (Ctx && Ctx->isExternCContext()) { |
| Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) |
| << TemplateParams->getSourceRange(); |
| if (const LinkageSpecDecl *LSD = Ctx->getExternCContext()) |
| Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); |
| return true; |
| } |
| Ctx = Ctx->getRedeclContext(); |
| |
| // C++ [temp]p2: |
| // A template-declaration can appear only as a namespace scope or |
| // class scope declaration. |
| if (Ctx) { |
| if (Ctx->isFileContext()) |
| return false; |
| if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) { |
| // C++ [temp.mem]p2: |
| // A local class shall not have member templates. |
| if (RD->isLocalClass()) |
| return Diag(TemplateParams->getTemplateLoc(), |
| diag::err_template_inside_local_class) |
| << TemplateParams->getSourceRange(); |
| else |
| return false; |
| } |
| } |
| |
| return Diag(TemplateParams->getTemplateLoc(), |
| diag::err_template_outside_namespace_or_class_scope) |
| << TemplateParams->getSourceRange(); |
| } |
| |
| /// Determine what kind of template specialization the given declaration |
| /// is. |
| static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { |
| if (!D) |
| return TSK_Undeclared; |
| |
| if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) |
| return Record->getTemplateSpecializationKind(); |
| if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) |
| return Function->getTemplateSpecializationKind(); |
| if (VarDecl *Var = dyn_cast<VarDecl>(D)) |
| return Var->getTemplateSpecializationKind(); |
| |
| return TSK_Undeclared; |
| } |
| |
| /// Check whether a specialization is well-formed in the current |
| /// context. |
| /// |
| /// This routine determines whether a template specialization can be declared |
| /// in the current context (C++ [temp.expl.spec]p2). |
| /// |
| /// \param S the semantic analysis object for which this check is being |
| /// performed. |
| /// |
| /// \param Specialized the entity being specialized or instantiated, which |
| /// may be a kind of template (class template, function template, etc.) or |
| /// a member of a class template (member function, static data member, |
| /// member class). |
| /// |
| /// \param PrevDecl the previous declaration of this entity, if any. |
| /// |
| /// \param Loc the location of the explicit specialization or instantiation of |
| /// this entity. |
| /// |
| /// \param IsPartialSpecialization whether this is a partial specialization of |
| /// a class template. |
| /// |
| /// \returns true if there was an error that we cannot recover from, false |
| /// otherwise. |
| static bool CheckTemplateSpecializationScope(Sema &S, |
| NamedDecl *Specialized, |
| NamedDecl *PrevDecl, |
| SourceLocation Loc, |
| bool IsPartialSpecialization) { |
| // Keep these "kind" numbers in sync with the %select statements in the |
| // various diagnostics emitted by this routine. |
| int EntityKind = 0; |
| if (isa<ClassTemplateDecl>(Specialized)) |
| EntityKind = IsPartialSpecialization? 1 : 0; |
| else if (isa<VarTemplateDecl>(Specialized)) |
| EntityKind = IsPartialSpecialization ? 3 : 2; |
| else if (isa<FunctionTemplateDecl>(Specialized)) |
| EntityKind = 4; |
| else if (isa<CXXMethodDecl>(Specialized)) |
| EntityKind = 5; |
| else if (isa<VarDecl>(Specialized)) |
| EntityKind = 6; |
| else if (isa<RecordDecl>(Specialized)) |
| EntityKind = 7; |
| else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11) |
| EntityKind = 8; |
| else { |
| S.Diag(Loc, diag::err_template_spec_unknown_kind) |
| << S.getLangOpts().CPlusPlus11; |
| S.Diag(Specialized->getLocation(), diag::note_specialized_entity); |
| return true; |
| } |
| |
| // C++ [temp.expl.spec]p2: |
| // An explicit specialization may be declared in any scope in which |
| // the corresponding primary template may be defined. |
| if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { |
| S.Diag(Loc, diag::err_template_spec_decl_function_scope) |
| << Specialized; |
| return true; |
| } |
| |
| // C++ [temp.class.spec]p6: |
| // A class template partial specialization may be declared in any |
| // scope in which the primary template may be defined. |
| DeclContext *SpecializedContext = |
| Specialized->getDeclContext()->getRedeclContext(); |
| DeclContext *DC = S.CurContext->getRedeclContext(); |
| |
| // Make sure that this redeclaration (or definition) occurs in the same |
| // scope or an enclosing namespace. |
| if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext) |
| : DC->Equals(SpecializedContext))) { |
| if (isa<TranslationUnitDecl>(SpecializedContext)) |
| S.Diag(Loc, diag::err_template_spec_redecl_global_scope) |
| << EntityKind << Specialized; |
| else { |
| auto *ND = cast<NamedDecl>(SpecializedContext); |
| int Diag = diag::err_template_spec_redecl_out_of_scope; |
| if (S.getLangOpts().MicrosoftExt && !DC->isRecord()) |
| Diag = diag::ext_ms_template_spec_redecl_out_of_scope; |
| S.Diag(Loc, Diag) << EntityKind << Specialized |
| << ND << isa<CXXRecordDecl>(ND); |
| } |
| |
| S.Diag(Specialized->getLocation(), diag::note_specialized_entity); |
| |
| // Don't allow specializing in the wrong class during error recovery. |
| // Otherwise, things can go horribly wrong. |
| if (DC->isRecord()) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) { |
| if (!E->isTypeDependent()) |
| return SourceLocation(); |
| DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); |
| Checker.TraverseStmt(E); |
| if (Checker.MatchLoc.isInvalid()) |
| return E->getSourceRange(); |
| return Checker.MatchLoc; |
| } |
| |
| static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) { |
| if (!TL.getType()->isDependentType()) |
| return SourceLocation(); |
| DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); |
| Checker.TraverseTypeLoc(TL); |
| if (Checker.MatchLoc.isInvalid()) |
| return TL.getSourceRange(); |
| return Checker.MatchLoc; |
| } |
| |
| /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs |
| /// that checks non-type template partial specialization arguments. |
| static bool CheckNonTypeTemplatePartialSpecializationArgs( |
| Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param, |
| const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) { |
| for (unsigned I = 0; I != NumArgs; ++I) { |
| if (Args[I].getKind() == TemplateArgument::Pack) { |
| if (CheckNonTypeTemplatePartialSpecializationArgs( |
| S, TemplateNameLoc, Param, Args[I].pack_begin(), |
| Args[I].pack_size(), IsDefaultArgument)) |
| return true; |
| |
| continue; |
| } |
| |
| if (Args[I].getKind() != TemplateArgument::Expression) |
| continue; |
| |
| Expr *ArgExpr = Args[I].getAsExpr(); |
| |
| // We can have a pack expansion of any of the bullets below. |
| if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) |
| ArgExpr = Expansion->getPattern(); |
| |
| // Strip off any implicit casts we added as part of type checking. |
| while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) |
| ArgExpr = ICE->getSubExpr(); |
| |
| // C++ [temp.class.spec]p8: |
| // A non-type argument is non-specialized if it is the name of a |
| // non-type parameter. All other non-type arguments are |
| // specialized. |
| // |
| // Below, we check the two conditions that only apply to |
| // specialized non-type arguments, so skip any non-specialized |
| // arguments. |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) |
| if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) |
| continue; |
| |
| // C++ [temp.class.spec]p9: |
| // Within the argument list of a class template partial |
| // specialization, the following restrictions apply: |
| // -- A partially specialized non-type argument expression |
| // shall not involve a template parameter of the partial |
| // specialization except when the argument expression is a |
| // simple identifier. |
| // -- The type of a template parameter corresponding to a |
| // specialized non-type argument shall not be dependent on a |
| // parameter of the specialization. |
| // DR1315 removes the first bullet, leaving an incoherent set of rules. |
| // We implement a compromise between the original rules and DR1315: |
| // -- A specialized non-type template argument shall not be |
| // type-dependent and the corresponding template parameter |
| // shall have a non-dependent type. |
| SourceRange ParamUseRange = |
| findTemplateParameterInType(Param->getDepth(), ArgExpr); |
| if (ParamUseRange.isValid()) { |
| if (IsDefaultArgument) { |
| S.Diag(TemplateNameLoc, |
| diag::err_dependent_non_type_arg_in_partial_spec); |
| S.Diag(ParamUseRange.getBegin(), |
| diag::note_dependent_non_type_default_arg_in_partial_spec) |
| << ParamUseRange; |
| } else { |
| S.Diag(ParamUseRange.getBegin(), |
| diag::err_dependent_non_type_arg_in_partial_spec) |
| << ParamUseRange; |
| } |
| return true; |
| } |
| |
| ParamUseRange = findTemplateParameter( |
| Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc()); |
| if (ParamUseRange.isValid()) { |
| S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getLocStart(), |
| diag::err_dependent_typed_non_type_arg_in_partial_spec) |
| << Param->getType(); |
| S.Diag(Param->getLocation(), diag::note_template_param_here) |
| << (IsDefaultArgument ? ParamUseRange : SourceRange()) |
| << ParamUseRange; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Check the non-type template arguments of a class template |
| /// partial specialization according to C++ [temp.class.spec]p9. |
| /// |
| /// \param TemplateNameLoc the location of the template name. |
| /// \param PrimaryTemplate the template parameters of the primary class |
| /// template. |
| /// \param NumExplicit the number of explicitly-specified template arguments. |
| /// \param TemplateArgs the template arguments of the class template |
| /// partial specialization. |
| /// |
| /// \returns \c true if there was an error, \c false otherwise. |
| bool Sema::CheckTemplatePartialSpecializationArgs( |
| SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate, |
| unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) { |
| // We have to be conservative when checking a template in a dependent |
| // context. |
| if (PrimaryTemplate->getDeclContext()->isDependentContext()) |
| return false; |
| |
| TemplateParameterList *TemplateParams = |
| PrimaryTemplate->getTemplateParameters(); |
| for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { |
| NonTypeTemplateParmDecl *Param |
| = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); |
| if (!Param) |
| continue; |
| |
| if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc, |
| Param, &TemplateArgs[I], |
| 1, I >= NumExplicit)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| DeclResult Sema::ActOnClassTemplateSpecialization( |
| Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, |
| SourceLocation ModulePrivateLoc, TemplateIdAnnotation &TemplateId, |
| const ParsedAttributesView &Attr, |
| MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) { |
| assert(TUK != TUK_Reference && "References are not specializations"); |
| |
| CXXScopeSpec &SS = TemplateId.SS; |
| |
| // NOTE: KWLoc is the location of the tag keyword. This will instead |
| // store the location of the outermost template keyword in the declaration. |
| SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 |
| ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc; |
| SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc; |
| SourceLocation LAngleLoc = TemplateId.LAngleLoc; |
| SourceLocation RAngleLoc = TemplateId.RAngleLoc; |
| |
| // Find the class template we're specializing |
| TemplateName Name = TemplateId.Template.get(); |
| ClassTemplateDecl *ClassTemplate |
| = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); |
| |
| if (!ClassTemplate) { |
| Diag(TemplateNameLoc, diag::err_not_class_template_specialization) |
| << (Name.getAsTemplateDecl() && |
| isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); |
| return true; |
| } |
| |
| bool isMemberSpecialization = false; |
| bool isPartialSpecialization = false; |
| |
| // Check the validity of the template headers that introduce this |
| // template. |
| // FIXME: We probably shouldn't complain about these headers for |
| // friend declarations. |
| bool Invalid = false; |
| TemplateParameterList *TemplateParams = |
| MatchTemplateParametersToScopeSpecifier( |
| KWLoc, TemplateNameLoc, SS, &TemplateId, |
| TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization, |
| Invalid); |
| if (Invalid) |
| return true; |
| |
| if (TemplateParams && TemplateParams->size() > 0) { |
| isPartialSpecialization = true; |
| |
| if (TUK == TUK_Friend) { |
| Diag(KWLoc, diag::err_partial_specialization_friend) |
| << SourceRange(LAngleLoc, RAngleLoc); |
| return true; |
| } |
| |
| // C++ [temp.class.spec]p10: |
| // The template parameter list of a specialization shall not |
| // contain default template argument values. |
| for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { |
| Decl *Param = TemplateParams->getParam(I); |
| if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { |
| if (TTP->hasDefaultArgument()) { |
| Diag(TTP->getDefaultArgumentLoc(), |
| diag::err_default_arg_in_partial_spec); |
| TTP->removeDefaultArgument(); |
| } |
| } else if (NonTypeTemplateParmDecl *NTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(Param)) { |
| if (Expr *DefArg = NTTP->getDefaultArgument()) { |
| Diag(NTTP->getDefaultArgumentLoc(), |
| diag::err_default_arg_in_partial_spec) |
| << DefArg->getSourceRange(); |
| NTTP->removeDefaultArgument(); |
| } |
| } else { |
| TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); |
| if (TTP->hasDefaultArgument()) { |
| Diag(TTP->getDefaultArgument().getLocation(), |
| diag::err_default_arg_in_partial_spec) |
| << TTP->getDefaultArgument().getSourceRange(); |
| TTP->removeDefaultArgument(); |
| } |
| } |
| } |
| } else if (TemplateParams) { |
| if (TUK == TUK_Friend) |
| Diag(KWLoc, diag::err_template_spec_friend) |
| << FixItHint::CreateRemoval( |
| SourceRange(TemplateParams->getTemplateLoc(), |
| TemplateParams->getRAngleLoc())) |
| << SourceRange(LAngleLoc, RAngleLoc); |
| } else { |
| assert(TUK == TUK_Friend && "should have a 'template<>' for this decl"); |
| } |
| |
| // Check that the specialization uses the same tag kind as the |
| // original template. |
| TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); |
| assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); |
| if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), |
| Kind, TUK == TUK_Definition, KWLoc, |
| ClassTemplate->getIdentifier())) { |
| Diag(KWLoc, diag::err_use_with_wrong_tag) |
| << ClassTemplate |
| << FixItHint::CreateReplacement(KWLoc, |
| ClassTemplate->getTemplatedDecl()->getKindName()); |
| Diag(ClassTemplate->getTemplatedDecl()->getLocation(), |
| diag::note_previous_use); |
| Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); |
| } |
| |
| // Translate the parser's template argument list in our AST format. |
| TemplateArgumentListInfo TemplateArgs = |
| makeTemplateArgumentListInfo(*this, TemplateId); |
| |
| // Check for unexpanded parameter packs in any of the template arguments. |
| for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
| if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], |
| UPPC_PartialSpecialization)) |
| return true; |
| |
| // Check that the template argument list is well-formed for this |
| // template. |
| SmallVector<TemplateArgument, 4> Converted; |
| if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, |
| TemplateArgs, false, Converted)) |
| return true; |
| |
| // Find the class template (partial) specialization declaration that |
| // corresponds to these arguments. |
| if (isPartialSpecialization) { |
| if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate, |
| TemplateArgs.size(), Converted)) |
| return true; |
| |
| // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we |
| // also do it during instantiation. |
| bool InstantiationDependent; |
| if (!Name.isDependent() && |
| !TemplateSpecializationType::anyDependentTemplateArguments( |
| TemplateArgs.arguments(), InstantiationDependent)) { |
| Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) |
| << ClassTemplate->getDeclName(); |
| isPartialSpecialization = false; |
| } |
| } |
| |
| void *InsertPos = nullptr; |
| ClassTemplateSpecializationDecl *PrevDecl = nullptr; |
| |
| if (isPartialSpecialization) |
| // FIXME: Template parameter list matters, too |
| PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos); |
| else |
| PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos); |
| |
| ClassTemplateSpecializationDecl *Specialization = nullptr; |
| |
| // Check whether we can declare a class template specialization in |
| // the current scope. |
| if (TUK != TUK_Friend && |
| CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, |
| TemplateNameLoc, |
| isPartialSpecialization)) |
| return true; |
| |
| // The canonical type |
| QualType CanonType; |
| if (isPartialSpecialization) { |
| // Build the canonical type that describes the converted template |
| // arguments of the class template partial specialization. |
| TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); |
| CanonType = Context.getTemplateSpecializationType(CanonTemplate, |
| Converted); |
| |
| if (Context.hasSameType(CanonType, |
| ClassTemplate->getInjectedClassNameSpecialization())) { |
| // C++ [temp.class.spec]p9b3: |
| // |
| // -- The argument list of the specialization shall not be identical |
| // to the implicit argument list of the primary template. |
| // |
| // This rule has since been removed, because it's redundant given DR1495, |
| // but we keep it because it produces better diagnostics and recovery. |
| Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) |
| << /*class template*/0 << (TUK == TUK_Definition) |
| << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); |
| return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, |
| ClassTemplate->getIdentifier(), |
| TemplateNameLoc, |
| Attr, |
| TemplateParams, |
| AS_none, /*ModulePrivateLoc=*/SourceLocation(), |
| /*FriendLoc*/SourceLocation(), |
| TemplateParameterLists.size() - 1, |
| TemplateParameterLists.data()); |
| } |
| |
| // Create a new class template partial specialization declaration node. |
| ClassTemplatePartialSpecializationDecl *PrevPartial |
| = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); |
| ClassTemplatePartialSpecializationDecl *Partial |
| = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, |
| ClassTemplate->getDeclContext(), |
| KWLoc, TemplateNameLoc, |
| TemplateParams, |
| ClassTemplate, |
| Converted, |
| TemplateArgs, |
| CanonType, |
| PrevPartial); |
| SetNestedNameSpecifier(Partial, SS); |
| if (TemplateParameterLists.size() > 1 && SS.isSet()) { |
| Partial->setTemplateParameterListsInfo( |
| Context, TemplateParameterLists.drop_back(1)); |
| } |
| |
| if (!PrevPartial) |
| ClassTemplate->AddPartialSpecialization(Partial, InsertPos); |
| Specialization = Partial; |
| |
| // If we are providing an explicit specialization of a member class |
| // template specialization, make a note of that. |
| if (PrevPartial && PrevPartial->getInstantiatedFromMember()) |
| PrevPartial->setMemberSpecialization(); |
| |
| CheckTemplatePartialSpecialization(Partial); |
| } else { |
| // Create a new class template specialization declaration node for |
| // this explicit specialization or friend declaration. |
| Specialization |
| = ClassTemplateSpecializationDecl::Create(Context, Kind, |
| ClassTemplate->getDeclContext(), |
| KWLoc, TemplateNameLoc, |
| ClassTemplate, |
| Converted, |
| PrevDecl); |
| SetNestedNameSpecifier(Specialization, SS); |
| if (TemplateParameterLists.size() > 0) { |
| Specialization->setTemplateParameterListsInfo(Context, |
| TemplateParameterLists); |
| } |
| |
| if (!PrevDecl) |
| ClassTemplate->AddSpecialization(Specialization, InsertPos); |
| |
| if (CurContext->isDependentContext()) { |
| TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); |
| CanonType = Context.getTemplateSpecializationType( |
| CanonTemplate, Converted); |
| } else { |
| CanonType = Context.getTypeDeclType(Specialization); |
| } |
| } |
| |
| // C++ [temp.expl.spec]p6: |
| // If a template, a member template or the member of a class template is |
| // explicitly specialized then that specialization shall be declared |
| // before the first use of that specialization that would cause an implicit |
| // instantiation to take place, in every translation unit in which such a |
| // use occurs; no diagnostic is required. |
| if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { |
| bool Okay = false; |
| for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { |
| // Is there any previous explicit specialization declaration? |
| if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { |
| Okay = true; |
| break; |
| } |
| } |
| |
| if (!Okay) { |
| SourceRange Range(TemplateNameLoc, RAngleLoc); |
| Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) |
| << Context.getTypeDeclType(Specialization) << Range; |
| |
| Diag(PrevDecl->getPointOfInstantiation(), |
| diag::note_instantiation_required_here) |
| << (PrevDecl->getTemplateSpecializationKind() |
| != TSK_ImplicitInstantiation); |
| return true; |
| } |
| } |
| |
| // If this is not a friend, note that this is an explicit specialization. |
| if (TUK != TUK_Friend) |
| Specialization->setSpecializationKind(TSK_ExplicitSpecialization); |
| |
| // Check that this isn't a redefinition of this specialization. |
| if (TUK == TUK_Definition) { |
| RecordDecl *Def = Specialization->getDefinition(); |
| NamedDecl *Hidden = nullptr; |
| if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) { |
| SkipBody->ShouldSkip = true; |
| makeMergedDefinitionVisible(Hidden); |
| // From here on out, treat this as just a redeclaration. |
| TUK = TUK_Declaration; |
| } else if (Def) { |
| SourceRange Range(TemplateNameLoc, RAngleLoc); |
| Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range; |
| Diag(Def->getLocation(), diag::note_previous_definition); |
| Specialization->setInvalidDecl(); |
| return true; |
| } |
| } |
| |
| ProcessDeclAttributeList(S, Specialization, Attr); |
| |
| // Add alignment attributes if necessary; these attributes are checked when |
| // the ASTContext lays out the structure. |
| if (TUK == TUK_Definition) { |
| AddAlignmentAttributesForRecord(Specialization); |
| AddMsStructLayoutForRecord(Specialization); |
| } |
| |
| if (ModulePrivateLoc.isValid()) |
| Diag(Specialization->getLocation(), diag::err_module_private_specialization) |
| << (isPartialSpecialization? 1 : 0) |
| << FixItHint::CreateRemoval(ModulePrivateLoc); |
| |
| // Build the fully-sugared type for this class template |
| // specialization as the user wrote in the specialization |
| // itself. This means that we'll pretty-print the type retrieved |
| // from the specialization's declaration the way that the user |
| // actually wrote the specialization, rather than formatting the |
| // name based on the "canonical" representation used to store the |
| // template arguments in the specialization. |
| TypeSourceInfo *WrittenTy |
| = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, |
| TemplateArgs, CanonType); |
| if (TUK != TUK_Friend) { |
| Specialization->setTypeAsWritten(WrittenTy); |
| Specialization->setTemplateKeywordLoc(TemplateKWLoc); |
| } |
| |
| // C++ [temp.expl.spec]p9: |
| // A template explicit specialization is in the scope of the |
| // namespace in which the template was defined. |
| // |
| // We actually implement this paragraph where we set the semantic |
| // context (in the creation of the ClassTemplateSpecializationDecl), |
| // but we also maintain the lexical context where the actual |
| // definition occurs. |
| Specialization->setLexicalDeclContext(CurContext); |
| |
| // We may be starting the definition of this specialization. |
| if (TUK == TUK_Definition) |
| Specialization->startDefinition(); |
| |
| if (TUK == TUK_Friend) { |
| FriendDecl *Friend = FriendDecl::Create(Context, CurContext, |
| TemplateNameLoc, |
| WrittenTy, |
| /*FIXME:*/KWLoc); |
| Friend->setAccess(AS_public); |
| CurContext->addDecl(Friend); |
| } else { |
| // Add the specialization into its lexical context, so that it can |
| // be seen when iterating through the list of declarations in that |
| // context. However, specializations are not found by name lookup. |
| CurContext->addDecl(Specialization); |
| } |
| return Specialization; |
| } |
| |
| Decl *Sema::ActOnTemplateDeclarator(Scope *S, |
| MultiTemplateParamsArg TemplateParameterLists, |
| Declarator &D) { |
| Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); |
| ActOnDocumentableDecl(NewDecl); |
| return NewDecl; |
| } |
| |
| /// Strips various properties off an implicit instantiation |
| /// that has just been explicitly specialized. |
| static void StripImplicitInstantiation(NamedDecl *D) { |
| D->dropAttr<DLLImportAttr>(); |
| D->dropAttr<DLLExportAttr>(); |
| |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) |
| FD->setInlineSpecified(false); |
| } |
| |
| /// Compute the diagnostic location for an explicit instantiation |
| // declaration or definition. |
| static SourceLocation DiagLocForExplicitInstantiation( |
| NamedDecl* D, SourceLocation PointOfInstantiation) { |
| // Explicit instantiations following a specialization have no effect and |
| // hence no PointOfInstantiation. In that case, walk decl backwards |
| // until a valid name loc is found. |
| SourceLocation PrevDiagLoc = PointOfInstantiation; |
| for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); |
| Prev = Prev->getPreviousDecl()) { |
| PrevDiagLoc = Prev->getLocation(); |
| } |
| assert(PrevDiagLoc.isValid() && |
| "Explicit instantiation without point of instantiation?"); |
| return PrevDiagLoc; |
| } |
| |
| /// Diagnose cases where we have an explicit template specialization |
| /// before/after an explicit template instantiation, producing diagnostics |
| /// for those cases where they are required and determining whether the |
| /// new specialization/instantiation will have any effect. |
| /// |
| /// \param NewLoc the location of the new explicit specialization or |
| /// instantiation. |
| /// |
| /// \param NewTSK the kind of the new explicit specialization or instantiation. |
| /// |
| /// \param PrevDecl the previous declaration of the entity. |
| /// |
| /// \param PrevTSK the kind of the old explicit specialization or instantiatin. |
| /// |
| /// \param PrevPointOfInstantiation if valid, indicates where the previus |
| /// declaration was instantiated (either implicitly or explicitly). |
| /// |
| /// \param HasNoEffect will be set to true to indicate that the new |
| /// specialization or instantiation has no effect and should be ignored. |
| /// |
| /// \returns true if there was an error that should prevent the introduction of |
| /// the new declaration into the AST, false otherwise. |
| bool |
| Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, |
| TemplateSpecializationKind NewTSK, |
| NamedDecl *PrevDecl, |
| TemplateSpecializationKind PrevTSK, |
| SourceLocation PrevPointOfInstantiation, |
| bool &HasNoEffect) { |
| HasNoEffect = false; |
| |
| switch (NewTSK) { |
| case TSK_Undeclared: |
| case TSK_ImplicitInstantiation: |
| assert( |
| (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && |
| "previous declaration must be implicit!"); |
| return false; |
| |
| case TSK_ExplicitSpecialization: |
| switch (PrevTSK) { |
| case TSK_Undeclared: |
| case TSK_ExplicitSpecialization: |
| // Okay, we're just specializing something that is either already |
| // explicitly specialized or has merely been mentioned without any |
| // instantiation. |
| return false; |
| |
| case TSK_ImplicitInstantiation: |
| if (PrevPointOfInstantiation.isInvalid()) { |
| // The declaration itself has not actually been instantiated, so it is |
| // still okay to specialize it. |
| StripImplicitInstantiation(PrevDecl); |
| return false; |
| } |
| // Fall through |
| LLVM_FALLTHROUGH; |
| |
| case TSK_ExplicitInstantiationDeclaration: |
| case TSK_ExplicitInstantiationDefinition: |
| assert((PrevTSK == TSK_ImplicitInstantiation || |
| PrevPointOfInstantiation.isValid()) && |
| "Explicit instantiation without point of instantiation?"); |
| |
| // C++ [temp.expl.spec]p6: |
| // If a template, a member template or the member of a class template |
| // is explicitly specialized then that specialization shall be declared |
| // before the first use of that specialization that would cause an |
| // implicit instantiation to take place, in every translation unit in |
| // which such a use occurs; no diagnostic is required. |
| for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { |
| // Is there any previous explicit specialization declaration? |
| if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) |
| return false; |
| } |
| |
| Diag(NewLoc, diag::err_specialization_after_instantiation) |
| << PrevDecl; |
| Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) |
| << (PrevTSK != TSK_ImplicitInstantiation); |
| |
| return true; |
| } |
| llvm_unreachable("The switch over PrevTSK must be exhaustive."); |
| |
| case TSK_ExplicitInstantiationDeclaration: |
| switch (PrevTSK) { |
| case TSK_ExplicitInstantiationDeclaration: |
| // This explicit instantiation declaration is redundant (that's okay). |
| HasNoEffect = true; |
| return false; |
| |
| case TSK_Undeclared: |
| case TSK_ImplicitInstantiation: |
| // We're explicitly instantiating something that may have already been |
| // implicitly instantiated; that's fine. |
| return false; |
| |
| case TSK_ExplicitSpecialization: |
| // C++0x [temp.explicit]p4: |
| // For a given set of template parameters, if an explicit instantiation |
| // of a template appears after a declaration of an explicit |
| // specialization for that template, the explicit instantiation has no |
| // effect. |
| HasNoEffect = true; |
| return false; |
| |
| case TSK_ExplicitInstantiationDefinition: |
| // C++0x [temp.explicit]p10: |
| // If an entity is the subject of both an explicit instantiation |
| // declaration and an explicit instantiation definition in the same |
| // translation unit, the definition shall follow the declaration. |
| Diag(NewLoc, |
| diag::err_explicit_instantiation_declaration_after_definition); |
| |
| // Explicit instantiations following a specialization have no effect and |
| // hence no PrevPointOfInstantiation. In that case, walk decl backwards |
| // until a valid name loc is found. |
| Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), |
| diag::note_explicit_instantiation_definition_here); |
| HasNoEffect = true; |
| return false; |
| } |
| |
| case TSK_ExplicitInstantiationDefinition: |
| switch (PrevTSK) { |
| case TSK_Undeclared: |
| case TSK_ImplicitInstantiation: |
| // We're explicitly instantiating something that may have already been |
| // implicitly instantiated; that's fine. |
| return false; |
| |
| case TSK_ExplicitSpecialization: |
| // C++ DR 259, C++0x [temp.explicit]p4: |
| // For a given set of template parameters, if an explicit |
| // instantiation of a template appears after a declaration of |
| // an explicit specialization for that template, the explicit |
| // instantiation has no effect. |
| Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization) |
| << PrevDecl; |
| Diag(PrevDecl->getLocation(), |
| diag::note_previous_template_specialization); |
| HasNoEffect = true; |
| return false; |
| |
| case TSK_ExplicitInstantiationDeclaration: |
| // We're explicitly instantiating a definition for something for which we |
| // were previously asked to suppress instantiations. That's fine. |
| |
| // C++0x [temp.explicit]p4: |
| // For a given set of template parameters, if an explicit instantiation |
| // of a template appears after a declaration of an explicit |
| // specialization for that template, the explicit instantiation has no |
| // effect. |
| for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { |
| // Is there any previous explicit specialization declaration? |
| if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { |
| HasNoEffect = true; |
| break; |
| } |
| } |
| |
| return false; |
| |
| case TSK_ExplicitInstantiationDefinition: |
| // C++0x [temp.spec]p5: |
| // For a given template and a given set of template-arguments, |
| // - an explicit instantiation definition shall appear at most once |
| // in a program, |
| |
| // MSVCCompat: MSVC silently ignores duplicate explicit instantiations. |
| Diag(NewLoc, (getLangOpts().MSVCCompat) |
| ? diag::ext_explicit_instantiation_duplicate |
| : diag::err_explicit_instantiation_duplicate) |
| << PrevDecl; |
| Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), |
| diag::note_previous_explicit_instantiation); |
| HasNoEffect = true; |
| return false; |
| } |
| } |
| |
| llvm_unreachable("Missing specialization/instantiation case?"); |
| } |
| |
| /// Perform semantic analysis for the given dependent function |
| /// template specialization. |
| /// |
| /// The only possible way to get a dependent function template specialization |
| /// is with a friend declaration, like so: |
| /// |
| /// \code |
| /// template \<class T> void foo(T); |
| /// template \<class T> class A { |
| /// friend void foo<>(T); |
| /// }; |
| /// \endcode |
| /// |
| /// There really isn't any useful analysis we can do here, so we |
| /// just store the information. |
| bool |
| Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, |
| const TemplateArgumentListInfo &ExplicitTemplateArgs, |
| LookupResult &Previous) { |
| // Remove anything from Previous that isn't a function template in |
| // the correct context. |
| DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); |
| LookupResult::Filter F = Previous.makeFilter(); |
| enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing }; |
| SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates; |
| while (F.hasNext()) { |
| NamedDecl *D = F.next()->getUnderlyingDecl(); |
| if (!isa<FunctionTemplateDecl>(D)) { |
| F.erase(); |
| DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D)); |
| continue; |
| } |
| |
| if (!FDLookupContext->InEnclosingNamespaceSetOf( |
| D->getDeclContext()->getRedeclContext())) { |
| F.erase(); |
| DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D)); |
| continue; |
| } |
| } |
| F.done(); |
| |
| if (Previous.empty()) { |
| Diag(FD->getLocation(), |
| diag::err_dependent_function_template_spec_no_match); |
| for (auto &P : DiscardedCandidates) |
| Diag(P.second->getLocation(), |
| diag::note_dependent_function_template_spec_discard_reason) |
| << P.first; |
| return true; |
| } |
| |
| FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), |
| ExplicitTemplateArgs); |
| return false; |
| } |
| |
| /// Perform semantic analysis for the given function template |
| /// specialization. |
| /// |
| /// This routine performs all of the semantic analysis required for an |
| /// explicit function template specialization. On successful completion, |
| /// the function declaration \p FD will become a function template |
| /// specialization. |
| /// |
| /// \param FD the function declaration, which will be updated to become a |
| /// function template specialization. |
| /// |
| /// \param ExplicitTemplateArgs the explicitly-provided template arguments, |
| /// if any. Note that this may be valid info even when 0 arguments are |
| /// explicitly provided as in, e.g., \c void sort<>(char*, char*); |
| /// as it anyway contains info on the angle brackets locations. |
| /// |
| /// \param Previous the set of declarations that may be specialized by |
| /// this function specialization. |
| bool Sema::CheckFunctionTemplateSpecialization( |
| FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, |
| LookupResult &Previous) { |
| // The set of function template specializations that could match this |
| // explicit function template specialization. |
| UnresolvedSet<8> Candidates; |
| TemplateSpecCandidateSet FailedCandidates(FD->getLocation(), |
| /*ForTakingAddress=*/false); |
| |
| llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8> |
| ConvertedTemplateArgs; |
| |
| DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); |
| for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); |
| I != E; ++I) { |
| NamedDecl *Ovl = (*I)->getUnderlyingDecl(); |
| if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { |
| // Only consider templates found within the same semantic lookup scope as |
| // FD. |
| if (!FDLookupContext->InEnclosingNamespaceSetOf( |
| Ovl->getDeclContext()->getRedeclContext())) |
| continue; |
| |
| // When matching a constexpr member function template specialization |
| // against the primary template, we don't yet know whether the |
| // specialization has an implicit 'const' (because we don't know whether |
| // it will be a static member function until we know which template it |
| // specializes), so adjust it now assuming it specializes this template. |
| QualType FT = FD->getType(); |
| if (FD->isConstexpr()) { |
| CXXMethodDecl *OldMD = |
| dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl()); |
| if (OldMD && OldMD->isConst()) { |
| const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); |
| FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| EPI.TypeQuals |= Qualifiers::Const; |
| FT = Context.getFunctionType(FPT->getReturnType(), |
| FPT->getParamTypes(), EPI); |
| } |
| } |
| |
| TemplateArgumentListInfo Args; |
| if (ExplicitTemplateArgs) |
| Args = *ExplicitTemplateArgs; |
| |
| // C++ [temp.expl.spec]p11: |
| // A trailing template-argument can be left unspecified in the |
| // template-id naming an explicit function template specialization |
| // provided it can be deduced from the function argument type. |
| // Perform template argument deduction to determine whether we may be |
| // specializing this template. |
| // FIXME: It is somewhat wasteful to build |
| TemplateDeductionInfo Info(FailedCandidates.getLocation()); |
| FunctionDecl *Specialization = nullptr; |
| if (TemplateDeductionResult TDK = DeduceTemplateArguments( |
| cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()), |
| ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization, |
| Info)) { |
| // Template argument deduction failed; record why it failed, so |
| // that we can provide nifty diagnostics. |
| FailedCandidates.addCandidate().set( |
| I.getPair(), FunTmpl->getTemplatedDecl(), |
| MakeDeductionFailureInfo(Context, TDK, Info)); |
| (void)TDK; |
| continue; |
| } |
| |
| // Target attributes are part of the cuda function signature, so |
| // the deduced template's cuda target must match that of the |
| // specialization. Given that C++ template deduction does not |
| // take target attributes into account, we reject candidates |
| // here that have a different target. |
| if (LangOpts.CUDA && |
| IdentifyCUDATarget(Specialization, |
| /* IgnoreImplicitHDAttributes = */ true) != |
| IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttributes = */ true)) { |
| FailedCandidates.addCandidate().set( |
| I.getPair(), FunTmpl->getTemplatedDecl(), |
| MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); |
| continue; |
| } |
| |
| // Record this candidate. |
| if (ExplicitTemplateArgs) |
| ConvertedTemplateArgs[Specialization] = std::move(Args); |
| Candidates.addDecl(Specialization, I.getAccess()); |
| } |
| } |
| |
| // Find the most specialized function template. |
| UnresolvedSetIterator Result = getMostSpecialized( |
| Candidates.begin(), Candidates.end(), FailedCandidates, |
| FD->getLocation(), |
| PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(), |
| PDiag(diag::err_function_template_spec_ambiguous) |
| << FD->getDeclName() << (ExplicitTemplateArgs != nullptr), |
| PDiag(diag::note_function_template_spec_matched)); |
| |
| if (Result == Candidates.end()) |
| return true; |
| |
| // Ignore access information; it doesn't figure into redeclaration checking. |
| FunctionDecl *Specialization = cast<FunctionDecl>(*Result); |
| |
| FunctionTemplateSpecializationInfo *SpecInfo |
| = Specialization->getTemplateSpecializationInfo(); |
| assert(SpecInfo && "Function template specialization info missing?"); |
| |
| // Note: do not overwrite location info if previous template |
| // specialization kind was explicit. |
| TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); |
| if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { |
| Specialization->setLocation(FD->getLocation()); |
| Specialization->setLexicalDeclContext(FD->getLexicalDeclContext()); |
| // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr |
| // function can differ from the template declaration with respect to |
| // the constexpr specifier. |
| // FIXME: We need an update record for this AST mutation. |
| // FIXME: What if there are multiple such prior declarations (for instance, |
| // from different modules)? |
| Specialization->setConstexpr(FD->isConstexpr()); |
| } |
| |
| // FIXME: Check if the prior specialization has a point of instantiation. |
| // If so, we have run afoul of . |
| |
| // If this is a friend declaration, then we're not really declaring |
| // an explicit specialization. |
| bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); |
| |
| // Check the scope of this explicit specialization. |
| if (!isFriend && |
| CheckTemplateSpecializationScope(*this, |
| Specialization->getPrimaryTemplate(), |
| Specialization, FD->getLocation(), |
| false)) |
| return true; |
| |
| // C++ [temp.expl.spec]p6: |
| // If a template, a member template or the member of a class template is |
| // explicitly specialized then that specialization shall be declared |
| // before the first use of that specialization that would cause an implicit |
| // instantiation to take place, in every translation unit in which such a |
| // use occurs; no diagnostic is required. |
| bool HasNoEffect = false; |
| if (!isFriend && |
| CheckSpecializationInstantiationRedecl(FD->getLocation(), |
| TSK_ExplicitSpecialization, |
| Specialization, |
| SpecInfo->getTemplateSpecializationKind(), |
| SpecInfo->getPointOfInstantiation(), |
| HasNoEffect)) |
| return true; |
| |
| // Mark the prior declaration as an explicit specialization, so that later |
| // clients know that this is an explicit specialization. |
| if (!isFriend) { |
| // Since explicit specializations do not inherit '=delete' from their |
| // primary function template - check if the 'specialization' that was |
| // implicitly generated (during template argument deduction for partial |
| // ordering) from the most specialized of all the function templates that |
| // 'FD' could have been specializing, has a 'deleted' definition. If so, |
| // first check that it was implicitly generated during template argument |
| // deduction by making sure it wasn't referenced, and then reset the deleted |
| // flag to not-deleted, so that we can inherit that information from 'FD'. |
| if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() && |
| !Specialization->getCanonicalDecl()->isReferenced()) { |
| // FIXME: This assert will not hold in the presence of modules. |
| assert( |
| Specialization->getCanonicalDecl() == Specialization && |
| "This must be the only existing declaration of this specialization"); |
| // FIXME: We need an update record for this AST mutation. |
| Specialization->setDeletedAsWritten(false); |
| } |
| // FIXME: We need an update record for this AST mutation. |
| SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); |
| MarkUnusedFileScopedDecl(Specialization); |
| } |
| |
| // Turn the given function declaration into a function template |
| // specialization, with the template arguments from the previous |
| // specialization. |
| // Take copies of (semantic and syntactic) template argument lists. |
| const TemplateArgumentList* TemplArgs = new (Context) |
| TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); |
| FD->setFunctionTemplateSpecialization( |
| Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr, |
| SpecInfo->getTemplateSpecializationKind(), |
| ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr); |
| |
| // A function template specialization inherits the target attributes |
| // of its template. (We require the attributes explicitly in the |
| // code to match, but a template may have implicit attributes by |
| // virtue e.g. of being constexpr, and it passes these implicit |
| // attributes on to its specializations.) |
| if (LangOpts.CUDA) |
| inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate()); |
| |
| // The "previous declaration" for this function template specialization is |
| // the prior function template specialization. |
| Previous.clear(); |
| Previous.addDecl(Specialization); |
| return false; |
| } |
| |
| /// Perform semantic analysis for the given non-template member |
| /// specialization. |
| /// |
| /// This routine performs all of the semantic analysis required for an |
| /// explicit member function specialization. On successful completion, |
| /// the function declaration \p FD will become a member function |
| /// specialization. |
| /// |
| /// \param Member the member declaration, which will be updated to become a |
| /// specialization. |
| /// |
| /// \param Previous the set of declarations, one of which may be specialized |
| /// by this function specialization; the set will be modified to contain the |
| /// redeclared member. |
| bool |
| Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { |
| assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); |
| |
| // Try to find the member we are instantiating. |
| NamedDecl *FoundInstantiation = nullptr; |
| NamedDecl *Instantiation = nullptr; |
| NamedDecl *InstantiatedFrom = nullptr; |
| MemberSpecializationInfo *MSInfo = nullptr; |
| |
| if (Previous.empty()) { |
| // Nowhere to look anyway. |
| } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { |
| for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); |
| I != E; ++I) { |
| NamedDecl *D = (*I)->getUnderlyingDecl(); |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { |
| QualType Adjusted = Function->getType(); |
| if (!hasExplicitCallingConv(Adjusted)) |
| Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType()); |
| // This doesn't handle deduced return types, but both function |
| // declarations should be undeduced at this point. |
| if (Context.hasSameType(Adjusted, Method->getType())) { |
| FoundInstantiation = *I; |
| Instantiation = Method; |
| InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); |
| MSInfo = Method->getMemberSpecializationInfo(); |
| break; |
| } |
| } |
| } |
| } else if (isa<VarDecl>(Member)) { |
| VarDecl *PrevVar; |
| if (Previous.isSingleResult() && |
| (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) |
| if (PrevVar->isStaticDataMember()) { |
| FoundInstantiation = Previous.getRepresentativeDecl(); |
| Instantiation = PrevVar; |
| InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); |
| MSInfo = PrevVar->getMemberSpecializationInfo(); |
| } |
| } else if (isa<RecordDecl>(Member)) { |
| CXXRecordDecl *PrevRecord; |
| if (Previous.isSingleResult() && |
| (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { |
| FoundInstantiation = Previous.getRepresentativeDecl(); |
| Instantiation = PrevRecord; |
| InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); |
| MSInfo = PrevRecord->getMemberSpecializationInfo(); |
| } |
| } else if (isa<EnumDecl>(Member)) { |
| EnumDecl *PrevEnum; |
| if (Previous.isSingleResult() && |
| (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { |
| FoundInstantiation = Previous.getRepresentativeDecl(); |
| Instantiation = PrevEnum; |
| InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); |
| MSInfo = PrevEnum->getMemberSpecializationInfo(); |
| } |
| } |
| |
| if (!Instantiation) { |
| // There is no previous declaration that matches. Since member |
| // specializations are always out-of-line, the caller will complain about |
| // this mismatch later. |
| return false; |
| } |
| |
| // A member specialization in a friend declaration isn't really declaring |
| // an explicit specialization, just identifying a specific (possibly implicit) |
| // specialization. Don't change the template specialization kind. |
| // |
| // FIXME: Is this really valid? Other compilers reject. |
| if (Member->getFriendObjectKind() != Decl::FOK_None) { |
| // Preserve instantiation information. |
| if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { |
| cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( |
| cast<CXXMethodDecl>(InstantiatedFrom), |
| cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); |
| } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { |
| cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( |
| cast<CXXRecordDecl>(InstantiatedFrom), |
| cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); |
| } |
| |
| Previous.clear(); |
| Previous.addDecl(FoundInstantiation); |
| return false; |
| } |
| |
| // Make sure that this is a specialization of a member. |
| if (!InstantiatedFrom) { |
| Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) |
| << Member; |
| Diag(Instantiation->getLocation(), diag::note_specialized_decl); |
| return true; |
| } |
| |
| // C++ [temp.expl.spec]p6: |
| // If a template, a member template or the member of a class template is |
| // explicitly specialized then that specialization shall be declared |
| // before the first use of that specialization that would cause an implicit |
| // instantiation to take place, in every translation unit in which such a |
| // use occurs; no diagnostic is required. |
| assert(MSInfo && "Member specialization info missing?"); |
| |
| bool HasNoEffect = false; |
| if (CheckSpecializationInstantiationRedecl(Member->getLocation(), |
| TSK_ExplicitSpecialization, |
| Instantiation, |
| MSInfo->getTemplateSpecializationKind(), |
| MSInfo->getPointOfInstantiation(), |
| HasNoEffect)) |
| return true; |
| |
| // Check the scope of this explicit specialization. |
| if (CheckTemplateSpecializationScope(*this, |
| InstantiatedFrom, |
| Instantiation, Member->getLocation(), |
| false)) |
| return true; |
| |
| // Note that this member specialization is an "instantiation of" the |
| // corresponding member of the original template. |
| if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) { |
| FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); |
| if (InstantiationFunction->getTemplateSpecializationKind() == |
| TSK_ImplicitInstantiation) { |
| // Explicit specializations of member functions of class templates do not |
| // inherit '=delete' from the member function they are specializing. |
| if (InstantiationFunction->isDeleted()) { |
| // FIXME: This assert will not hold in the presence of modules. |
| assert(InstantiationFunction->getCanonicalDecl() == |
| InstantiationFunction); |
| // FIXME: We need an update record for this AST mutation. |
| InstantiationFunction->setDeletedAsWritten(false); |
| } |
| } |
| |
| MemberFunction->setInstantiationOfMemberFunction( |
| cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); |
| } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) { |
| MemberVar->setInstantiationOfStaticDataMember( |
| cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); |
| } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) { |
| MemberClass->setInstantiationOfMemberClass( |
| cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); |
| } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) { |
| MemberEnum->setInstantiationOfMemberEnum( |
| cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); |
| } else { |
| llvm_unreachable("unknown member specialization kind"); |
| } |
| |
| // Save the caller the trouble of having to figure out which declaration |
| // this specialization matches. |
| Previous.clear(); |
| Previous.addDecl(FoundInstantiation); |
| return false; |
| } |
| |
| /// Complete the explicit specialization of a member of a class template by |
| /// updating the instantiated member to be marked as an explicit specialization. |
| /// |
| /// \param OrigD The member declaration instantiated from the template. |
| /// \param Loc The location of the explicit specialization of the member. |
| template<typename DeclT> |
| static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD, |
| SourceLocation Loc) { |
| if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) |
| return; |
| |
| // FIXME: Inform AST mutation listeners of this AST mutation. |
| // FIXME: If there are multiple in-class declarations of the member (from |
| // multiple modules, or a declaration and later definition of a member type), |
| // should we update all of them? |
| OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization); |
| OrigD->setLocation(Loc); |
| } |
| |
| void Sema::CompleteMemberSpecialization(NamedDecl *Member, |
| LookupResult &Previous) { |
| NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl()); |
| if (Instantiation == Member) |
| return; |
| |
| if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation)) |
| completeMemberSpecializationImpl(*this, Function, Member->getLocation()); |
| else if (auto *Var = dyn_cast<VarDecl>(Instantiation)) |
| completeMemberSpecializationImpl(*this, Var, Member->getLocation()); |
| else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation)) |
| completeMemberSpecializationImpl(*this, Record, Member->getLocation()); |
| else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation)) |
| completeMemberSpecializationImpl(*this, Enum, Member->getLocation()); |
| else |
| llvm_unreachable("unknown member specialization kind"); |
| } |
| |
| /// Check the scope of an explicit instantiation. |
| /// |
| /// \returns true if a serious error occurs, false otherwise. |
| static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, |
| SourceLocation InstLoc, |
| bool WasQualifiedName) { |
| DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); |
| DeclContext *CurContext = S.CurContext->getRedeclContext(); |
| |
| if (CurContext->isRecord()) { |
| S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) |
| << D; |
| return true; |
| } |
| |
| // C++11 [temp.explicit]p3: |
| // An explicit instantiation shall appear in an enclosing namespace of its |
| // template. If the name declared in the explicit instantiation is an |
| // unqualified name, the explicit instantiation shall appear in the |
| // namespace where its template is declared or, if that namespace is inline |
| // (7.3.1), any namespace from its enclosing namespace set. |
| // |
| // This is DR275, which we do not retroactively apply to C++98/03. |
| if (WasQualifiedName) { |
| if (CurContext->Encloses(OrigContext)) |
| return false; |
| } else { |
| if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) |
| return false; |
| } |
| |
| if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { |
| if (WasQualifiedName) |
| S.Diag(InstLoc, |
| S.getLangOpts().CPlusPlus11? |
| diag::err_explicit_instantiation_out_of_scope : |
| diag::warn_explicit_instantiation_out_of_scope_0x) |
| << D << NS; |
| else |
| S.Diag(InstLoc, |
| S.getLangOpts().CPlusPlus11? |
| diag::err_explicit_instantiation_unqualified_wrong_namespace : |
| diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) |
| << D << NS; |
| } else |
| S.Diag(InstLoc, |
| S.getLangOpts().CPlusPlus11? |
| diag::err_explicit_instantiation_must_be_global : |
| diag::warn_explicit_instantiation_must_be_global_0x) |
| << D; |
| S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); |
| return false; |
| } |
| |
| /// Determine whether the given scope specifier has a template-id in it. |
| static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { |
| if (!SS.isSet()) |
| return false; |
| |
| // C++11 [temp.explicit]p3: |
| // If the explicit instantiation is for a member function, a member class |
| // or a static data member of a class template specialization, the name of |
| // the class template specialization in the qualified-id for the member |
| // name shall be a simple-template-id. |
| // |
| // C++98 has the same restriction, just worded differently. |
| for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS; |
| NNS = NNS->getPrefix()) |
| if (const Type *T = NNS->getAsType()) |
| if (isa<TemplateSpecializationType>(T)) |
| return true; |
| |
| return false; |
| } |
| |
| /// Make a dllexport or dllimport attr on a class template specialization take |
| /// effect. |
| static void dllExportImportClassTemplateSpecialization( |
| Sema &S, ClassTemplateSpecializationDecl *Def) { |
| auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def)); |
| assert(A && "dllExportImportClassTemplateSpecialization called " |
| "on Def without dllexport or dllimport"); |
| |
| // We reject explicit instantiations in class scope, so there should |
| // never be any delayed exported classes to worry about. |
| assert(S.DelayedDllExportClasses.empty() && |
| "delayed exports present at explicit instantiation"); |
| S.checkClassLevelDLLAttribute(Def); |
| |
| // Propagate attribute to base class templates. |
| for (auto &B : Def->bases()) { |
| if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>( |
| B.getType()->getAsCXXRecordDecl())) |
| S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getLocStart()); |
| } |
| |
| S.referenceDLLExportedClassMethods(); |
| } |
| |
| // Explicit instantiation of a class template specialization |
| DeclResult Sema::ActOnExplicitInstantiation( |
| Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, |
| unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, |
| TemplateTy TemplateD, SourceLocation TemplateNameLoc, |
| SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn, |
| SourceLocation RAngleLoc, const ParsedAttributesView &Attr) { |
| // Find the class template we're specializing |
| TemplateName Name = TemplateD.get(); |
| TemplateDecl *TD = Name.getAsTemplateDecl(); |
| // Check that the specialization uses the same tag kind as the |
| // original template. |
| TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); |
| assert(Kind != TTK_Enum && |
| "Invalid enum tag in class template explicit instantiation!"); |
| |
| ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD); |
| |
| if (!ClassTemplate) { |
| NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind); |
| Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind; |
| Diag(TD->getLocation(), diag::note_previous_use); |
| return true; |
| } |
| |
| if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), |
| Kind, /*isDefinition*/false, KWLoc, |
| ClassTemplate->getIdentifier())) { |
| Diag(KWLoc, diag::err_use_with_wrong_tag) |
| << ClassTemplate |
| << FixItHint::CreateReplacement(KWLoc, |
| ClassTemplate->getTemplatedDecl()->getKindName()); |
| Diag(ClassTemplate->getTemplatedDecl()->getLocation(), |
| diag::note_previous_use); |
| Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); |
| } |
| |
| // C++0x [temp.explicit]p2: |
| // There are two forms of explicit instantiation: an explicit instantiation |
| // definition and an explicit instantiation declaration. An explicit |
| // instantiation declaration begins with the extern keyword. [...] |
| TemplateSpecializationKind TSK = ExternLoc.isInvalid() |
| ? TSK_ExplicitInstantiationDefinition |
| : TSK_ExplicitInstantiationDeclaration; |
| |
| if (TSK == TSK_ExplicitInstantiationDeclaration) { |
| // Check for dllexport class template instantiation declarations. |
| for (const ParsedAttr &AL : Attr) { |
| if (AL.getKind() == ParsedAttr::AT_DLLExport) { |
| Diag(ExternLoc, |
| diag::warn_attribute_dllexport_explicit_instantiation_decl); |
| Diag(AL.getLoc(), diag::note_attribute); |
| break; |
| } |
| } |
| |
| if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) { |
| Diag(ExternLoc, |
| diag::warn_attribute_dllexport_explicit_instantiation_decl); |
| Diag(A->getLocation(), diag::note_attribute); |
| } |
| } |
| |
| // In MSVC mode, dllimported explicit instantiation definitions are treated as |
| // instantiation declarations for most purposes. |
| bool DLLImportExplicitInstantiationDef = false; |
| if (TSK == TSK_ExplicitInstantiationDefinition && |
| Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
| // Check for dllimport class template instantiation definitions. |
| bool DLLImport = |
| ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>(); |
| for (const ParsedAttr &AL : Attr) { |
| if (AL.getKind() == ParsedAttr::AT_DLLImport) |
| DLLImport = true; |
| if (AL.getKind() == ParsedAttr::AT_DLLExport) { |
| // dllexport trumps dllimport here. |
| DLLImport = false; |
| break; |
| } |
| } |
| if (DLLImport) { |
| TSK = TSK_ExplicitInstantiationDeclaration; |
| DLLImportExplicitInstantiationDef = true; |
| } |
| } |
| |
| // Translate the parser's template argument list in our AST format. |
| TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); |
| translateTemplateArguments(TemplateArgsIn, TemplateArgs); |
| |
| // Check that the template argument list is well-formed for this |
| // template. |
| SmallVector<TemplateArgument, 4> Converted; |
| if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, |
| TemplateArgs, false, Converted)) |
| return true; |
| |
| // Find the class template specialization declaration that |
| // corresponds to these arguments. |
| void *InsertPos = nullptr; |
| ClassTemplateSpecializationDecl *PrevDecl |
| = ClassTemplate->findSpecialization(Converted, InsertPos); |
| |
| TemplateSpecializationKind PrevDecl_TSK |
| = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; |
| |
| // C++0x [temp.explicit]p2: |
| // [...] An explicit instantiation shall appear in an enclosing |
| // namespace of its template. [...] |
| // |
| // This is C++ DR 275. |
| if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, |
| SS.isSet())) |
| return true; |
| |
| ClassTemplateSpecializationDecl *Specialization = nullptr; |
| |
| bool HasNoEffect = false; |
| if (PrevDecl) { |
| if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, |
| PrevDecl, PrevDecl_TSK, |
| PrevDecl->getPointOfInstantiation(), |
| HasNoEffect)) |
| return PrevDecl; |
| |
| // Even though HasNoEffect == true means that this explicit instantiation |
| // has no effect on semantics, we go on to put its syntax in the AST. |
| |
| if (PrevDecl_TSK == TSK_ImplicitInstantiation || |
| PrevDecl_TSK == TSK_Undeclared) { |
| // Since the only prior class template specialization with these |
| // arguments was referenced but not declared, reuse that |
| // declaration node as our own, updating the source location |
| // for the template name to reflect our new declaration. |
| // (Other source locations will be updated later.) |
| Specialization = PrevDecl; |
| Specialization->setLocation(TemplateNameLoc); |
| PrevDecl = nullptr; |
| } |
| |
| if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && |
| DLLImportExplicitInstantiationDef) { |
| // The new specialization might add a dllimport attribute. |
| HasNoEffect = false; |
| } |
| } |
| |
| if (!Specialization) { |
| // Create a new class template specialization declaration node for |
| // this explicit specialization. |
| Specialization |
| = ClassTemplateSpecializationDecl::Create(Context, Kind, |
| ClassTemplate->getDeclContext(), |
| KWLoc, TemplateNameLoc, |
| ClassTemplate, |
| Converted, |
| PrevDecl); |
| SetNestedNameSpecifier(Specialization, SS); |
| |
| if (!HasNoEffect && !PrevDecl) { |
| // Insert the new specialization. |
| ClassTemplate->AddSpecialization(Specialization, InsertPos); |
| } |
| } |
| |
| // Build the fully-sugared type for this explicit instantiation as |
| // the user wrote in the explicit instantiation itself. This means |
| // that we'll pretty-print the type retrieved from the |
| // specialization's declaration the way that the user actually wrote |
| // the explicit instantiation, rather than formatting the name based |
| // on the "canonical" representation used to store the template |
| // arguments in the specialization. |
| TypeSourceInfo *WrittenTy |
| = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, |
| TemplateArgs, |
| Context.getTypeDeclType(Specialization)); |
| Specialization->setTypeAsWritten(WrittenTy); |
| |
| // Set source locations for keywords. |
| Specialization->setExternLoc(ExternLoc); |
| Specialization->setTemplateKeywordLoc(TemplateLoc); |
| Specialization->setBraceRange(SourceRange()); |
| |
| bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>(); |
| ProcessDeclAttributeList(S, Specialization, Attr); |
| |
| // Add the explicit instantiation into its lexical context. However, |
| // since explicit instantiations are never found by name lookup, we |
| // just put it into the declaration context directly. |
| Specialization->setLexicalDeclContext(CurContext); |
| CurContext->addDecl(Specialization); |
| |
| // Syntax is now OK, so return if it has no other effect on semantics. |
| if (HasNoEffect) { |
| // Set the template specialization kind. |
| Specialization->setTemplateSpecializationKind(TSK); |
| return Specialization; |
| } |
| |
| // C++ [temp.explicit]p3: |
| // A definition of a class template or class member template |
| // shall be in scope at the point of the explicit instantiation of |
| // the class template or class member template. |
| // |
| // This check comes when we actually try to perform the |
| // instantiation. |
| ClassTemplateSpecializationDecl *Def |
| = cast_or_null<ClassTemplateSpecializationDecl>( |
| Specialization->getDefinition()); |
| if (!Def) |
| InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); |
| else if (TSK == TSK_ExplicitInstantiationDefinition) { |
| MarkVTableUsed(TemplateNameLoc, Specialization, true); |
| Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); |
| } |
| |
| // Instantiate the members of this class template specialization. |
| Def = cast_or_null<ClassTemplateSpecializationDecl>( |
| Specialization->getDefinition()); |
| if (Def) { |
| TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); |
| // Fix a TSK_ExplicitInstantiationDeclaration followed by a |
| // TSK_ExplicitInstantiationDefinition |
| if (Old_TSK == TSK_ExplicitInstantiationDeclaration && |
| (TSK == TSK_ExplicitInstantiationDefinition || |
| DLLImportExplicitInstantiationDef)) { |
| // FIXME: Need to notify the ASTMutationListener that we did this. |
| Def->setTemplateSpecializationKind(TSK); |
| |
| if (!getDLLAttr(Def) && getDLLAttr(Specialization) && |
| (Context.getTargetInfo().getCXXABI().isMicrosoft() || |
| Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) { |
| // In the MS ABI, an explicit instantiation definition can add a dll |
| // attribute to a template with a previous instantiation declaration. |
| // MinGW doesn't allow this. |
| auto *A = cast<InheritableAttr>( |
| getDLLAttr(Specialization)->clone(getASTContext())); |
| A->setInherited(true); |
| Def->addAttr(A); |
| dllExportImportClassTemplateSpecialization(*this, Def); |
| } |
| } |
| |
| // Fix a TSK_ImplicitInstantiation followed by a |
| // TSK_ExplicitInstantiationDefinition |
| bool NewlyDLLExported = |
| !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>(); |
| if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported && |
| (Context.getTargetInfo().getCXXABI().isMicrosoft() || |
| Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) { |
| // In the MS ABI, an explicit instantiation definition can add a dll |
| // attribute to a template with a previous implicit instantiation. |
| // MinGW doesn't allow this. We limit clang to only adding dllexport, to |
| // avoid potentially strange codegen behavior. For example, if we extend |
| // this conditional to dllimport, and we have a source file calling a |
| // method on an implicitly instantiated template class instance and then |
| // declaring a dllimport explicit instantiation definition for the same |
| // template class, the codegen for the method call will not respect the |
| // dllimport, while it will with cl. The Def will already have the DLL |
| // attribute, since the Def and Specialization will be the same in the |
| // case of Old_TSK == TSK_ImplicitInstantiation, and we already added the |
| // attribute to the Specialization; we just need to make it take effect. |
| assert(Def == Specialization && |
| "Def and Specialization should match for implicit instantiation"); |
| dllExportImportClassTemplateSpecialization(*this, Def); |
| } |
| |
| // Set the template specialization kind. Make sure it is set before |
| // instantiating the members which will trigger ASTConsumer callbacks. |
| Specialization->setTemplateSpecializationKind(TSK); |
| InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); |
| } else { |
| |
| // Set the template specialization kind. |
| Specialization->setTemplateSpecializationKind(TSK); |
| } |
| |
| return Specialization; |
| } |
| |
| // Explicit instantiation of a member class of a class template. |
| DeclResult |
| Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, |
| SourceLocation TemplateLoc, unsigned TagSpec, |
| SourceLocation KWLoc, CXXScopeSpec &SS, |
| IdentifierInfo *Name, SourceLocation NameLoc, |
| const ParsedAttributesView &Attr) { |
| |
| bool Owned = false; |
| bool IsDependent = false; |
| Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, |
| KWLoc, SS, Name, NameLoc, Attr, AS_none, |
| /*ModulePrivateLoc=*/SourceLocation(), |
| MultiTemplateParamsArg(), Owned, IsDependent, |
| SourceLocation(), false, TypeResult(), |
| /*IsTypeSpecifier*/false, |
| /*IsTemplateParamOrArg*/false); |
| assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); |
| |
| if (!TagD) |
| return true; |
| |
| TagDecl *Tag = cast<TagDecl>(TagD); |
| assert(!Tag->isEnum() && "shouldn't see enumerations here"); |
| |
| if (Tag->isInvalidDecl()) |
| return true; |
| |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); |
| CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); |
| if (!Pattern) { |
| Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) |
| << Context.getTypeDeclType(Record); |
| Diag(Record->getLocation(), diag::note_nontemplate_decl_here); |
| return true; |
| } |
| |
| // C++0x [temp.explicit]p2: |
| // If the explicit instantiation is for a class or member class, the |
| // elaborated-type-specifier in the declaration shall include a |
| // simple-template-id. |
| // |
| // C++98 has the same restriction, just worded differently. |
| if (!ScopeSpecifierHasTemplateId(SS)) |
| Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) |
| << Record << SS.getRange(); |
| |
| // C++0x [temp.explicit]p2: |
| // There are two forms of explicit instantiation: an explicit instantiation |
| // definition and an explicit instantiation declaration. An explicit |
| // instantiation declaration begins with the extern keyword. [...] |
| TemplateSpecializationKind TSK |
| = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition |
| : TSK_ExplicitInstantiationDeclaration; |
| |
| // C++0x [temp.explicit]p2: |
| // [...] An explicit instantiation shall appear in an enclosing |
| // namespace of its template. [...] |
| // |
| // This is C++ DR 275. |
| CheckExplicitInstantiationScope(*this, Record, NameLoc, true); |
| |
| // Verify that it is okay to explicitly instantiate here. |
| CXXRecordDecl *PrevDecl |
| = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); |
| if (!PrevDecl && Record->getDefinition()) |
| PrevDecl = Record; |
| if (PrevDecl) { |
| MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); |
| bool HasNoEffect = false; |
| assert(MSInfo && "No member specialization information?"); |
| if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, |
| PrevDecl, |
| MSInfo->getTemplateSpecializationKind(), |
| MSInfo->getPointOfInstantiation(), |
| HasNoEffect)) |
| return true; |
| if (HasNoEffect) |
| return TagD; |
| } |
| |
| CXXRecordDecl *RecordDef |
| = cast_or_null<CXXRecordDecl>(Record->getDefinition()); |
| if (!RecordDef) { |
| // C++ [temp.explicit]p3: |
| // A definition of a member class of a class template shall be in scope |
| // at the point of an explicit instantiation of the member class. |
| CXXRecordDecl *Def |
| = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); |
| if (!Def) { |
| Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) |
| << 0 << Record->getDeclName() << Record->getDeclContext(); |
| Diag(Pattern->getLocation(), diag::note_forward_declaration) |
| << Pattern; |
| return true; |
| } else { |
| if (InstantiateClass(NameLoc, Record, Def, |
| getTemplateInstantiationArgs(Record), |
| TSK)) |
| return true; |
| |
| RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); |
| if (!RecordDef) |
| return true; |
| } |
| } |
| |
| // Instantiate all of the members of the class. |
| InstantiateClassMembers(NameLoc, RecordDef, |
| getTemplateInstantiationArgs(Record), TSK); |
| |
| if (TSK == TSK_ExplicitInstantiationDefinition) |
| MarkVTableUsed(NameLoc, RecordDef, true); |
| |
| // FIXME: We don't have any representation for explicit instantiations of |
| // member classes. Such a representation is not needed for compilation, but it |
| // should be available for clients that want to see all of the declarations in |
| // the source code. |
| return TagD; |
| } |
| |
| DeclResult Sema::ActOnExplicitInstantiation(Scope *S, |
| SourceLocation ExternLoc, |
| SourceLocation TemplateLoc, |
| Declarator &D) { |
| // Explicit instantiations always require a name. |
| // TODO: check if/when DNInfo should replace Name. |
| DeclarationNameInfo NameInfo = GetNameForDeclarator(D); |
| DeclarationName Name = NameInfo.getName(); |
| if (!Name) { |
| if (!D.isInvalidType()) |
| Diag(D.getDeclSpec().getLocStart(), |
| diag::err_explicit_instantiation_requires_name) |
| << D.getDeclSpec().getSourceRange() |
| << D.getSourceRange(); |
| |
| return true; |
| } |
| |
| // The scope passed in may not be a decl scope. Zip up the scope tree until |
| // we find one that is. |
| while ((S->getFlags() & Scope::DeclScope) == 0 || |
| (S->getFlags() & Scope::TemplateParamScope) != 0) |
| S = S->getParent(); |
| |
| // Determine the type of the declaration. |
| TypeSourceInfo *T = GetTypeForDeclarator(D, S); |
| QualType R = T->getType(); |
| if (R.isNull()) |
| return true; |
| |
| // C++ [dcl.stc]p1: |
| // A storage-class-specifier shall not be specified in [...] an explicit |
| // instantiation (14.7.2) directive. |
| if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { |
| Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) |
| << Name; |
| return true; |
| } else if (D.getDeclSpec().getStorageClassSpec() |
| != DeclSpec::SCS_unspecified) { |
| // Complain about then remove the storage class specifier. |
| Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) |
| << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); |
| |
| D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| } |
| |
| // C++0x [temp.explicit]p1: |
| // [...] An explicit instantiation of a function template shall not use the |
| // inline or constexpr specifiers. |
| // Presumably, this also applies to member functions of class templates as |
| // well. |
| if (D.getDeclSpec().isInlineSpecified()) |
| Diag(D.getDeclSpec().getInlineSpecLoc(), |
| getLangOpts().CPlusPlus11 ? |
| diag::err_explicit_instantiation_inline : |
| diag::warn_explicit_instantiation_inline_0x) |
| << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); |
| if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType()) |
| // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is |
| // not already specified. |
| Diag(D.getDeclSpec().getConstexprSpecLoc(), |
| diag::err_explicit_instantiation_constexpr); |
| |
| // A deduction guide is not on the list of entities that can be explicitly |
| // instantiated. |
| if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { |
| Diag(D.getDeclSpec().getLocStart(), diag::err_deduction_guide_specialized) |
| << /*explicit instantiation*/ 0; |
| return true; |
| } |
| |
| // C++0x [temp.explicit]p2: |
| // There are two forms of explicit instantiation: an explicit instantiation |
| // definition and an explicit instantiation declaration. An explicit |
| // instantiation declaration begins with the extern keyword. [...] |
| TemplateSpecializationKind TSK |
| = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition |
| : TSK_ExplicitInstantiationDeclaration; |
| |
| LookupResult Previous(*this, NameInfo, LookupOrdinaryName); |
| LookupParsedName(Previous, S, &D.getCXXScopeSpec()); |
| |
| if (!R->isFunctionType()) { |
| // C++ [temp.explicit]p1: |
| // A [...] static data member of a class template can be explicitly |
| // instantiated from the member definition associated with its class |
| // template. |
| // C++1y [temp.explicit]p1: |
| // A [...] variable [...] template specialization can be explicitly |
| // instantiated from its template. |
| if (Previous.isAmbiguous()) |
| return true; |
| |
| VarDecl *Prev = Previous.getAsSingle<VarDecl>(); |
| VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>(); |
| |
| if (!PrevTemplate) { |
| if (!Prev || !Prev->isStaticDataMember()) { |
| // We expect to see a data data member here. |
| Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) |
| << Name; |
| for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); |
| P != PEnd; ++P) |
| Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); |
| return true; |
| } |
| |
| if (!Prev->getInstantiatedFromStaticDataMember()) { |
| // FIXME: Check for explicit specialization? |
| Diag(D.getIdentifierLoc(), |
| diag::err_explicit_instantiation_data_member_not_instantiated) |
| << Prev; |
| Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); |
| // FIXME: Can we provide a note showing where this was declared? |
| return true; |
| } |
| } else { |
| // Explicitly instantiate a variable template. |
| |
| // C++1y [dcl.spec.auto]p6: |
| // ... A program that uses auto or decltype(auto) in a context not |
| // explicitly allowed in this section is ill-formed. |
| // |
| // This includes auto-typed variable template instantiations. |
| if (R->isUndeducedType()) { |
| Diag(T->getTypeLoc().getLocStart(), |
| diag::err_auto_not_allowed_var_inst); |
| return true; |
| } |
| |
| if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { |
| // C++1y [temp.explicit]p3: |
| // If the explicit instantiation is for a variable, the unqualified-id |
| // in the declaration shall be a template-id. |
| Diag(D.getIdentifierLoc(), |
| diag::err_explicit_instantiation_without_template_id) |
| << PrevTemplate; |
| Diag(PrevTemplate->getLocation(), |
| diag::note_explicit_instantiation_here); |
| return true; |
| } |
| |
| // Translate the parser's template argument list into our AST format. |
| TemplateArgumentListInfo TemplateArgs = |
| makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); |
| |
| DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc, |
| D.getIdentifierLoc(), TemplateArgs); |
| if (Res.isInvalid()) |
| return true; |
| |
| // Ignore access control bits, we don't need them for redeclaration |
| // checking. |
| Prev = cast<VarDecl>(Res.get()); |
| } |
| |
| // C++0x [temp.explicit]p2: |
| // If the explicit instantiation is for a member function, a member class |
| // or a static data member of a class template specialization, the name of |
| // the class template specialization in the qualified-id for the member |
| // name shall be a simple-template-id. |
| // |
| // C++98 has the same restriction, just worded differently. |
| // |
| // This does not apply to variable template specializations, where the |
| // template-id is in the unqualified-id instead. |
| if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate) |
| Diag(D.getIdentifierLoc(), |
| diag::ext_explicit_instantiation_without_qualified_id) |
| << Prev << D.getCXXScopeSpec().getRange(); |
| |
| // Check the scope of this explicit instantiation. |
| CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); |
| |
| // Verify that it is okay to explicitly instantiate here. |
| TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind(); |
| SourceLocation POI = Prev->getPointOfInstantiation(); |
| bool HasNoEffect = false; |
| if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, |
| PrevTSK, POI, HasNoEffect)) |
| return true; |
| |
| if (!HasNoEffect) { |
| // Instantiate static data member or variable template. |
| Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); |
| if (PrevTemplate) { |
| // Merge attributes. |
| ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes()); |
| } |
| if (TSK == TSK_ExplicitInstantiationDefinition) |
| InstantiateVariableDefinition(D.getIdentifierLoc(), Prev); |
| } |
| |
| // Check the new variable specialization against the parsed input. |
| if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) { |
| Diag(T->getTypeLoc().getLocStart(), |
| diag::err_invalid_var_template_spec_type) |
| << 0 << PrevTemplate << R << Prev->getType(); |
| Diag(PrevTemplate->getLocation(), diag::note_template_declared_here) |
| << 2 << PrevTemplate->getDeclName(); |
| return true; |
| } |
| |
| // FIXME: Create an ExplicitInstantiation node? |
| return (Decl*) nullptr; |
| } |
| |
| // If the declarator is a template-id, translate the parser's template |
| // argument list into our AST format. |
| bool HasExplicitTemplateArgs = false; |
| TemplateArgumentListInfo TemplateArgs; |
| if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { |
| TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); |
| HasExplicitTemplateArgs = true; |
| } |
| |
| // C++ [temp.explicit]p1: |
| // A [...] function [...] can be explicitly instantiated from its template. |
| // A member function [...] of a class template can be explicitly |
| // instantiated from the member definition associated with its class |
| // template. |
| UnresolvedSet<8> TemplateMatches; |
| FunctionDecl *NonTemplateMatch = nullptr; |
| TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc()); |
| for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); |
| P != PEnd; ++P) { |
| NamedDecl *Prev = *P; |
| if (!HasExplicitTemplateArgs) { |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { |
| QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(), |
| /*AdjustExceptionSpec*/true); |
| if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) { |
| if (Method->getPrimaryTemplate()) { |
| TemplateMatches.addDecl(Method, P.getAccess()); |
| } else { |
| // FIXME: Can this assert ever happen? Needs a test. |
| assert(!NonTemplateMatch && "Multiple NonTemplateMatches"); |
| NonTemplateMatch = Method; |
| } |
| } |
| } |
| } |
| |
| FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); |
| if (!FunTmpl) |
| continue; |
| |
| TemplateDeductionInfo Info(FailedCandidates.getLocation()); |
| FunctionDecl *Specialization = nullptr; |
| if (TemplateDeductionResult TDK |
| = DeduceTemplateArguments(FunTmpl, |
| (HasExplicitTemplateArgs ? &TemplateArgs |
| : nullptr), |
| R, Specialization, Info)) { |
| // Keep track of almost-matches. |
| FailedCandidates.addCandidate() |
| .set(P.getPair(), FunTmpl->getTemplatedDecl(), |
| MakeDeductionFailureInfo(Context, TDK, Info)); |
| (void)TDK; |
| continue; |
| } |
| |
| // Target attributes are part of the cuda function signature, so |
| // the cuda target of the instantiated function must match that of its |
| // template. Given that C++ template deduction does not take |
| // target attributes into account, we reject candidates here that |
| // have a different target. |
| if (LangOpts.CUDA && |
| IdentifyCUDATarget(Specialization, |
| /* IgnoreImplicitHDAttributes = */ true) != |
| IdentifyCUDATarget(D.getDeclSpec().getAttributes())) { |
| FailedCandidates.addCandidate().set( |
| P.getPair(), FunTmpl->getTemplatedDecl(), |
| MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); |
| continue; |
| } |
| |
| TemplateMatches.addDecl(Specialization, P.getAccess()); |
| } |
| |
| FunctionDecl *Specialization = NonTemplateMatch; |
| if (!Specialization) { |
| // Find the most specialized function template specialization. |
| UnresolvedSetIterator Result = getMostSpecialized( |
| TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates, |
| D.getIdentifierLoc(), |
| PDiag(diag::err_explicit_instantiation_not_known) << Name, |
| PDiag(diag::err_explicit_instantiation_ambiguous) << Name, |
| PDiag(diag::note_explicit_instantiation_candidate)); |
| |
| if (Result == TemplateMatches.end()) |
| return true; |
| |
| // Ignore access control bits, we don't need them for redeclaration checking. |
| Specialization = cast<FunctionDecl>(*Result); |
| } |
| |
| // C++11 [except.spec]p4 |
| // In an explicit instantiation an exception-specification may be specified, |
| // but is not required. |
| // If an exception-specification is specified in an explicit instantiation |
| // directive, it shall be compatible with the exception-specifications of |
| // other declarations of that function. |
| if (auto *FPT = R->getAs<FunctionProtoType>()) |
| if (FPT->hasExceptionSpec()) { |
| unsigned DiagID = |
| diag::err_mismatched_exception_spec_explicit_instantiation; |
| if (getLangOpts().MicrosoftExt) |
| DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation; |
| bool Result = CheckEquivalentExceptionSpec( |
| PDiag(DiagID) << Specialization->getType(), |
| PDiag(diag::note_explicit_instantiation_here), |
| Specialization->getType()->getAs<FunctionProtoType>(), |
| Specialization->getLocation(), FPT, D.getLocStart()); |
| // In Microsoft mode, mismatching exception specifications just cause a |
| // warning. |
| if (!getLangOpts().MicrosoftExt && Result) |
| return true; |
| } |
| |
| if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { |
| Diag(D.getIdentifierLoc(), |
| diag::err_explicit_instantiation_member_function_not_instantiated) |
| << Specialization |
| << (Specialization->getTemplateSpecializationKind() == |
| TSK_ExplicitSpecialization); |
| Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); |
| return true; |
| } |
| |
| FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); |
| if (!PrevDecl && Specialization->isThisDeclarationADefinition()) |
| PrevDecl = Specialization; |
| |
| if (PrevDecl) { |
| bool HasNoEffect = false; |
| if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, |
| PrevDecl, |
| PrevDecl->getTemplateSpecializationKind(), |
| PrevDecl->getPointOfInstantiation(), |
| HasNoEffect)) |
| return true; |
| |
| // FIXME: We may still want to build some representation of this |
| // explicit specialization. |
| if (HasNoEffect) |
| return (Decl*) nullptr; |
| } |
| |
| ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes()); |
| |
| // In MSVC mode, dllimported explicit instantiation definitions are treated as |
| // instantiation declarations. |
| if (TSK == TSK_ExplicitInstantiationDefinition && |
| Specialization->hasAttr<DLLImportAttr>() && |
| Context.getTargetInfo().getCXXABI().isMicrosoft()) |
| TSK = TSK_ExplicitInstantiationDeclaration; |
| |
| Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); |
| |
| if (Specialization->isDefined()) { |
| // Let the ASTConsumer know that this function has been explicitly |
| // instantiated now, and its linkage might have changed. |
| Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization)); |
| } else if (TSK == TSK_ExplicitInstantiationDefinition) |
| InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); |
| |
| // C++0x [temp.explicit]p2: |
| // If the explicit instantiation is for a member function, a member class |
| // or a static data member of a class template specialization, the name of |
| // the class template specialization in the qualified-id for the member |
| // name shall be a simple-template-id. |
| // |
| // C++98 has the same restriction, just worded differently. |
| FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); |
| if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl && |
| D.getCXXScopeSpec().isSet() && |
| !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) |
| Diag(D.getIdentifierLoc(), |
| diag::ext_explicit_instantiation_without_qualified_id) |
| << Specialization << D.getCXXScopeSpec().getRange(); |
| |
| CheckExplicitInstantiationScope(*this, |
| FunTmpl? (NamedDecl *)FunTmpl |
| : Specialization->getInstantiatedFromMemberFunction(), |
| D.getIdentifierLoc(), |
| D.getCXXScopeSpec().isSet()); |
| |
| // FIXME: Create some kind of ExplicitInstantiationDecl here. |
| return (Decl*) nullptr; |
| } |
| |
| TypeResult |
| Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, |
| const CXXScopeSpec &SS, IdentifierInfo *Name, |
| SourceLocation TagLoc, SourceLocation NameLoc) { |
| // This has to hold, because SS is expected to be defined. |
| assert(Name && "Expected a name in a dependent tag"); |
| |
| NestedNameSpecifier *NNS = SS.getScopeRep(); |
| if (!NNS) |
| return true; |
| |
| TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); |
| |
| if (TUK == TUK_Declaration || TUK == TUK_Definition) { |
| Diag(NameLoc, diag::err_dependent_tag_decl) |
| << (TUK == TUK_Definition) << Kind << SS.getRange(); |
| return true; |
| } |
| |
| // Create the resulting type. |
| ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); |
| QualType Result = Context.getDependentNameType(Kwd, NNS, Name); |
| |
| // Create type-source location information for this type. |
| TypeLocBuilder TLB; |
| DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); |
| TL.setElaboratedKeywordLoc(TagLoc); |
| TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
| TL.setNameLoc(NameLoc); |
| return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); |
| } |
| |
| TypeResult |
| Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, |
| const CXXScopeSpec &SS, const IdentifierInfo &II, |
| SourceLocation IdLoc) { |
| if (SS.isInvalid()) |
| return true; |
| |
| if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) |
| Diag(TypenameLoc, |
| getLangOpts().CPlusPlus11 ? |
| diag::warn_cxx98_compat_typename_outside_of_template : |
| diag::ext_typename_outside_of_template) |
| << FixItHint::CreateRemoval(TypenameLoc); |
| |
| NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); |
| QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, |
| TypenameLoc, QualifierLoc, II, IdLoc); |
| if (T.isNull()) |
| return true; |
| |
| TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); |
| if (isa<DependentNameType>(T)) { |
| DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); |
| TL.setElaboratedKeywordLoc(TypenameLoc); |
| TL.setQualifierLoc(QualifierLoc); |
| TL.setNameLoc(IdLoc); |
| } else { |
| ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); |
| TL.setElaboratedKeywordLoc(TypenameLoc); |
| TL.setQualifierLoc(QualifierLoc); |
| TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); |
| } |
| |
| return CreateParsedType(T, TSI); |
| } |
| |
| TypeResult |
| Sema::ActOnTypenameType(Scope *S, |
| SourceLocation TypenameLoc, |
| const CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, |
| TemplateTy TemplateIn, |
| IdentifierInfo *TemplateII, |
| SourceLocation TemplateIILoc, |
| SourceLocation LAngleLoc, |
| ASTTemplateArgsPtr TemplateArgsIn, |
| SourceLocation RAngleLoc) { |
| if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) |
| Diag(TypenameLoc, |
| getLangOpts().CPlusPlus11 ? |
| diag::warn_cxx98_compat_typename_outside_of_template : |
| diag::ext_typename_outside_of_template) |
| << FixItHint::CreateRemoval(TypenameLoc); |
| |
| // Strangely, non-type results are not ignored by this lookup, so the |
| // program is ill-formed if it finds an injected-class-name. |
| if (TypenameLoc.isValid()) { |
| auto *LookupRD = |
| dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false)); |
| if (LookupRD && LookupRD->getIdentifier() == TemplateII) { |
| Diag(TemplateIILoc, |
| diag::ext_out_of_line_qualified_id_type_names_constructor) |
| << TemplateII << 0 /*injected-class-name used as template name*/ |
| << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/); |
| } |
| } |
| |
| // Translate the parser's template argument list in our AST format. |
| TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); |
| translateTemplateArguments(TemplateArgsIn, TemplateArgs); |
| |
| TemplateName Template = TemplateIn.get(); |
| if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { |
| // Construct a dependent template specialization type. |
| assert(DTN && "dependent template has non-dependent name?"); |
| assert(DTN->getQualifier() == SS.getScopeRep()); |
| QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, |
| DTN->getQualifier(), |
| DTN->getIdentifier(), |
| TemplateArgs); |
| |
| // Create source-location information for this type. |
| TypeLocBuilder Builder; |
| DependentTemplateSpecializationTypeLoc SpecTL |
| = Builder.push<DependentTemplateSpecializationTypeLoc>(T); |
| SpecTL.setElaboratedKeywordLoc(TypenameLoc); |
| SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
| SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
| SpecTL.setTemplateNameLoc(TemplateIILoc); |
| SpecTL.setLAngleLoc(LAngleLoc); |
| SpecTL.setRAngleLoc(RAngleLoc); |
| for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
| SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); |
| return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); |
| } |
| |
| QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); |
| if (T.isNull()) |
| return true; |
| |
| // Provide source-location information for the template specialization type. |
| TypeLocBuilder Builder; |
| TemplateSpecializationTypeLoc SpecTL |
| = Builder.push<TemplateSpecializationTypeLoc>(T); |
| SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
| SpecTL.setTemplateNameLoc(TemplateIILoc); |
| SpecTL.setLAngleLoc(LAngleLoc); |
| SpecTL.setRAngleLoc(RAngleLoc); |
| for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
| SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); |
| |
| T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); |
| ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); |
| TL.setElaboratedKeywordLoc(TypenameLoc); |
| TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
| |
| TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); |
| return CreateParsedType(T, TSI); |
| } |
| |
| |
| /// Determine whether this failed name lookup should be treated as being |
| /// disabled by a usage of std::enable_if. |
| static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, |
| SourceRange &CondRange, Expr *&Cond) { |
| // We must be looking for a ::type... |
| if (!II.isStr("type")) |
| return false; |
| |
| // ... within an explicitly-written template specialization... |
| if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) |
| return false; |
| TypeLoc EnableIfTy = NNS.getTypeLoc(); |
| TemplateSpecializationTypeLoc EnableIfTSTLoc = |
| EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); |
| if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) |
| return false; |
| const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr(); |
| |
| // ... which names a complete class template declaration... |
| const TemplateDecl *EnableIfDecl = |
| EnableIfTST->getTemplateName().getAsTemplateDecl(); |
| if (!EnableIfDecl || EnableIfTST->isIncompleteType()) |
| return false; |
| |
| // ... called "enable_if". |
| const IdentifierInfo *EnableIfII = |
| EnableIfDecl->getDeclName().getAsIdentifierInfo(); |
| if (!EnableIfII || !EnableIfII->isStr("enable_if")) |
| return false; |
| |
| // Assume the first template argument is the condition. |
| CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange(); |
| |
| // Dig out the condition. |
| Cond = nullptr; |
| if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind() |
| != TemplateArgument::Expression) |
| return true; |
| |
| Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression(); |
| |
| // Ignore Boolean literals; they add no value. |
| if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts())) |
| Cond = nullptr; |
| |
| return true; |
| } |
| |
| /// Build the type that describes a C++ typename specifier, |
| /// e.g., "typename T::type". |
| QualType |
| Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, |
| SourceLocation KeywordLoc, |
| NestedNameSpecifierLoc QualifierLoc, |
| const IdentifierInfo &II, |
| SourceLocation IILoc) { |
| CXXScopeSpec SS; |
| SS.Adopt(QualifierLoc); |
| |
| DeclContext *Ctx = computeDeclContext(SS); |
| if (!Ctx) { |
| // If the nested-name-specifier is dependent and couldn't be |
| // resolved to a type, build a typename type. |
| assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); |
| return Context.getDependentNameType(Keyword, |
| QualifierLoc.getNestedNameSpecifier(), |
| &II); |
| } |
| |
| // If the nested-name-specifier refers to the current instantiation, |
| // the "typename" keyword itself is superfluous. In C++03, the |
| // program is actually ill-formed. However, DR 382 (in C++0x CD1) |
| // allows such extraneous "typename" keywords, and we retroactively |
| // apply this DR to C++03 code with only a warning. In any case we continue. |
| |
| if (RequireCompleteDeclContext(SS, Ctx)) |
| return QualType(); |
| |
| DeclarationName Name(&II); |
| LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); |
| LookupQualifiedName(Result, Ctx, SS); |
| unsigned DiagID = 0; |
| Decl *Referenced = nullptr; |
| switch (Result.getResultKind()) { |
| case LookupResult::NotFound: { |
| // If we're looking up 'type' within a template named 'enable_if', produce |
| // a more specific diagnostic. |
| SourceRange CondRange; |
| Expr *Cond = nullptr; |
| if (isEnableIf(QualifierLoc, II, CondRange, Cond)) { |
| // If we have a condition, narrow it down to the specific failed |
| // condition. |
| if (Cond) { |
| Expr *FailedCond; |
| std::string FailedDescription; |
| std::tie(FailedCond, FailedDescription) = |
| findFailedBooleanCondition(Cond, /*AllowTopLevelCond=*/true); |
| |
| Diag(FailedCond->getExprLoc(), |
| diag::err_typename_nested_not_found_requirement) |
| << FailedDescription |
| << FailedCond->getSourceRange(); |
| return QualType(); |
| } |
| |
| Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if) |
| << Ctx << CondRange; |
| return QualType(); |
| } |
| |
| DiagID = diag::err_typename_nested_not_found; |
| break; |
| } |
| |
| case LookupResult::FoundUnresolvedValue: { |
| // We found a using declaration that is a value. Most likely, the using |
| // declaration itself is meant to have the 'typename' keyword. |
| SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), |
| IILoc); |
| Diag(IILoc, diag::err_typename_refers_to_using_value_decl) |
| << Name << Ctx << FullRange; |
| if (UnresolvedUsingValueDecl *Using |
| = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ |
| SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); |
| Diag(Loc, diag::note_using_value_decl_missing_typename) |
| << FixItHint::CreateInsertion(Loc, "typename "); |
| } |
| } |
| // Fall through to create a dependent typename type, from which we can recover |
| // better. |
| LLVM_FALLTHROUGH; |
| |
| case LookupResult::NotFoundInCurrentInstantiation: |
| // Okay, it's a member of an unknown instantiation. |
| return Context.getDependentNameType(Keyword, |
| QualifierLoc.getNestedNameSpecifier(), |
| &II); |
| |
| case LookupResult::Found: |
| if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { |
| // C++ [class.qual]p2: |
| // In a lookup in which function names are not ignored and the |
| // nested-name-specifier nominates a class C, if the name specified |
| // after the nested-name-specifier, when looked up in C, is the |
| // injected-class-name of C [...] then the name is instead considered |
| // to name the constructor of class C. |
| // |
| // Unlike in an elaborated-type-specifier, function names are not ignored |
| // in typename-specifier lookup. However, they are ignored in all the |
| // contexts where we form a typename type with no keyword (that is, in |
| // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers). |
| // |
| // FIXME: That's not strictly true: mem-initializer-id lookup does not |
| // ignore functions, but that appears to be an oversight. |
| auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx); |
| auto *FoundRD = dyn_cast<CXXRecordDecl>(Type); |
| if (Keyword == ETK_Typename && LookupRD && FoundRD && |
| FoundRD->isInjectedClassName() && |
| declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) |
| Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor) |
| << &II << 1 << 0 /*'typename' keyword used*/; |
| |
| // We found a type. Build an ElaboratedType, since the |
| // typename-specifier was just sugar. |
| MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); |
| return Context.getElaboratedType(Keyword, |
| QualifierLoc.getNestedNameSpecifier(), |
| Context.getTypeDeclType(Type)); |
| } |
| |
| // C++ [dcl.type.simple]p2: |
| // A type-specifier of the form |
| // typename[opt] nested-name-specifier[opt] template-name |
| // is a placeholder for a deduced class type [...]. |
| if (getLangOpts().CPlusPlus17) { |
| if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) { |
| return Context.getElaboratedType( |
| Keyword, QualifierLoc.getNestedNameSpecifier(), |
| Context.getDeducedTemplateSpecializationType(TemplateName(TD), |
| QualType(), false)); |
| } |
| } |
| |
| DiagID = diag::err_typename_nested_not_type; |
| Referenced = Result.getFoundDecl(); |
| break; |
| |
| case LookupResult::FoundOverloaded: |
| DiagID = diag::err_typename_nested_not_type; |
| Referenced = *Result.begin(); |
| break; |
| |
| case LookupResult::Ambiguous: |
| return QualType(); |
| } |
| |
| // If we get here, it's because name lookup did not find a |
| // type. Emit an appropriate diagnostic and return an error. |
| SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), |
| IILoc); |
| Diag(IILoc, DiagID) << FullRange << Name << Ctx; |
| if (Referenced) |
| Diag(Referenced->getLocation(), diag::note_typename_refers_here) |
| << Name; |
| return QualType(); |
| } |
| |
| namespace { |
| // See Sema::RebuildTypeInCurrentInstantiation |
| class CurrentInstantiationRebuilder |
| : public TreeTransform<CurrentInstantiationRebuilder> { |
| SourceLocation Loc; |
| DeclarationName Entity; |
| |
| public: |
| typedef TreeTransform<CurrentInstantiationRebuilder> inherited; |
| |
| CurrentInstantiationRebuilder(Sema &SemaRef, |
| SourceLocation Loc, |
| DeclarationName Entity) |
| : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), |
| Loc(Loc), Entity(Entity) { } |
| |
| /// Determine whether the given type \p T has already been |
| /// transformed. |
| /// |
| /// For the purposes of type reconstruction, a type has already been |
| /// transformed if it is NULL or if it is not dependent. |
| bool AlreadyTransformed(QualType T) { |
| return T.isNull() || !T->isDependentType(); |
| } |
| |
| /// Returns the location of the entity whose type is being |
| /// rebuilt. |
| SourceLocation getBaseLocation() { return Loc; } |
| |
| /// Returns the name of the entity whose type is being rebuilt. |
| DeclarationName getBaseEntity() { return Entity; } |
| |
| /// Sets the "base" location and entity when that |
| /// information is known based on another transformation. |
| void setBase(SourceLocation Loc, DeclarationName Entity) { |
| this->Loc = Loc; |
| this->Entity = Entity; |
| } |
| |
| ExprResult TransformLambdaExpr(LambdaExpr *E) { |
| // Lambdas never need to be transformed. |
| return E; |
| } |
| }; |
| } // end anonymous namespace |
| |
| /// Rebuilds a type within the context of the current instantiation. |
| /// |
| /// The type \p T is part of the type of an out-of-line member definition of |
| /// a class template (or class template partial specialization) that was parsed |
| /// and constructed before we entered the scope of the class template (or |
| /// partial specialization thereof). This routine will rebuild that type now |
| /// that we have entered the declarator's scope, which may produce different |
| /// canonical types, e.g., |
| /// |
| /// \code |
| /// template<typename T> |
| /// struct X { |
| /// typedef T* pointer; |
| /// pointer data(); |
| /// }; |
| /// |
| /// template<typename T> |
| /// typename X<T>::pointer X<T>::data() { ... } |
| /// \endcode |
| /// |
| /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, |
| /// since we do not know that we can look into X<T> when we parsed the type. |
| /// This function will rebuild the type, performing the lookup of "pointer" |
| /// in X<T> and returning an ElaboratedType whose canonical type is the same |
| /// as the canonical type of T*, allowing the return types of the out-of-line |
| /// definition and the declaration to match. |
| TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, |
| SourceLocation Loc, |
| DeclarationName Name) { |
| if (!T || !T->getType()->isDependentType()) |
| return T; |
| |
| CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); |
| return Rebuilder.TransformType(T); |
| } |
| |
| ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { |
| CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), |
| DeclarationName()); |
| return Rebuilder.TransformExpr(E); |
| } |
| |
| bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { |
| if (SS.isInvalid()) |
| return true; |
| |
| NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); |
| CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), |
| DeclarationName()); |
| NestedNameSpecifierLoc Rebuilt |
| = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); |
| if (!Rebuilt) |
| return true; |
| |
| SS.Adopt(Rebuilt); |
| return false; |
| } |
| |
| /// Rebuild the template parameters now that we know we're in a current |
| /// instantiation. |
| bool Sema::RebuildTemplateParamsInCurrentInstantiation( |
| TemplateParameterList *Params) { |
| for (unsigned I = 0, N = Params->size(); I != N; ++I) { |
| Decl *Param = Params->getParam(I); |
| |
| // There is nothing to rebuild in a type parameter. |
| if (isa<TemplateTypeParmDecl>(Param)) |
| continue; |
| |
| // Rebuild the template parameter list of a template template parameter. |
| if (TemplateTemplateParmDecl *TTP |
| = dyn_cast<TemplateTemplateParmDecl>(Param)) { |
| if (RebuildTemplateParamsInCurrentInstantiation( |
| TTP->getTemplateParameters())) |
| return true; |
| |
| continue; |
| } |
| |
| // Rebuild the type of a non-type template parameter. |
| NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); |
| TypeSourceInfo *NewTSI |
| = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), |
| NTTP->getLocation(), |
| NTTP->getDeclName()); |
| if (!NewTSI) |
| return true; |
| |
| if (NewTSI != NTTP->getTypeSourceInfo()) { |
| NTTP->setTypeSourceInfo(NewTSI); |
| NTTP->setType(NewTSI->getType()); |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Produces a formatted string that describes the binding of |
| /// template parameters to template arguments. |
| std::string |
| Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, |
| const TemplateArgumentList &Args) { |
| return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); |
| } |
| |
| std::string |
| Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, |
| const TemplateArgument *Args, |
| unsigned NumArgs) { |
| SmallString<128> Str; |
| llvm::raw_svector_ostream Out(Str); |
| |
| if (!Params || Params->size() == 0 || NumArgs == 0) |
| return std::string(); |
| |
| for (unsigned I = 0, N = Params->size(); I != N; ++I) { |
| if (I >= NumArgs) |
| break; |
| |
| if (I == 0) |
| Out << "[with "; |
| else |
| Out << ", "; |
| |
| if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { |
| Out << Id->getName(); |
| } else { |
| Out << '$' << I; |
| } |
| |
| Out << " = "; |
| Args[I].print(getPrintingPolicy(), Out); |
| } |
| |
| Out << ']'; |
| return Out.str(); |
| } |
| |
| void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, |
| CachedTokens &Toks) { |
| if (!FD) |
| return; |
| |
| auto LPT = llvm::make_unique<LateParsedTemplate>(); |
| |
| // Take tokens to avoid allocations |
| LPT->Toks.swap(Toks); |
| LPT->D = FnD; |
| LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT))); |
| |
| FD->setLateTemplateParsed(true); |
| } |
| |
| void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) { |
| if (!FD) |
| return; |
| FD->setLateTemplateParsed(false); |
| } |
| |
| bool Sema::IsInsideALocalClassWithinATemplateFunction() { |
| DeclContext *DC = CurContext; |
| |
| while (DC) { |
| if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { |
| const FunctionDecl *FD = RD->isLocalClass(); |
| return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); |
| } else if (DC->isTranslationUnit() || DC->isNamespace()) |
| return false; |
| |
| DC = DC->getParent(); |
| } |
| return false; |
| } |
| |
| namespace { |
| /// Walk the path from which a declaration was instantiated, and check |
| /// that every explicit specialization along that path is visible. This enforces |
| /// C++ [temp.expl.spec]/6: |
| /// |
| /// If a template, a member template or a member of a class template is |
| /// explicitly specialized then that specialization shall be declared before |
| /// the first use of that specialization that would cause an implicit |
| /// instantiation to take place, in every translation unit in which such a |
| /// use occurs; no diagnostic is required. |
| /// |
| /// and also C++ [temp.class.spec]/1: |
| /// |
| /// A partial specialization shall be declared before the first use of a |
| /// class template specialization that would make use of the partial |
| /// specialization as the result of an implicit or explicit instantiation |
| /// in every translation unit in which such a use occurs; no diagnostic is |
| /// required. |
| class ExplicitSpecializationVisibilityChecker { |
| Sema &S; |
| SourceLocation Loc; |
| llvm::SmallVector<Module *, 8> Modules; |
| |
| public: |
| ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc) |
| : S(S), Loc(Loc) {} |
| |
| void check(NamedDecl *ND) { |
| if (auto *FD = dyn_cast<FunctionDecl>(ND)) |
| return checkImpl(FD); |
| if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) |
| return checkImpl(RD); |
| if (auto *VD = dyn_cast<VarDecl>(ND)) |
| return checkImpl(VD); |
| if (auto *ED = dyn_cast<EnumDecl>(ND)) |
| return checkImpl(ED); |
| } |
| |
| private: |
| void diagnose(NamedDecl *D, bool IsPartialSpec) { |
| auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization |
| : Sema::MissingImportKind::ExplicitSpecialization; |
| const bool Recover = true; |
| |
| // If we got a custom set of modules (because only a subset of the |
| // declarations are interesting), use them, otherwise let |
| // diagnoseMissingImport intelligently pick some. |
| if (Modules.empty()) |
| S.diagnoseMissingImport(Loc, D, Kind, Recover); |
| else |
| S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover); |
| } |
| |
| // Check a specific declaration. There are three problematic cases: |
| // |
| // 1) The declaration is an explicit specialization of a template |
| // specialization. |
| // 2) The declaration is an explicit specialization of a member of an |
| // templated class. |
| // 3) The declaration is an instantiation of a template, and that template |
| // is an explicit specialization of a member of a templated class. |
| // |
| // We don't need to go any deeper than that, as the instantiation of the |
| // surrounding class / etc is not triggered by whatever triggered this |
| // instantiation, and thus should be checked elsewhere. |
| template<typename SpecDecl> |
| void checkImpl(SpecDecl *Spec) { |
| bool IsHiddenExplicitSpecialization = false; |
| if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) { |
| IsHiddenExplicitSpecialization = |
| Spec->getMemberSpecializationInfo() |
| ? !S.hasVisibleMemberSpecialization(Spec, &Modules) |
| : !S.hasVisibleExplicitSpecialization(Spec, &Modules); |
| } else { |
| checkInstantiated(Spec); |
| } |
| |
| if (IsHiddenExplicitSpecialization) |
| diagnose(Spec->getMostRecentDecl(), false); |
| } |
| |
| void checkInstantiated(FunctionDecl *FD) { |
| if (auto *TD = FD->getPrimaryTemplate()) |
| checkTemplate(TD); |
| } |
| |
| void checkInstantiated(CXXRecordDecl *RD) { |
| auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD); |
| if (!SD) |
| return; |
| |
| auto From = SD->getSpecializedTemplateOrPartial(); |
| if (auto *TD = From.dyn_cast<ClassTemplateDecl *>()) |
| checkTemplate(TD); |
| else if (auto *TD = |
| From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { |
| if (!S.hasVisibleDeclaration(TD)) |
| diagnose(TD, true); |
| checkTemplate(TD); |
| } |
| } |
| |
| void checkInstantiated(VarDecl *RD) { |
| auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD); |
| if (!SD) |
| return; |
| |
| auto From = SD->getSpecializedTemplateOrPartial(); |
| if (auto *TD = From.dyn_cast<VarTemplateDecl *>()) |
| checkTemplate(TD); |
| else if (auto *TD = |
| From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { |
| if (!S.hasVisibleDeclaration(TD)) |
| diagnose(TD, true); |
| checkTemplate(TD); |
| } |
| } |
| |
| void checkInstantiated(EnumDecl *FD) {} |
| |
| template<typename TemplDecl> |
| void checkTemplate(TemplDecl *TD) { |
| if (TD->isMemberSpecialization()) { |
| if (!S.hasVisibleMemberSpecialization(TD, &Modules)) |
| diagnose(TD->getMostRecentDecl(), false); |
| } |
| } |
| }; |
| } // end anonymous namespace |
| |
| void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) { |
| if (!getLangOpts().Modules) |
| return; |
| |
| ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec); |
| } |
| |
| /// Check whether a template partial specialization that we've discovered |
| /// is hidden, and produce suitable diagnostics if so. |
| void Sema::checkPartialSpecializationVisibility(SourceLocation Loc, |
| NamedDecl *Spec) { |
| llvm::SmallVector<Module *, 8> Modules; |
| if (!hasVisibleDeclaration(Spec, &Modules)) |
| diagnoseMissingImport(Loc, Spec, Spec->getLocation(), Modules, |
| MissingImportKind::PartialSpecialization, |
| /*Recover*/true); |
| } |