| /* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */ |
| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunSoft, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| /* sqrt(x) |
| * Return correctly rounded sqrt. |
| * ------------------------------------------ |
| * | Use the hardware sqrt if you have one | |
| * ------------------------------------------ |
| * Method: |
| * Bit by bit method using integer arithmetic. (Slow, but portable) |
| * 1. Normalization |
| * Scale x to y in [1,4) with even powers of 2: |
| * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then |
| * sqrt(x) = 2^k * sqrt(y) |
| * 2. Bit by bit computation |
| * Let q = sqrt(y) truncated to i bit after binary point (q = 1), |
| * i 0 |
| * i+1 2 |
| * s = 2*q , and y = 2 * ( y - q ). (1) |
| * i i i i |
| * |
| * To compute q from q , one checks whether |
| * i+1 i |
| * |
| * -(i+1) 2 |
| * (q + 2 ) <= y. (2) |
| * i |
| * -(i+1) |
| * If (2) is false, then q = q ; otherwise q = q + 2 . |
| * i+1 i i+1 i |
| * |
| * With some algebric manipulation, it is not difficult to see |
| * that (2) is equivalent to |
| * -(i+1) |
| * s + 2 <= y (3) |
| * i i |
| * |
| * The advantage of (3) is that s and y can be computed by |
| * i i |
| * the following recurrence formula: |
| * if (3) is false |
| * |
| * s = s , y = y ; (4) |
| * i+1 i i+1 i |
| * |
| * otherwise, |
| * -i -(i+1) |
| * s = s + 2 , y = y - s - 2 (5) |
| * i+1 i i+1 i i |
| * |
| * One may easily use induction to prove (4) and (5). |
| * Note. Since the left hand side of (3) contain only i+2 bits, |
| * it does not necessary to do a full (53-bit) comparison |
| * in (3). |
| * 3. Final rounding |
| * After generating the 53 bits result, we compute one more bit. |
| * Together with the remainder, we can decide whether the |
| * result is exact, bigger than 1/2ulp, or less than 1/2ulp |
| * (it will never equal to 1/2ulp). |
| * The rounding mode can be detected by checking whether |
| * huge + tiny is equal to huge, and whether huge - tiny is |
| * equal to huge for some floating point number "huge" and "tiny". |
| * |
| * Special cases: |
| * sqrt(+-0) = +-0 ... exact |
| * sqrt(inf) = inf |
| * sqrt(-ve) = NaN ... with invalid signal |
| * sqrt(NaN) = NaN ... with invalid signal for signaling NaN |
| */ |
| |
| #include "libm.h" |
| |
| static const double tiny = 1.0e-300; |
| |
| double sqrt(double x) |
| { |
| double z; |
| int32_t sign = (int)0x80000000; |
| int32_t ix0,s0,q,m,t,i; |
| uint32_t r,t1,s1,ix1,q1; |
| |
| EXTRACT_WORDS(ix0, ix1, x); |
| |
| /* take care of Inf and NaN */ |
| if ((ix0&0x7ff00000) == 0x7ff00000) { |
| return x*x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */ |
| } |
| /* take care of zero */ |
| if (ix0 <= 0) { |
| if (((ix0&~sign)|ix1) == 0) |
| return x; /* sqrt(+-0) = +-0 */ |
| if (ix0 < 0) |
| return (x-x)/(x-x); /* sqrt(-ve) = sNaN */ |
| } |
| /* normalize x */ |
| m = ix0>>20; |
| if (m == 0) { /* subnormal x */ |
| while (ix0 == 0) { |
| m -= 21; |
| ix0 |= (ix1>>11); |
| ix1 <<= 21; |
| } |
| for (i=0; (ix0&0x00100000) == 0; i++) |
| ix0<<=1; |
| m -= i - 1; |
| ix0 |= ix1>>(32-i); |
| ix1 <<= i; |
| } |
| m -= 1023; /* unbias exponent */ |
| ix0 = (ix0&0x000fffff)|0x00100000; |
| if (m & 1) { /* odd m, double x to make it even */ |
| ix0 += ix0 + ((ix1&sign)>>31); |
| ix1 += ix1; |
| } |
| m >>= 1; /* m = [m/2] */ |
| |
| /* generate sqrt(x) bit by bit */ |
| ix0 += ix0 + ((ix1&sign)>>31); |
| ix1 += ix1; |
| q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */ |
| r = 0x00200000; /* r = moving bit from right to left */ |
| |
| while (r != 0) { |
| t = s0 + r; |
| if (t <= ix0) { |
| s0 = t + r; |
| ix0 -= t; |
| q += r; |
| } |
| ix0 += ix0 + ((ix1&sign)>>31); |
| ix1 += ix1; |
| r >>= 1; |
| } |
| |
| r = sign; |
| while (r != 0) { |
| t1 = s1 + r; |
| t = s0; |
| if (t < ix0 || (t == ix0 && t1 <= ix1)) { |
| s1 = t1 + r; |
| if ((t1&sign) == sign && (s1&sign) == 0) |
| s0++; |
| ix0 -= t; |
| if (ix1 < t1) |
| ix0--; |
| ix1 -= t1; |
| q1 += r; |
| } |
| ix0 += ix0 + ((ix1&sign)>>31); |
| ix1 += ix1; |
| r >>= 1; |
| } |
| |
| /* use floating add to find out rounding direction */ |
| if ((ix0|ix1) != 0) { |
| z = 1.0 - tiny; /* raise inexact flag */ |
| if (z >= 1.0) { |
| z = 1.0 + tiny; |
| if (q1 == (uint32_t)0xffffffff) { |
| q1 = 0; |
| q++; |
| } else if (z > 1.0) { |
| if (q1 == (uint32_t)0xfffffffe) |
| q++; |
| q1 += 2; |
| } else |
| q1 += q1 & 1; |
| } |
| } |
| ix0 = (q>>1) + 0x3fe00000; |
| ix1 = q1>>1; |
| if (q&1) |
| ix1 |= sign; |
| ix0 += m << 20; |
| INSERT_WORDS(z, ix0, ix1); |
| return z; |
| } |